MSG800/MVE170 Basic Stochastic Processes Written exam Thursday 4 April 2013 2-6 pm

Teacher and jour: Patrik Albin, telephone 0706945709.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).
GRADES: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Good Luck!

Task 1. Let $\left\{X_{n}, n \geq 0\right\}$ be a Markov chain with transition probability matrix P. Show that $P\left\{X_{n+2}=j \mid X_{n}=i\right\}=\left(P^{2}\right)_{i j}$, that is, element number (i, j) of the square of P. (5 points)

Task 2. Let $X(t)$ be a Poisson process with rate λ. Calculate $P[X(t-d)=k \mid X(t)=j]$ for $0<d<t$ and positive integers $j \geq k$. (5 points)

Task 3. Let X_{1}, X_{2}, \ldots be independent identically distributed random variables, where each X_{i} can take only two values $1 / 2$ and 2 with the probabilities p and $1-p$, respectively. For which value of $p \in(0,1)$ is the process $\left\{M_{n}, n \geq 0\right\}$ given by $M_{0}=1$ and $M_{n}=$ $\prod_{i=1}^{n} X_{i}=X_{1} X_{2} \ldots X_{n}$ for $n \geq 1$ a martingale? (5 points)

Task 4. Let ξ and η be uncorrelated zero-mean and unit-variance random variables. Find the cross power spectral density $S_{X Y}(\omega)$ of the processes $X(t)$ and $Y(t)$ given by $X(t)=\xi \cos \left(\omega_{0} t\right)+\eta \sin \left(\omega_{0} t\right)$ and $Y(t)=\eta \cos \left(\omega_{0} t\right)-\xi \sin \left(\omega_{0} t\right)$ for $t \in \mathbb{R}$, where $\omega_{0} \in \mathbb{R}$ is a constant. (5 points)

Task 5. A wide-sense stationary continuous-time random process $X(t)$ with mean $E[X(t)]=2$ is input to a linear time-invariant system with impulse response $h(t)=$ $3 \mathrm{e}^{-2 t}$ for $t \geq 0$ and $h(t)=0$ for $t<0$. Find the mean $E[Y(t)]$ of the output process $Y(t)$ of the system. (5 points)

Task 6. Describe how computer simulations can be used to generate, say 100000, observations of the waiting times $W(q)$ in the queue before being served for 100000 consecutive customers arriving to a steady-state $\mathrm{M}(1) / \mathrm{M}(1) / 2 / 4$ queueing system. (In other words, the queueing system has $\exp (1)$-distributed times between arrivals of new customers as well as $\exp (1)$-distributed service times, and the queueing system has two servers and two queuing places.)

Albeit the simulation should in principle be started with the queuing system having a random number of customers according to the steady-state distribution, that is not really important in practice as it is known that the system converges very rapidly to being in steady-state. Hence one can in fact start the simulation with, e.g., 0 or 2 customers in the system. (5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Thursday 4 April

Task 1. We have $P\left\{X_{n+2}=j \mid X_{n}=i\right\}=P\left\{X_{n+2}=j, X_{n}=i\right\} / P\left\{X_{n}=i\right\}=$ $\sum_{k} P\left\{X_{n+2}=j, X_{n+1}=k, X_{n}=i\right\} / P\left\{X_{n}=i\right\}=\sum_{k} P\left\{X_{n+2}=j \mid X_{n+1}=k, X_{n}=\right.$ $i\} \times P\left\{X_{n+1}=k, X_{n}=i\right\} / P\left\{X_{n}=i\right\}=\sum_{k} P\left\{X_{n+2}=j \mid X_{n+1}=k\right\} \times P\left\{X_{n+1}=\right.$ $\left.k \mid X_{n}=i\right\}=\sum_{k} P_{k j} P_{i k}=\left(P^{2}\right)_{i j}$.

Task 2. We have $P[X(t-d)=k \mid X(t)=j]=P[X(t-d)=k, X(t)=j] / P[X(t)=j]=$ $P[X(t-d)=k, X(t)-X(t-d)=j-k] / P[X(t)=j]=P[X(t-d)=k] \times P[X(t)-X(t-$ $d)=j-k] / P[X(t)=j]=P[X(t-d)=k] \times P[X(d)=j-k] / P[X(t)=j]=((\lambda(t-$ d) $\left.)^{k} \mathrm{e}^{-\lambda(t-d)} / k!\right) \times\left((\lambda d)^{j-k} \mathrm{e}^{-\lambda d} /(j-k)!\right) /\left((\lambda t)^{j} \mathrm{e}^{-\lambda t} / j!\right)=\ldots=\binom{j}{k}(1-d / t)^{k}(d / t)^{j-k}$.

Task 3. We have $E\left(M_{n+1} \mid F_{n}\right)=E\left(M_{n+1} \mid M_{1}, \ldots, M_{n}\right)=E\left(X_{n+1} M_{n} \mid M_{n}\right)=E\left(X_{n+1}\right)$ $\times M_{n}=M_{n}$ when $E\left(X_{n+1}\right)=(1 / 2) p+2(1-p)=2-3 p / 2=1$, that is, when $p=2 / 3$.

Task 4. As $R_{X Y}(\tau)=E[X(t) Y(t+\tau)]=\ldots=\sin \left(\omega_{0} t\right) \cos \left(\omega_{0}(t+\tau)\right)-\cos \left(\omega_{0} t\right) \sin \left(\omega_{0}(t\right.$ $+\tau))=-\sin \left(\omega_{0} \tau\right)=\frac{1}{2 j}\left(\mathrm{e}^{-j \omega_{0} \tau}-\mathrm{e}^{j \omega_{0} \tau}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \pi\left(\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right) \mathrm{e}^{j \omega \tau} d \omega=$ $\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X Y}(\omega) \mathrm{e}^{j \omega \tau} d \omega$ we have $S_{X Y}(\omega)=j \pi\left(\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right)$.

Task 5. We have $E[Y(t)]=E\left[\int_{-\infty}^{\infty} X(t-u) h(u) d u\right]=\int_{0}^{\infty} E[X(t-u)] 3 \mathrm{e}^{-2 u} d u=$ $6 \int_{0}^{\infty} \mathrm{e}^{-2 u} d u=3$.

Task 6. You will find one solution to this problem as the array Wait generated by the Mathematica programme available at
http://www.math.chalmers.se/Stat/Grundutb/GU/MSG800/A12/Exercises/Comp_Pr_6.pdf

