MSG800/MVE170 Basic Stochastic Processes

Written exam Monday 16 December 2013 2-6 am

Teacher and jour: Patrik Albin, telephone 0706945709
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Good Luck!

Task 1. Consider the discrete time random process $\left\{X_{n}, n \geq 1\right\}$ given by $X_{n}=\cos (n U)$ for $n \geq 1$, where U is a random variable that is uniformly distributed over the interval $[-\pi, \pi]$. Show that the process $\left\{X_{n}, n \geq 1\right\}$ is wide-sense stationary. (Hint: The formula $\cos (x) \cos (y)=\frac{1}{2} \cos (x+y)+\frac{1}{2} \cos (y-x)$ can be useful.) (5 points)

Task 2. The one and same zero-mean wide sense stationary random process $\{X(t), t \in$ $\mathbb{R}\}$ with autocorrelation function $R_{X}(s, t)=\mathrm{e}^{-3|t-s|}$ is input to two different continuoustime linear time-invariant system with outputs $\left\{Y_{1}(t), t \in \mathbb{R}\right\}$ and $\left\{Y_{2}(t), t \in \mathbb{R}\right\}$, respectively, and impulse responses $h_{1}(t)=\mathrm{e}^{-t}$ for $t \geq 0, h_{1}(t)=0$ for $t<0$ and $h_{2}(t)=\mathrm{e}^{-2 t}$ for $t \geq 0, h_{2}(t)=0$ for $t<0$, respectively. Find $E\left(Y_{1}(t) Y_{2}(t)\right)$. (5 points)

Task 3. Let $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-y^{2} / 2} d y$ and $\phi(x)=\Phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}$ be the standard normal (zero-mean and unit-variance) cummulative probability distribution function and the standard normal probability density function, respectively. Find a random process $\{X(t), t \in \mathbb{R}\}$ such that the following calculation is valid:

$$
\begin{align*}
P(X(1) \leq 0, X(2) \leq 0) & =P\left(X(1) \leq 0, X(2)-\frac{1}{\sqrt{2}} X(1) \leq-\frac{1}{\sqrt{2}} X(1)\right) \\
& =\int_{-\infty}^{0} P\left(X(2)-\frac{1}{\sqrt{2}} X(1) \leq-\frac{1}{\sqrt{2}} x\right) \phi(x) d x \\
& =\int_{-\infty}^{0} \Phi(-x) \phi(x) d x \\
& =\int_{0}^{\infty} \Phi(x) \phi(x) d x \\
& =\left[\frac{\Phi(x)^{2}}{2}\right]_{0}^{\infty} \\
& =\frac{3}{8} \tag{5points}
\end{align*}
$$

Continuation on next page!

Task 4. Let $\{W(t), t \geq 0\}$ be a Wiener process with $E\left(W(1)^{2}\right)=1$. Show that the random process $\left\{\int_{0}^{t} W(u) d u-\frac{1}{3} W(t)^{3}, t \geq 0\right\}$ is a martingale with respect to the filtration \mathcal{F}_{s} containing information of all values $\{W(u), u \in[0, s]\}$ of the Wiener process up to time s. (5 points)

Task 5. Calculate the $\operatorname{limit}_{\lim }^{s, t \rightarrow \infty}$ $R_{X}(s, s+t)=\lim _{s, t \rightarrow \infty} E(X(s) X(s+t))$ for a continuous time Markov chain $\{X(t) ; t \geq 0\}$ with state space (possible values) S and generator G given by

$$
S=\{0,1\} \quad \text { and } \quad G=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

respectively, where $\alpha, \beta>0$ are given constants. (5 points)
Task 6. Let $X(t)$ denote the total number of customers at time $t \geq 0$ in an $\mathrm{M} / \mathrm{M} / 2 / 4$ queuing system in steady-state (/started according to its stationary distribution) with Poisson arrival process with rate $\lambda=1$ and with exponentially distributed service times with mean 1. Describe a numerical procedure (/simulation procedure) that gives an approximative numerical value for the probability $P\left(\max _{0 \leq t \leq 10} X(t)=4\right)$ that the queuing system gets full during the first 10 time units.
(5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Monday 16 December

Task 1. Clearly $E\left(X_{n}\right)=0$ and $E\left(X_{n} X_{n+m}\right)=\frac{1}{2} E(\cos ((2 n+m) U))+\frac{1}{2} E(\cos (m U))=$ $0+\frac{1}{2} \delta(m)$ do not depend on n so that X_{n} is wide sense stationary.

Task 2. We have $E\left(Y_{1}(t) Y_{2}(t)\right)=E\left(\int_{-\infty}^{\infty} h_{1}(u) X(t-u) d u \int_{-\infty}^{\infty} h_{2}(v) X(t-v) d v\right)=$ $E\left(\int_{0}^{\infty} \mathrm{e}^{-u} X(t-u) d u \int_{0}^{\infty} \mathrm{e}^{-2 v} X(t-v) d v\right)=\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-u} \mathrm{e}^{-2 v} E(X(t-u) X(t-v)) d u d v=$ $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-u} \mathrm{e}^{-2 v} \mathrm{e}^{-3|u-v|} d u d v=\int_{u=0}^{u=\infty} \int_{v=u}^{v=\infty} \mathrm{e}^{-u} \mathrm{e}^{-2 v} \mathrm{e}^{-3(v-u)} d v d u+\int_{v=0}^{v=\infty} \int_{u=v}^{u=\infty} \mathrm{e}^{-u} \mathrm{e}^{-2 v}$ $\mathrm{e}^{-3(u-v)} d u d v=\int_{u=0}^{u=\infty} \mathrm{e}^{2 u} \int_{v=u}^{v=\infty} \mathrm{e}^{-5 v} d v d u+\int_{v=0}^{v=\infty} \mathrm{e}^{v} \int_{u=v}^{u=\infty} \mathrm{e}^{-4 u} d u d v=\int_{u=0}^{u=\infty} \frac{1}{5} \mathrm{e}^{-3 u} d u$ $+\int_{v=0}^{v=\infty} \frac{1}{4} \mathrm{e}^{-3 v} d v=\frac{1}{15}+\frac{1}{12}=\frac{3}{20}$.

