MSG800/MVE170 Basic Stochastic Processes

Written exam Saturday 25 August 20128.30 am-12.30 am

Teacher and jour: Patrik Albin, telephone 0706945709.
AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Good Luck!
Task 1. Consider a Markov chain $\{X(n): n \geq 0\}$ with state space E, initial state probabilities $\mathbf{p}(0)$ and transition probability matrix P given by

$$
E=\{0,1\}, \quad \mathbf{p}(0)=\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ll}
2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right]
$$

respectively. Find the probability $\mathbf{P}\{X(5)=1 \mid X(2)=1\}$. (5 points)
Task 2. Let $\{X(t): t \geq 0\}$ be a zero-mean continuous-time normal random process with autocovariance fuction $\operatorname{Cov}\{X(s), X(t)\}=\min \{s, t\}$. Show that $X(t)$ is a self-similar process, which is to say that there exists a so called Hurst parameter $H>0$ such that the processes $\{X(\lambda t): t \geq 0\}$ and $\left\{\lambda^{H} X(t): t \geq 0\right\}$ have the same n-th order distributions $\mathbf{P}\left\{X\left(\lambda t_{1}\right) \leq x_{1}, \ldots, X\left(\lambda t_{n}\right) \leq x_{n}\right\}=\mathbf{P}\left\{\lambda^{H} X\left(t_{1}\right) \leq x_{1}, \ldots, \lambda^{H} X\left(t_{n}\right) \leq x_{n}\right\}$ for any given constant $\lambda>0$ and any $n \in \mathbb{N}$. (5 points)

Task 3. Let $\left\{Y_{n}: n \geq 0\right\}$ be a simple random walk given by $Y_{n}=\sum_{k=1}^{n} X_{k}$ where X_{1}, X_{2}, \ldots are independent identically distributed $\{-1,1\}$-valued random variables with $\mathbf{P}\left\{X_{k}=-1\right\}=\mathbf{P}\left\{X_{k}=1\right\}=\frac{1}{2}$. Consider the first exit time $T=\min \left\{n \geq 0: Y_{n} \leq\right.$ $-a$ or $\left.Y_{n} \geq b\right\}$ of $\left\{Y_{n}\right\}_{n=0}^{\infty}$ from the interval $(-a, b)$, where $a, b>0$ are real constants. Find the probabilities $\mathbf{P}\left\{Y_{T} \leq-a\right\}$ and $\mathbf{P}\left\{Y_{T} \geq b\right\}$ that this exit is downwards and upwards, respectively. (5 points)

Task 4. Let $\{X(t): t \in \mathbb{R}\}$ be a continuous-time wide-sense stationary random process with power spectral density $S_{X}(\omega)$. The derivative process of $X(t)$ is defined as $X^{\prime}(t)=$ $\lim _{h \rightarrow 0}(X(t+h)-X(t)) / h$ whenever this limit is well-defined in a suitable sense. Show that the cross power spectral density between $X(t)$ and $X^{\prime}(t)$ is given by $S_{X X^{\prime}}(\omega)=$ $j \omega S_{X}(\omega) . \quad(5$ points)

Task 5. Let $\{X(t): t \in \mathbb{R}\}$ be a continuous-time zero-mean wide-sense stationary random process with autocorrelation function $R_{X}(\tau)=\mathrm{e}^{-|\tau|}$ for $\tau \in \mathbb{R}$. Find the
impulse response function $h(t)$ of the linear time invariant system with input $X(t)$ that has a zero-mean wide-sense stationary output process $\{Y(t): t \in \mathbb{R}\}$ such that $X(t)$ and $Y(t)$ has crosscorrelation function $R_{X Y}(\tau)=\mathrm{e}^{-2|\tau|}$ for $\tau \in \mathbb{R}$. (5 points)

Task 6. Write a computer programme that by means of stochastic simulation finds an approximation of the variance of a typical waiting time $W(q)$ (in the queue) before service for a typical customer arriving to a steady-state $\mathrm{M}(1) / \mathrm{M}(2) / 1 / 2$ queuing system. (In other words, the queuing system has $\exp (1)$-distributed times between arrivals of new customers and $\exp (2)$-distributed service times. Further, the system has one server and one queuing place.) (5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Saturday 25 August

Task 1. We have $\mathbf{P}\{X(5)=1 \mid X(2)=1\}=\left(P^{3}\right)_{1,1}$ (i.e., the lower diagonal element of the third power of P), which by elementary matrix calculations equals $14 / 27$.

