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Abstract

This thesis consists of five papers and treats two finite population sam-
pling methods, viz. the Conditional Poisson and the Pareto 7ps sampling
schemes. Both methods belong to a class of sampling schemes with unequal
inclusion probabilities, commonly used in approximate probability to size
sampling schemes.

Paper A addresses the problem of determining first and second order in-
clusion probabilities for both methods, which is a vital element in deriving
linear estimators. Tools which consist of dynamic programming algorithms,
are created to calculate these exact inclusion probabilities. They make
it possible to compute the inclusion probabilities in reasonable execution
time for small and moderate samples. Algorithms to adjust the parame-
ters so that arbitrary desirable exact inclusion probabilities are achieved
are also given. The results in this paper opened the possibility to use
the exact Horvitz-Thompson and Yates-Grundy-Sen variance estimators for
quite large samples for Conditional Poisson and for moderate samples in the
Pareto case.

In Paper B, using those algorithms, a computer system was developed to
compare and contrast the Conditional Poisson and Pareto wps sampling de-
signs in terms of estimators of population totals, biases and variances. The
computer programme produced an empirical comparison of both methods
to check the convergence to the asymptotical inclusions. It also enabled ad-
justment of the parameters to obtain exact variances and make comparisons
in these terms. The results from these studies show that the Pareto scheme
approaches asymptotical inclusions faster than the Conditional Poisson, and
that both methods are very similar in terms of second order inclusions for
the adjusted procedures for moderate samples.

The second order inclusion algorithms for the Conditional Poisson Sam-
pling design are generalised in Paper C to a recursive fast procedure to
derive higher order inclusion probabilities of arbitrary order.

Paper D proves the existence and partial uniqueness of a set of scale
parameters when exact inclusion probabilities are required for any order
sampling of fixed distribution shape, a class of schemes of which Pareto 7ps
sampling is a special case.

Lastly, Paper E reports on a thorough study of approximation accuracy
for Pareto inclusion probabilities, aiming at practical use recommendations,
for using asymptotically motivated approximations. Numerical results in
this study are presented in Appendix 1 and 2.

Keywords: Sampling Theory, Conditional Poisson Sampling, Pareto nps
Sampling, Order Sampling, Numerical Integration, Algorithms

AMS 1991 subject classification: 62D05, 65U05, 62-04
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Summary of the Papers

This thesis treats the problem of two sampling methods, viz. the Condi-
tional Poisson (CPS) and the Pareto 7ps sampling (PPS) schemes which
belong to a class of sampling methods with unequal inclusion probabilities.
The study addresses the problem of determining first and second order in-
clusion probabilities, which is a vital element in deriving linear estimators.

Introduction

Information is a key issue in society. Knowledge about opinions in politics,
consuming habits, preferences in sports and the arts, etc., are crucial for
decision making and development in those areas. The theory of survey
sampling offers tools and effective methods to obtain such information with
a reliability that can be expressed and is based on data collection. In the
frame of mathematical laws, a partial investigation of the finite population in
question is enough for statistical inference about the population as whole.
A firm basis for this kind of procedure may be achieved by probability
sampling, which introduces an element of randomness into the sampling
procedure. There are many probability sampling methods. But a good
sampling scheme is one that is simply implemented, that leads to good
estimation precision and that provides good variance estimation properties.

Brewer et. al. (1983) define two parts in the sampling strategy: the
selection procedure, which deals with the way of choosing a sample from the
population, and the estimation procedure. The latter states how inference
will be carried out from the sample to the population. Furthermore, the
estimation procedure may be also classified as enumerative or analytical,
depending on the aim of the study. The purpose of enumerative inference
is to describe the population. The object may be for instance to calculate
population means, totals, proportions and ratios. On the other hand the
purpose of an analytical inference is to explain the parameters by the use of
a model with its own probability structure. For enumerative inference, the
only relevant probability structure is the one determined by the manner in
which the sample is selected.

