
Addendum on some Basic Results in Gambling Theory

Consider the martingale as well as Markov chain {Mn}∞n=0 given by Mn = m0+
∑n

i=1 Xi

where {Xi}∞i=1 are iid. (independent identically distributed) random variables with P{Xi

= −1} = P{Xi = 1} = 1/2 (a so called Rademacher distribution): This is the simplest

possible (non-trivial) example of a fair gambling process with initial fortune m0.

For the so called n-step transition probability p
(n)
ij = P{Mn = j |M0 = i} we then

have p
(n)
jj = 0 for n = 2k + 1 odd and

p
(n)
jj =

(

2k

k

)

(1/2)k(1/2)k for n = 2k even

[=the probability that a Bin(2k, 1/2)-distributed random variable is equal to k (=the

probability that half of the n steps go upwards and the other half of them downwards)].

It is a theorem in Markov theory that a state j is reccurent (that is, it is certain to

get back to the state eventually if starting in it) if
∑∞

n=1 p
(n)
jj = ∞, while j is transient

(that is, it is not certain to get back to the state if starting in it) if
∑∞

n=1 p
(n)
jj < ∞1.

Now, according to Stirling’s formula we have k! ∼
√

2πk kk e−k as k →∞ (where ∼
means “behaves asymptotically like”). Hence
(

2k

k

)

(1/2)k(1/2)k =
(2k)! (1/2)2k

(k!)(k!)
∼

√
4πk (2k)2k e−2k (1/2)2k

(
√

2πk kk e−k)2
=

1√
πk

as k →∞,

so that
∑∞

n=1 p
(n)
jj =

∑∞
k=1 p

(2k)
jj = ∞: Consequently, {Mn}∞n=0 is reccurent!

Now consider the probability P{Mn = j for some n ≥ 1} = P{Mn = j for some n

≥ 1|M0 = m0} to reach a state j eventually with initial fortune m0. If we write j = m0

+N for a suitable integer N we see that P{MN = j} = (1/2)|N |. As the chain is reccurent

we have after each (certain!) return of the chain to the initial state the probability

(1/2)|N | to reach j in N steps. And by repeating this experiment add infinum (at each

return to m0) we see that we must have P{Mn = j for some n≥ 1} = 1.

To prove that the expected value of the time considered in the previous paragraph

(found to be finite with probability 1) it takes the chain to reach the state j when

1Proof: Let Pj(z) =
P∞

n=0 p
(n)
jj zn and Fj(z) =

P∞

n=0 f
(n)
jj zn for |z| < 1 with f

(n)
jj = P{Mn = j,

Mn−1 6= j, . . . , M1 6= j |M0 = j} and f
(0)
jj = 0. Then p

(n)
jj =

Pn

k=0 f
(k)
jj p

(n−k)
jj (a discrete convolution) for

n≥ 1, so that Pj(z) = 1+
P∞

n=1 p
(n)
jj zn = 1+

P∞

n=1

Pn

k=0 f
(k)
jj p

(n−k)
jj zn = 1+

P∞

n=0

Pn

k=0 f
(k)
jj p

(n−k)
jj zn =

1 +
P∞

k=0(
P∞

n=k
p
(n−k)
jj zn−k) f

(k)
jj zk = 1 + Pj(z)Fj(z), so that P{Mn = j for some n ≥ 1|M0 = j} =

P∞

n=1 f
(n)
jj = limz↑1 Fj(z) = limz↑1(Pj(z)−1)/Pj(z)) = 1 (=reccurence) if

P∞

n=1 p
(n)
jj = limz↑1 Pj(z)

= ∞ while the same probability is strictly less than 1 (=transience) if
P∞

n=1 p
(n)
jj = limz↑1 Pj(z) < ∞.
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starting at the state m0 is always infinite we may without loss of generality consider

the special case when m0 = 0 and j = 1, as it is clear that if the expectation is infinite

in that special case, then it will be infinite for all other cases as well (as the chain then

has a longer way to travel to its goal). Now consider the modified chain {M̄n}∞n=0 with

state space E, initial probability p(0) and transition probability matrix P given by

E = [. . . −2 −1 0 1], p(0) = [. . . 0 0 0 1] and P =
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. . . 0 1/2 0 0

. . . 1/2 0 1/2 0

. . . 0 1/2 0 1/2

. . . 0 0 1 0





















,

respectively. Clearly, it is enough to show that we have E{T1} = ∞ for the reccurence

time T1 = min{n≥ 1 : M̄n =1} as the expectation we are interested in for the original

chain must be E{T1} − 1. This in turn we can establish by means of proving that

the chain doesn’t have a stationary distribution, as in the presence of a stationary

distribution π = [. . . −π−2 π−1 π0 π1] we must have E{T1} = 1/π1 where all elements

of π (and in particular π1) must be strictly positive as a consequence of the fact that

all states communicate with each other. However, the equation system π = πP to find

the stationary distribution (if it exists) spells out as

(1/2)πn−1 + (1/2)πn+1 = πn for n < 0, (1/2)π−1 + π1 = π0 and (1/2)π0 = π1,

which in turn has unique solution π = [. . . π0 π0 π0 (1/2)π0]. This however can never

be a probability distribution (as it cannot sum up to 1), and we are done!

S̊a de s̊a!2

2Remark of the type setter.
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