MSG800/MVE170 Basic Stochastic Processes

Exercise Session 6

Archetypical type-problems of typical type-exam-type for own work

Archetypical type-problem of typical type-exam-type 1. Consider a Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ with state space E and transition matrix P given by

$$
E=\{0,1,2\} \quad \text { and } \quad P=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right],
$$

respectively, and let $E_{i}=\mathbf{E}\left\{\min \left\{n \geq 1: X_{n}=i\right\} \mid X_{0}=i\right\}$ for $i=0,1,2$. Show that the chain has stationary distribution $\left[1 / E_{0} 1 / E_{1} 1 / E_{2}\right]$.

Archetypical type-problem of typical type-exam-type 2. Let $\{W(t)\}_{t \geq 0}$ be a Wiener process and $\lambda>0$ a constant. Show that $\{W(\lambda t)\}_{t \geq 0}$ is also a Wiener process.

Archetypical type-problem of typical type-exam-type 3. Let $\{N(t)\}_{t \geq 0}$ be a Poisson process with intensity $\lambda>0$. Show that $\left\{\mathrm{e}^{-\lambda t} 2^{N(t)}\right\}_{t \geq 0}$ is a martingale wrt. the filtration $F_{s}, s \geq 0$, containing all information about the process values $\{N(r)\}_{r \leq s}$.

Archetypical type-problem of typical type-exam-type 4 . Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ be uncorrelated zero-mean and unit variance random variables (i.e., discrete time white noise). Find the autocorrelation function of the process $\left\{X_{n}\right\}_{n \in \mathbb{Z}}$ given by $X_{n}=e_{n}+e_{n-1} / 2$.

Archetypical type-problem of typical type-exam-type 5. Recall that differentiating a random process $\{X(t)\}_{t \in \mathbb{R}}$ corresponds to processing the process through a linear system with frequency responce $H(\omega)=j \omega$. Show that the derivative of a WSS process X with autocorrelation function $R_{X X}(\tau)=\mathrm{e}^{-|\tau|}$ has autocorrelation function $R_{X^{\prime} X^{\prime}}(\tau)=2 \delta(\tau)-\mathrm{e}^{-|\tau|}$.

Archetypical type-problem of typical type-exam-type 6. Let $N(t)$ for $t \geq 0$ denote the total number of customers in a $\mathrm{M} / \mathrm{M} / 2 / 4$ queuing system with $\exp (1)$ distributed times between arriving customers as well as $\exp (1)$-distributed service times. Assume that $N(0)=0$ and let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be the strictly increasing sequence of random times at which $\{N(t)\}_{t \geq 0}$ changes its values, that is, $T_{n+1}=\min \left\{t>T_{n}: N(t) \neq N\left(T_{n}\right)\right\}$ for $n \in \mathbb{N}$, with the convention $T_{0}=0$. Find the transition matrix P for the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ with state space $E=\{0,1,2,3,4\}$ given by $X_{n}=N\left(T_{n}\right)$.

