
MSG800/MVE170 Basic Stochastic Processes

Written exam Monday 12 January 2015 2 – 6 am

(With two figures.)

Teacher and jour: Patrik Albin, telephone 070 6945709.

Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or com-

puter print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG

and 24 points for grade 5, respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. The passport issuing service in former East Germany (=the German Demo-

cratic Republic) opened at a certain unpredictable time in the morning each day after

which it was open exactly six hours after which it closed down for the day. It was for-

bidden for passport applicants to queue outside the passport issuing service before the

opening time. When the passport issuing service opened each morning passport appli-

cants started to arrive according to a Poisson process with arrival rate 6 applicants per

hour. The passport issuing service had just one passport issuer who needed an exponen-

tial distributed time with mean 1/2 hour to issue a passport. A passport applicant that

was in progress with her/his passport issuing at the closing time was abandoned (didn’t

get a passport). Write a computer programme that by means of stochastic simulation

find an approximation of the mean number of passport applicants that got a passport

each day. (Or in other words, find the expected value of the number of customers that

is being finished served during the first six time units for an M/M/1 queueing system

with λ = 6 and µ = 2 that is started empty.)

(5 points)

Task 2. Consider a fair game runned repeatedly where the gambler looses his bet with

probability 1/2 and wins double his bet with probability 1/2. The gambler starts with

the bet 1 and then doubles his bet after each loss until he has his first win after which

he instead bets zero forever. The gain Sn of the gambler after n bets is therefore Sn =

−(1+2+ . . . +2n−1) = −(2n−1) if the gambler has not had his first win yet, while the

gain is instead Sn = −(1+2+ . . . +2k−1) + 2k = 1 if the gambler has had his first win

after an earlier k’th bet were k ≤ n. Show that Sn is a martingale. [Hint: Show that

E[Sn+1|Sn =1] = 1 and E[Sn+1|Sn =−(2n−1)] = −(2n−1).] (5 points)
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Task 3. Let {W (t), t≥ 0} be a Wiener process, that is, a zero-mean Gaussian process

with autocorrelation function RW (s, t) = σ2 min(s, t). Further, let {N(t), t ≥ 0} be a

Poisson process with rate (/intensity) λ > 0. Show that RX(s, t) = σ2λ min(s, t) for the

process {X(t), t≥ 0} given by X(t) = W (N(t)). (5 points)

Task 4. Consider a continuous time random walk on the six corners {A, B, C, D, E, F}
of an octaeder that spends an exponentially distributed time with mean 1/4 at each

visit of an corner after which it selects one of the four neighbour corners as its next

position with equal probabilities 1/4. Show that the expected value of the time it takes

the random walk to move from corner A to corner C of the octaeder (see figure below)

is equal to 3/2.

(5 points)

Task 5. Show that for a differentiable WSS continuous time random process {X(t), t∈
R} with autocorrelation function RX(τ) and derivative process {X ′(t), t ∈ R} it holds

that E[X ′(t)] = 0 and E[X(t)X ′(t)] = R′

X(0). (These things are done in the book by

Hsu – it does not score any points to refer to what Hsu have done, but you must either

more or less redo what he does or show the asked for in some other way ... .) Also,

explain why it must in fact hold that R′

X(0) = 0. (5 points)

Task 6. An LTI system with frequency response H(ω) = 2/(1+jω) has insignal x(t)

= cos(t). Show that the outsignal is y(t) = cos(t) + sin(t). (5 points)

2



MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Monday 12 January

Task 1. wiederholungen = 100000000000000000000000000000; reisepass = 0;

for durchlauf = 1:wiederholungen

ankunft = exprnd(1/6); betrieb = ankunft + exprnd(1/2);

while betrieb < 6

reisepass = reisepass + 1; ankunft = ankunft + exprnd(1/6);

if betrieb < ankunft

betrieb = ankunft + exprnd(1/2);

else

betrieb = betrieb + exprnd(1/2);

end

end

end

reisepass/wiederholungen

>> 11.5030473957230128452382047854

Alternatively, (in a fashion programmed by several students)

loops = 100000000000000000000000000000; count = 0;

for i = 1:loops

x = 1; time = exprnd(1/6);

while time <= 6

if x <= 1/2

x = 1; time = time + exprnd(1/6);

end

time = time + exprnd(1/8); move = binornd(1,3/4);

if move <= 1/2

x = x - 1;

if time <= 6

count = count + 1;

end

else

x = x + 1;

end

end

end

count/loops

>> 11.5030473957230128452382047854
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Task 2. If {ξi}∞i=1 are independent random variables with P [ξi =−1] = P [ξi = 1] = 1/2,

then we have S1 = ξ1 and Sn+1 = Sn + ξn+1(1−Sn) for n ≥ 1, so that E[Sn+1|Fn] =

Sn +E[ξn+1] (1−Sn) = Sn +0 · (1−Sn) = Sn, where Fn = σ(S1, . . . , Sn) = σ(ξ1, . . . , ξn).

