MSG800/MVE170 Basic Stochastic Processes Fall 2012 Exercise Session 7, Wednesday 12 December

Archetypical type-problems of typical type-exam-type

Archetypical type-problem of typical type-exam-type 1. Consider a Markov chain $\{X_n\}_{n=0}^{\infty}$ with state space E and transition matrix P given by

$$E = \{0, 1, 2\} \quad \text{and} \quad P = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$

respectively, and let $E_i = \mathbf{E} \{ \min\{n \ge 1 : X_n = i\} | X_0 = i \}$ for i = 0, 1, 2. Show that the chain has stationary distribution $[1/E_0 \ 1/E_1 \ 1/E_2]$.

Solution. By symmetry, the chain has stationary distribution $[1/3 \ 1/3 \ 1/3]$ and $E_0 = E_1 = E_2$, so it is enough to show that $E_0 = 3$. However, from state 0 it takes the chain one time-unit to move to one of the states 1 or 2. After that it takes the chain a geometric distribution with parameter p = 1/2 to come back to state 0, the expected value of which is 2.

Archetypical type-problem of typical type-exam-type 2. Let $\{W(t)\}_{t\geq 0}$ be a Wiener process and $\lambda > 0$ a constant. Show that $\{W(\lambda t)\}_{t\geq 0}$ is also a Wiener process.

Solution. As $\{W(\lambda t)\}_{t\geq 0}$ starts at the value zero at time t = 0 (as W does), is zeromean (as W is), and has independent increments (as W does), it only remains to check that $\{W(\lambda t)\}_{t\geq 0}$ has stationary normally distributed increments. This in turn follows from the fact that $W(\lambda t) - W(\lambda s)$ has the same distribution as $W(\lambda(t-s))$, which is $N(0, \lambda(t-s))$ -distributed

Archetypical type-problem of typical type-exam-type 3. Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$. Show that $\{e^{-\lambda t}2^{N(t)}\}_{t\geq 0}$ is a martingale wrt. the filtration F_s , $s \geq 0$, containing all information about the process values $\{N(r)\}_{r\leq s}$.

Solution. $\mathbf{E}\{e^{-\lambda t}2^{N(t)}|F_s\} = e^{-\lambda t}2^{N(s)}\mathbf{E}\{2^{N(t)-N(s)}|F_s\} = [independent increments]$ = $e^{-\lambda t}2^{N(s)}\mathbf{E}\{2^{N(t)-N(s)}\} = e^{-\lambda t}2^{N(s)}\mathbf{E}\{2^{Po(\lambda(t-s))}\} = e^{-\lambda t}2^{N(s)}\sum_{k=0}^{\infty} 2^k(\lambda(t-s))^k e^{-\lambda(t-s)}/(k!) = e^{-\lambda t}2^{N(s)}e^{\lambda(t-s)} = e^{-\lambda s}2^{N(s)} \text{ for } 0 \le s \le t.$ Archetypical type-problem of typical type-exam-type 4. Let $\{e_n\}_{n\in\mathbb{Z}}$ be uncorrelated zero-mean and unit variance random variables (i.e., discrete time white noise). Find the autocorrelation function of the process $\{X_n\}_{n\in\mathbb{Z}}$ given by $X_n = e_n + e_{n-1}/2$.

Solution. We have $\mathbf{E}\{X_n^2\} = 1 + (1/2)^2 = 5/4$ and $\mathbf{E}\{X_n X_{n\pm 1}\} = 1 \cdot (1/2) = 1/2$, while $\mathbf{E}\{X_n X_{n\pm k}\} = 0$ for k > 1.

Archetypical type-problem of typical type-exam-type 5. Recall that differentiating a random process $\{X(t)\}_{t\in\mathbb{R}}$ corresponds to processing the process through a linear system with frequency responce $H(\omega) = j\omega$. Show that the derivative of a WSS process X with autocorrelation function $R_{XX}(\tau) = e^{-|\tau|}$ has autocorrelation function $R_{X'X'}(\tau) = 2\delta(\tau) - e^{-|\tau|}$.

Solution. As X has PSD $S_{XX}(\omega) = 2/(1+\omega^2)$ it follows that X' has PSD $|H(\omega)|^2 \times S_{XX}(\omega) = 2\omega^2/(1+\omega^2) = 2 - S_{XX}(\omega)$, which is the Fourier-transform of $2\delta(\tau) - e^{-|\tau|}$.

Archetypical type-problem of typical type-exam-type 6. Let N(t) for $t \ge 0$ denote the total number of customers in a M/M/2/4 queuing system with exp(1)distributed times between arriving customers as well as exp(1)-distributed service times. Assume that N(0) = 0 and let $\{T_n\}_{n=1}^{\infty}$ be the strictly increasing sequence of random times at which $\{N(t)\}_{t\ge 0}$ changes its values, that is, $T_{n+1} = \min\{t > T_n : N(t) \ne N(T_n)\}$ for $n \in \mathbb{N}$, with the convention $T_0 = 0$. Find the transition matrix P for the Markov chain $\{X_n\}_{n=0}^{\infty}$ with state space $E = \{0, 1, 2, 3, 4\}$ given by $X_n = N(T_n)$.

Solution. We have

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 2/3 & 0 & 1/3 & 0 \\ 0 & 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}:$$

Here the first two rows of P as well as the last one are obvious, while the entries of the third and fourth row follows from noting that the probability that an $\exp(1)$ -distributed interarrival time is bigger than two independent $\exp(1)$ -distributed service times is 1/3.