MSG800/MVE170 Basic Stochastic Processes

Written exam Monday 25 August 2014 8.30–12.30 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) <u>or</u> Beta (but not both these aids).

GRADES: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Calculate the probability $P\{X(1) = 1, X(3) = 3 | X(2) = 2\}$ for a Poisson process X(t) with rate $\lambda = 1$. (5 points)

Task 2. A discrete time process $\{X_n, n \ge 0\}$ is given recursively by taking X_0 zeromean normal distributed with variance 4/3 and $X_{n+1} = X_n/2 + e_n$ for n = 0, 1, 2, ...,where $\{e_n, n \ge 0\}$ are independent zero-mean normal distributed random variables with variance 1 that are independent of X_0 . Write a programme that by means of simulation finds an approximation of the probability $P\{\max_{0\le n\le 10} X_n \ge 3\}$. (5 points)

Task 3. Consider a birth-death process $\{X(t) : t \ge 0\}$ with X(0) = 0 and with unit birth and death rates $\lambda_0 = \lambda_1 = \ldots = \mu_1 = \mu_2 = \ldots = 1$. Find the expected value E[T]of the time $T = \min\{t \ge 0 : X(t) = 2\}$ it takes X(t) to reach the state 2. (5 points) **Task 4.** Let $\{X(t), t \ge 0\}$ be a standard Wiener process (so that $\operatorname{Var}[X(t)] = t$). Show that the process $\{e^{X(t)-t/2}, t \ge 0\}$ is a maringale with respect to the filtration F_s containing information about all process values $\{X(r)\}_{r\in[0,s]}$ of the Wiener process up to time s. (**Hint:** You may want to make use of the fact that $E[e^Y] = e^{s^2/2}$ for Y a zero-mean normal distributed random variable with variance s^2 .) (5 points)

Task 5. A WSS discrete-time process X(n) with power spectral density $S_X(\Omega)$ is input to a discrete-time LTI system with frequency response $H(\Omega)$ and output Y(n). Show that the cross power spectral density between X(n) and Y(n) is given by $S_{XY}(\Omega) =$ $H(\Omega)S_X(\Omega)$. (5 points)

Task 6. Consider a Markov chain with state space S and transition matrix P given by

$$S = \{0, 1\}$$
 and $P = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix}$,

respectively, where $\alpha, \beta \in [0, 1]$ are constants. Under what additional constraints on α and β (other than that they lie in the interval [0, 1]) does the chain possess a uniquely determined (that is, one and only one) stationary distribution π ? (5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Monday 25 August 2014

Task 1. $P\{X(1) = 1, X(3) = 3 | X(2) = 2\} = P\{X(1) = 1, X(2) = 2, X(3) = 3\} / P\{X(2) = 2\} = P\{X(1) = 1, X(2) - X(1) = 1, X(3) - X(2) = 1\} / P\{X(2) = 2\} = P\{X(1) = 1\} P\{X(2) - X(1) = 1\} P\{X(3) - X(2) = 1\} / P\{X(2) = 2\} = (P\{X(1) = 1\})^3 / P\{X(2) = 2\} = (e^{-\lambda \cdot 1} (\lambda \cdot 1)^1 / (1!))^3 / (e^{-\lambda \cdot 2} (\lambda \cdot 2)^2 / (2!)) = 1 / (2 e).$

Task 2.

Out[1] = 0.04538

Task 3. It takes on the average 1 time unit (the mean of an exponential random variable with parameter λ_0) to reach the state 1. Then the chain spend on the average 1/2 time unit (the mean of an exponential random variable with parameter $\lambda_1 + \mu_1$) in that state until it with equal probabilities 1/2 either jumps back to state zero or jumps up to state 2. This gives the equation E[T] = 1 + 1/2 + (1/2) E[T] with solution E[T] = 3.

Task 4. As X(t) - X(s) is N(0, t-s) distributed and independent of F_s we use the hint to obtain $E(e^{X(t)-t/2}|F_s) = E(e^{X(t)-X(s)}e^{X(s)-t/2}|F_s) = E(e^{X(t)-X(s)}|F_s)e^{X(s)-t/2} = E[e^{X(t)-X(s)}]e^{X(s)-t/2} = e^{(t-s)/2}e^{X(s)-t/2} = e^{X(s)-s/2}$ for $t \ge s$.

Task 5. We have $S_{XY}(\Omega) = \sum_{\tau=-\infty}^{\infty} e^{-j\Omega\tau} R_{XY}(\tau) = \sum_{\tau=-\infty}^{\infty} e^{-j\Omega\tau} E[X(n)Y(n+\tau)] =$ $\sum_{\tau=-\infty}^{\infty} e^{-j\Omega\tau} E[X(n)\sum_{k=-\infty}^{\infty} h(k)X(n+\tau-k)] = \sum_{\tau=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h(k) e^{-j\Omega\tau} E[X(n)X(n+\tau-k)] = \sum_{\tau=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h(k) e^{-j\Omega\tau} R_X(\tau-k) = \sum_{k=-\infty}^{\infty} e^{-j\Omega k} h(k) (\sum_{\tau=-\infty}^{\infty} e^{-j\Omega(\tau-k)} R_X(\tau-k)) = H(\Omega)S_X(\Omega).$

Task 6. By basic algebraic manipulations we see that

1

$$\begin{cases} \pi P = \pi \\ \pi_0 + \pi_1 = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_0(1-\alpha) + \pi_1\beta = \pi_0 \\ \pi_0\alpha + \pi_1(1-\beta) = \pi_1 \\ \pi_0 + \pi_1 = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_0(1-\alpha) + \pi_1\beta = \pi_0 \\ \pi_0 + \pi_1 = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_0(\alpha+\beta) = \beta \\ \pi_0 + \pi_1 = 1 \end{cases}$$

which in turn has a unique solution $\pi = \begin{pmatrix} \beta \\ \alpha+\beta \end{pmatrix}$ if and only if $\alpha+\beta > 0$ (whilst for $\alpha+\beta = 0$ any distribution π is a solution).