MSG800/MVE170 Basic Stochastic Processes Written exam Wednesday 15 April $20152-6$ pm

Teacher and jour: Patrik Albin, telephone 0706945709.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Good Luck!
Task 1. Let $X(t)$ be a Poission process with arrival rate $\lambda>0$ so that the time T to the first arrival (/to the first Poisson process count) is exponentially distributed with mean $1 / \lambda$. Show that the conditional distribution $P[T \leq s \mid X(t)=1]$ of T given that $X(t)=1$ is uniform over $[0, t]$. [Hint: Note that $T \leq s$ if and only if $X(s)=1$.] points)

Task 2. An urn contains initially at time $n=0$ one black and one red ball. At each time $n \geq 1$ a ball is drawn randomly from the urn and is put back in the urn together with an additional ball of the same colour. Consequently, after the n 'th draw and putting back operation the urn cotains a total of $n+2$ balls. Let X_{n} denote the number of these $n+2$ balls that are black. Show that $M_{n}=X_{n} /(n+2)$ is a martingale.

Task 3. Show that the Wiener process $X(t)$ is mean-square continuous for $t>0$, that is, show that $E\left[(X(t+\varepsilon)-X(t))^{2}\right] \rightarrow 0$ as $\varepsilon \rightarrow 0$ for $t>0$. (5 points)

Task 4. Let $W(t)$ be continuous time white noise, that is, a WSS zero-mean Gaussian process with autocorrelation function $R_{W}(\tau)=\sigma^{2} \delta(\tau)$. Show that $X(t)=\int_{0}^{t} W(r) d r$ is a Wiener process. (5 points)

Task 5. Consider a $\mathrm{M} / \mathrm{M} / 1$ queueing system with $\rho=\lambda / \mu<1$. Show that the total time T a customer spends in the queueing system is exponentially distributed with mean $1 /(\mu-\lambda)$. [Hint: Show that T has the moment generating function $E\left[\mathrm{e}^{s T}\right]=$ $(\mu-\lambda) /(\mu-\lambda-s)$ of an exponential distribution with mean $1 /(\mu-\lambda)$.] (5 points)

Task 6. Consider an $\mathrm{M} / \mathrm{M} / 1 / 2$ queueing system with $\lambda=1$ and $\mu=3$. Write a program that by means of computer simulation finds an approximation of the probability $P\left[\max _{T \leq t \leq T+10} X(t)=2\right]$ for a fixed T, that is, the probability that the queueing system gets full during a time interval of 10 time units length. (The sought after probability is not equal to $p_{2}=(1-\rho) \rho^{2} /\left(1-\rho^{3}\right)=1 / 13$, but a lot larger than that.)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam Wednesday 15 April

Task 1. $P[T \leq s \mid X(t)=1]=P[X(s)=1 \mid X(t)=1]=P[X(s)=1, X(t)=1] / P[X(t)=$ $1]=P[X(s)=1] P[X(t)-X(s)=0] / P[X(t)=1]=\left(\lambda s \mathrm{e}^{-\lambda s}\right)\left(\mathrm{e}^{-\lambda(t-s)}\right) /\left(\lambda t \mathrm{e}^{-\lambda t}\right)=s / t$ for $s \in[0, t]$, so that the mentioned conditional distribution of T is uniform over $[0, t]$.

Task 2. Conditional on the value of M_{n} it is easy to see that $M_{n+1}=\left[(n+2) M_{n}+1\right]$ $/(n+3)$ with probability M_{n} and $M_{n+1}=(n+2) M_{n} /(n+3)$ with probability $1-M_{n}$, so that $E\left[M_{n+1} \mid F_{n}\right]=M_{n} \times\left[(n+2) M_{n}+1\right] /(n+3)+\left(1-M_{n}\right) \times(n+2) M_{n} /(n+3)=\ldots=M_{n}$ for $F_{n}=\sigma\left(M_{1}, \ldots, M_{m}\right)$.

Task 3. As $R_{X}(s, t)=\sigma^{2} \min (s, t)$ we have $E\left[(X(t+\varepsilon)-X(t))^{2}\right]=R_{X}(t+\varepsilon, t+\varepsilon)$ $-2 R_{X}(t, t+\varepsilon)+R_{X}(t, t)=\sigma^{2} \min (t+\varepsilon, t+\varepsilon)-2 \sigma^{2} \min (t, t+\varepsilon)+\sigma^{2} \min (t, t)=\sigma^{2}(\varepsilon-$ $2 \min (0, \varepsilon))=|\varepsilon| \rightarrow 0$ as $\varepsilon \rightarrow 0$ for $t>0$.

Task 4. As $X(t)$ inherits the property of $W(t)$ to be a zero-mean Gaussian process it is enough to check that $R_{X}(s, t)=\sigma^{2} \min (s, t)$. But $R_{X}(s, t)=E\left[\left(\int_{0}^{s} W(q) d q\right)\left(\int_{0}^{t} W(r)\right.\right.$ $d r)]=\int_{0}^{s} \int_{0}^{t} E[W(q) W(r)] d q d r=\int_{0}^{\min (s, t)} \int_{0}^{\min (s, t)} \sigma^{2} \delta(r-q) d q d r=\int_{0}^{\min (s, t)} \sigma^{2} d r=$ $\sigma^{2} \min (s, t)$.

Task 5. As T is the sum of the service time of the customer under consideration plus the service times of the $X(t)$ customers before that customer queueing for service, it follows that T is the sum of $X(t)+1$ independent exponentially distributed random variables with mean $1 / \mu$. As $X(t)$ has the stationary distribution $P[X(t)=n]=$ $(1-\lambda / \mu)(\lambda / \mu)^{n}$ for $n \geq 0$ it follows that $E\left[\mathrm{e}^{s T}\right]=\sum_{n=0}^{\infty} E\left[\mathrm{e}^{s T} \mid X(t)=n\right] P[X(t)=$ $n]=\sum_{n=0}^{\infty} E\left[\mathrm{e}^{s\left(T_{1}+\ldots+T_{n+1}\right)}\right](1-\lambda / \mu)(\lambda / \mu)^{n}=\sum_{n=0}^{\infty}\left(E\left[\mathrm{e}^{s T_{1}}\right]\right)^{n+1}(1-\lambda / \mu)(\lambda / \mu)^{n}=$ $\sum_{n=0}^{\infty}(\mu /(\mu-s))^{n+1}(1-\lambda / \mu)(\lambda / \mu)^{n}=\ldots=(\mu-\lambda) /(\mu-\lambda-s)$, were T_{1}, T_{2}, \ldots are independent exponentially distributed random variables with mean $1 / \mu$.

Task 6.

```
In[1]:= {lam,mu} = {1,3}; {Max2,Rep } = {0,100000}; {rho,p0,p1,p2} =
    {lam/mu, (1-rho)/(1-rho^3), rho*p0, rho*p1};
In[2]:= For[i=1, i<=Rep, i++, {Time,X} = {0, {xi=Random[], If [xi<=p0, 0,
        If[xi<=p0+p1,1,2]]}[[2]]}; While[Time<10 && X<2, {Arr,Ser} =
            {Random[ExponentialDistribution[lam]], Random[ExponentialDistribution[mu]]};
            If [X==0, Time=Time+Arr; X=1, Time=Time+Min[Arr,Ser]; If [Arr<Ser,
            X=X+1, X=X-1]]]; If [Time<10, Max2=Max2+1]];
In[3]:= N[Max2/Rep]
Out[2]=0.88745
```