As new methods for analysing data develop, it remains a fundamental
requirement of good survey practice that a measure of precision, commonly
the variance of the estimator, be provided for each estimate. In the deriva-
tion of an estimator of variance both estimator and sampling design must
be taken into account.

As we shall see in this thesis, it is often rather difficult to find exact first
and second order inclusion probabilities in order to construct unbiased esti-
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mators and estimators of their variances. This is true for many interesting
sampling designs, e.g. for CPS and PPS.

The historical perspective

The theory for independent random sampling was developed by Bernoulli
two centuries ago; the theory of stratification, due to Poisson, also dates
back many years. Notwithstanding the theory and application of survey
sampling took a while to be established, it has developed dramatically in
the last several decades.

In 1895, the subject of the survey sampling method was placed for the
first time on the agenda of a session of the International Statistical Insti-
tute, cf. Dalenius (1957). By that time, sample surveys were distrusted
by statisticians and non-statisticians alike, therefore they were used only
occasionally. Survey procedures were classified into non-random and ran-
dom sampling. Only in some rare cases matters of representativity were
discussed. Most applications based on random sampling were systematic
sampling from official records. There was a strong resistance against the
use of sample surveys in traditional fields. The development in survey sam-
pling is due to the development in industry, for instance, the forest industry
in Sweden, and the social problems that arose in relation with these changes.
In addition, economical reasons were an impediment to use total surveys in
social studies. Also, the growth of the monetary economy created an interest
in analysing consumer habits by the use of survey sampling.

It was only around 1936, when for first time, a partial population census
in Sweden was planned to achieve maximum reliability, cf. Dalenius (1957).
New methods such as stratified sampling, and the concept of optimally
designed sampling, Neyman (1938), appear in practice in 1950, when there
were examples of surveys planned so as to reach balance between cost and
precision.

The use of unequal probabilities in sampling was first suggested by
Hansen and Hurwitz (1943), who showed that the use of unequal prob-
abilities generated more efficient estimators of the population total than
those of equal probabilities. Madow (1949) proposed the use of systematic
sampling with unequal probabilities to avoid the possibility of units being
selected more than once. After this a large number of alternative sampling
procedures were suggested, cf. Cochran (1977).

Horvitz and Thompson (1952) developed a general theory of sampling
with unequal probabilities without replacement, based on the Horvitz and
Thompson estimator used to estimate the population total. It is well known
that the Horvitz and Thompson estimator is unbiased. Roy and Chakravarti
(1960) showed that, for a given sampling scheme, there is no member of
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the class of all homogeneous linear unbiased estimators of population total
which has smaller variance than the Horvitz-Thompson estimator.

Notation

In statistical literature there are different definitions pertaining to sampling,
but we think of a sample s as a subset of the population U, which is a given
finite set. Some sampling designs may allow multiplicity of the units, which
is called sampling with replacement.

Moreover, suppose that we are interested in an estimation of the popula-
tion total t, = ) ;; y; of a real value variable y, often called the study vari-
able, or the population mean of the study variable y, ¥ = 3", y;/N, where
N is the number of elements in U. We assume that the values y;, ¢ € U, are
only known for the elements in the sample s selected from the population
U. In this case t, and y are examples of finite population parameters and
the subset s is used to calculate estimates of ¢, and ¥.

The sample size, denoted by n is the number of elements in s, and the
probability of selecting a sample s under the selection scheme in use will be
denoted by P(s). The latter are nonnegative numbers satisfying

ZP(s) =1,sCU.

The probability distribution {P(s), s C U} is also called the sampling
design and it determines the statistical properties of the random quantities
calculated from the sample.

At the same time the sampling procedure in use assigns to each element
1 in the population U a probability to be included in the sample s, usually
called the probability of inclusion. These inclusions are very important in
the calculation of linear estimators. We define m; = P(i € s) and m;; =
P(i € s,j € s), thus we shall call m; and 7;; the first- and second-order
inclusion probabilities respectively.

