MVE170 Basic Stochastic Processes

Written exam Thursday 24 March 2011 8.30 am-1.30 pm

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 12, 18 and 24 points for grades 3, 4 and 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

GOOD LUCK!

Task 1. The integral $\int_0^1 (\sin(1/x))^2 dx$ can be calculated numerically by means of generating a great number n of independent identically distributed bivariate r.v.'s $\{(X_i, Y_i)\}_{i=1}^n$ that have a common unifom distribution over the unit square with PDF $f_{X_i,Y_i}(x,y) = 1$ for $0 \le x, y \le 1$ and $f_{X_i,Y_i}(x,y) = 0$ elsewhere, and checking how great a fraction of these random numbers that satisfy $(\sin(1/X_i))^2 \ge Y_i$. Why does this method give a correct value for the integral as $n \to \infty$? (5 points)

Task 2. Consider the random process $X(t) = Y \cos(\omega t + \Theta)$ for $t \in \mathbb{R}$, where Y and Θ are independent r.v.'s that are uniformly distributed over (-1, 1) and over $(-\pi, \pi)$, respectively. Find the mean and autocorrelation function of X(t). (5 points)

Task 3. A certain product is made by two companies A and B that control the entire market. Currently A and B have 60% and 40%, respectively, of the market. Each year A loses $\frac{2}{3}$ of its market share to B, while B loses $\frac{1}{2}$ of its share to A. Find the percentages of the market that each of A and B hold after 2 years. (5 points)

Task 4. Let $Y_n = ((1-p)/p)^{S_n}$ for $n \ge 0$, where $S_n = \sum_{i=1}^n X_i$ and X_1, X_2, \ldots are independent identically distributed r.v.'s such that $P(X_i = -1) = 1 - p$ and $P(X_i = 1) = p$ (where $0 is a constant). Show that <math>\{Y_n\}$ is a martingale. (5 points)

Task 5. Find the autocorrelation function of a zero-mean continuous time WSS random process X(t) that has spectral density $S_X(\omega) = N_0/2$ for $|\omega| \le \omega_B$ and $S_X(\omega) = 0$ for $|\omega| > \omega_B$ (where $N_0, \omega_B > 0$ are constants). (5 points)

Task 6. Find the average number of customers in a M/M/1/K queueing system (in equilibrium) when the mean arrival rate λ and the mean service rate μ are equal, $\lambda = \mu > 0$. (5 points)

MVE170 Basic Stochastic Processes

Solutions to written exam Thursday 24 March 2011

Task 1. This is the computational problem for own work of Exercise Session 1.

- Task 2. This is a supplementary problem for own work of Exercise Session 2.
- Task 3. This is a supplementary problem for own work of Exercise Session 3.

Task 4. This is a supplementary problem for own work of Exercise Session 4.

Task 5. This is a supplementary problem for own work of Exercise Session 5.

Task 6. This is a supplementary problem for own work of Exercise Session 6.