Alternatively, we have E[Sn+1|Fn]−Sn = E[Sn+1−Sn|Fn], which in turn is 1−1 = 0

for Sn =1 and is (1/2) · 2n− (1/2) · 2n = 0 for Sn = −(2n−1).

Alternatively, as E[Sn+1−Sn|Fn] = 0 for a fair game we get E[Sn+1|Fn] = Sn.

Alternatively, we have E[Sn+1|Fn] = 1 = Sn if Sn = 1 while E[Sn+1|Fn] = −(2n+1−
1) · (1/2) + 1 · (1/2) = −(2n−1) = Sn if Sn = −(2n−1).

Task 3. Let {X(ε)
n }∞n=1 be independent random variables distributed as W (N(ε)). As

E[W (N(ε))] = 0 and W (N(ε))2 has characteristic function Ψ(ε)(ω) = E[ejωW (N(ε))2 ] =

. . . =
∑

∞

k=0
(λε)k

k! e−λε/
√

1−2jkσ2ω we get RX(s, t) ∼ E
[(

∑[s/ε]
m=0 X

(ε)
m

)(
∑[t/ε]

n=0 X
(ε)
n

)]

=
∑min([s/ε],[t/ε])

m=0 E[(X
(ε)
m )2] = E

[
∑min([s/ε],[t/ε])

m=0 (X
(ε)
m )2

]

, where the sum has characteris-

tic function (Ψ(ε)(ω))min([s/ε],[t/ε]) =
(

e−λε(1 + λε/
√

1−2jσ2ω + o(ε))
)min([s/ε],[t/ε]) →

e−λ min(s,t)(1−1/
√

1−2jσ2ω) ≡ Ψ(ω) with expected value Ψ′(0)/j = . . . = λσ2 min(s, t) .

Alternatively, we have RX(s, t) = E[X(s)X(t)] = E[W (N(s))W (N(t))] = E[E[W (

N(s))W (N(t))]|N(s), N(t)]] = E[σ2 min(N(s), N(t))] = E[σ2N(s)] = σ2λs for s≤ t.

Alternatively, as X(t) is zero-mean with independent stationary increments RX(s, t)

= E[X(1)2]s = E[W(N(1))2]s = E[E[W(N(1))2|N(1)]]s = E[σ2N(1)]s = σ2λs for s≤ t.

Alternatively, as X(t) is zero-mean with independent stationary increments we have

RX(s, t) = E[X(t)X(s)] = E[(X(t)−X(s))X(s)] + E[X(s)2] = E[X(s)2] for s ≤ t,

where E[X(s+ε)2] − E[X(s)2] = E[(X(s+ε)−X(s))2] + 2E[(X(s+ε)−X(s))X(s)] =

E[(X(ε)−X(0))2] + 0 = E[W (N(ε))2] = E[W (1)2] P [N(ε) = 1] + o(ε) = σ2λ ε + o(ε),

so that d
ds E[X(s)2] = σ2λ and E[X(s)2] = σ2λ s as E[W (N(0))2] = 0.

Task 4. The discrete time jump processs Xn which registers all movements of X(t)

modified to have a mandatory jump from C to A has transition matrix

P =





























0 1/4 0 1/4 1/4 1/4

1/4 0 1/4 0 1/4 1/4

1 0 0 0 0 0

1/4 0 1/4 0 1/4 1/4

1/4 1/4 1/4 1/4 0 0

1/4 1/4 1/4 1/4 0 0





























with stationary distribution π = [πA πB πC πD πE πF] = [27
1
7

1
7

1
7

1
7

1
7 ], giving EAC

= (µC−1) · (1/4) = (1/πC−1) · (1/4) = 3/2 (by starting jump process in C).
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Alternatively, the (unmodified) discrete time jump processs Xn has stationary dis-

tribution π = [16
1
6

1
6

1
6

1
6

1
6 ] and EAC = µA · (1/4) = (1/πA) · (1/4) = 3/2. (This

alternative was suggested by student “Kristoffer”).

Alternativerly, writing EAB and EAC for the expected values of the times it takes

the random walk to move from A to B and from A to C, respectively, we have

{

EAB = 1/4 + 2 · (1/4) · EAB + (1/4) · EAC

EAC = 1/4 + 4 · (1/4) · EAB

⇔
{

EAB = 5/4

EAC = 3/2
.

