Basic stochastic processes 2007

Take home examination 2

Day assigned: December 11. Due date: December 13, 10:00 am

- The take home examination is a strictly individual assignment. Submissions that bear signs of being collective efforts will be disregarded
- Answers without explanations will be disregarded as well.

Problem 1. A Bernoulli trial results in a success with probability p and in a failure with probability $1-p$, where $0<p<1$. Suppose the Bernoulli trial is repeated indefinitely with each repetition independent of all others. Let X_{n} be a "success runs" Markov chain with a state space $I=\{0,1,2, \ldots\}$, where $X_{n}=0$ if the $n-t h$ trial results in a failure and $X_{n}=j$ if $X_{n-j}=0$ and trials $n-j+1, \ldots, n$ have resulted in a success.
(a) Find the one-step transition matrix of the Markov chain.
(b) Show that the state 0 is recurrent.
1.5p

Solution

(a) For $i, j \in I$ the one-step transition probabilities are

$$
p_{i j}= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=0 \\ 0 & \text { otherwise }\end{cases}
$$

(b)

$$
\begin{aligned}
f_{00}^{(n)} & =P\left\{X_{n}=0, X_{n-k} \neq 0,1 \leq k \leq(n-1) \mid X_{0}=0\right\} \\
& =P\{(n-1) \text { successes followed by } 1 \text { failure }\}=p^{n-1}(1-p)
\end{aligned}
$$

Since

$$
\sum_{n=1}^{\infty} f_{00}^{(n)}=\sum_{n=1}^{\infty} p^{n-1}(1-p)=1
$$

the state 0 is recurrent.

Problem 2. Peter plays a game, where he either wins 1 EUR or loses 1 EUR. He is allowed to play even when his capital is not positive (a negative capital corresponds to a debt). In the game, there are two coins involved. One coin lands heads with probability $\frac{1}{10}-\varepsilon$ and the other coin lands heads with probability $\frac{3}{4}-\varepsilon$, where $0<\varepsilon<\frac{1}{10}$. Peter must take the first coin when his capital is multiple by 3 , and the second coin otherwise. He wins 1 EUR when the coin lands heads and loses 1 EUR otherwise. Our interest is in the long-run fraction of plays won by Peter.
(a) Define a discrete-time Markov chain with three states that can be used to analyse the problem.
(b) Write the equilibrium equations and give a formula for the long-run fraction of plays won by Peter.

Solution

(a) Consider a Markov chain $\left\{X_{n}\right\}$ with state space $I=\{0,1,2\}$, where $X_{n}=s$ if Peter's capital after the $n-t h$ game equals $3 k+s$ for some integer $k, s=0,1,2$. The one-step transition probability matrix is then

$$
\left[\begin{array}{ccc}
0 & 1 / 10-\varepsilon & 9 / 10+\varepsilon \\
1 / 4+\varepsilon & 0 & 3 / 4-\varepsilon \\
3 / 4-\varepsilon & 1 / 4+\varepsilon & 0
\end{array}\right]
$$

(b) The equilibrium equations are

$$
\begin{aligned}
& \pi_{0}=\left(\frac{1}{4}+\varepsilon\right) \pi_{1}+\left(\frac{3}{4}-\varepsilon\right) \pi_{2} \\
& \pi_{1}=\left(\frac{1}{10}-\varepsilon\right) \pi_{0}+\left(\frac{1}{4}+\varepsilon\right) \pi_{2} \\
& \pi_{2}=\left(\frac{9}{10}+\varepsilon\right) \pi_{0}+\left(\frac{3}{4}-\varepsilon\right) \pi_{1}
\end{aligned}
$$

together with the normalizing equation

$$
\pi_{0}+\pi_{1}+\pi_{2}=1
$$

The long-run fraction of games that are won by Peter is equal to

$$
\left(\frac{1}{10}-\varepsilon\right) \pi_{0}+\left(\frac{3}{4}-\varepsilon\right) \pi_{1}+\left(\frac{3}{4}-\varepsilon\right) \pi_{2}
$$

with probability one.