Task 3. A zero-mean unit-variance Gaussian process with $E(X(1) X(2))=\frac{1}{\sqrt{2}}$, because for such a process $X(1)$ and $X(2)-\frac{1}{\sqrt{2}} X(1)$ are independent and $P\left(X(2)-\frac{1}{\sqrt{2}} X(1) \leq\right.$ $\left.-\frac{1}{\sqrt{2}} x\right)=\Phi(-x)$ since $X(2)-\frac{1}{\sqrt{2}} X(1)$ is a Gaussian random variable with variance $\frac{1}{2}$.

Task 4. We have

$$
\begin{aligned}
& E\left(\left.\int_{0}^{t} W(u) d u-\frac{1}{3} W(t)^{3} \right\rvert\, \mathcal{F}_{s}\right) \\
&= E\left(\int_{s}^{t}(W(u)-W(s)) d u \mid \mathcal{F}_{s}\right)+E\left((t-s) W(s) \mid \mathcal{F}_{s}\right)+E\left(\int_{0}^{s} W(u) d u \mid \mathcal{F}_{s}\right) \\
& \quad-\frac{1}{3} E\left((W(t)-W(s))^{3} \mid \mathcal{F}_{s}\right)-E\left((W(t)-W(s))^{2} W(s) \mid \mathcal{F}_{s}\right) \\
& \quad-E\left((W(t)-W(s)) W(s)^{2} \mid \mathcal{F}_{s}\right)-\frac{1}{3} E\left(W(s)^{3} \mid \mathcal{F}_{s}\right) \\
&= E\left(\int_{s}^{t}(W(u)-W(s)) d u\right)+(t-s) W(s)+\int_{0}^{s} W(u) d u \\
& \quad \quad-\frac{1}{3} E\left((W(t)-W(s))^{3}\right)-E\left((W(t)-W(s))^{2}\right) W(s) \\
& \quad \quad E(W(t)-W(s)) W(s)^{2}-\frac{1}{3} W(s)^{3} \\
&= 0+(t-s) W(s)+\int_{0}^{s} W(u) d u-0-(t-s) W(s)-0-\frac{1}{3} W(s)^{3} \\
&= \int_{0}^{s} W(u) d u-\frac{1}{3} W(s)^{3} \quad \text { for } 0 \leq s \leq t
\end{aligned}
$$

Task 5. The chain is irreducible with stationary distribution $\pi=\left(\frac{\beta}{\alpha+\beta} \frac{\alpha}{\alpha+\beta}\right)$ (as this gives $\pi G=0)$. Noting that $X(s) X(t)=1$ when both $X(s)$ and $X(t)$ are 1 while $X(s) X(t)=0$ otherwise it follows that $E(X(s) X(t))=\left(\mu^{(s)}\right)_{1} p_{11}(t)=\left(\mu^{(0)} P_{s}\right)_{1} p_{11}(t)$ $=\left(\left(\mu^{(0)}\right)_{0} p_{01}(s)+\left(\mu^{(0)}\right)_{1} p_{11}(s)\right) p_{11}(t) \rightarrow\left(\left(\mu^{(0)}\right)_{0} \pi_{1}+\left(\mu^{(0)}\right)_{1} \pi_{1}\right) \pi_{1}=\pi_{1}^{2}=\alpha^{2} /(\alpha+\beta)^{2}$ as $s, t \rightarrow \infty$.

Clear[slump, start, xt, tid;
$\ln [3]:=\mathbf{N}$ [Mean[Table[\{tid = 0, xt $=\{\operatorname{slump}=\operatorname{Random[UniformDistributior[\{ 0,1\}]],~If[slump<8/23,~start~=~0]~,~}$ If [$8 / 23 \leq$ slump $<16 / 23$, start $=1]$, If [16/23 s slump $<20 / 23$, start = 2] , If [20/23 s slump<22/23, start = 3], If[22/23 s slump, start = 4] , start\} [[7]] ,
While[tid<10 \&\& xt < $7 / 2$, If[xt <1/2, tid=tid+Random[ExponentialDistributión 1]] $x t=1$, If $[1 / 2<x t<3 / 2$,
tid = tid + Random[ExponentialDistributior[2]] ; slump = Random[UniformDistributior\{ \{0, 1\}]]; If [slump $\leq 1 / 2$, xt = xt +1, xt = xt -1], tid=tid + Random[ExponentialDistribution 3]]; slump $=\operatorname{Random}[$ UniformDistributior $\{0,1\}]] ; \operatorname{If}[\operatorname{slump} \leq 1 / 3, x t=x t+1$, $x t=x t-1]]]$, $\operatorname{If}[x t>7 / 2 \& \& t i d<10,1,0]\}[[4]],\{i, 1,100000\}]]]$
Out[3]= 0.46679