The Horvitz-Thompson estimator of the population total is defined as,

i€s
This estimator is, provided all m; > 0, the only unbiased estimator in the

class of estimators for which the same weight is attached to a particular
population unit whenever it is selected, cf. Horvitz and Thompson (1952).

Sampling with unequal probabilities

Naively and traditionally all elements were sampled with equal inclusion
probabilities. However, one of the breakthroughs in sampling theory was
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the realization that more accurate estimates can be obtained by assigning
different inclusion probabilities to the elements in the population, that is to
sample with unequal inclusion probabilities. If each element has the pos-
sibility to be chosen only once, the sample is said to be selected without
replacement and the procedure is denoted by 7ps. A general theory for se-
lection with this type of probabilities is presented in Horvitz and Thompson
(1952). In this paper the Horvitz-Thompson estimator of the population to-
tal described above, is introduced. The variance of this unbiased estimator
is,

V(ty) = Z (mij — Wi”j)&&-
i,jeU Ti T

An unbiased estimator of V' (£,) is given by

Gy - Y T rml
i,j€s Tij TiTj
given that m;; > 0,V ¢ # j € U. Provided that the sample size is fixed, an
alternative expression for the variance of the estimator ¢,, derived indepen-
dently by Sen (1953) and Yates and Grundy (1953), is

. 1 vi U\
V(ty) = =5 2 (mij —mim)) (; - —J> :

=
i,jeu J

This formula is valid only if the number of units in the sample is fixed. An
alternative natural unbiased estimator of V'(¢,) is then

1 (m mimi) [y y 2
ooy i —mimy) (Yi Y5
O CEE

i,JEs v

given that all mj; > 0,Vi#j€U.

Moreover, it follows from the Sen-Yates-Grundy formula for V (£,) that
if all y; are exactly proportional to the corresponding 7; and the number
of units in the sample is fixed, the variance of the Horvitz-Thompson esti-
mator is zero. An important application of this idea occurs when for each
individual ¢ a positive quantity x; is known and it is believed that z; is
approximately proportional to a study variable y;. In order to use this in-
formation to get good estimators of the total, t, = 3", y;, the choice of the
sample s can be made using inclusion probabilities ; approximately propor-
tional to z;. This kind of procedure is called probability proportional-to-size
sampling.



In some cases, it may not be possible to select a sample based on strictly
proportional inclusion probabilities 7;, simply by taking, m; = nx;/ >, ;,
i = 1,...,N since one or more of the 7’s may exceed 1. This obstacle
is usually circumvented in practice by introducing a “take all” stratum of
units with the largest sizes. We shall assume in the sequel that nx; <

EU.’L'J', 1= 1,...,N.

Conditional Poisson Sampling (CPS)

Poisson Sampling is an unequal probability sampling design with random
size. To carry out a Poisson sampling, first assign a probability of inclu-
sion to each population unit. Then perform N Bernoulli trials using these
probabilities to determine whether or not the corresponding unit is to be
included in the sample. All units for which the trials have been successful
constitute the sample.

CPS is a sampling method with varying inclusion probabilities and fixed
sample size. It may be defined as Poisson sampling conditioned by the
requirement that the sample s belong to a subclass of samples.

Hajek (1964) makes an extensive study of Rejective sampling, which may
be regarded as Poisson sampling conditioned that the sample size equals n
and thus may be called CPS. He presents basic facts about the method
and derives conditions for asymptotic normality of the estimators. He also
introduces approximation formulas for calculation of first and second order
inclusion probabilities, as well as an approximation formula for adjusting
the parameters p; = nw;/ >z, i = 1,...,N, when the exact inclusions
m; are given. In a triangular setting, with a sequence of sample procedures
from a sequence of populations, he proves that CPS yields probabilities of
inclusion such that

Wi/pi -1,¢=1,..,.N

as N — oo, uniformly in i, provided that Zi; pi(1 — p;) = oco. CPS also
maximises the entropy, which is a measure of spread of the sampling design
P(s), given by

— )" P(s)In P(s),

sCU

in the class of sampling schemes with the same first order inclusions, see
H3jek (1981), page 29. The distribution with maximal entropy in a class
of distributions is the “most random” in that class, which is a desirable
condition for a sampling scheme. In other words, this measure informs
about how the population is represented in the sample.

