MSG800/MVE170 Basic Stochastic Processes

MVE171 Grundläggande stokastiska processer och finansiella tillämpningar
 Written exam Thursday 24 August 20172 -6 pm

Teacher: Patrik Albin.
Jour: Raad Salman, telephone 0317725325.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Let $X(t)$ and $Y(t)$ be independent Poisson processes with unit arrival rate. Calculate the probability $P[X(1)=1 \mid X(2)+Y(2)=4]$. (5 points)

Task 2. Let $X(t)$ be a discrete time Markov chain with state space $\{0,1,2\}$ and transition matrix

$$
P=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] .
$$

Find the expected value of the time it takes the chain to move from state 0 to state 2. (5 points)

Task 3. Write a computer programme that by means of stochastic simulation determines an approximative value for the probability $\mathbf{P}\{X(t)>t$ for some $t \in[0,10]\}$ for a unit rate Poisson process $\{X(t)\}_{t \geq 0}$. (5 points)

Task 4. The input to a continuous time LTI system is a WSS continuous time random process $X(t)$ with autocorrelation function

$$
R_{X}(\tau)=\frac{A \omega_{0}}{\pi} \frac{\sin \left(\omega_{0} \tau\right)}{\omega_{0} \tau} \quad \text { for } \tau \in \mathbb{R},
$$

where $A, \omega_{0}>0$ are constants, whilst the LTI system has impulse response of the same form

$$
h(t)=\frac{\omega_{1}}{\pi} \frac{\sin \left(\omega_{1} t\right)}{\omega_{1} t} \quad \text { for } t \in \mathbb{R}
$$

where $\omega_{1}>0$ is a constant. Find the autocorrelation function of the output $Y(t)$ from the system. (5 points)

Task 5. Let $X(t)$ be a continuous time Markov chain with state space $\{0,1\}$ and transition matrix (cf. Grimmett \& Stirzaker Exercise 6.9.1)

$$
P_{t}=\frac{1}{\lambda+\mu}\left[\begin{array}{ll}
\lambda+\mu \mathrm{e}^{-(\lambda+\mu) t} & \mu-\mu \mathrm{e}^{-(\lambda+\mu) t} \\
\lambda-\lambda \mathrm{e}^{-(\lambda+\mu) t} & \mu+\lambda \mathrm{e}^{-(\lambda+\mu) t}
\end{array}\right]
$$

where $\lambda, \mu>0$ are constants. Find $\operatorname{Cov}\{X(s), X(t)\}$ under the assumption that the Markov chain is started according to its stationary distribution. (5 points)

Task 6. Let $\{N(t)\}_{t \geq 0}$ be a unit rate Poisson process. Find a deterministic function $g(t)$ such that $M(t)=g(t) \mathrm{e}^{N(t)}$ is a martingale with respect to the filtration F_{s} containing information of all values $\{N(r), r \in[0, s]\}$ of the Poisson process up to time s. points)

MSG800/MVE170/MVE171

Solutions to written exam 24 August 2017

Task 1. $P[X(1)=1 \mid X(2)+Y(2)=4]=P[X(1)=1, X(2)+Y(2)=4] / P[X(2)+Y(2)=$ $4]=P[X(1)=1,(X(2)-X(1))+X(1)+Y(2)=4] / P[\operatorname{Po}(4)=4]=P[\operatorname{Po}(1)=1] P[\operatorname{Po}(3)$ $=3] / P[\operatorname{Po}(4)=4]=\left(\mathrm{e}^{-1} 1^{1} /(1!)\right)\left(\mathrm{e}^{-3} 3^{3} /(3!)\right) /\left(\mathrm{e}^{-4} 4^{4} /(4!)\right)=27 / 64$.

Task 2. By symmetry and with obvious notation we have $E_{0 \rightarrow 2}=1+(1 / 3) \cdot 0+(1 / 3)$. $E_{0 \rightarrow 2}+(1 / 3) \cdot E_{1 \rightarrow 2}=1+(2 / 3) \cdot E_{0 \rightarrow 2}=3$.

Task 3. $\mathrm{rep}=100000$

```
For[i=1; count=0, i<=rep, i++, t=0; X=0; succ=0;
While[t<10, t=t+Random[ExponentialDistribution[1]]; X=X +1;
        If [(X>t)&&(t<=10), succ=1]];
    count=count+succ];
```

N[count/rep]

Task 4. Writing $p_{a}(\omega)=1$ for $|\omega|<a$ and $p_{a}(\omega)=0$ for $|\omega|>a$ we have $S_{X}(\omega)=$ $A p_{\omega_{0}}(\omega)$ and $H(\omega)=p_{\omega_{1}}(\omega)$ so that $S_{Y}(f)=|H(f)|^{2} S_{X X}(f)=A p_{\omega_{0}}(\omega) p_{\omega_{1}}(\omega)=$ $A p_{\min \left\{\omega_{0}, \omega_{1}\right\}}(\omega)$ giving

$$
R_{Y}(\tau)=\frac{A \min \left\{\omega_{0}, \omega_{1}\right\}}{\pi} \frac{\sin \left(\min \left\{\omega_{0}, \omega_{1}\right\} \tau\right)}{\min \left\{\omega_{0}, \omega_{1}\right\} \tau} \quad \text { for } \tau \in \mathbb{R}
$$

Task 5. The stationary distribution is $\left(\pi_{0} \pi_{1}\right)=\lim _{t \rightarrow \infty}\left(\left(P_{t}\right)_{00}\left(P_{t}\right)_{11}\right)=\left(\frac{\lambda}{\lambda+\mu} \frac{\mu}{\lambda+\mu}\right)$ giving $\mathbf{E}\{X(t)\}=\mathbf{P}\{X(t)=1\}=\pi_{1}=\frac{\mu}{\lambda+\mu}$ so that $\mathbf{C o v}\{X(s), X(t)\}=\mathbf{E}\{X(s) X(t)\}$ $-\mathbf{E}\{X(s)\} \mathbf{E}\{X(t)\}=\mathbf{P}\{X(s)=1, X(t)=1\}-\left(\frac{\mu}{\lambda+\mu}\right)^{2}=\left(P_{t-s}\right)_{11} \pi_{1}-\left(\frac{\mu}{\lambda+\mu}\right)^{2}=$ $\left(\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \mathrm{e}^{-(\lambda+\mu)(t-s)}\right) \frac{\mu}{\lambda+\mu}-\left(\frac{\mu}{\lambda+\mu}\right)^{2}=\frac{\lambda \mu}{(\lambda+\mu)^{2}} \mathrm{e}^{-(\lambda+\mu)(t-s)}$ for $t \geq s \geq 0$ so that Cov $\{X(s), X(t)\}=\frac{\lambda \mu}{(\lambda+\mu)^{2}} \mathrm{e}^{-(\lambda+\mu)|t-s|}$ in general.

Task 6. $\mathbf{E}\left\{M(t) \mid F_{s}\right\}=g(t) \mathbf{E}\left\{\mathrm{e}^{N(t)-N(s)} \mid F_{s}\right\} \mathrm{e}^{N(s)}=g(t) \mathbf{E}\left\{\mathrm{e}^{N(t)-N(s)}\right\} \mathrm{e}^{N(s)}=g(t)$ $\times \mathrm{e}^{(\mathrm{e}-1)(t-s)} \mathrm{e}^{N(s)}$ so we may take $g(t)=\mathrm{e}^{-(\mathrm{e}-1) t}$.

