MSG800/MVE170 Basic Stochastic Processes Fall 2011 Written exam Monday 12 December 20112 pm-6 pm

Teacher and jour: Patrik Albin, telephone 0706945709.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated.
Good Luck!
Task 1. Consider a homogeneous Markov chain $\left\{X_{n}, n \geq 0\right\}$ with state space (/possible values) E, initial state probability vector $\mathbf{p}(0)$ and transition matrix P given by

$$
E=\{0,1\}, \quad \mathbf{p}(0)=\left[\begin{array}{ll}
\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta}
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right]
$$

respectively for some constants $\alpha, \beta \in(0,1]$. Show that $\hat{\mathbf{p}}=\mathbf{p}(0)$ is a stationary distribution for the Markov chain. Find $\mathbf{E}\left\{X_{n}\right\}$ and $\operatorname{Var}\left\{X_{n}\right\}$ for $n \geq 0$. (5 points)

Task 2. Let $\{X(t), t \in \mathbb{R}\}$ be a WSS process and $\alpha>0$ a constant. Show that $\{X(\alpha t)$, $t \in \mathbb{R}\},\{X(t-\alpha), t \in \mathbb{R}\}$ and $\{X(-t), t \in \mathbb{R}\}$ are also WSS processes. (5 points)

Task 3. Consider the Markov chain $\left\{X_{n}, n \geq 0\right\}$ in Task 1 with $\alpha=\beta=\frac{1}{3}$ and with $\mathbf{p}(0)$ changed to $\left[\begin{array}{ll}1 & 0\end{array}\right]$. Write a computer programme that by means of stochastic simulation finds an approximative value of the expected value $\mathbf{E}\{T\}$ of the random time $T=\min \left\{n \geq 10: X_{n}=0\right.$ and $\left.X_{n+1}=1\right\}$.

Task 4. Let $\{X(t), t \geq 0\}$ be a Wiener process with $\mathbf{E}\left\{X(1)^{2}\right\}=1$. Show that $\left\{X(t)^{2}-t, t \geq 0\right\}$ is a martingale with respect to the information $F_{t}=\{X(s), s \in[0, t]\}$ obtained by observing the Wiener process up to time t. (5 points)

Task 5. Find the variance $\operatorname{Var}\{Y(t)\}$ of the output $Y(t)$ from a continuous-time LTI system with impulse response $h(t)=\mathrm{e}^{-t}$ for $t \geq 0$ and $h(t)=0$ for $t<0$ and with a zeromean WSS input process $\{X(t), t \in \mathbb{R}\}$ with auto-correlation function $R_{X}(\tau)=\mathrm{e}^{-2|\tau|}$ for $\tau \in \mathbb{R}$. (5 points)

Task 6. Consider a $M / M / 1 / 2$ queueing system with mean arrival rate $\lambda>0$ and mean service rate $\mu>0$. Find the average length of an idle period (that is, a period during which the server is idle) and the average lenght of a busy period (that is, a period during which the server is busy). (5 points)

MSG800/MVE170 Basic Stochastic Processes Fall 2011 Solutions to written exam Monday 12 December