A CPS may be realised by N independent Bernoulli trials determining
whether the individual under consideration is to be included in the sample
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s or not. In fact, the N trials form one experiment. Any experiment that
results in other than n out of the NV individuals being picked is rejected. One
performs independent experiments sequentially until one of the experiments
results in n out of the N individuals being picked.

Order Sampling

Order sampling schemes form a general class of sampling procedures with
varying probabilities. Each unit within the population is assigned an in-
dependent but not equally distributed random variable, called a ranking
variable. To choose a sample of size n without replacement, first these
ranking variables are realized and then the units that have the n smallest
ranking values constitute the sample. Rosén (1997) introduces the method
and the notion of order Sampling with Fixed Distribution Shape. He states
that by varying this distribution shape, a wide class of varying probabilities
sampling schemes is obtained.

Ohlsson (1990, 1995) introduces sequential Poisson sampling, which is
order sampling with uniform ordering distributions. The method which is
a mps scheme has been used in the Swedish Consumer Price Index survey
system since 1990.

Asymptotic results have been obtained for successive sampling by Hajek
(1981) and Rosén (1972). Successive sampling is equivalent to order sam-
pling with exponential ordering distributions.

Saavedra (1995) and Rosén (1997b), independently, introduced a par-
ticular order sampling scheme, viz. the Pareto 7ps procedure. The ranking
variables @);, in this scheme, have the standard Pareto distribution function
F;(t) = 0;t/(1+6;t) with parameters §; > 0, for i = 1,..., N. Parallel to this
0 parametrisation we use an alternative set of parameters which are more
directly coupled to the inclusion probabilities: A; = F;(1) = 6;/(1+6;), i =
1,...,N. This is motivated by the fact that A\; approximates the inclusion
probabilities in case ) ;; A\; =n, cf. Rosén (1997b).

Rosén (1997b) also studies the asymptotic distributions of linear statis-
tics for order sampling with fixed distribution shape. He also proves that
the Pareto scheme is optimal among Order sampling schemes with Fixed
Distribution Shape, in the sense that it minimises the estimator variances
asymptotically.

Outline of the papers

The present thesis contains five papers which treat the Conditional Poisson
Sampling (CPS) and Pareto mps Sampling (PPS) designs. Both methods
belong to the class of probability proportional-to-size sampling schemes.
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They also have good sampling properties and they present interesting sim-
ilarities. However, exact expressions for first order inclusion probabilities
are intricate and matters become still worse for second order quantities.
Previous studies on Horvitz-Thompson estimator biases and variances have
been done for both methods based on asymptotical approximations due to
this problem.

Paper A. Algorithms to Find Exact Inclusion Probabilities for
Conditional Poisson Sampling and Pareto nps Sampling Designs,
N. Aires

In this paper we create the tools to calculate the exact inclusion probabili-
ties for both methods. The tools consist of algorithms that make it possible
to compute first and second order inclusion probabilities in reasonable exe-
cution time for small and moderate samples, using computers.

To give an idea of the numerical calculations performed in the paper we
first introduce the inclusion probabilities in terms of the Poisson parameters.
The problem consists in calculating the quantities,

2seai [jes i Tligs(1 — k)
EseA,L HjES bj Hk¢s(1 - pk) ’

i = 1,...,N, where | s| is the cardinality of s, A, denotes the class of all
possible samples of size n and A%, the set of elements of A, containing
i; for first order inclusion probabilities. And analogously for second order
inclusions,

T =1i(p) = P(i€s|[s|=n) =

2 senii [jes Pi lligs(1 — pr)
EseA" Hje.s bj Hk:¢s(]‘ _pk) ’

