MSG800/MVE170 Basic Stochastic Processes

Written exam Monday 9 January 2017 2-6 pm

\rightarrow I-STUDENTER: skriv kurskod MVE171 istf. MVE170 på era tentalösningar. $\leftarrow \leftarrow$ Teacher and jour: Patrik Albin, telephone 0706945709.

Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Consider an $\mathrm{M}(1) / \mathrm{M}(1) / 1 / 2$ queueing system (that is, unit mean exponentially distributed times between arrivals of new customers, unit mean exponentially distributed service times, one server and one quequeing slot giving a total of two slots in the whole queueing system). The queueing system starts up empty $X(0)=0$ at time $t=0$ and is then run for 5 time units after which it is closes down. Write programme code for a computer programme that by means of stochastic simulation finds an approximative value for the probability that some time during the 5 units the queueing system is operational it happens that the value of $X(t)$ changes in one sequence from 0 to 1 to 2 , that is, there are two straight arrivals to the queueing system without any customer being finished served in between. (5 points)

Task 2. A pair of WSS random processes $X(t)$ and $Y(t)$ are called jointly WSS if their cross-correlation function $R_{X Y}(t, t+\tau)=\mathbf{E}\{X(t) Y(t+\tau)\}$ depends on τ only (but not on t). Show by an example that a pair of WSS processes $X(t)$ and $Y(t)$ [that are not equal, i.e., $X(t)=Y(t)$ is not permitted] can be jointly WSS and by another example that they can also fail to be so. [Hint: You may want to use $Y(t)=X(f(t))$ with some suitable (non-random) function $f(t)$ for the second example.] (5 points)

Task 3. The time homogeneous Markov property for a discrete time stochastic process $X_{n}, n=0,1,2, \ldots$, is the requirement that

$$
\mathbf{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}=\mathbf{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}=p_{i j}
$$

do not depend on neither i_{0}, \ldots, i_{n-1} or n. Show that this property implies that also

$$
\mathbf{P}\left\{X_{n+2}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}=\mathbf{P}\left\{X_{n+2}=j \mid X_{n}=i\right\}=p_{i j}^{(2)}
$$

do not depend on neither i_{0}, \ldots, i_{n-1} or n.
(5 points)

Task 4. Let $N(t), t \geq 0$, be a Poisson process with intensity $\lambda=1$ and $W(t), t \geq 0$, a Wiener process with $\mathbf{E}\left\{W(1)^{2}\right\}=1$ that is independent of the aformentioned Poisson process. Show that the process $X(t)=(N(t)-t) W(t), t \geq 0$, is a martingale with respect to the information F_{s} given by (observing) all the process values of $N(r)$ and $W(r)$ for $r \in[0, s] \quad$ (5 points)

Task 5. Consider a WSS continuous time random process $X(t)$ with autocorrelation function $R_{X}(\tau)=1 /\left(1+\tau^{2}\right)$ as input to an LTI system with one of the following three types of frequency responses $H_{1}(\omega), H_{2}(\omega)$ and $H_{3}(\omega)$ given by

$$
H_{1}(\omega)=\left\{\begin{array}{l}
1 \text { for }|\omega| \leq \underline{\omega} \\
0 \text { for }|\omega|>\underline{\omega}
\end{array}, H_{2}(\omega)=\left\{\begin{array}{l}
1 \text { for }|\omega| \in(\underline{\omega}, \bar{\omega}) \\
0 \text { for }|\omega| \notin(\underline{\omega}, \bar{\omega})
\end{array} \text { and } H_{3}(\omega)=\left\{\begin{array}{l}
1 \text { for }|\omega| \geq \bar{\omega} \\
0 \text { for }|\omega|<\bar{\omega}
\end{array} .\right.\right.\right.
$$

Find the two frequencies $0<\underline{\omega}<\bar{\omega}<\infty$ which are such that the corresponding outputs from the LTI system $Y_{1}(t), Y_{2}(t)$ and $Y_{3}(t)$ have the same power $\mathbf{E}\left\{Y_{1}(t)^{2}\right\}=$ $\mathbf{E}\left\{Y_{2}(t)^{2}\right\}=\mathbf{E}\left\{Y_{3}(t)^{2}\right\} . \quad$ (5 points)

Task 6. A continuous time Markov chain has state space $\{0,1,2\}$ and generator

$$
\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)
$$

Show that the time it takes the chain to move from state 0 to state 1 is exponentially distributed with parameter 1. (5 points)

MSG800/MVE170 Basic Stochastic Processes

Solutions to written exam 9 January 2017

Task 1. No $=10000$; Prob $=0$;

```
For[i=1, i<=No, i++,
    TT = Random[ExponentialDistribution[1]]
    + Random[ExponentialDistribution[2]];
    OK = False;
    While[TT < 5, Unif = Random[];
        If[Unif <= 1/2, OK = True];
        TT = TT + Random[ExponentialDistribution[1]]
            + Random[ExponentialDistribution[2]]];
    If[OK, Prob = Prob + 1/No]];
```

Prob

Task 2. If $X(t)$ and $Y(t)$ are any independent WSS processes, then $\mathbf{E}\{X(t) Y(t+$ $\tau)\}=\mathbf{E}\{X(t)\} \mathbf{E}\{Y(t+\tau)\}=\mu_{X} \mu_{Y}$ depends on neither τ or t, so $X(t)$ and $Y(t)$ are jointly WSS. If $X(t)$ is any WSS process and $Y(t)=X(-t)$, then $\mathbf{E}\{X(t) Y(t+\tau)\}=$ $\mathbf{E}\{X(t)\} \mathbf{E}\{X(-(t+\tau))\}=R_{X}(-2 t-\tau)=R_{X}(2 t+\tau)$ which depends on t [unless R_{X} is a constant, meaning that $X(t)$ equals the one and same random variable for all t].

