MSG800/MVE170 Basic Stochastic Processes Fall 2014 List of Errata for Hsu's book, Version 13 December 2012

Equation 2.41. $F_X(X)$ should be $F_X(x)$.

Page 60. On row 6 |x| should be $\lfloor x \rfloor$.

Equation 3.14. It should be $\lim_{x\to\infty}$ instead of $\lim_{y\to\infty}$.

Figure 3.4. It should be P(Y=0|X=1) instead of P(Y=1|X=1) on the diagonal.

Problem 4.100. X'' should be corrected to X^n .

Equation 5.28 is wrong as is the proof of (another version of) that formula in Problem 5.25: The second equality in the three line equation on the middle of page 234 is erroneous. To see this we may send $x_{n-1} \to \infty$ on both sides of the equation to obtain

$$F_X(x_1,\ldots,x_{n-2},x_n;t_1,\ldots,t_{n-2},t_n) = F_X(x_n;t_n) \times F_X(x_1,\ldots,x_{n-2};t_1,\ldots,t_{n-2}),$$

which is to say that $X(t_n)$ is independent of $X(t_1), ..., X(t_{n-2})$. This is absurd as this need not hold at all for a Markov process (as is e.g., exemplified by a Poisson process).

A correct version of Equation 5.28 is the formula for PMF's given in Problem 5.88.

Page 210. The definition of wide-sense stationarity should be the conditions (5.21)-(5.22).

Equation 5.29. It should be $E[X(t_i)]$ instead of just $E[X(t_i)]$.

Page 215. On row 3 from the bottom (Prob. 5.74) should be (Prob. 5.94).

Lemma 5.8.1. It should be T_1 and T_2 instead of n_1 and n_2 , respectively.

Equation 5.121. It should be $\cos \omega \tau$ instead of $\cos \omega t$.

Problem 5.37. It should be $gcd\{2,4,6,\ldots\}$ instead of $gcd\{2,5,6,\ldots\}$.

Problem 5.49. Four occurances of $X(t+\Delta t)-X(0)$ should be $X(t+\Delta t)-X(t)$.

Equation 5.202. It should be σ 's instead of a's in the K_X -matrix.

Problem 5.70. On row 2 the alternative possible value of X_i should not be 0 but -1 with probability q = 1 - p. Such a random variable is not called Bernoulli distributed.

Problem 5.72. On row 11 $\frac{n(n-1)}{2}$ should be n(n-1) and $\frac{n(n+3)}{2}$ should be n(n+1).

Problem 5.74. On row 7 it should be $\frac{n+2-k}{n+2}$ instead of $\frac{n+2+k}{n+2}$.

Problem 5.76. Change E(|g(Xn)|) to $E(|g(X_n)|)$.

Problem 5.77. The calculation on row 4 of the problem should be corrected to

$$\mathbf{E}\{|X_n|\} = \mathbf{E}\{|\mathbf{E}\{X|F_n\}|\} \le \mathbf{E}\{\mathbf{E}\{|X||F_n\}\} = \mathbf{E}\{|X|\} < \infty.$$

The initial condition should be $\mathbf{E}\{|X|\} < \infty$ instead of $\mathbf{E}\{X\} < \infty$ accordingly.

Problem 5.78. Theorem 5.82 should be Theorem 5.8.2 at two occurances.

Problem 5.79. On row 8 of page 265 a } is missing.

Page 266. On row 11 s_n should be S_n and on row -4 the first $\frac{a}{a+b}$ should be $\frac{b}{a+b}$.

Problem 5.82. It should be $X(t) - \lambda t$ instead of $x(t) - \lambda t$ at two places.

Problem 6.8 b. In the solution it should be $\partial^2 R_X(s-t)/\partial t\partial s = -d^2 R_X(\tau)/d\tau^2$.

Page 288. On row 8 it should be $E[X(s)X(\beta)]$ and on row 12 the second s^3 should be s^2 .

Equation 6.137. It should be $R_{X'}(t,s)$ instead of $R_X(t,s)$.

Page 295. On the last line $\frac{a}{(a^2+b^2)b}$ should be $\frac{a}{(a^2-b^2)b}$.

Equation 9.20. In the sum it should be $(s\rho)^n$ instead of just $(s\rho)$.

Equations 9.22 and 9.36. Correct p to ρ in the former and ρ_0 to p_0 in the latter.

Equation 9.39. On the right-hand side L_q should be divided by $\lambda_e = \lambda (1 - p_K)$.

Problem 9.13. On row 9 (9.16) should be (9.17). In the evaluation of W_q at the end $-1/\mu$ = -3 has been forgotten in the middle term (but the answer 6.39 min is right).

Problem 9.16. The "balance equation" (9.2) $L = \lambda W$ holds for all steady-state queues provided that we set the total time spent in the system to zero for customers arriving when the system is full for queues with $K < \infty$, i.e., if we interpret the fact that customers arriving to a full system bounces away as that they spend zero time in system.

If we instead (as is custom and as is done in the book) define W as the expected total time spent in the system for customers that really join the system, then we must divide the W from the previous paragraph by $1-p_K$ to get this W. And then we have Equation 9.31 $L = \lambda (1-p_K) W$ for this alternative (and customary) definition of W.

In Problem 9.16 the sum in the last equation of page 362 should only run to K-1, giving $W_q = (L - K p_K)/\mu$. The sum in first formula on page 363 should also only run to K-1 giving $W = (L+1-(K+1)p_K)/\mu$. Now, here we are dealing with the first definition of W from above, i.e., we assign zero time in the system for bouncing customers and let that zero influence the mean value W, so that $L = \lambda W$ for this W.

As we want the customary definition of W to be the expected total time spent in the system for customers that really joins the system we have to divide the W obtained in the previous paragraph by $1-p_K$ giving the following correct version of Equation 9.59: $W = (L+1-(K+1)\,p_K)/(\mu\,(1-p_K)).$ The corresponding correct version of Equation 9.58 is $W_q = (L+1-(K+1)\,p_K)/(\mu\,(1-p_K)) - 1/\mu = (L-K\,p_K)/(\mu\,(1-p_K)).$

Problem 9.18. On row 3 from the bottom p^m should be ρ^m .

Problem 9.29. Hsu has used the faulty Equation 9.59 (see above) to obtain $W = (L+1)/\mu = \ldots = 0.336$ hours = 20.15 minutes, while a correct answer comes from using the correct version of that formula from above $W = (L+1-(K+1)p_K)/(\mu(1-p_K)) = (L-Kp_K)/(\mu(1-p_K)) + 1/\mu = 7/57 + 1/6 = 0.289$ hours = 17.4 minutes (or from using Equation 9.31). The answer to task b is $W_q = W - 1/\mu = W - 10$ minutes = 7.4 minutes.

Problem 9.30. The correct answer is 1.

Table B-2. In Formula 11 the right hand side should be $X(\omega) = (\pi/a) e^{-a|w|}$.