Exercise 6.3.4 in Grimmett and Stirzaker

Task. A particle performs a discrete time random walk on the vertices of a cube. At each step it remains where it is with probability $1 / 4$ or moves to one of its neighbouring vertices each having probability $1 / 4$. Let A and D denote two diametrically opposite vertices. If the walk starts at A, find
(a) the mean number of steps until its first visit to D ,
(b) the mean number of steps until its first return to A , and
(c) the mean number of visits to D before its first return to A .

Solution. (a) Let $\mathrm{B}_{1}, \mathrm{~B}_{2}$ and B_{3} denote the three vertices that are closest to $\mathrm{A}(=$ one step away from A) and $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} the three vertices that are closest to $\mathrm{D}(=$ one step away from $\mathrm{D}=$ two steps away from A). Introduce a four state Markov chain with values $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D indicating if the random walk is in A , in one of the states B_{1}, B_{2} or B_{3}, in one of the states C_{1}, C_{2} and C_{3}, or in the state D, respectively, with corresponding probability transition matrix

$$
P=\left[\begin{array}{cccc}
1 / 4 & 3 / 4 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 4 & 1 / 4 \\
0 & 0 & 3 / 4 & 1 / 4
\end{array}\right] .
$$

Writing $T_{\mathrm{AD}}, T_{\mathrm{BD}}$ and T_{CD} for the mean number of steps until the first visit to D starting at A, B and C, respectively, we then have the following system of equations

$$
\left\{\begin{array}{l}
\mathbf{E}\left\{T_{\mathrm{AD}}\right\}=1+(1 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{AD}}\right\}+(3 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{BD}}\right\} \\
\mathbf{E}\left\{T_{\mathrm{BD}}\right\}=1+(1 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{AD}}\right\}+(1 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{BD}}\right\}+(1 / 2) \cdot \mathbf{E}\left\{T_{\mathrm{CD}}\right\} \\
\mathbf{E}\left\{T_{\mathrm{CD}}\right\}=1+(1 / 2) \cdot \mathbf{E}\left\{T_{\mathrm{BD}}\right\}+(1 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{CD}}\right\}+(1 / 4) \cdot 0
\end{array}\right.
$$

which in turn is obtained by conditioning on where we end up after one step on our journey to D starting at A, B and C, respectively. Solving this

```
In[1]:= Solve[{AD, BD,CD}}=={1+AD/4+3*BD/4
    1+AD/4+BD/4+CD/2, 1+BD/2+CD/4}, {AD, BD,CD}]
Out[1]= {AD -> 40/3, BD -> 12, CD -> 28/3}
```

we arrive at the answer $\mathbf{E}\left\{T_{\mathrm{AD}}\right\}=40 / 3$.
(b) Writing T_{AA} and T_{BA} for the mean number of steps until the next visit to A starting at A and B , respectively, we may use the result of task (a) together with some obvious symmetry properties to obtain

$$
\mathbf{E}\left\{T_{\mathrm{AA}}\right\}=1+(1 / 4) \cdot 0+(3 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{BA}}\right\}=1+(3 / 4) \cdot \mathbf{E}\left\{T_{\mathrm{CD}}\right\}=1+28 / 4=8
$$

(c) Write $D_{\mathrm{AA}}, D_{\mathrm{BA}}, D_{\mathrm{CA}}$ and D_{DA} for the mean number of visits to D before next visit to A when starting at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , respectively. In the fashion of the solution to task (a) we then have

$$
\left\{\begin{array}{l}
\mathbf{E}\left\{D_{\mathrm{AA}}\right\}=(1 / 4) \cdot 0+(3 / 4) \cdot \mathbf{E}\left\{D_{\mathrm{BA}}\right\} \\
\mathbf{E}\left\{D_{\mathrm{BA}}\right\}=(1 / 4) \cdot 0+(1 / 4) \cdot \mathbf{E}\left\{D_{\mathrm{BA}}\right\}+(1 / 2) \cdot \mathbf{E}\left\{D_{\mathrm{CA}}\right\} \\
\mathbf{E}\left\{D_{\mathrm{CA}}\right\}=(1 / 2) \cdot \mathbf{E}\left\{D_{\mathrm{BA}}\right\}+(1 / 4) \cdot \mathbf{E}\left\{D_{\mathrm{CA}}\right\}+(1 / 4) \cdot\left(\mathbf{E}\left\{D_{\mathrm{DA}}\right\}+1\right) \\
\mathbf{E}\left\{D_{\mathrm{DA}}\right\}=(3 / 4) \cdot \mathbf{E}\left\{D_{\mathrm{CA}}\right\}+(1 / 4) \cdot\left(\mathbf{E}\left\{D_{\mathrm{DA}}\right\}+1\right)
\end{array}\right.
$$

