Addendum on some Basic Results in Gambling Theory

Consider the martingale as well as Markov chain $\left\{M_{n}\right\}_{n=0}^{\infty}$ given by $M_{n}=m_{0}+\sum_{i=1}^{n} X_{i}$ where $\left\{X_{i}\right\}_{i=1}^{\infty}$ are iid. (independent identically distributed) random variables with $\mathbf{P}\left\{X_{i}\right.$ $=-1\}=\mathbf{P}\left\{X_{i}=1\right\}=1 / 2$ (a so called Rademacher distribution): This is the simplest possible (non-trivial) example of a fair gambling process with initial fortune m_{0}.

For the so called n-step transition probability $p_{i j}^{(n)}=\mathbf{P}\left\{M_{n}=j \mid M_{0}=i\right\}$ we then have $p_{j j}^{(n)}=0$ for $n=2 k+1$ odd and

$$
p_{j j}^{(n)}=\binom{2 k}{k}(1 / 2)^{k}(1 / 2)^{k} \quad \text { for } n=2 k \text { even }
$$

[=the probability that a $\operatorname{Bin}(2 k, 1 / 2)$-distributed random variable is equal to k (=the probability that half of the n steps go upwards and the other half of them downwards)].

It is a theorem in Markov theory that a state j is reccurent (that is, it is certain to get back to the state eventually if starting in it) if $\sum_{n=1}^{\infty} p_{j j}^{(n)}=\infty$, while j is transient (that is, it is not certain to get back to the state if starting in it) if $\sum_{n=1}^{\infty} p_{j j}^{(n)}<\infty^{1}$.

Now, according to Stirling's formula we have $k!\sim \sqrt{2 \pi k} k^{k} \mathrm{e}^{-k}$ as $k \rightarrow \infty$ (where \sim means "behaves asymptotically like"). Hence

$$
\binom{2 k}{k}(1 / 2)^{k}(1 / 2)^{k}=\frac{(2 k)!(1 / 2)^{2 k}}{(k!)(k!)} \sim \frac{\sqrt{4 \pi k}(2 k)^{2 k} \mathrm{e}^{-2 k}(1 / 2)^{2 k}}{\left(\sqrt{2 \pi k} k^{k} \mathrm{e}^{-k}\right)^{2}}=\frac{1}{\sqrt{\pi k}} \quad \text { as } k \rightarrow \infty,
$$

so that $\sum_{n=1}^{\infty} p_{j j}^{(n)}=\sum_{k=1}^{\infty} p_{j j}^{(2 k)}=\infty$: Consequently, $\left\{M_{n}\right\}_{n=0}^{\infty}$ is reccurent!
Now consider the probability $\mathbf{P}\left\{M_{n}=j\right.$ for some $\left.n \geq 1\right\}=\mathbf{P}\left\{M_{n}=j\right.$ for some n $\left.\geq 1 \mid M_{0}=m_{0}\right\}$ to reach a state j eventually with initial fortune m_{0}. If we write $j=m_{0}$ $+N$ for a suitable integer N we see that $\mathbf{P}\left\{M_{N}=j\right\}=(1 / 2)^{|N|}$. As the chain is reccurent we have after each (certain!) return of the chain to the initial state the probability $(1 / 2)^{|N|}$ to reach j in N steps. And by repeating this experiment add infinum (at each return to m_{0}) we see that we must have $\mathbf{P}\left\{M_{n}=j\right.$ for some $\left.n \geq 1\right\}=1$.

To prove that the expected value of the time considered in the previous paragraph (found to be finite with probability 1) it takes the chain to reach the state j when

[^0]starting at the state m_{0} is always infinite we may without loss of generality consider the special case when $m_{0}=0$ and $j=1$, as it is clear that if the expectation is infinite in that special case, then it will be infinite for all other cases as well (as the chain then has a longer way to travel to its goal). Now consider the modified chain $\left\{\bar{M}_{n}\right\}_{n=0}^{\infty}$ with state space E, initial probability $\mathbf{p}(0)$ and transition probability matrix P given by
\[