Task 2. As $\{X(\lambda t): t \geq 0\}$ and $\left\{\lambda^{H} X(t): t \geq 0\right\}$ are both zero-mean normal processes their n-th order distributions agree if their auto-covariance functions do. These in turn are given by $\operatorname{Cov}\{X(\lambda s), X(\lambda t)\}=\min \{\lambda s, \lambda t\}=\lambda \min \{s, t\}$ and $\operatorname{Cov}\left\{\lambda^{H} X(s), \lambda^{H}\right.$ $X(t)\}=\lambda^{2 H} \operatorname{Cov}\{X(s), X(t)\}=\lambda^{2 H} \min \{s, t\}$, respectively, so that they agree for $H=\frac{1}{2}$.

Task 3. As $\left\{Y_{n}: n \geq 0\right\}$ is a martingale and T a stopping time that satisfy the conditions of the optional stopping theorem, writing $\lceil x\rceil$ for the smallest integer that is greater or equal to $x \in \mathbb{R}$, we have $0=\mathbf{E}\left\{Y_{0}\right\}=\mathbf{E}\left\{Y_{T}\right\}=\mathbf{P}\left\{Y_{T} \leq-a\right\} \times(-\lceil a\rceil)+\mathbf{P}\left\{Y_{T} \geq b\right\} \times\lceil b\rceil=$ $\mathbf{P}\left\{Y_{T} \leq-a\right\} \times(-\lceil a\rceil)+\left(1-\mathbf{P}\left\{Y_{T} \leq-a\right\}\right) \times\lceil b\rceil$, so that $\mathbf{P}\left\{Y_{T} \leq-a\right\}=\lceil b\rceil /(\lceil a\rceil+\lceil b\rceil)$ and $\mathbf{P}\left\{Y_{T} \geq b\right\}=1-\mathbf{P}\left\{Y_{T} \leq-a\right\}=\lceil a\rceil /(\lceil a\rceil+\lceil b\rceil)$.

Task 4. As $R_{X X^{\prime}}(\tau)=\mathbf{E}\left\{X(t) \lim _{h \rightarrow 0}(X(t+\tau+h)-X(t+\tau)) / h\right\}=\lim _{h \rightarrow 0} \mathbf{E}\{X(t)(X$ $(t+\tau+h)-X(t+\tau)) / h\}=\lim _{h \rightarrow 0}\left(R_{X}(\tau+h)-R_{X}(\tau)\right) / h=R_{X}^{\prime}(\tau)$, we have $S_{X X^{\prime}}(\omega)=$ $\int_{-\infty}^{\infty} R_{X X^{\prime}}(\tau) \mathrm{e}^{-j \omega \tau} d \tau=\int_{-\infty}^{\infty} R_{X}^{\prime}(\tau) \mathrm{e}^{-j \omega \tau} d \tau=j \omega \int_{-\infty}^{\infty} R_{X}(\tau) \mathrm{e}^{-j \omega \tau} d \tau=j \omega S_{X}(\omega)$.

Task 5. As $S_{X}(\omega)=1 /\left(1+\omega^{2}\right)$ and $S_{X Y}(\omega)=4 /\left(4+\omega^{2}\right)$ are related by $S_{X Y}(\omega)=$ $H(\omega) S_{X}(\omega)$, we have $H(\omega)=S_{X Y}(\omega) / S_{X}(\omega)=4\left(1+\omega^{2}\right) /\left(4+\omega^{2}\right)=4-3 S_{X Y}(\omega)$ so that $h(t)=4 \delta(t)-3 \mathrm{e}^{-2|t|}$.

Task 6. In [1]:= Clear[Reps,lambda,mu,i,Arr,Serv,W];
$\{$ Reps,lambda,mu, W$\}=\{1000000,1,2,\{ \}\} ;$

```
In[2]:= For[i=1,i<=Reps,i++,
```

 Arr=Random [ExponentialDistribution[lambda]];
 Serv=Random[ExponentialDistribution[mu]];
 If [Serv<Arr, AppendTo [W,0],
AppendTo[W,Random[ExponentialDistribution[mu]]]]];

```
In[3]:= Variance[W]
```

Out[3]:= 0.141395