Alternatively, consider a birth-and-death process with values {A, BDEF, C} and

intensities λA = µC = 4 and λBDEF = µBDEF = 2 (as every second jump from one of B,

D, E or F ends up among these), so that EAC = (1/4)+(1/2)+(1/2) ·EAC and EAC =

3/2. In fact, Ψ(ω) ≡ E[ejωTAC ] = E[ejω exp(4)] E[ejω exp(2)]
(

(1/2) + (1/2) · Ψ(ω)
)

, so

that Ψ(ω) = E[ejω exp(4)] E[ejω exp(2)]
/(

2−E[ejω exp(4)] E[ejω exp(2)]
)

= . . . = (3+
√

5 )(3−
√

5 )
/(

(3+
√

5−jω)(3−
√

5−jω)
)

making TAC the sum of two independent exp(3±
√

5 )

distributions with expected value E[TAC] = 1/(3+
√

5 ) + 1/(3−
√

5 ) = . . . = 3/2 .

Task 5. As X ′(t) is the output from an LTI system with input X(t) and H(ω) = jω

(see Task 6 below) and ωSX(ω) is odd, we have µX′ = µXH(0) = 0 =
∫

∞

−∞
jωSX(ω) dω

=
∫

∞

−∞
H(ω)SX(ω) dω = RXX′(0) where in addition

∫

∞

−∞
jωSX(ω) dω = R′

X(0).

Alternatively, E[ d
dtX(t)] = d

dtE[X(t)] = d
dtµX = 0 = 1

2
d
dtRX(0) = 1

2
d
dtE[X(t)2] =

E[X(t)X ′(t)] = E[X(t) d
dτ X(t+τ)]

∣

∣

τ=0
= d

dτ E[X(t)X(t+τ)]
∣

∣

τ=0
= R′

X(0).

Alternatively, as
∫

∞

−∞
δ′(s)x(t−s) ds =

∫

∞

−∞
δ(s)x′(t−s) ds = x′(t) differentiation has

impulse response δ′(s) so that E[X ′(t)] = E[(δ′⋆X)(t)] = (δ′⋆E[X])(t) = d
dtµX = 0 =

1
2

d
dtRX(0) = 1

2(δ′⋆E[X2])(t) = 1
2E[(δ′⋆X2)(t)] = E[X(t)X ′(t)] =independent of t by previous

E[X(0)X ′(0)] = E[X(0)(δ′⋆X)(t)]
∣

∣

t=0
= (δ′⋆E[X(0)X(t)])

∣

∣

t=0
= R′

X(0).

Altenatively, we get R′

X(0) = 0 from RX(τ) ≤ RX(0) or from that RX(τ) is sym-

metric [so that R′

X(0) = d
dτ RX(τ)

∣

∣

τ=0
= d

dτ RX(−τ)
∣

∣

τ=0
= −R′

X(0)].

Task 6. As (Fx′)(ω) = jω (Fx)(ω) and H(ω) = 2/(1+jω), so that (Fx)(ω) = (Fy)(ω)

/H(ω) = 1
2

(

(Fy)(ω) + (Fy′)(ω)
)

, we have y(t) + y′(t) = 2x(t) = 2 cos(t) giving y(t)

= cos(t)+ sin(t) (as the time-average 0 of the insignal carries over to the outsignal).

Alternatively, as H(ω) = 2(1−jω)/(1+ω2) acts as 1−jω since x(t) only has unit

frequencies [(Fx)(ω) = π (δ(ω−1)+δ(ω−1))] we have y(t) = x(t)−x′(t) = cos(t)+ sin(t).

Alternatively, y(t) = 1
2π

∫

∞

−∞
ejωtH(ω)(Fx)(ω) dω =

∫

∞

−∞
ejωt 1

1+jω (δ(ω−1)+δ(ω−1))

dω = 1
1+j ejt+ 1

1−j e−jt = 1−j
2 ejt+ 1+j

2 e−jt = 1
2(ejt+e−jt)+ 1

2j (e
jt−e−jt) = cos(t)+ sin(t).

Alternatively, as h(s) = 2 e−su(s) we have y(t) =
∫

∞

−∞
x(t−s)h(s) ds =

∫

∞

0 2 cos(t−
s) e−s ds =

∫

∞

0 (ej(t−s)−s + e−j(t−s)−s) ds = 1
1+j ejt + 1

1−j e−jt =see above cos(t)+ sin(t).
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