MSG800/MVE170 Basic Stochastic Processes Written exam Thursday 4 April 2013 2–6 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) <u>or</u> Beta (but not both these aids).

GRADES: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

GOOD LUCK!

Task 1. Let $\{X_n, n \ge 0\}$ be a Markov chain with transition probability matrix P. Show that $P\{X_{n+2} = j | X_n = i\} = (P^2)_{ij}$, that is, element number (i, j) of the square of P. (5 points)

Task 2. Let X(t) be a Poisson process with rate λ . Calculate P[X(t-d) = k | X(t) = j] for 0 < d < t and positive integers $j \ge k$. (5 points)

Task 3. Let X_1, X_2, \ldots be independent identically distributed random variables, where each X_i can take only two values 1/2 and 2 with the probabilities p and 1-p, respectively. For which value of $p \in (0, 1)$ is the process $\{M_n, n \ge 0\}$ given by $M_0 = 1$ and $M_n =$ $\prod_{i=1}^n X_i = X_1 X_2 \ldots X_n$ for $n \ge 1$ a martingale? (5 points)

Task 4. Let ξ and η be uncorrelated zero-mean and unit-variance random variables. Find the cross power spectral density $S_{XY}(\omega)$ of the processes X(t) and Y(t) given by $X(t) = \xi \cos(\omega_0 t) + \eta \sin(\omega_0 t)$ and $Y(t) = \eta \cos(\omega_0 t) - \xi \sin(\omega_0 t)$ for $t \in \mathbb{R}$, where $\omega_0 \in \mathbb{R}$ is a constant. (5 points)

Task 5. A wide-sense stationary continuous-time random process X(t) with mean E[X(t)] = 2 is input to a linear time-invariant system with impulse response $h(t) = 3 e^{-2t}$ for $t \ge 0$ and h(t) = 0 for t < 0. Find the mean E[Y(t)] of the output process Y(t) of the system. (5 points)

Task 6. Describe how computer simulations can be used to generate, say 100000, observations of the waiting times W(q) in the queue before being served for 100000 consecutive customers arriving to a steady-state M(1)/M(1)/2/4 queueing system. (In other words, the queueing system has $\exp(1)$ -distributed times between arrivals of new customers as well as $\exp(1)$ -distributed service times, and the queueing system has two servers and two queuing places.)

Albeit the simulation should in principle be started with the queuing system having a random number of customers according to the steady-state distribution, that is not really important in practice as it is known that the system converges very rapidly to being in steady-state. Hence one can in fact start the simulation with, e.g., 0 or 2 customers in the system. (5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Thursday 4 April

Task 1. We have $P\{X_{n+2} = j | X_n = i\} = P\{X_{n+2} = j, X_n = i\}/P\{X_n = i\} = \sum_k P\{X_{n+2} = j, X_{n+1} = k, X_n = i\}/P\{X_n = i\} = \sum_k P\{X_{n+2} = j | X_{n+1} = k, X_n = i\} \times P\{X_{n+1} = k, X_n = i\}/P\{X_n = i\} = \sum_k P\{X_{n+2} = j | X_{n+1} = k\} \times P\{X_{n+1} = k, X_n = i\} = \sum_k P\{X_n = i\}$

Task 2. We have $P[X(t-d) = k | X(t) = j] = P[X(t-d) = k, X(t) = j] / P[X(t) = j] = P[X(t-d) = k, X(t) - X(t-d) = j-k] / P[X(t) = j] = P[X(t-d) = k] \times P[X(t) - X(t-d) = j-k] / P[X(t) = j] = P[X(t-d) = k] \times P[X(d) = j-k] / P[X(t) = j] = ((\lambda (t-d))^k e^{-\lambda (t-d)} / k!) \times ((\lambda d)^{j-k} e^{-\lambda d} / (j-k)!) / ((\lambda t)^j e^{-\lambda t} / j!) = \dots = {j \choose k} (1 - d/t)^k (d/t)^{j-k}.$

Task 3. We have $E(M_{n+1}|F_n) = E(M_{n+1}|M_1, \dots, M_n) = E(X_{n+1}M_n|M_n) = E(X_{n+1})$ $\times M_n = M_n$ when $E(X_{n+1}) = (1/2)p + 2(1-p) = 2 - 3p/2 = 1$, that is, when p = 2/3.

Task 4. As
$$R_{XY}(\tau) = E[X(t)Y(t+\tau)] = \dots = \sin(\omega_0 t)\cos(\omega_0(t+\tau)) - \cos(\omega_0 t)\sin(\omega_0(t+\tau))$$

 $+\tau)) = -\sin(\omega_0 \tau) = \frac{1}{2j}\left(e^{-j\omega_0\tau} - e^{j\omega_0\tau}\right) = \frac{1}{2\pi}\int_{-\infty}^{\infty} j\pi\left(\delta(\omega-\omega_0) - \delta(\omega+\omega_0)\right)e^{j\omega\tau}d\omega = \frac{1}{2\pi}\int_{-\infty}^{\infty}S_{XY}(\omega)e^{j\omega\tau}d\omega$ we have $S_{XY}(\omega) = j\pi\left(\delta(\omega-\omega_0) - \delta(\omega+\omega_0)\right)$.

Task 5. We have $E[Y(t)] = E[\int_{-\infty}^{\infty} X(t-u)h(u) \, du] = \int_{0}^{\infty} E[X(t-u)] \, 3 \, e^{-2u} \, du = 6 \int_{0}^{\infty} e^{-2u} \, du = 3.$

Task 6. You will find one solution to this problem as the array Wait generated by the Mathematica programme available at

http://www.math.chalmers.se/Stat/Grundutb/GU/MSG800/A12/Exercises/Comp_Pr_6.pdf