BASIC STOCHASTIC PROCESSES 2007

THEORETICAL QUESTIONS FOR THE WRITTEN EXAMINATION

Chapter 1. The Poisson process and related processes

Question 1.

(a) Give a definition of the Poisson process $\{N(t), t \geq 0\}$ with rate λ.
(b) State and prove the memoryless property of the process (Theorem 1.1.2).

Question 2.

(a) State and prove the result about the conditional distribution

$$
P\left(S_{k} \leq x \mid N(t)=n\right)
$$

and the conditional expectation

$$
E\left[S_{k} \mid N(t)=n\right]
$$

of the arrival times $S_{k}, 1 \leq k \leq n$, of the Poisson process $\{N(t), t \geq 0\}$ with rate λ (Lemma 1.1.4).
(b) State without proof the result about the conditional joint distribution

$$
P\left(S_{1} \leq x_{1}, \ldots S_{n} \leq x_{n} \mid N(t)=n\right)
$$

(Theorem 1.1.5).

Question 3. Let $\{N(t), t \geq 0\}$ be a Poisson process of rate λ which is independent of the iid random variables D_{1}, D_{2}, \ldots
(a) Define the compound Poisson process $\{X(t), t \geq 0\}$ related to the Poisson process and the random variables above (Definition 1.2.1). Give a formula for $E[X(t)]$ (formula (1.2.1)) and explain it.
(b) Suppose the random variables D_{1}, D_{2}, \ldots are integer-valued. Let

$$
a_{j}=P\left\{D_{1}=j\right\} \quad \text { and } \quad r_{j}(t)=P\{X(t)=j\}, j=0,1, \ldots
$$

Consider the generating functions

$$
A(z)=\sum_{j=0}^{\infty} a_{j} z^{j}, \quad R(z, t)=\sum_{j=0}^{\infty} r_{j}(t) z^{j}, \quad|z| \leq 1 .
$$

Prove the following result:
Theorem 1.2.1 (a). For any fixed $t>0$ it holds that

$$
R(z, t)=e^{-\lambda t[1-A(z)]}, \quad|z| \leq 1
$$

Question 4.

(a) Give a definition of the renewal process $\{N(t), t \geq 0\}$ with interoccurrence times X_{1}, X_{2}, \ldots, and of its renewal function $M(t)$.
(b) Let $S_{n}, n \geq 1$, be the renewal epochs of the process with corresponding distribution functions $F_{n}(t)=P\left(S_{n} \leq t\right), n \geq 1$. State and prove Lemma 2.1.1 about the relationship between $M(t)$ and the functions $F_{n}(t), n \geq 1$. 5p

Question 5.

(a) Give a definition of a regenerative stochastic process $\{X(t), t \geq 0\}$.
(b) Suppose C_{1}, C_{2}, \ldots are the lengths of the renewal cycles of the regenerative process and assume that $E\left[C_{1}\right]<\infty$. Give a proof to
Lemma 2.2.2. For any $t>0$, let $N(t)$ be the number of cycles completed up to the moment t. Then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} N(t)=\frac{1}{E\left[C_{1}\right]}
$$

State without proof the renewal-reward theorem (Theorem 2.2.1).

Chapter 3. Discrete-time Markov chains

Question 6.

(a) Give a definition of a discrete-time Markov chain $\left\{X_{n}, n=0,1, \ldots\right\}$ with state space I, and of the n-step transition probabilities $p_{i j}^{(n)}$.
(b) Give a proof to

Theorem 3.2.1 (Chapman-Kolmogoroff equations). For all $n, m=0,1, \ldots$,

$$
p_{i j}^{(n+m)}=\sum_{k \in I} p_{i k}^{(n)} p_{k j}^{(m)}, \quad i, j \in I .
$$

Question 7. Consider a a discrete-time Markov chain $\left\{X_{n}, n=0,1, \ldots\right\}$ with a finite state space I and one-step transition probabilities $\left\{p_{i j}, i, j \in I\right\}$. Assume there is some state $r \in I$ such that for each state $i \in I$, there is an integer $n_{i} \geq 1$ such that $p_{i r}^{\left(n_{i}\right)}>0$.
(a) Define the mean return time $\mu_{r r}$ and the mean visit times $\mu_{i r}, i \in I, i \neq r$.
(b) Prove

