MSG800/MVE170 Basic Stochastic Processes

Written exam Saturday 25 August 2012 8.30 am - 12.30 am

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

GOOD LUCK!

Task 1. Consider a Markov chain $\{X(n) : n \ge 0\}$ with state space E, initial state probabilities $\mathbf{p}(0)$ and transition probability matrix P given by

$$E = \{0, 1\}, \quad \mathbf{p}(0) = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix},$$

respectively. Find the probability $P\{X(5)=1|X(2)=1\}$. (5 points)

Task 2. Let $\{X(t): t \geq 0\}$ be a zero-mean continuous-time normal random process with autocovariance function $\mathbf{Cov}\{X(s), X(t)\} = \min\{s, t\}$. Show that X(t) is a self-similar process, which is to say that there exists a so called Hurst parameter H > 0 such that the processes $\{X(\lambda t): t \geq 0\}$ and $\{\lambda^H X(t): t \geq 0\}$ have the same n-th order distributions $\mathbf{P}\{X(\lambda t_1) \leq x_1, \ldots, X(\lambda t_n) \leq x_n\} = \mathbf{P}\{\lambda^H X(t_1) \leq x_1, \ldots, \lambda^H X(t_n) \leq x_n\}$ for any given constant $\lambda > 0$ and any $n \in \mathbb{N}$. (5 points)

Task 3. Let $\{Y_n : n \geq 0\}$ be a simple random walk given by $Y_n = \sum_{k=1}^n X_k$ where X_1, X_2, \ldots are independent identically distributed $\{-1, 1\}$ -valued random variables with $\mathbf{P}\{X_k = -1\} = \mathbf{P}\{X_k = 1\} = \frac{1}{2}$. Consider the first exit time $T = \min\{n \geq 0 : Y_n \leq -a \text{ or } Y_n \geq b\}$ of $\{Y_n\}_{n=0}^{\infty}$ from the interval (-a, b), where a, b > 0 are real constants. Find the probabilities $\mathbf{P}\{Y_T \leq -a\}$ and $\mathbf{P}\{Y_T \geq b\}$ that this exit is downwards and upwards, respectively. (5 points)

Task 4. Let $\{X(t): t \in \mathbb{R}\}$ be a continuous-time wide-sense stationary random process with power spectral density $S_X(\omega)$. The derivative process of X(t) is defined as $X'(t) = \lim_{h\to 0} (X(t+h)-X(t))/h$ whenever this limit is well-defined in a suitable sense. Show that the cross power spectral density between X(t) and X'(t) is given by $S_{XX'}(\omega) = j\omega S_X(\omega)$. (5 points)

Task 5. Let $\{X(t): t \in \mathbb{R}\}$ be a continuous-time zero-mean wide-sense stationary random process with autocorrelation function $R_X(\tau) = e^{-|\tau|}$ for $\tau \in \mathbb{R}$. Find the

impulse response function h(t) of the linear time invariant system with input X(t) that has a zero-mean wide-sense stationary output process $\{Y(t):t\in\mathbb{R}\}$ such that X(t) and Y(t) has crosscorrelation function $R_{XY}(\tau)=\mathrm{e}^{-2|\tau|}$ for $\tau\in\mathbb{R}$. (5 points)

Task 6. Write a computer programme that by means of stochastic simulation finds an approximation of the variance of a typical waiting time W(q) (in the queue) before service for a typical customer arriving to a steady-state M(1)/M(2)/1/2 queuing system. (In other words, the queuing system has $\exp(1)$ -distributed times between arrivals of new customers and $\exp(2)$ -distributed service times. Further, the system has one server and one queuing place.) (5 points)

MSG800/MVE170 Basic Stochastic Processes Solutions to written exam Saturday 25 August

Task 1. We have $P\{X(5)=1|X(2)=1\}=(P^3)_{1,1}$ (i.e., the lower diagonal element of the third power of P), which by elementary matrix calculations equals 14/27.

Task 2. As $\{X(\lambda t): t \geq 0\}$ and $\{\lambda^H X(t): t \geq 0\}$ are both zero-mean normal processes their n-th order distributions agree if their auto-covariance functions do. These in turn are given by $\mathbf{Cov}\{X(\lambda s), X(\lambda t)\} = \min\{\lambda s, \lambda t\} = \lambda \min\{s, t\}$ and $\mathbf{Cov}\{\lambda^H X(s), \lambda^H X(t)\} = \lambda^{2H} \mathbf{Cov}\{X(s), X(t)\} = \lambda^{2H} \min\{s, t\}$, respectively, so that they agree for $H = \frac{1}{2}$.

Task 3. As $\{Y_n : n \ge 0\}$ is a martingale and T a stopping time that satisfy the conditions of the optional stopping theorem, writing $\lceil x \rceil$ for the smallest integer that is greater or equal to $x \in \mathbb{R}$, we have $0 = \mathbf{E}\{Y_0\} = \mathbf{E}\{Y_T\} = \mathbf{P}\{Y_T \le -a\} \times (-\lceil a\rceil) + \mathbf{P}\{Y_T \ge b\} \times \lceil b\rceil = \mathbf{P}\{Y_T \le -a\} \times (-\lceil a\rceil) + (1 - \mathbf{P}\{Y_T \le -a\}) \times \lceil b\rceil$, so that $\mathbf{P}\{Y_T \le -a\} = \lceil b\rceil/(\lceil a\rceil + \lceil b\rceil)$ and $\mathbf{P}\{Y_T \ge b\} = 1 - \mathbf{P}\{Y_T \le -a\} = \lceil a\rceil/(\lceil a\rceil + \lceil b\rceil)$.

Task 4. As $R_{XX'}(\tau) = \mathbf{E}\left\{X(t)\lim_{h\to 0}(X(t+\tau+h)-X(t+\tau))/h\right\} = \lim_{h\to 0}\mathbf{E}\left\{X(t)(X(t+\tau+h)-X(t+\tau))/h\right\}$ = $\lim_{h\to 0}(R_X(\tau+h)-R_X(\tau))/h = R_X'(\tau)$, we have $S_{XX'}(\omega) = \int_{-\infty}^{\infty}R_{XX'}(\tau)e^{-j\omega\tau}d\tau = \int_{-\infty}^{\infty}R_X'(\tau)e^{-j\omega\tau}d\tau = j\omega\int_{-\infty}^{\infty}R_X(\tau)e^{-j\omega\tau}d\tau = j\omega S_X(\omega)$.

Task 5. As $S_X(\omega) = 2/(1 + \omega^2)$ and $S_{XY}(\omega) = 4/(4 + \omega^2)$ are related by $S_{XY}(\omega) = H(\omega) S_X(\omega)$, we have $H(\omega) = S_{XY}(\omega)/S_X(\omega) = 2(1 + \omega^2)/(4 + \omega^2) = 2 - 1.5 S_{XY}(\omega)$ so that $h(t) = 2 \delta(t) - 1.5 e^{-2|t|}$.