Task 1. As $\hat{\mathbf{p}}=\mathbf{p}(0)$ satisfies $\hat{\mathbf{p}} P=\hat{\mathbf{p}}$ it follows that $\hat{\mathbf{p}}=\mathbf{p}(0)$ is a stationary distribution. As $\mathbf{p}(n)=\mathbf{p}(0) P^{n}=(\mathbf{p}(0) P) P^{n-1}=\mathbf{p}(0) P^{n-1}=\ldots=\mathbf{p}(0)$ for $n \geq 0$ we have $\mathbf{E}\left\{X_{n}\right\}=\sum_{k=0}^{1} k \mathbf{P}\left\{X_{n}=k\right\}=\sum_{k=0}^{1} k \mathbf{p}(n)_{k}=\sum_{k=0}^{1} k \mathbf{p}(0)_{k}=\frac{\alpha}{\alpha+\beta}$ and similarly $\mathbf{E}\left\{X_{n}^{2}\right\}=\sum_{k=0}^{1} k^{2} \mathbf{p}(0)_{k}=\frac{\alpha}{\alpha+\beta}$ so that $\operatorname{Var}\left\{X_{n}\right\}=\mathbf{E}\left\{X_{n}^{2}\right\}-\left(\mathbf{E}\left\{X_{n}\right\}\right)^{2}=\ldots=\frac{\alpha \beta}{(\alpha+\beta)^{2}}$. Task 2. Clearly, $X(\alpha t), X(t-\alpha)$ and $X(-t)$ all have the same constant (time-invariant) mean μ_{X} as has $X(t)$ while $\mathbf{E}\{X(\alpha t) X(\alpha(t+\tau))\}=R_{X}(\alpha \tau), \mathbf{E}\{X(t-\alpha) X(t+\tau-\alpha)\}=$ $R_{X}(\tau)$ and $\mathbf{E}\{X(-t) X(-(t+\tau))\}=R_{X}(-\tau)=R_{X}(\tau)$ do not depend on $t \in \mathbb{R}$.

Task 3.

```
Clear[i, Time, Rep, X, Y];
For[i=1; Time=0; Rep=100000000000000000000000000, i<=Rep, i++, X=0;
    For [j=1, j<=10, j++,
        If [Random[UniformDistribution[{0,1}]]<=1/3, X=1-X]];
        If [Random[UniformDistribution[{0,1}]]<=1/3, Y=1-X, Y=X];
        While[{X,Y}!={0,1}, Time=Time+1; X=Y;
            If [Random[UniformDistribution[{0,1}]]<=1/3, Y=1-X]]];
N [9+Time/Rep]
```

Task 4. $\mathbf{E}\left\{X(t)^{2}-t \mid F_{s}\right\}=\mathbf{E}\left\{(X(t)-X(s))^{2} \mid F_{s}\right\}+2 \mathbf{E}\left\{(X(t)-X(s)) X(s) \mid F_{s}\right\}+$ $\mathbf{E}\left\{X(s)^{2} \mid F_{s}\right\}-t=\mathbf{E}\left\{(X(t)-X(s))^{2}\right\}+2 \mathbf{E}\left\{X(t)-X(s) \mid F_{s}\right\} X(s)+X(s)^{2}-t=(t-s)$ $+2 \mathbf{E}\{X(t)-X(s)\} X(s)+X(s)^{2}-t=(t-s)+0+X(s)^{2}-t=X(s)^{2}-s$ for $s \leq t$ by independent increments of the Wiener process and (5.73)-(5.75) in Hsu's book.

Task 5. Since $S_{X}(\omega)=\frac{4}{4+\omega^{2}}$ and $H(\omega)=\frac{1}{1+j \omega}$ we have $S_{Y}(\omega)=|H(\omega)|^{2} S_{X}(\omega)=$ $\frac{4}{\left(1+\omega^{2}\right)\left(4+\omega^{2}\right)}=\frac{4 / 3}{1+\omega^{2}}-\frac{4 / 3}{4+\omega^{2}}$, so that $R_{Y}(\tau)=\frac{2}{3} \mathrm{e}^{-|\tau|}-\frac{1}{3} \mathrm{e}^{-2|\tau|}$. As $Y(t)$ is zero-mean this gives $\operatorname{Var}\{Y(t)\}=\mathbf{E}\left\{Y(t)^{2}\right\}=R_{Y}(0)=\frac{1}{3}$.

Task 6. The average idle time is the average of an exponential distribution with parameter λ which is $1 / \lambda$. The average busy period B is the average time spent in state 1 plus the probability that the next state is two times the average time spent in two plus B, which in turn is $1 /(\lambda+\mu)$ (i.e., the mean of the minimum of two independent exponentially distributed waiting time with parameters λ and μ, respectively, which equals the mean of an exponential distribution with parameter $\lambda+\mu)$ plus $\lambda /(\lambda+\mu)$ times $1 / \mu+B$. Hence we have $B=1 /(\lambda+\mu)+(\lambda /(\lambda+\mu)) \times(1 / \mu+B)$, so that $B=(\lambda+\mu) / \mu^{2}$.