E=\left[$$
\begin{array}{lllll}
\ldots & -2 & -1 & 0 & 1
\end{array}
$$\right], \quad \mathbf{p}(0)=\left[$$
\begin{array}{lllll}
\ldots & 0 & 0 & 0 & 1
\end{array}
$$\right] \quad and \quad P=\left[$$
\begin{array}{ccccc}
\ldots & \vdots & \vdots & \vdots & \vdots \\
\ldots & 0 & 1 / 2 & 0 & 0 \\
\ldots & 1 / 2 & 0 & 1 / 2 & 0 \\
\ldots & 0 & 1 / 2 & 0 & 1 / 2 \\
\ldots & 0 & 0 & 1 & 0
\end{array}
$$\right]
\]

respectively. Clearly, it is enough to show that we have $\mathbf{E}\left\{T_{1}\right\}=\infty$ for the reccurence time $T_{1}=\min \left\{n \geq 1: \bar{M}_{n}=1\right\}$ as the expectation we are interested in for the original chain must be $\mathbf{E}\left\{T_{1}\right\}-1$. This in turn we can establish by means of proving that the chain doesn't have a stationary distribution, as in the presence of a stationary distribution $\pi=\left[\begin{array}{lllll}\ldots & -\pi_{-2} & \pi_{-1} & \pi_{0} & \pi_{1}\end{array}\right]$ we must have $\mathbf{E}\left\{T_{1}\right\}=1 / \pi_{1}$ where all elements of π (and in particular π_{1}) must be strictly positive as a consequence of the fact that all states communicate with each other. However, the equation system $\pi=\pi P$ to find the stationary distribution (if it exists) spells out as

$$
(1 / 2) \pi_{n-1}+(1 / 2) \pi_{n+1}=\pi_{n} \quad \text { for } n<0, \quad(1 / 2) \pi_{-1}+\pi_{1}=\pi_{0} \quad \text { and } \quad(1 / 2) \pi_{0}=\pi_{1}
$$

which in turn has unique solution $\pi=\left[\ldots \pi_{0} \pi_{0} \pi_{0}(1 / 2) \pi_{0}\right]$. This however can never be a probability distribution (as it cannot sum up to 1), and we are done!

Så de så! ${ }^{2}$

[^1]
[^0]: ${ }^{1}$ Proof: Let $P_{j}(z)=\sum_{n=0}^{\infty} p_{j j}^{(n)} z^{n}$ and $F_{j}(z)=\sum_{n=0}^{\infty} f_{j j}^{(n)} z^{n}$ for $|z|<1$ with $f_{j j}^{(n)}=\mathbf{P}\left\{M_{n}=j\right.$, $\left.M_{n-1} \neq j, \ldots, M_{1} \neq j \mid M_{0}=j\right\}$ and $f_{j j}^{(0)}=0$. Then $p_{j j}^{(n)}=\sum_{k=0}^{n} f_{j j}^{(k)} p_{j j}^{(n-k)}$ (a discrete convolution) for $n \geq 1$, so that $P_{j}(z)=1+\sum_{n=1}^{\infty} p_{j j}^{(n)} z^{n}=1+\sum_{n=1}^{\infty} \sum_{k=0}^{n} f_{j j}^{(k)} p_{j j}^{(n-k)} z^{n}=1+\sum_{n=0}^{\infty} \sum_{k=0}^{n} f_{j j}^{(k)} p_{j j}^{(n-k)} z^{n}=$ $1+\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty} p_{j j}^{(n-k)} z^{n-k}\right) f_{j j}^{(k)} z^{k}=1+P_{j}(z) F_{j}(z)$, so that $\mathbf{P}\left\{M_{n}=j\right.$ for some $\left.n \geq 1 \mid M_{0}=j\right\}=$ $\left.\sum_{n=1}^{\infty} f_{j j}^{(n)}=\lim _{z \uparrow 1} F_{j}(z)=\lim _{z \uparrow 1}\left(P_{j}(z)-1\right) / P_{j}(z)\right)=1\left(=\right.$ reccurence) if $\sum_{n=1}^{\infty} p_{j j}^{(n)}=\lim _{z \uparrow 1} P_{j}(z)$ $=\infty$ while the same probability is strictly less than $1\left(=\right.$ transience) if $\sum_{n=1}^{\infty} p_{j j}^{(n)}=\lim _{z \uparrow 1} P_{j}(z)<\infty$.

[^1]: ${ }^{2}$ Remark of the type setter.