Ttij =P(i,j€s ||s]|=n)=

where A% is the set of elements of A,, containing both i and j, 4,5 = 1,..., N.
Adopting a dynamic programming algorithm makes it possible to calculate
r; and 7;; quite fast. By separating terms according to whether the element
N is or is not in s and by defining

SN, -pn) = Y [ p [T —py)

sE€A, i€s  jds
with N =0,1,2,... and n = 0, ..., N; SI¥ may be calculated recursively by
SN (P1;-pN) =PNS) 1 (1, PN -1) + (L= pN) Sy~ (P1; PN 1),
forn = 1, ..., N—1 using the observations that S5 = (1—py)(1—p2)--(1—pn)
and 51]\\; =pipP2 - " PN-
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Then, the inclusion probability of any unit 4, i = 1, ..., N, can be written
as,

- Pisév_il (p17 cees Di—15Pit15 7pN)
S (p1, .-, PN)

Second order inclusion probabilities for CPS can be calculated using the
same principle. However, a more effective algorithm to calculate bivariate
inclusions is presented in the paper. Let 7; ; denote the probability that
element 4 but not element j belongs to the sample s and define ; = p; /(1 —
pi). Then based on the relations

T :77','\]' + i
7TJ' =7Tj\i+7'l','j,
it is easy to see that

o YT = T
Ty = ——
Yi =
for the case 7; # ;. For the case ; = v;, second order inclusions probabil-
ities are calculated using

(1 = Vs = 3oy, i
ki '

Tij =

where k; is the number of elements j # ¢ such that v; = +; or equivalently
p;j = p;i- Thus, once we have the first order inclusion probabilities we need
virtually no time to get the second order inclusions as well.

For the PPS procedure, first the A-parameters are calculated by taking,

)\i :nxi/ij, 1= ].,...,N.
U

We assume as usual that all \; < 1.

Then we consider independent ranking variables Q1, @2, ..., @ N With cor-
responding Pareto distribution functions Fi, F, ..., Fiy. The units with the
n smallest @Q)-values constitute the sample s.

Furthermore, the probability of element N belonging to the sample s is

i = P(Nes)=PQ">Qn)

= [Ta-E e
0

Xiv



where Qé\;)_l is the n:th order statistic among Q1, @2, ..., @n—1 with distri-
bution function FN=1 and fn(t), i = 1,..., N is the density of Q. The in-
tegrand in this inclusion probability integral is calculated by a dynamic pro-
gramming algorithm, which is in turn combined with numerical integration
procedures to give the inclusion. In fact F¥(¢), N =1,2,.., n=1,..,N,
satisfy the recursive equation:

FY(t) = Fy = () + En(O[F 1M (t) — Fy (@)

Thus F¥ (t) may be calculated recursively using the observation that F{¥ (t) =
1, for all N and t. A similar formula can be derived for any other m; by
rearranging the order of the (); variables in the above formula.

In the same way, second order inclusion probabilities may be calculated
by

iN-in = P(N—-1es,Nes)= P(Qé\f;ﬁ) > maz(QnN_1,QN))

= ‘/0 (]' - Fnjizz(t))fmaw(QN_1,QN)(t)dta

using the same algorithm to calculated FY7*(¢) and combining with nu-
merical integration procedures.

First order inclusion probabilities can be used in the Horvitz-Thompson
estimator formula to obtain unbiased estimators. Second order inclusion
probabilities can be used to calculate the exact variance of Horvitz-Thompson
estimators in simulation studies where the response variable is known, or
for variance estimation.

In this paper we also present algorithms to adjust the parameters. The
adjusting procedures provide the parameters to achieve desirable exact in-
clusion probabilities. For CPS, we assume that the exact inclusion proba-
bilities z; are given and the task is then to obtain the Poisson parameters
p;- The problem can be expressed as a non-linear equation system with NV
unknown variables and N + 1 equations of the form,

#i(p1y-pN) —2i =0, i=1,.,N

N
iz Pi —n=0.

