MSG800/MVE170 Basic Stochastic Processes Fall 2011 Written exam Monday 12 December 2011 2 pm-6 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

GOOD LUCK!

Task 1. Consider a homogeneous Markov chain $\{X_n, n \ge 0\}$ with state space (/possible values) E, initial state probability vector $\mathbf{p}(0)$ and transition matrix P given by

$$E = \{0, 1\}, \quad \mathbf{p}(0) = \begin{bmatrix} \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix},$$

respectively for some constants $\alpha, \beta \in (0, 1]$. Show that $\hat{\mathbf{p}} = \mathbf{p}(0)$ is a stationary distribution for the Markov chain. Find $\mathbf{E}\{X_n\}$ and $\mathbf{Var}\{X_n\}$ for $n \ge 0$. (5 points)

Task 2. Let $\{X(t), t \in \mathbb{R}\}$ be a WSS process and $\alpha > 0$ a constant. Show that $\{X(\alpha t), t \in \mathbb{R}\}$, $\{X(t-\alpha), t \in \mathbb{R}\}$ and $\{X(-t), t \in \mathbb{R}\}$ are also WSS processes. (5 points)

Task 3. Consider the Markov chain $\{X_n, n \ge 0\}$ in Task 1 with $\alpha = \beta = \frac{1}{3}$ and with $\mathbf{p}(0)$ changed to [1 0]. Write a computer programme that by means of stochastic simulation finds an approximative value of the expected value $\mathbf{E}\{T\}$ of the random time $T = \min\{n \ge 10 : X_n = 0 \text{ and } X_{n+1} = 1\}$. (5 points)

Task 4. Let $\{X(t), t \ge 0\}$ be a Wiener process with $\mathbf{E}\{X(1)^2\} = 1$. Show that $\{X(t)^2 - t, t \ge 0\}$ is a martingale with respect to the information $F_t = \{X(s), s \in [0, t]\}$ obtained by observing the Wiener process up to time t. (5 points)

Task 5. Find the variance $\operatorname{Var}\{Y(t)\}$ of the output Y(t) from a continuous-time LTI system with impulse response $h(t) = e^{-t}$ for $t \ge 0$ and h(t) = 0 for t < 0 and with a zeromean WSS input process $\{X(t), t \in \mathbb{R}\}$ with auto-correlation function $R_X(\tau) = e^{-2|\tau|}$ for $\tau \in \mathbb{R}$. (5 points)

Task 6. Consider a M/M/1/2 queueing system with mean arrival rate $\lambda > 0$ and mean service rate $\mu > 0$. Find the average length of an idle period (that is, a period during which the server is idle) and the average length of a busy period (that is, a period during which the server is busy). (5 points)

MSG800/MVE170 Basic Stochastic Processes Fall 2011 Solutions to written exam Monday 12 December

Task 1. As $\hat{\mathbf{p}} = \mathbf{p}(0)$ satisfies $\hat{\mathbf{p}}P = \hat{\mathbf{p}}$ it follows that $\hat{\mathbf{p}} = \mathbf{p}(0)$ is a stationary distribution. As $\mathbf{p}(n) = \mathbf{p}(0)P^n = (\mathbf{p}(0)P)P^{n-1} = \mathbf{p}(0)P^{n-1} = \dots = \mathbf{p}(0)$ for $n \ge 0$ we have $\mathbf{E}\{X_n\} = \sum_{k=0}^{1} k \mathbf{P}\{X_n = k\} = \sum_{k=0}^{1} k \mathbf{p}(n)_k = \sum_{k=0}^{1} k \mathbf{p}(0)_k = \frac{\alpha}{\alpha+\beta}$ and similarly $\mathbf{E}\{X_n^2\} = \sum_{k=0}^{1} k^2 \mathbf{p}(0)_k = \frac{\alpha}{\alpha+\beta}$ so that $\mathbf{Var}\{X_n\} = \mathbf{E}\{X_n^2\} - (\mathbf{E}\{X_n\})^2 = \dots = \frac{\alpha\beta}{(\alpha+\beta)^2}$. **Task 2.** Clearly, $X(\alpha t)$, $X(t-\alpha)$ and X(-t) all have the same constant (time-invariant) mean μ_X as has X(t) while $\mathbf{E}\{X(\alpha t)X(\alpha(t+\tau))\} = R_X(\alpha\tau)$, $\mathbf{E}\{X(t-\alpha)X(t+\tau-\alpha)\} = R_X(\tau)$ and $\mathbf{E}\{X(-t)X(-(t+\tau))\} = R_X(-\tau) = R_X(\tau)$ do not depend on $t \in \mathbb{R}$.

Task 3.

Clear[i, Time, Rep, X, Y];

If[Random[UniformDistribution[{0,1}]]<=1/3, Y=1-X]]];</pre>

N[9+Time/Rep]

Task 4. $\mathbf{E}\{X(t)^2 - t | F_s\} = \mathbf{E}\{(X(t) - X(s))^2 | F_s\} + 2 \mathbf{E}\{(X(t) - X(s)) X(s) | F_s\} + \mathbf{E}\{X(s)^2 | F_s\} - t = \mathbf{E}\{(X(t) - X(s))^2\} + 2 \mathbf{E}\{X(t) - X(s) | F_s\} X(s) + X(s)^2 - t = (t - s) + 2 \mathbf{E}\{X(t) - X(s)\} X(s) + X(s)^2 - t = (t - s) + 0 + X(s)^2 - t = X(s)^2 - s \text{ for } s \le t \text{ by independent increments of the Wiener process and } (5.73)-(5.75) \text{ in Hsu's book.}$

Task 5. Since $S_X(\omega) = \frac{4}{4+\omega^2}$ and $H(\omega) = \frac{1}{1+j\omega}$ we have $S_Y(\omega) = |H(\omega)|^2 S_X(\omega) = \frac{4}{(1+\omega^2)(4+\omega^2)} = \frac{4/3}{1+\omega^2} - \frac{4/3}{4+\omega^2}$, so that $R_Y(\tau) = \frac{2}{3} e^{-|\tau|} - \frac{1}{3} e^{-2|\tau|}$. As Y(t) is zero-mean this gives $\operatorname{Var}\{Y(t)\} = \operatorname{E}\{Y(t)^2\} = R_Y(0) = \frac{1}{3}$.

Task 6. The average idle time is the average of an exponential distribution with parameter λ which is $1/\lambda$. The average busy period *B* is the average time spent in state 1 plus the probability that the next state is two times the average time spent in two plus *B*, which in turn is $1/(\lambda + \mu)$ (i.e., the mean of the minimum of two independent exponentially distributed waiting time with parameters λ and μ , respectively, which equals the mean of an exponential distribution with parameter $\lambda + \mu$) plus $\lambda/(\lambda + \mu)$ times $1/\mu + B$. Hence we have $B = 1/(\lambda + \mu) + (\lambda/(\lambda + \mu)) \times (1/\mu + B)$, so that $B = (\lambda + \mu)/\mu^2$.