Task 3. By the Markov property we have

$$
\begin{aligned}
& \mathbf{P}\left\{X_{n+2}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\} \\
& =\frac{\mathbf{P}\left\{X_{n+2}=j, X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}}{\mathbf{P}\left\{X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}} \\
& =\sum_{k} \frac{\mathbf{P}\left\{X_{n+2}=j, X_{n+1}=k, X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}}{\mathbf{P}\left\{X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}} \\
& =\sum_{k} \frac{\mathbf{P}\left\{X_{n+2}=j, X_{n+1}=k, X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}}{\mathbf{P}\left\{X_{n+1}=k, X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}} \\
& \quad \times \frac{\mathbf{P}\left\{X_{n+1}=k, X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}}{\mathbf{P}\left\{X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}} \\
& = \\
& =\sum_{k} \mathbf{P}\left\{X_{n+2}=j \mid X_{n+1}=k, X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\} \\
& \quad \times \sum_{k} \mathbf{P}\left\{X_{n+2}=j \mid X_{n+1}=k\right\} \mathbf{P}\left\{X_{n+1}=k \mid X_{n}=i\right\} \\
& = \\
& \sum_{k} p_{k j} p_{i k},
\end{aligned}
$$

which obviously do not depend on neither i_{0}, \ldots, i_{n-1} or n.

Task 4. $\mathbf{E}\left\{(N(t)-t) W(t) \mid F_{s}\right\}=\mathbf{E}\left\{[(N(t)-N(s))-(t-s)](W(t)-W(s)) \mid F_{s}\right\}+\mathbf{E}\{[(N(t)$ $\left.-N(s))-(t-s)] W(s) \mid F_{s}\right\}+\mathbf{E}\left\{(N(s)-s)(W(t)-W(s)) \mid F_{s}\right\}+\mathbf{E}\left\{(N(s)-s) W(s) \mid F_{s}\right\}=$ $\mathbf{E}\{[(N(t)-N(s))-(t-s)](W(t)-W(s))\}+\mathbf{E}\left\{(N(t)-N(s))-(t-s) \mid F_{s}\right\} W(s)+(N(s)-$ s) $\left.\mathbf{E}\left\{W(t)-W(s) \mid F_{s}\right\}+(N(s)-s) W(s)=\mathbf{E}\{N(t)-N(s))-(t-s)\right\} \mathbf{E}\{W(t)-W(s)\}+$ $\mathbf{E}\{(N(t)-N(s))-(t-s)\} W(s)+(N(s)-s) \mathbf{E}\{W(t)-W(s)\}+(N(s)-s) W(s)=0 \cdot 0+$ $0 \cdot W(s)+(N(s)-s) \cdot 0+(N(s)-s) W(s)=(N(s)-s) W(s)$ for $0 \leq s \leq t$.

Task 5. Clearly, $1=\mathbf{E}\left\{X(t)^{2}\right\}=\mathbf{E}\left\{Y_{1}(t)^{2}\right\}+\mathbf{E}\left\{Y_{2}(t)^{2}\right\}+\mathbf{E}\left\{Y_{3}(t)^{2}\right\}$ so when these three are equal we have $\mathbf{E}\left\{Y_{1}(t)^{2}\right\}=\mathbf{E}\left\{Y_{2}(t)^{2}\right\}=\mathbf{E}\left\{Y_{3}(t)^{2}\right\}=1 / 3$. As $S_{X}(\omega)=\pi \mathrm{e}^{-|\omega|}$ we get $\mathbf{E}\left\{Y_{1}(t)^{2}\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|H_{1}(\omega)\right|^{2} S_{X}(\omega) d \omega=\int_{0}^{\omega} \mathrm{e}^{-\omega} d \omega=1-\mathrm{e}^{-\underline{\omega}}, \mathbf{E}\left\{Y_{2}(t)^{2}\right\}=$ $\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|H_{2}(\omega)\right|^{2} S_{X}(\omega) d \omega=\int_{\underline{\omega}}^{\bar{\omega}} \mathrm{e}^{-\omega} d \omega=\mathrm{e}^{-\underline{\omega}}-\mathrm{e}^{-\bar{\omega}}$ and $\mathbf{E}\left\{Y_{3}(t)^{2}\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|H_{3}(\omega)\right|^{2}$ $S_{X}(\omega) d \omega=\int_{\bar{\omega}}^{\infty} \mathrm{e}^{-\omega} d \omega=\mathrm{e}^{-\bar{\omega}}$ so that $\underline{\omega}=\ln (3 / 2)$ and $\bar{\omega}=\ln (3)$.

Task 6. As the time spent in each state is exponential distributed with parameter 2 the characteristic function of the sought after time T_{01} satisfies (with obvious notation)

$$
\Psi_{T_{01}}(\omega)=\Psi_{\exp (2)}(\omega)\left((1 / 2)+(1 / 2) \Psi_{\exp (2)}(\omega)\left[(1 / 2)+(1 / 2) \Psi_{T_{01}}(\omega)\right]\right)
$$

or simpler

$$
\Psi_{T_{01}}(\omega)=\Psi_{\exp (2)}(\omega)\left[(1 / 2)+(1 / 2) \Psi_{T_{21}}(\omega)\right]=\Psi_{\exp (2)}(\omega)\left[(1 / 2)+(1 / 2) \Psi_{T_{01}}(\omega)\right],
$$

which both give

$$
\Psi_{T_{01}}(\omega)=\frac{(1 / 2) \Psi_{\exp (2)}(\omega)}{1-(1 / 2) \Psi_{\exp (2)}(\omega)}=\ldots=\frac{1}{1-j \omega}=\Psi_{\exp (1)}(\omega)
$$

