MSG800/MVE170 Basic Stochastic Processes

Written exam Saturday 25 August 2012 8.30 am - 12.30 am

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

GOOD LUCK!

Task 1. Consider a Markov chain $\{X(n) : n \ge 0\}$ with state space E, initial state probabilities $\mathbf{p}(0)$ and transition probability matrix P given by

$$E = \{0, 1\}, \quad \mathbf{p}(0) = [1/2 \ 1/2] \text{ and } P = \begin{bmatrix} 2/3 \ 1/3 \\ 1/3 \ 2/3 \end{bmatrix},$$

respectively. Find the probability $\mathbf{P}\{X(5)=1|X(2)=1\}$. (5 points)

Task 2. Let $\{X(t): t \ge 0\}$ be a zero-mean continuous-time normal random process with autocovariance function $\mathbf{Cov}\{X(s), X(t)\} = \min\{s, t\}$. Show that X(t) is a self-similar process, which is to say that there exists a so called Hurst parameter H > 0 such that the processes $\{X(\lambda t): t \ge 0\}$ and $\{\lambda^H X(t): t \ge 0\}$ have the same *n*-th order distributions $\mathbf{P}\{X(\lambda t_1) \le x_1, \ldots, X(\lambda t_n) \le x_n\} = \mathbf{P}\{\lambda^H X(t_1) \le x_1, \ldots, \lambda^H X(t_n) \le x_n\}$ for any given constant $\lambda > 0$ and any $n \in \mathbb{N}$. (5 points)

Task 3. Let $\{Y_n : n \ge 0\}$ be a simple random walk given by $Y_n = \sum_{k=1}^n X_k$ where X_1, X_2, \ldots are independent identically distributed $\{-1, 1\}$ -valued random variables with $\mathbf{P}\{X_k = -1\} = \mathbf{P}\{X_k = 1\} = \frac{1}{2}$. Consider the first exit time $T = \min\{n \ge 0 : Y_n \le -a \text{ or } Y_n \ge b\}$ of $\{Y_n\}_{n=0}^{\infty}$ from the interval (-a, b), where a, b > 0 are real constants. Find the probabilities $\mathbf{P}\{Y_T \le -a\}$ and $\mathbf{P}\{Y_T \ge b\}$ that this exit is downwards and upwards, respectively. (5 points)

Task 4. Let $\{X(t): t \in \mathbb{R}\}$ be a continuous-time wide-sense stationary random process with power spectral density $S_X(\omega)$. The derivative process of X(t) is defined as $X'(t) = \lim_{h\to 0} (X(t+h) - X(t))/h$ whenever this limit is well-defined in a suitable sense. Show that the cross power spectral density between X(t) and X'(t) is given by $S_{XX'}(\omega) = j\omega S_X(\omega)$. (5 points)

Task 5. Let $\{X(t) : t \in \mathbb{R}\}$ be a continuous-time zero-mean wide-sense stationary random process with autocorrelation function $R_X(\tau) = e^{-|\tau|}$ for $\tau \in \mathbb{R}$. Find the impulse response function h(t) of the linear time invariant system with input X(t) that has a zero-mean wide-sense stationary output process $\{Y(t): t \in \mathbb{R}\}$ such that X(t) and Y(t) has crosscorrelation function $R_{XY}(\tau) = e^{-2|\tau|}$ for $\tau \in \mathbb{R}$. (5 points)

Task 6. Write a computer programme that by means of stochastic simulation finds an approximation of the variance of a typical waiting time W(q) (in the queue) before service for a typical customer arriving to a steady-state M(1)/M(2)/1/2 queuing system. (In other words, the queuing system has $\exp(1)$ -distributed times between arrivals of new customers and $\exp(2)$ -distributed service times. Further, the system has one server and one queuing place.) **(5 points)**

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Saturday 25 August

Task 1. We have $\mathbf{P}\{X(5)=1|X(2)=1\} = (P^3)_{1,1}$ (i.e., the lower diagonal element of the third power of P), which by elementary matrix calculations equals 14/27.

Task 2. As $\{X(\lambda t) : t \ge 0\}$ and $\{\lambda^H X(t) : t \ge 0\}$ are both zero-mean normal processes their *n*-th order distributions agree if their auto-covariance functions do. These in turn are given by $\mathbf{Cov}\{X(\lambda s), X(\lambda t)\} = \min\{\lambda s, \lambda t\} = \lambda \min\{s, t\}$ and $\mathbf{Cov}\{\lambda^H X(s), \lambda^H X(t)\} = \lambda^{2H} \mathbf{Cov}\{X(s), X(t)\} = \lambda^{2H} \min\{s, t\}$, respectively, so that they agree for $H = \frac{1}{2}$.

Task 3. As $\{Y_n : n \ge 0\}$ is a martingale and T a stopping time that satisfy the conditions of the optional stopping theorem, writing $\lceil x \rceil$ for the smallest integer that is greater or equal to $x \in \mathbb{R}$, we have $0 = \mathbf{E}\{Y_0\} = \mathbf{E}\{Y_T\} = \mathbf{P}\{Y_T \le -a\} \times (-\lceil a \rceil) + \mathbf{P}\{Y_T \ge b\} \times \lceil b \rceil =$ $\mathbf{P}\{Y_T \le -a\} \times (-\lceil a \rceil) + (1 - \mathbf{P}\{Y_T \le -a\}) \times \lceil b \rceil$, so that $\mathbf{P}\{Y_T \le -a\} = \lceil b \rceil/(\lceil a \rceil + \lceil b \rceil)$ and $\mathbf{P}\{Y_T \ge b\} = 1 - \mathbf{P}\{Y_T \le -a\} = \lceil a \rceil/(\lceil a \rceil + \lceil b \rceil)$.

Task 4. As $R_{XX'}(\tau) = \mathbf{E} \{ X(t) \lim_{h \to 0} (X(t+\tau+h) - X(t+\tau))/h \} = \lim_{h \to 0} \mathbf{E} \{ X(t)(X(t+\tau+h) - X(t+\tau))/h \} = \lim_{h \to 0} (R_X(\tau+h) - R_X(\tau))/h = R'_X(\tau)$, we have $S_{XX'}(\omega) = \int_{-\infty}^{\infty} R_{XX'}(\tau) e^{-j\omega\tau} d\tau = \int_{-\infty}^{\infty} R'_X(\tau) e^{-j\omega\tau} d\tau = j\omega \int_{-\infty}^{\infty} R_X(\tau) e^{-j\omega\tau} d\tau = j\omega S_X(\omega)$.

Task 5. As $S_X(\omega) = 1/(1+\omega^2)$ and $S_{XY}(\omega) = 4/(4+\omega^2)$ are related by $S_{XY}(\omega) = H(\omega) S_X(\omega)$, we have $H(\omega) = S_{XY}(\omega)/S_X(\omega) = 4(1+\omega^2)/(4+\omega^2) = 4-3S_{XY}(\omega)$ so that $h(t) = 4\delta(t) - 3e^{-2|t|}$.

Task 6. In[1]:= Clear[Reps,lambda,mu,i,Arr,Serv,W];

{Reps,lambda,mu,W}={1000000,1,2,{}};

In[2]:= For[i=1,i<=Reps,i++,</pre>

Arr=Random[ExponentialDistribution[lambda]];

Serv=Random[ExponentialDistribution[mu]];

```
If[Serv<Arr, AppendTo[W,0],</pre>
```

AppendTo[W,Random[ExponentialDistribution[mu]]]];

In[3]:= Variance[W]

Out[3]:= 0.141395