We solve this equation system numerically by using a built-in function in

Matlab based on the Gauss-Newton method and denote the solution pi.

This has earlier been shown to exist and be unique in Dupacovd (1979).

For PPS the non-linear equation system to solve the adjusting problem is

7?,'()\1, ---;)\N) —Z; = 0, 1= 1, ...,N

Zf;lx\i—n:&
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Using the same algorithm as in the CPS case to solve this equation system
requires long execution time for the PPS scheme. Therefore we develop a
more simple idea to get an alternative adjusting procedure that converges
faster to the adjusted values A{. The procedure consists in iterating

ME+ 1) = M (k) + (2 — 7V (k)))
until

Ti(A ()

2i

max

- 1‘ <1074,

given the start value A4 (0) = z. After each iteration we adjust the 7; (A4 (k))
values slightly by normalising,

s A [ TOAER) n
(A (k) = (Ejfrj()\A(k))> '

This algorithm was implemented applied in some of our larger sample size
examples obtaining good results in terms of precision and execution time.

These calculations facilitate to check the asymptotic behaviour of the
inclusion probabilities and the possibility to use the latter in survey sam-
pling. Some results can be found in Paper B where an analogous algorithm
for the Poisson case also was implemented and for the PPS case in Paper
E.

Paper B. Comparisons between Conditional Poisson Sampling and
Pareto nmps Sampling Designs, N. Aires

In this paper, we compare both methods in terms of calculations of rel-
ative biases and variances of the estimators of the population totals, by
using the algorithms in Paper A. In the first part of this paper, we present
calculations of first and second order exact inclusion probabilities for both
sampling schemes for small, moderate and large population sizes. A com-
puter system was developed to make comparisons between CPS and PPS
designs in terms of estimators of population totals, biases and variances.
The algorithms in Paper A were re-implemented in Fortran and the use of
the routines for numerical integration of this programming language made
substantial improvements in the accuracy of the results and the execution
time of the programs. The program calculates first and second order in-
clusion probabilities as well as the adjusted inclusion probabilities for both
schemes. The second order inclusion probabilities for the adjusted schemes
are also calculated. Since a file which provides a study variable and auxiliary
information is coupled to these routines, the real variance of fy is computed

Xvi



using the Yates-Grundy-Sen formula. The asymptotic variance, given by

A
N P A
—\z Xpi(-p) ' '

is also calculated for the CPS scheme. This formula coincides with Héjek’s
asymptotic variance formula, except for the factor N/N — 1 which is neg-
ligible when N is large, cf. Héjek (1964). The program also computes the
asymptotic variance for the adjusted PPS scheme, cf. Rosén (1997b), given
by

A4
N—1=\ = Ej)‘f(l_)‘f)

A=A,

The results show that for the PSS design the inclusion probabilities converge
faster to the given inclusion probabilities than for the CPS scheme.

Moreover, to compare both methods we construct a measure of variance
dissimilarities, a bound for this measure and a bound for the relative bias.
The program calculates the relative absolute bias (only in case of positive
signs variables) and its bound for PPS by

:‘ Zy’ ‘<max<‘——1D:BU.

In the same way, the relative bias B and its bound are calculated for the
CPS case, B < mazx |(7rzR/z,) - 1| = By. The program also computes the
variance dissimilarity ¢ and its bound vy for the two unbiased sampling
schemes, by using the formula,

E(ty )

3/

B =

| VA®E,) = VAG,) | g -l
VA(L,)

Y=

V4 and 7 i ; VA and 7} ;; are the real variance and the second order inclu-
sion probabilities for PPS and CPS respectively using the adjusted values.
Calculations of these were performed for different population sizes. The
results obtained corroborate the similarity of both schemes. In all given
examples it is observed that even if the asymptotic variances are very close
in both schemes, the asymptotic variance for PPS design approximates the
real variance better and this real variance is slightly smaller for CPS.
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Paper C. Inclusion Probabilities of Higher Order for Conditional
Poisson Sampling, N. Aires

