## Basic stochastic processes

## Solution to take home re-examination in April 2010

Day assigned: April 8, 10:00. Due date: April 9, 10:00 am

- The take home examination is a strictly individual assignment. Submissions that bear signs of being collective efforts will be disregarded
- Answers without explanations will be disregarded as well.

Problem 1. A Bernoulli trial results in a success with probability $p$ and in a failure with probability $1-p$, where $0<p<1$. Suppose the Bernoulli trial is repeated indefinitely with each repetition independent of all others. Let $X_{n}$ be a "success runs" Markov chain with a state space $I=\{0,1,2, \ldots\}$, where $X_{n}=0$ if the $n-t h$ trial results in a failure and $X_{n}=j$ if $X_{n-j}=0$ and trials $n-j+1, \ldots, n$ have resulted in a success. Find the one-step transition matrix of the Markov chain. Show that all states are recurrent.

## Solution

For $i, j \in I$ the one-step transition probabilities are

$$
p_{i j}= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=0 \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
\begin{aligned}
f_{00}^{(n)} & =P\left\{X_{n}=0, X_{n-k} \neq 0,1 \leq k \leq(n-1) \mid X_{0}=0\right\} \\
& =P\{(n-1) \text { successes followed by } 1 \text { failure }\}=p^{n-1}(1-p)
\end{aligned}
$$

and

$$
\sum_{n=1}^{\infty} f_{00}^{(n)}=\sum_{n=1}^{\infty} p^{n-1}(1-p)=1
$$

thus state 0 is recurrent. Since all states communicate with one another they are recurrent.

Problem 2. In the beginning of each time unit a job arrives at a conveyor with a single work station. The workstation can process only one job at a time and has a buffer for waiting jobs, that can hold at most $K$ jobs. Any arriving gob that finds the buffer full is lost. The processing times are independent and have exponential distribution with mean $1 / \mu$. It is assumed that $\mu>1$. Define a Markov chain to analyse the number of jobs in the buffer just prior to the arrival epochs of new jobs and specify the one-step transition probabilities. Show how to calculate the long-run fraction of lost jobs and the long-run fraction of time the workstation is busy. 5p

## Solution

Let $X_{n}=$ the $\#$ of jobs in the system just prior to the $n-t h$ arrival. $\left\{X_{n}\right\}$ is a Markov chain with state space $I=\{0,1, \ldots K+1\}$. The one-step transition probabilities are as follows.
For $0 \leq i \leq K$

$$
\begin{aligned}
& p_{i j}=e^{-\mu} \frac{\mu^{i+1-j}}{(i+1-j)!}, \quad 1 \leq j \leq i+1 \\
& p_{i 0}=1-\sum_{j=1}^{i+1} e^{-\mu} \frac{\mu^{i+1-j}}{(i+1-j)!}
\end{aligned}
$$

For $i=K+1$

$$
\begin{aligned}
& p_{K+1, j}=e^{-\mu} \frac{\mu^{K+1-j}}{(K+1-j)!}, \quad 1 \leq j \leq K+1 \\
& p_{K+1,0}=1-\sum_{j=1}^{K+1} e^{-\mu} \frac{\mu^{i+1-j}}{(i+1-j)!}
\end{aligned}
$$

Since $\mu>1 \geq$ the rate of accepted messages, the system has equilibrium probabilities $\left\{\pi_{i}, 0 \leq i \leq K+1\right\}$. By the PASTA property

$$
\text { the long-run fraction of jobs rejected }=\pi_{K+1} \text {. }
$$

The rate of accepted jobs is then $1-\pi_{K+1}$. By the Little's formula

$$
\text { the long-run fraction of time the station is busy }=\frac{1}{\mu}\left[1-\pi_{K+1}\right] \text {. }
$$

Problem 3. An information centre has one attendant; people with questions arrive according to a Poisson process with rate $\lambda$. A person who finds $n$ other customers present upon arrival joins the queue with probability $1 /(n+1)$ for $n=0,1, \ldots$ and goes elsewhere otherwise. The service times of the persons are independent random variables having an exponential distribution with mean $1 / \mu$. Verify that the equilibrium distribution of the number of persons present at the information centre is a Poisson distribution with mean $\lambda / \mu$. What is the long-run fraction of persons with request who actually join the queue? What is the long-run average number of persons served per time unit? Explain your answers.

Solution Let $X(t)$ be the number of persons present at time $t$. The process $\{X(t), t \geq 0\}$ is a continuous-time Markov chain with state space $I=\{0,1,2, \ldots\}$. The transition rate diagram is given by


By equating the rate out of the set $\{i, i+1, \ldots\}$ to the rate into this set, we find the recurrence relations

$$
\mu p_{i}=\frac{\lambda}{i} p_{i-1}, i=1,2, \ldots
$$

These equations lead to

$$
p_{i}=\frac{(\lambda / \mu)^{i}}{i!} p_{0}, \quad i \geq 1 .
$$

Using the normalizing equation $\sum p_{i}=1$ we obtain

$$
p_{i}=e^{-\lambda / \mu} \frac{(\lambda / \mu)^{i}}{i!}, \quad i \geq 0
$$

(b) By the PASTA property, the long-run fraction of arrivals that actually join the queue is

$$
\sum_{i=0}^{\infty} p_{i} \frac{1}{i+1}=\frac{\mu}{\lambda}\left(1-e^{-\lambda / \mu}\right)
$$

The long-run average number of persons served per time unit is

$$
\lambda\left[\frac{\mu}{\lambda}\left(1-e^{-\lambda / \mu}\right)\right]=\mu\left(1-p_{0}\right)
$$

in agreement with the Little's formula.

