
MSG800/MVE170 Basic Stochastic Processes

Written exam Monday 17 December 2012 2 pm-6 pm

Teacher and jour: Patrik Albin, telephone 070 6945709.

Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or com-

puter print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG

and 24 points for grade 5, respectively.

Motivations: All answers/solutions must be motivated.

Good Luck!

Task 1. Consider a Markov chain {Xn : n ≥ 0} with state space E, initial state

probabilities p(0) and transition probability matrix P given by

E = {0, 1}, p(0) = p̂ and P =

[

1−α α

β 1−β

]

,

respectively, where p̂ is the stationary distribution of the Markov chain and α, β ∈ (0, 1]

are constants. Under what additional conditions on α and β do we have E[Xn] = 1/3

for all n ≥ 0? (5 points)

Task 2. Let {X(t) : t≥0} be Wiener process. Show that the process {Y (t) : t≥0} given

by Y (t) = t X(1/t) for t > 0 and Y (0) = 0 is also a Wiener process. [Hint: As Y (t) is a

normal process it is sufficient to show that Y (t) has the same mean and autocorrelation

function as has a Wiener process.] (5 points)

Task 3. Let {X(t) : t≥0} be a Poisson process with rate (/intensity) λ > 0. Show that

the process {M(t) : t≥ 0} given by M(t) = (X(t)−λt)2 − λt for t ≥ 0 is a martingale

with respect to the knowledge (of the σ-field) Ft of all historic process values of the

Poisson process. (5 points)

Task 4. Which continuous-time LTI-system has output signal Y (t) that is a WSS

random process with autocorrelation function RY (τ) = 1/(1+τ2) when the input signal

is continuous-time white noise? (5 points)

Task 5. For an M/M/1-queueing system with traffic intensity ρ and service times that

are exponentially distributed with parameter µ the average amount of time a customer

spends waiting in the queue (begfore being served) is given by Wq = ρ/(µ (1 − ρ)):

Derive this formula! (5 points)
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Task 6. The function f(x) defined for x ∈ [0, 1] by f(x) = 1 for rational x ∈ [0, 1] ∩ Q

and f(x) = 0 for irrational x ∈ [0, 1] ∩ (R−Q) is obviously not Riemann integrable
∫

1

0
f(x) dx as all upper integrals are at least 1 and all lower integrals are at most 0.

However, the Lebesgue integral
∫

1

0
f(x) dx is well-defined with value 0: The reason

for this is that if we enumerate x ∈ [0, 1]∩Q as {qn}∞n=1
, then the region of all non-zero

function values of f(x) is contained in the set ∪∞
n=1

[qn− 2−nε, qn+2−nε] for each ε > 0,

the “length” of which is at most
∑∞

n=1
2 2−nε = 2 ε. As the length of that region is at

most 2 ε for each ε > 0 the length must in fact be 0, and so the integral
∫

1

0
f(x) dx = 0.

It is impossible to calculate
∫

1

0
f(x) dx numerically by means of ordinary determinis-

tic numerical mathematical methods as they require regularity properties (smoothness)

of the function f(x) which our function f(x) in turn completely lacks.

Say something about how it in principle would be possible to calculate
∫

1

0
f(x) dx nu-

merically by means of the so called Monte-Carlo method (remember the computational

problem of Exercise Session 1) – that is, to make appropriate use of a long sequence

of uniformly distributed random variables over the unit interval (or unit square). Also,

say something about why it will be problematic (impossible?) to make a working imple-

mentation of this numerical calculation to find that
∫

1

0
f(x) dx = 0. (Pretending that

you didn’t know about the above cited fact from Lebesgue integration theory about the

value of the integral, that is ... .) (5 points)
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MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Monday 17 December

Task 1. It is easy to see that the equation p̂P = p̂ for the stationary distribution has

uniquie solution p̂ = [β/(α+β) α/(α+β)], so that E[Xn] = α/(α+β). This in turn

equals 1/3 if and only if β = 2α and α ≤ 1/2.

Task 2. We have E[Y (t)] = 0 and RY (s, t) = E[Y (s)Y (t)] = E[s X(1/s) t X(1/t)] =

st RX(1/s, 1/t) = st σ2 min(1/s, 1/t) = σ2 min(s, t), as is required for a Wiener process.

Task 3. We have E[M(t)|Fs] = E[(X(t)− λt)2 − λt|Fs] = E[(X(t)−X(s) + X(s)−
λt)2 − λt|Fs] = E[(X(t)−X(s))2|Fs] + 2E[(X(s)−λt) (X(t)−X(s))|Fs] + E[(X(s)−
λt)2|Fs]−λt = E[(X(t)−X(s))2]+2 (X(s)−λt)E[X(t)−X(s)|Fs]+(X(s)−λt)2−λt =

λ (t−s)+λ2(t−s)2 +2 (X(s)−λt)E[X(t)−X(s)]+ (X(s)−λt)2 −λt = λ (t−s)+λ2(t−
s)2 + 2 (X(s)−λt)λ (t−s) + (X(s)−λt)2 − λt = (X(s)−λs)2−λs = M(s) for t ≥ s.

Task 4. As the power spectral density of Y (t) is SY (ω) = π e−|ω| and satisfies SY (ω) =

|H(ω)|2SW (ω) = |H(ω)|2σ2, where SW (ω) = σ2 is the power spectral density of white

noise, we must have |H(ω)| =
√

π e−|ω|/2/σ so that we can take the LTI-system with

impulse response h(t) = 1/(2σ
√

π (1/4+ t2)).

Task 5. An arriving customer has n customers ahead of it in the queuing system

with probability pn = (1 − ρ) ρn for n ≥ 0 giving rise to an average waiting time

of
∑∞

n=0
n (1− ρ) ρn E[exp(µ)] =

∑∞
n=1

n (1− ρ) ρn/µ = (1− ρ)ρ/µ (d/dρ)
∑∞

n=1
ρn =

(1−ρ)ρ/µ (d/dρ)[ρ/(1−ρ)] = ρ/(µ (1−ρ)).

Task 6. The Monte-Carlo algorithm for numerical calculation of
∫

1

0
f(x) dx is to gener-

ate a very great number n of independent bivariate random variables {(Xi, Yi)}n
i=1

that

all have a common unifom distribution over the unit square with PDF fX,Y (x, y) = 1

for 0 ≤ x, y ≤ 1 and fX,Y (x, y) = 0 elsewhere and check how great a fraction of these

random numbers that satisfy f(Xi) ≥ Yi. Or alternativey to consider the sample mean

of the random variables {f(Xi)}∞n=1
where {Xi}n

i=1
are independent random variables

that have a common unifom distribution over the unit interval. As n → ∞ both these

numerical approximations will in principle converge to
∫

1

0
f(x) dx by the law of large

numbers - not only for our choice of the function f(x) but for any function f(x). In

fact, in our case, as it is zero probability that Xi will take any of the values {qn}∞n=1

the mentioned approximating fractions and sample means will be identically zero all the

time, giving the exact value of the integral rather than just a numerical approximation.

However, due to the finite precision in representing numbers in a computer, the random
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numbers {Xi}n
i=1

we get from the computer will always be rational so what we will end

up with in practice trying the Monte-Carlo algorithm is the faulty result
∫

1

0
f(x) dx = 1,

despite the fact that the method in principle is correct (even exact).
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