(remember that we now are counting the number of visits to D , not time, so we should not add time units on the right-hand side, but instead possible visits to D), with solution

```
In [2] := Solve[\{AA, BA, CA, DA \(\}==\{3 * B A / 4, B A / 4+C A / 2\),
    \(\mathrm{BA} / 2+\mathrm{CA} / 4+(\mathrm{DA}+1) / 4,3 * \mathrm{CA} / 4+(\mathrm{DA}+1) / 4\},\{\mathrm{AA}, \mathrm{BA}, \mathrm{CA}, \mathrm{DA}\}]\)
Out [2] \(=\{\mathrm{AA} \rightarrow 1, \mathrm{BA} \rightarrow 4 / 3, \mathrm{CA} \rightarrow 2, \mathrm{DA}->7 / 3\}\)
```

giving us the answer $\mathbf{E}\left\{D_{\mathrm{AA}}\right\}=1$.

Exercise 6.9.10 in Grimmett and Stirzaker

Task. Let $X(t)$ be a birth-death process with $\lambda_{n}=\lambda>0$ and $\mu_{n}=\mu>0$, where $\lambda>\mu$ and $X(0)=0$. [Or in other words, $X(t)$ is the number of customers in an $\mathrm{M} / \mathrm{M} / 1$ queueing system starting up empty and with traffic intensity $\rho>1$.] Show that the total time T_{i} spent in state i is $\exp (\lambda-\mu)$-distributed.

Solution. Writing q_{i} for the probability of ever visiting 0 having started at i we have

$$
q_{0}=1 \quad \text { and } \quad q_{i}=\frac{\mu}{\lambda+\mu} q_{i-1}+\frac{\lambda}{\lambda+\mu} q_{i+1} \quad \text { for } i \geq 1
$$

The zeros of the characteristic polynomial for this difference equation are

$$
\begin{aligned}
& p(x)=\frac{\lambda}{\lambda+\mu} x^{2}-x+\frac{\mu}{\lambda+\mu}=0 \quad \Leftrightarrow \quad x=\mu / \lambda \quad \text { or } \quad x=1, \\
& \text { In [3]:= Solve[lambda*x^2/(lambda+mu) }-\mathrm{x}+\mathrm{mu} /(\operatorname{lambda+mu})==0,\{\mathrm{x}\}] \\
& \operatorname{Out}[3]=\{\{\mathrm{x}->\mathrm{mu} / \mathrm{lambda}\},\{\mathrm{x}->1\}\}
\end{aligned}
$$

so that $q_{i}=A(\mu / \lambda)^{i}+B 1^{i}$ for some constants $A, B \in \mathbb{R}$. As we must have $q_{i} \rightarrow 0$ as $i \rightarrow \infty$ we have $B=0$ after which $q_{0}=1$ gives $A=1$, so that $q_{i}=(\mu / \lambda)^{i}$ for $i \geq 0$

To find T_{0} we note that this time is the sum of the $\exp (\lambda)$-distributed time it takes to leave 0 plus another independent $\exp (\lambda)$-distributed time added for each revisit of 0 , where the number N of such revisits has $\operatorname{PMF} \mathbf{P}\{N=n\}=(\mu / \lambda)^{n}(1-\mu / \lambda)$ for $n \geq 0$. As the CHF of an $\exp (\lambda)$-distributed random variable is $\mathbf{E}\left\{\mathrm{e}^{j \omega \exp (\lambda)}\right\}=\lambda /(\lambda-j \omega)$

```
\(\operatorname{In}[4]:=\) Integrate[Exp[I*omega*x]*lambda*Exp[-lambda*x],
    \(\{x, 0\), Infinity \(\}\), Assumptions \(->\) lambda \(>0 \& \& o m e g a \in\) Reals]
```

Out[4] = lambda/(lambda - I omega)
it follows that (making use of the basic fact that the CHF of a sum of independent random variables is the product of the CHF's of the individual random variables)

$$
\mathbf{E}\left\{\mathrm{e}^{j \omega T_{0}}\right\}=\frac{\lambda}{\lambda-j \omega} \times \sum_{n=0}^{\infty}\left(\frac{\lambda}{\lambda-j \omega}\right)^{n}(\mu / \lambda)^{n}(1-\mu / \lambda)=\frac{\lambda-\mu}{\lambda-\mu-j \omega}
$$

```
\(\operatorname{In}[5]:=\) lambda/(lambda-I*omega) \(* \operatorname{Sum}[(\) lambda/(lambda-I*omega) \() \wedge n *\)
    (mu/lambda) \({ }^{n} n *(1-m u / l a m b d a), \quad\{n, 0\), Infinity \(\left.\}\right]\)
Out [5] = (lambda - mu)/(lambda - mu - I omega)
```