We generalise two methods to calculate inclusion probabilities of higher or-
der for CPS design based on the idea presented in Paper A to derive bivariate
inclusion probabilities. The first method, which is more time consuming, is
based on the same principle to calculate first order inclusion probabilities for
CPS. On the other hand, a more effective algorithm computes recursively
higher order inclusion probabilities using the Poisson parameters and the
exact inclusion probabilities. For instance to calculate 3rd order inclusion
probabilities the algorithms takes into account the Poisson parameters p;
and the second order inclusions 7;;. Thus the probability that elements 4, j
and k are included in the sample s denoted by 7;j, may be calculated by

o YTk — Yk
Tijk = ————————
Vi~ Yk

where v; = p; /(1 —p;), in the case y; # . Special formulas are presented
in the paper for the case v; = 3, for the third order inclusions as well as
for the general case.

These inclusion probabilities are of interest for calculation and estima-
tion of moments of higher order, e.g. to facilitate corrections on the coverage
accuracy of the confidence interval of the estimator.

Paper D. Order Sampling Design with Prescribed Inclusions, N.
Aires, J. Jonasson, O. Nerman

In Paper D we prove the conjecture that the parameters in Order Sampling
can be arbitrarily prescribed for any order sampling with fixed distribution
shape. As we mentioned before, methods were provided to compute exact
first and second order inclusion probabilities numerically when the distri-
bution shape is of the Pareto type. Procedures were also provided for this
case to adjust the parameters to get predetermined inclusion probabilities.
However, the existence of the latter was not really proved in an arbitrary
case, but it was numerically derived in many examples.

In this paper we prove the existence and partial uniqueness of a solution
for the latter problem, in general for any order sampling of fixed distribution
shape. As a special result follows that the equation system used to find
the adjusted Pareto values A* in Paper A has exactly one solution. The
argument follows the same line as for a corresponding earlier proof of a
similar theorem for CPS procedures.
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Paper E. On Inclusion Probabilities for Pareto 7ps Sampling, N.
Aires, B. Rosén

Previous studies on Pareto schemes are based on asymptotic considerations.
As a consequence, the factual inclusion probabilities deviate to some extent
from the prescribed ones. Methods to calculate exact inclusion probabil-
ities for this procedure introduced in Paper A, make it possible not only
to obtain unbiased estimators and exact variances, but also to check the
asymptotic behaviour of the inclusion probabilities. Moreover, there is a
close connection between approximation accuracy for inclusion probabilities
and estimator bias. The magnitude of the latter is a question of practical
relevance.

Paper E reports on a thorough study of approximation accuracy for
Pareto inclusion probabilities, aiming at practical use recommendations of
the asymptotic theory. The paper presents conditions which ensure that the
estimator bias is practically negligible. The chief tool is the computation
algorithm for Pareto mps inclusion probabilities in Paper A. Some basics on
Pareto sampling are introduced as well as various measures of approximation
accuracy. The central measure of approximation goodness is the maximal
absolute relative bias (in Paper B called B) for inclusion probabilities given
by
Ur
i\ 1

i

¥ = max
K

,i=1,2,...,N.

The name is motivated by the fact that for a non-negative study variable
¥, the absolute relative bias for the population total 7(y) = y1 + ... + yn is

‘EWWH—TW)

) ‘ =

This bound is often conservative (but can always be attained) and depends
on the population size, the sample size and the size values. The size values
conform a vector of auxiliary information, denoted by s = (s1, ..., sn), 8; >
0, @ € U, which typically is correlated to the study variable and relates to
the inclusion probabilities as follows

N
)\,’ =’I’L'Si/25j, 1= 1,2,...,N.
j=1

These size measures are also normed so that the average size is 1,
N
1
i=1
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Moreover, the study is based on certain size value patterns which play an
important role in the numerical results. These patterns, named “boundary”,
“middle” and “even”, take into account the range and the shape of the size
values. We denote by v and 4 the smallest and largest size value respectively
for a given pattern. The paper addresses three main questions, viz.

e How large is ¥ for a specific sample size n?
e For which samples sizes n, is ¥ less than a specified value 37

e Will the estimator bias be negligible in a particular sampling estima-
tion situation?

