MSG800/MVE170 Basic Stochastic Processes Written exam Wednesday 24 April 2019 8.30–12.30 AM

TEACHER: Patrik Albin. JOUR: Barbara Schnitzer, telephone 0317725325.

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Let $\{X(t)\}_{t\geq 0}$ be a unit rate/intensity Poisson process. Find a function $f: [0,\infty) \to \mathbb{R}$ such that $\{f(t)2^{X(t)}\}_{t\geq 0}$ is a martingale with respect to the filtration containing all information of the history of the process $F_s = \sigma(X(r): r \in [0,s])$.

(5 points)

Task 2. A discrete time Markov chain $\{X(k)\}_{k=0}^{\infty}$ has state space E, initial distribution p(0) and transition probability matrix P given by

$$E = \{0, 1, 2\}, \qquad \mathbf{p}(0) = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix} \text{ and } P = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix},$$

respectively. Calculate the autocorrelation function $\mathbf{E}\{X(k)X(k+n)\}$ for $k, n \in \mathbb{N}$ with $n \ge 1$. (5 points)

Task 3. Give example of two random processes X(t) and Y(t) that have common mean function E[X(t)] = E[Y(t)] and common autocorrelation function E[X(s)X(t)] =E[Y(s)Y(t)] for all s and t but that are different processes (that is, they have different probabilistic properties). (5 points)

Task 4. Consider an M/M/3/4 queueing system with $\lambda = \mu = 1$ and let X(t) denote the total number of customers in the queueing system at time $t \ge 0$. The queueing system is started empty at time zero X(0) = 0. system. Write a computer programe that by means of stochastic simulation finds an approximative value of the probability $\mathbf{P}\{\max_{0\le t\le 4} X(t) = 4\}$. (5 points)

Task 5. Prove that the power spectral density $S_X(\omega)$ of a continuous time WSS random process X(t) is always both real valued and symmetric. (5 points)

Task 6. Is it possible for a continuous time Markov chain with only two possible values not to have a stationary distribution? (5 points)

MSG800/MVE170 Solutions to written exam 24 April 2019

Task 1. $\mathbf{E}\{2^{X(t)}|F_s\} = \mathbf{E}\{2^{X(s)}2^{X(t)-X(s)}|F_s\} = 2^{X(s)}\mathbf{E}\{2^{X(t)-X(s)}\} = 2^{X(s)}\sum_{k=0}^{\infty} 2^k \times (t-s)^k e^{-(t-s)}/(k!) = 2^{X(s)}e^{t-s}$ so that we must take $f(t) = e^{-t}$.

Task 2. As p(k) = p(0) is the stationary distribution and $P^n = P$ for $n \ge 1$ we have $\mathbf{E}\{X(k)X(k+n)\} = 1 \cdot 1 \cdot p_1(k) p_{11}^{(n)} + 1 \cdot 2 \cdot p_1(k) p_{12}^{(n)} + 2 \cdot 1 \cdot p_2(k) p_{21}^{(n)} + 2 \cdot 2 \cdot p_2(k) p_{22}^{(n)} = \frac{1}{9} + \frac{2}{9} + \frac{2}{9} + \frac{2}{9} + \frac{4}{9} = 1$ for $n \ge 1$.

Task 3. Let $\{X(t)\}_{t\in\mathbb{Z}}$ be independent standard normal random variables while $\{Y(t)\}_{t\in\mathbb{Z}}$ are independent random variables with P(Y(t)=1) = P(Y(t)=-1) = 1/2.

Task 4.

```
In[1]:= {repetitions, count} = {1000000, 0};
```

```
For[i=1, i<=repetitions, i++, X=0; time=0;</pre>
```

While[X<4 && time<=4,

If[X==0, time=time+Random[ExponentialDistribution[1]]; X=1,

If[X==1, time=time+Random[ExponentialDistribution[2]];

```
If[Random[UniformDistribution[{0,1}]]<1/2, X=0, X=2],</pre>
```

If[X==2, time=time+Random[ExponentialDistribution[3]];

If[Random[UniformDistribution[{0,1}]]<2/3, X=1, X=3],</pre>

If[X==3, time=time+Random[ExponentialDistribution[4]];

```
If[Random[UniformDistribution[{0,1}]]<3/4, X=2, X=4]]]]];</pre>
```

```
If[time<=4, count=count+1]];</pre>
```

N[count/repetitions]

Task 5. By symmetry of R_X we have $S_X(\omega) = (\mathcal{F}R_X)(\omega) = (\mathcal{F}R_X(-\cdot))(\omega) = (\mathcal{F}R_X)(-\omega) = S_X(-\omega)$ so that $S_X(\omega)$ is symmetric. Similarly $\overline{S_X(\omega)} = \overline{(\mathcal{F}R_X)(\omega)} = (\mathcal{F}R_X)(-\omega) = (\mathcal{F}R_X(-\cdot))(\omega) = (\mathcal{F}R_X)(\omega) = S_X(\omega)$ so that $S_X(\omega)$ is real valued.

Task 6. For the state space S and generator G given by

$$S = \{0, 1\}$$
 and $G = \begin{pmatrix} -\alpha & \alpha \\ \beta & -\beta \end{pmatrix}$,

respectively, where $\alpha, \beta \geq 0$ a stationary distribution $\pi = (\pi_0 \ \pi_1)$ exists if and only if $\pi G = 0$. This gives the equations $\alpha \pi_0 = \beta \pi_1$ and $\pi_0 + \pi_1 = 1$ which can always be solved. Hence a stationary distribution always exists.