To find T_{i} we note that (by considering what the first state after having left i is -$i-1$ or $i+1$) the probability of ever returning to i having started there is

$$
\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \cdot q_{1}=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \cdot \frac{\mu}{\lambda}=\frac{2 \mu}{\lambda+\mu} .
$$

As the time spent at each visits of i is $\exp (\lambda+\mu)$-distributed it follows as above that

$$
\mathbf{E}\left\{\mathrm{e}^{j \omega T_{i}}\right\}=\frac{\lambda+\mu}{\lambda+\mu-j \omega} \times \sum_{n=0}^{\infty}\left(\frac{\lambda+\mu}{\lambda+\mu-j \omega}\right)^{n}\left(\frac{2 \mu}{\lambda+\mu}\right)^{n}\left(1-\frac{2 \mu}{\lambda+\mu}\right)=\frac{\lambda-\mu}{\lambda-\mu-j \omega}
$$

```
In[6]:= (lambda+mu)/(lambda+mu-I*omega)*
    Sum[(2*mu/(lambda+mu-I*omega)) ^n*
    (1-2*mu/(lambda+mu)), {n,0,Infinity}]
Out[6]= (lambda - mu)/(lambda - mu - I omega)
```


Exercise 6.11.4 in Grimmett and Stirzaker

Task. Let $X(t)$ be a birth-death process with $\lambda_{n}=n \lambda$ and $\mu_{n}=n \mu$, where $0<\lambda<\mu$ and $X(0)=1$. Show that the distribution of $X(t)$ conditional on the event that $\{X(t)>$ $0\}$ converges as $t \rightarrow \infty$ to a geometric distribution.

Solution. By Theorem 6.11.10 in G\&S $X(t)$ has probability generating function

$$
G(s, t)=\sum_{n=0}^{\infty} s^{n} \mathbf{P}\{X(t)=n\}=\frac{\mu(1-s)-(\mu-\lambda s) \mathrm{e}^{-t(\lambda-\mu)}}{\lambda(1-s)-(\mu-\lambda s) \mathrm{e}^{-t(\lambda-\mu)}}
$$

The probability generating function of $X(t)$ conditional on that $\{X(t)>0\}$ is therefore

$$
\begin{aligned}
\sum_{n=1}^{\infty} s^{n} \mathbf{P}\{X(t)=n \mid X(t)>0\} & =\sum_{n=1}^{\infty} s^{n} \frac{\mathbf{P}\{X(t)=n\}}{\mathbf{P}\{X(t)>0\}} \\
& =\frac{G(s, t)-\mathbf{P}\{X(t)=0\}}{\mathbf{P}\{X(t)>0\}} \\
& =\frac{G(s, t)-G(0, t)}{1-G(0, t)} \\
& =\frac{(\mu-\lambda) s \mathrm{e}^{-t(\lambda-\mu)}}{(\mu-\lambda s) \mathrm{e}^{-t(\lambda-\mu)}-\lambda(1-s)} \\
& \rightarrow \frac{(\mu-\lambda) s}{\mu-\lambda s} \text { as } t \rightarrow \infty \\
& =\frac{(1-\rho) s}{1-\rho s} \text { where } \rho=\lambda / \mu \\
& =(1-\rho) s \sum_{n=0}^{\infty}(\rho s)^{n} \\
& =\sum_{n=1}^{\infty} s^{n} \rho^{n-1}(1-\rho)
\end{aligned}
$$

$\operatorname{In}[7]:=$ Clear [G]; G[s,$\left.x_{-}\right]:=(m u *(1-s)-(m u-l a m b d a * s) * x) /$
(lambda* (1-s)-(mu-lambda*s) *x)
$\operatorname{In}[8]:=\operatorname{Simplify}[(G[s, x]-G[0, x]) /(1-G[0, x])]$
Out [8] $=((\mathrm{mu}-\mathrm{lambda}) * \mathrm{~s} * \mathrm{x}) /((\mathrm{mu}-\mathrm{lambda} * \mathrm{~s}) * \mathrm{x}$-lambda*(1-s))
so that $\mathbf{P}\{X(t)=n \mid X(t)>0\}=\rho^{n-1}(1-\rho)$ for $n \geq 1$ indeed is geometrically distributed.

Solution to computational problem

```
clc, clf
    format long
    test = 1000000;
    ok = 0;
    for i = 1:test
        t = 0;
        q = rand();
        x = -1;
        a = 0;
        for j = 0:9
            a = a + 1/2^(j+1);
            if q<a
                    x = j;
                    break
            end
        end
        if x <= -1/2
            x = 10;
        end
        while t <= 10
            if x >= 9+1/2
                ok = ok + 1;
                break
            end
            birth = exprnd(1);
            death = exprnd(1/2);
            if birth < death || x <= 1/2
                    t = t + birth;
                    x = x + 1;
            else
                    t = t + death;
                    x = x-1;
            end
        end
end
ok/test
```

