MSG800/MVE170 Basic Stochastic Processes

Written exam Monday 25 August 2014 8.30-12.30 pm

Teacher and jour: Patrik Albin, telephone 0706945709.
AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).
Grades: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5, respectively.

Motivations: All answers/solutions must be motivated. Good Luck!
Task 1. Calculate the probability $P\{X(1)=1, X(3)=3 \mid X(2)=2\}$ for a Poisson process $X(t)$ with rate $\lambda=1$. (5 points)

Task 2. A discrete time process $\left\{X_{n}, n \geq 0\right\}$ is given recursively by taking X_{0} zeromean normal distributed with variance $4 / 3$ and $X_{n+1}=X_{n} / 2+e_{n}$ for $n=0,1,2, \ldots$, where $\left\{e_{n}, n \geq 0\right\}$ are independent zero-mean normal distributed random variables with variance 1 that are independent of X_{0}. Write a programme that by means of simulation finds an approximation of the probability $P\left\{\max _{0 \leq n \leq 10} X_{n} \geq 3\right\}$. (5 points)

Task 3. Consider a birth-death process $\{X(t): t \geq 0\}$ with $X(0)=0$ and with unit birth and death rates $\lambda_{0}=\lambda_{1}=\ldots=\mu_{1}=\mu_{2}=\ldots=1$. Find the expected value $E[T]$ of the time $T=\min \{t \geq 0: X(t)=2\}$ it takes $X(t)$ to reach the state 2 . (5 points)

Task 4. Let $\{X(t), t \geq 0\}$ be a standard Wiener process (so that $\operatorname{Var}[X(t)]=t$). Show that the process $\left\{\mathrm{e}^{X(t)-t / 2}, t \geq 0\right\}$ is a maringale with respect to the filtration F_{s} containing information about all process values $\{X(r)\}_{r \in[0, s]}$ of the Wiener process up to time s. (Hint: You may want to make use of the fact that $E\left[\mathrm{e}^{Y}\right]=\mathrm{e}^{\mathrm{s}^{2} / 2}$ for Y a zero-mean normal distributed random variable with variance s^{2}.) (5 points)

Task 5. A WSS discrete-time process $X(n)$ with power spectral density $S_{X}(\Omega)$ is input to a discrete-time LTI system with frequency response $H(\Omega)$ and output $Y(n)$. Show that the cross power spectral density between $X(n)$ and $Y(n)$ is given by $S_{X Y}(\Omega)=$ $H(\Omega) S_{X}(\Omega) . \quad(5$ points)

Task 6. Consider a Markov chain with state space S and transition matrix P given by

$$
S=\{0,1\} \quad \text { and } \quad P=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right]
$$

respectively, where $\alpha, \beta \in[0,1]$ are constants. Under what additional constraints on α and β (other than that they lie in the interval $[0,1]$) does the chain possess a uniquely determined (that is, one and only one) stationary distribution π ? (5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Monday 25 August 2014

Task 1. $P\{X(1)=1, X(3)=3 \mid X(2)=2\}=P\{X(1)=1, X(2)=2, X(3)=3\} /$ $P\{X(2)=2\}=P\{X(1)=1, X(2)-X(1)=1, X(3)-X(2)=1\} / P\{X(2)=2\}=P\{$ $X(1)=1\} P\{X(2)-X(1)=1\} P\{X(3)-X(2)=1\} / P\{X(2)=2\}=(P\{X(1)=1\})^{3} /$ $P\{X(2)=2\}=\left(\mathrm{e}^{-\lambda \cdot 1}(\lambda \cdot 1)^{1} /(1!)\right)^{3} /\left(\mathrm{e}^{-\lambda \cdot 2}(\lambda \cdot 2)^{2} /(2!)\right)=1 /(2 \mathrm{e})$.