Problem 3. An information centre has one attendant; people with questions arrive according to a Poisson process with rate λ. A person who finds n other customers present upon arrival joins the queue with probability $1 /(n+1)$ for $n=0,1, \ldots$ and goes elsewhere otherwise. The service times of the persons are independent random variables having an exponential distribution with mean $1 / \mu$.
(a) Verify that the equilibrium distribution of the number of persons present at the information centre is a Poisson distribution with mean λ / μ.
(b) What is the long-run fraction of persons with request who actually join the queue? What is the long-run average number of persons served per time unit? Explain your answers. 1.5p

Solution
(a) Let $X(t)$ be the number of persons present at time t. The process $\{X(t), t \geq 0\}$ is a continuous-time Markov chain with state space $I=\{0,1,2, \ldots\}$. The transition rate diagram is given by

By equating the rate out of the set $\{i, i+1, \ldots\}$ to the rate into this set, we find the recurrence relations

$$
\mu p_{i}=\frac{\lambda}{i} p_{i-1}, i=1,2, \ldots
$$

These equations lead to

$$
p_{i}=\frac{(\lambda / \mu)^{i}}{i!} p_{0}, \quad i \geq 1
$$

Using the normalizing equation $\sum p_{i}=1$ we obtain

$$
p_{i}=e^{-\lambda / \mu} \frac{(\lambda / \mu)^{i}}{i!}, \quad i \geq 0
$$

(b) By the PASTA property, the long-run fraction of arrivals that actually join the queue is

$$
\sum_{i=0}^{\infty} p_{i} \frac{1}{i+1}=\frac{\mu}{\lambda}\left(1-e^{-\lambda / \mu}\right)
$$

The long-run average number of persons served per time unit is

$$
\lambda\left[\frac{\mu}{\lambda}\left(1-e^{-\lambda / \mu}\right)\right]=\mu\left(1-p_{0}\right)
$$

in agreement with the Little's formula.

Problem 4. At a production facility orders arrive according to a renewal process with a mean interarrival time $1 / \lambda$. A production is started only if N orders have accumulated. The production time is negligible. A fixed cost of $K>0$ is incurred for each production set-up and holding cost are incurred for at the rate of $h j$ when j orders are waiting to be processed. What value of N minimizes the long-run average cost per time unit?

Solution

Let $\{X(t), t \geq 0\}$ be the renewal process representing the number of orders present at time t. This process regenerates each time a production is started. The expected length of one cycle is N / λ. The total waiting time in one cycle is

$$
\left(S_{N}-S_{N-1}\right)+\left(S_{N}-S_{N-2}\right)+\ldots\left(S_{N}-S_{1}\right)
$$

and the average waiting time is then

$$
\frac{1}{\lambda}+\frac{2}{\lambda}+\ldots+\frac{N-1}{\lambda}=\frac{N(N-1)}{2 \lambda}
$$

The expected cost incurred in one cycle is

$$
K+h \frac{N(N-1)}{2 \lambda}
$$

and the long-run average cost is then

$$
\frac{K+h \frac{N(N-1)}{2 \lambda}}{N / \lambda}=\frac{\lambda K}{N}+\frac{h(N-1)}{2}
$$

The function $g(t)=\frac{\lambda K}{t}+\frac{h(t-1)}{2}$ obtains minimum in the point $\sqrt{\frac{2 K \lambda}{h}}$.
If one of the integers

$$
\left\lceil\sqrt{\frac{2 K \lambda}{h}}\right\rceil, \quad\left\lfloor\sqrt{\frac{2 K \lambda}{h}}\right\rfloor
$$

delivers a smaller value to $g(t)$ than the other one does, the first integer is the solution; otherwise both integers solve the problem.

