
Basic stochastic processes

Solution to take home re-examination in April 2010

Day assigned: April 8, 10:00. Due date: April 9, 10:00 am

• The take home examination is a strictly individual assignment. Submissions that bear signs
of being collective efforts will be disregarded

• Answers without explanations will be disregarded as well.

Problem 1. A Bernoulli trial results in a success with probability p and in a failure with
probability 1 − p, where 0 < p < 1. Suppose the Bernoulli trial is repeated indefinitely with
each repetition independent of all others. Let Xn be a “success runs” Markov chain with a
state space I = {0, 1, 2, . . . }, where Xn = 0 if the n− th trial results in a failure and Xn = j
if Xn−j = 0 and trials n− j + 1, . . . , n have resulted in a success. Find the one-step transition
matrix of the Markov chain. Show that all states are recurrent. 5p

Solution

For i, j ∈ I the one-step transition probabilities are

pij =







p if j = i + 1
1− p if j = 0
0 otherwise

We have

f
(n)
00 = P{Xn = 0, Xn−k 6= 0, 1 ≤ k ≤ (n− 1)|X0 = 0}

= P{(n− 1) successes followed by 1 failure } = pn−1(1− p)

and
∞

∑

n=1

f
(n)
00 =

∞
∑

n=1

pn−1(1− p) = 1,

thus state 0 is recurrent. Since all states communicate with one another they are recurrent.

Problem 2. In the beginning of each time unit a job arrives at a conveyor with a single work
station. The workstation can process only one job at a time and has a buffer for waiting jobs,
that can hold at most K jobs. Any arriving gob that finds the buffer full is lost. The processing
times are independent and have exponential distribution with mean 1/µ. It is assumed that
µ > 1. Define a Markov chain to analyse the number of jobs in the buffer just prior to the arrival
epochs of new jobs and specify the one-step transition probabilities. Show how to calculate the
long-run fraction of lost jobs and the long-run fraction of time the workstation is busy. 5p



Solution

Let Xn=the # of jobs in the system just prior to the n − th arrival. {Xn} is a Markov chain
with state space I = {0, 1, . . . K + 1}. The one-step transition probabilities are as follows.
For 0 ≤ i ≤ K

pij = e−µ µi+1−j

(i + 1− j)!
, 1 ≤ j ≤ i + 1,

pi0 = 1−

i+1
∑

j=1

e−µ µi+1−j

(i + 1− j)!
.

For i = K + 1

pK+1,j = e−µ µK+1−j

(K + 1− j)!
, 1 ≤ j ≤ K + 1,

pK+1,0 = 1−

K+1
∑

j=1

e−µ µi+1−j

(i + 1− j)!
.

Since µ > 1 ≥ the rate of accepted messages, the system has equilibrium probabilities
{πi, 0 ≤ i ≤ K + 1}. By the PASTA property

the long-run fraction of jobs rejected = πK+1.

The rate of accepted jobs is then 1− πK+1. By the Little’s formula

the long-run fraction of time the station is busy =
1

µ
[1− πK+1].

Problem 3. An information centre has one attendant; people with questions arrive according
to a Poisson process with rate λ. A person who finds n other customers present upon arrival joins
the queue with probability 1/(n+1) for n = 0, 1, . . . and goes elsewhere otherwise. The service
times of the persons are independent random variables having an exponential distribution with
mean 1/µ. Verify that the equilibrium distribution of the number of persons present at the
information centre is a Poisson distribution with mean λ/µ. What is the long-run fraction of
persons with request who actually join the queue? What is the long-run average number of
persons served per time unit? Explain your answers. 5p

Solution Let X(t) be the number of persons present at time t. The process {X(t), t ≥ 0} is a
continuous-time Markov chain with state space I = {0, 1, 2, . . . }. The transition rate diagram
is given by

λ/1 λ/i
→ →

0 1 . . . (i− 1) i . . .

← ←
µ µ

By equating the rate out of the set {i, i+1, . . .} to the rate into this set, we find the recurrence
relations

µpi =
λ

i
pi−1, i = 1, 2, . . .
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These equations lead to

pi =
(λ/µ)i

i!
p0, i ≥ 1.

Using the normalizing equation
∑

pi = 1 we obtain

pi = e−λ/µ (λ/µ)i

i!
, i ≥ 0.

(b) By the PASTA property, the long-run fraction of arrivals that actually join the queue is

∞
∑

i=0

pi
1

i + 1
=

µ

λ

(

1− e−λ/µ
)

.

The long-run average number of persons served per time unit is

λ
[µ

λ

(

1− e−λ/µ
)

]

= µ(1− p0),

in agreement with the Little’s formula.
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