Task 2.

```
In[1]:= For[j=1; Rep=100000; Big3=0, j<=Rep, j++,
        For[i=1; X0=Random[NormalDistribution[0,Sqrt[4/3]]]; Xmax=X0,
            i<=10, i++, X=X0/2+Random[NormalDistribution[0,1]];
            If [X>Xmax, Xmax=X]; X0=X];
        If[Xmax>=3, Big3=Big3+1]];
    N[Big3/Rep]
```

Out [1] = 0.04538
Task 3. It takes on the average 1 time unit (the mean of an exponential random variable with parameter λ_{0}) to reach the state 1 . Then the chain spend on the average $1 / 2$ time unit (the mean of an exponential random variable with parameter $\lambda_{1}+\mu_{1}$) in that state until it with equal probabilities $1 / 2$ either jumps back to state zero or jumps up to state 2 . This gives the equation $E[T]=1+1 / 2+(1 / 2) E[T]$ with solution $E[T]=3$.

Task 4. As $X(t)-X(s)$ is $\mathrm{N}(0, t-s)$ distributed and independent of F_{s} we use the hint to obtain $E\left(\mathrm{e}^{X(t)-t / 2} \mid F_{s}\right)=E\left(\mathrm{e}^{X(t)-X(s)} \mathrm{e}^{X(s)-t / 2} \mid F_{s}\right)=E\left(\mathrm{e}^{X(t)-X(s)} \mid F_{s}\right) \mathrm{e}^{X(s)-t / 2}$ $=E\left[\mathrm{e}^{X(t)-X(s)}\right] \mathrm{e}^{X(s)-t / 2}=\mathrm{e}^{(t-s) / 2} \mathrm{e}^{X(s)-t / 2}=\mathrm{e}^{X(s)-s / 2}$ for $t \geq s$.

Task 5. We have $S_{X Y}(\Omega)=\sum_{\tau=-\infty}^{\infty} \mathrm{e}^{-j \Omega \tau} R_{X Y}(\tau)=\sum_{\tau=-\infty}^{\infty} \mathrm{e}^{-j \Omega \tau} E[X(n) Y(n+\tau)]=$ $\sum_{\tau=-\infty}^{\infty} \mathrm{e}^{-j \Omega \tau} E\left[X(n) \sum_{k=-\infty}^{\infty} h(k) X(n+\tau-k)\right]=\sum_{\tau=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{-j \Omega \tau} E[X(n)$ $X(n+\tau-k)]=\sum_{\tau=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{-j \Omega \tau} R_{X}(\tau-k)=\sum_{k=-\infty}^{\infty} \mathrm{e}^{-j \Omega k} h(k)\left(\sum_{\tau=-\infty}^{\infty}\right.$ $\left.\mathrm{e}^{-j \Omega(\tau-k)} R_{X}(\tau-k)\right)=H(\Omega) S_{X}(\Omega)$.

Task 6. By basic algebraic manipulations we see that

$$
\left\{\begin{array} { r }
{ \pi P = \pi } \\
{ \pi _ { 0 } + \pi _ { 1 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \pi _ { 0 } (1 - \alpha) + \pi _ { 1 } \beta = \pi _ { 0 } } \\
{ \pi _ { 0 } \alpha + \pi _ { 1 } (1 - \beta) = \pi _ { 1 } } \\
{ \pi _ { 0 } + \pi _ { 1 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ \pi _ { 0 } (1 - \alpha) + \pi _ { 1 } \beta = \pi _ { 0 } } \\
{ \pi _ { 0 } + \pi _ { 1 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
\pi_{0}(\alpha+\beta)=\beta \\
\pi_{0}+\pi_{1}=1
\end{array},\right.\right.\right.\right.
$$

which in turn has a unique solution $\pi=\left(\frac{\beta}{\alpha+\beta} \frac{\alpha}{\alpha+\beta}\right)$ if and only if $\alpha+\beta>0$ (whilst for $\alpha+\beta=0$ any distribution π is a solution).