Lemma A (equation (3.2.3) on p. 92). The mean return time $\mu_{r r}$ and the mean visit times $\mu_{i r}, i \neq r$ satisfy the equation

$$
\mu_{r r}=1+\sum_{j \in I, j \neq r} p_{r j} \mu_{j r}
$$

Proof. Introduce the time for the first visit to r

$$
\tau=\min \left\{n \geq 1: X_{n}=r\right\} .
$$

The possible values of τ are $k=1,2, \ldots$. For $k=1$ we have

$$
\begin{equation*}
P\left\{\tau=1 \mid X_{0}=r\right\}=p_{r r} \tag{1}
\end{equation*}
$$

For $k \geq 2$, from the representation

$$
\{\tau=k\}=\cup_{j \in I, j \neq r}\left\{\tau=k, X_{1}=j\right\}
$$

where the events in the right-hand side are disjoint, we obtain by using the total probability formula

$$
\begin{align*}
P\{\tau & \left.=k \mid X_{0}=r\right\}=\sum_{j \in I, j \neq r} P\left\{\tau=k, X_{1}=j \mid X_{0}=r\right\} \\
& =\sum_{j \in I, j \neq r} \frac{P\left\{\tau=k, X_{1}=j, X_{0}=r\right\}}{P\left\{X_{0}=r\right\}} \\
& =\sum_{j \in I, j \neq r} P\left\{\tau=k \mid X_{1}=j, X_{0}=r\right\} \frac{P\left\{X_{1}=j, X_{0}=r\right\}}{P\left\{X_{0}=r\right\}} \tag{2}\\
& =(\text { the markovian property })=\sum_{j \in I, j \neq r} P\left\{\tau=k \mid X_{1}=j\right\} p_{r j} \\
& =(\text { the definition of } \tau)=\sum_{j \in I, j \neq r} P\left\{\tau=k-1 \mid X_{0}=j\right\} p_{r j}
\end{align*}
$$

To compute $\mu_{r r}=E\left[\tau \mid X_{0}=r\right]$, we use (1) and (2):

$$
\begin{aligned}
& \mu_{r r}=\sum_{k \geq 1} k P\left\{\tau=k \mid X_{0}=r\right\} \\
& =1 \times p_{r r}+\sum_{k \geq 2} k \sum_{j \in I, j \neq r} P\left\{\tau=k-1 \mid X_{0}=j\right\} p_{r j} \\
& =p_{r r}+\sum_{j \in I, j \neq r} p_{r j} \sum_{k \geq 2} k P\left\{\tau=k-1 \mid X_{0}=j\right\} \\
& =p_{r r}+\sum_{j \in I, j \neq r} p_{r j}\left[\sum_{k-1 \geq 1}(k-1) P\left\{\tau=k-1 \mid X_{0}=j\right\}+\sum_{k-1 \geq 1} P\left\{\tau=k-1 \mid X_{0}=j\right\}\right] \\
& =p_{r r}+\sum_{j \in I, j \neq r} p_{r j}\left[E\left[\tau \mid X_{0}=j\right]+1\right] \\
& =p_{r r}+\sum_{j \in I, j \neq r} p_{r j} \mu_{j r}+\sum_{j \in I, j \neq r} p_{r j}=1+\sum_{j \in I, j \neq r} p_{r j} \mu_{j r}
\end{aligned}
$$

Question 8. Give a proof to the first part of Theorem 3.3.1.
Theorem 3.3.1 (first part). Let $\left\{X_{n}, n=0,1, \ldots\right\}$ be a discrete-time Markov chain with state space I and one-step transition probabilities $p_{i j}, i, j \in I$. For any $j \in I$, it holds

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{j j}^{(k)}= \begin{cases}\frac{1}{\mu_{j j}}, & \text { if state } \mathrm{j} \text { is recurrent } \\ 0, & \text { if state } \mathrm{j} \text { is transient }\end{cases}
$$

where $\mu_{j j}$ denotes the mean return time from state j to itself.

Chapter 4. Continuous-time Markov chains
Chapter 5. Markov chains and queues
Question 9. Analysis of the $M / M / 1$ queueing system by using a continuous-time Markov chain model.
(a) Describe the $\mathrm{M} / \mathrm{M} / 1$ queueing system $1 p$
(b) Let $X(t)=$ the number of customers present at time t. Under what assumption is the process $\{X(t), t \geq 0\}$ a continuous-time Markov chain?
(c) Sketch the transition rate diagram and write the balance equations of the process. 1 p
(d) Compute the equilibrium probabilities $\left\{\pi_{j}, j \in I\right\}$ of $\{X(t), t \geq 0\} .1 \mathrm{p}$
(e) Give a formula for the long-rum average number of customers in the system. Explain in words how the formula is derived.
(f) What is the long-run fraction of customers who find j other customers present upon arrival? Explain your answer.

