
MSG800/MVE170 Basic Stochastic Processes Fall 2011

Exercise Session 7, Thursday 8 December

Archetypical type-problems of typical type-exam-type

Archetypical type-problem of typical type-exam-type 1. Consider a Markov

chain {Xn}
∞
n=0 with state space E and transition matrix P given by

E = {0, 1, 2} and P =

[

0 1/2 1/2

1/2 0 1/2

1/2 1/2 0

]

,

respectively, and let Ei = E
{

min{n≥ 1 : Xn = i}
∣

∣X0 = i
}

for i = 0, 1, 2. Show that the

chain has stationary distribution [1/E0 1/E1 1/E2].

Solution. By symmetry, the chain has stationary distribution [1/3 1/3 1/3] and E0 =

E1 = E2, so it is enough to show that E0 = 3. However, from state 0 it takes the

chain one time-unit to move to one of the states 1 or 2. After that it takes the chain

a geomteric distribution with parameter p = 1/2 to come back to state 0, the expected

value of which is 2.

Archetypical type-problem of typical type-exam-type 2. Let {W (t)}t≥0 be a

Wiener process and λ > 0 a constant. Show that {W (λt)}t≥0 is also a Wiener process.

Solution. As {W (λt)}t≥0 starts at the value zero at time t = 0 (as W does), is zero-

mean (as W is), and has independent increments (as W does), it only remains to check

that {W (λt)}t≥0 has stationary normally distributed increments. This in turn follows

from the fact that W (λt)−W (λs) has the same distribution as W (λ(t−s)), which is

N(0, λ(t−s))-distributed

Archetypical type-problem of typical type-exam-type 3. Let {N(t)}t≥0 be a

Poisson process with intensity λ > 0. Show that {e−λt2N(t)}t≥0 is a martingale wrt. the

filtration Fs, s≥ 0, containing all information about the process values {N(r)}r≤s.

Solution. E{e−λt2N(t)|Fs} = e−λt2N(s)E{2N(t)−N(s)|Fs} = [independent increments]

= e−λt2N(s)E{2N(t)−N(s)} = e−λt2N(s)E{2Po(λ(t−s))} = e−λt2N(s)
∑∞

k=0 2k(λ(t− s))k

e−λ(t−s)/(k!) = e−λt2N(s)eλ(t−s) = e−λs2N(s) for 0≤ s≤ t.
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Archetypical type-problem of typical type-exam-type 4. Let {en}n∈Z be uncor-

related zero-mean and unit variance random variables (i.e., discrete time white noise).

Find the autocorrelation function of the process {Xn}n∈Z given by Xn = en + en−1/2.

Solution. We have E{X2
n} = 1 + (1/2)2 = 5/4 and E{XnXn±1} = 1 · (1/2) = 1/2,

while E{XnXn±k} = 0 for k > 1.

Archetypical type-problem of typical type-exam-type 5. Recall that differen-

tiating a random process {X(t)}t∈R corresponds to processing the process through a

linear system with frequency responce H(ω) = jω. Show that the derivative of a WSS

process X with autocorrelation function RXX(τ) = e−|τ | has autocorrelation function

RX′X′(τ) = 2δ(τ) − e−|τ |.

Solution. As X has PSD SXX(ω) = 2/(1+ω2) it follows that X ′ has PSD |H(ω)|2 ×

SXX(ω) = 2ω2/(1+ω2) = 2 − SXX(ω), which is the Fourier-transform of 2δ(τ) − e−|τ |.

Archetypical type-problem of typical type-exam-type 6. Let N(t) for t ≥ 0

denote the total number of customers in a M/M/2/4 queuing system with exp(1)-

distributed times between arriving customers as well as exp(1)-distributed service times.

Assume that N(0) = 0 and let {Tn}
∞
n=1 be the strictly increasing sequence of random

times at which {N(t)}t≥0 changes its values, that is, Tn+1 = min{t > Tn : N(t) 6= N(Tn)}

for n ∈ N, with the convention T0 = 0. Find the transition matrix P for the Markov

chain {Xn}
∞
n=0 with state space E = {0, 1, 2, 3, 4} given by Xn = N(Tn).

Solution. We have

P =



















0 1 0 0 0

1/2 0 1/2 0 0

0 2/3 0 1/3 0

0 0 2/3 0 1/3

0 0 0 1 0



















:

Here the first two rows of P as well as the last one are obvious, while the entries of the

third and fourth row follows from noting that the probability that an exp(1)-distributed

interarrival time is bigger than two independent exp(1)-distributed service times is 1/3.

2