Answers to these questions are presented in the paper. Conclusions concern-
ing safe practical use of Pareto sampling are also exhibited in the paper.
For instance, it is shown that the accuracy improves as population size in-
creases. From the results we also conclude that for almost all situations
which run up in practice, the Pareto wps can safely be used.

Conclusions

The algorithms introduced in this thesis make it possible to calculate ex-
act inclusion probabilities for CPS and PPS. These results in turn enables
the use of both sampling schemes in combination with unbiased estima-
tors in small and moderate samples (up to say two hundred, chosen among
a population of thousands of elements seems feasible with a more refine
computer program). The results also offer the possibility to use the exact
Horvitz-Thompson and Yates-Grundy-Sen variance estimators for equally
large samples for CPS and for moderate samples in the Pareto case.

The implementation also creates the possibility to compare, in an em-
pirical way, both methods to check the convergence to the asymptotical
inclusions. Moreover these new methods enable us to adjust the parame-
ters to obtain exact variances and make comparisons in these terms. The
results from these studies show that both sampling schemes are very similar
in terms of second order inclusion probabilities for the adjusted procedures
for moderate samples.

The algorithms and the implemented programs were also used to check
asymptotical results in approximation studies for moderate sample sizes.
The results in those indicated that the approximations are very good for
larger samples.

Topics of further work

One interesting topic that remains to be studied, is related with Hajek’s
approximation formulas for first and second order inclusion probabilities
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of CPS. Thus Héjek namely suggested refinements of those approximation
formulas, cf. Héjek (1964), it would be of great interest to compare the
exact inclusions with these refined approximations in a future, systematic
study of the effects of population sizes and inclusion patterns.

Next, we wish to document and rewrite the programmes into a system
aimed at general use. In this work we also wish to include the implementa-
tion of the algorithm for calculating inclusion probabilities of higher order
for the CPS scheme.

Furthermore, we desire to implement a more general order sampling pro-
gramme for an arbitrary distribution shape for calculating first and second
order inclusion probabilities. We also wish to find a fast adjusting algorithm,
analogous to the Pareto procedure, for cases with distribution support on
[0,00) and for the uniform distribution case, i.e. Sequential Poisson Sam-
pling. The implementation of these tools could make the method more
useful in practice and maybe replace the approximation methods.

Finally, a formal proof of the convergence and rate of convergence of the
heuristic algorithm used for the adjusted procedure is desirable in a future
study.
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Abstract

Conditional Poisson Sampling Design as developed by Hajék may
be defined as a Poisson sampling conditioned by the requirement that
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mined inclusion probabilities.
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9 1 INTRODUCTION

1. Introduction

Héjek (1964) studied the behaviour of the Horvitz-Thompson estimator un-
der rejective sampling design of size n, which is equivalent to Poisson Sam-
pling given the condition that the sample size equals n. We shall use the
name Conditional Poisson Sampling (CPS) in the sequel. In the same pa-
per, the author also showed that a central limit theorem holds for such a
design and considered the relation between the inclusion probabilities un-
der Poisson Sampling and the conditional inclusion probabilities. At the
same time, he proposed approximation formulas for achieving the condi-
tional inclusion probabilities as well as formulas for adjusting them. Later
Dupacova (1979) showed that the inclusion probabilities in CPS may be
arbitrarily prescribed. However, in both cases the resulting probabilities
remain to be found in practice.

On the other hand, an asymptotic theory for the Pareto mps Sampling
(PPS) design is given by Rosén (1997b). He shows that this scheme is
asymptotically uniformly optimal among the schemes which have inclusion
probabilities proportional to given size measures (7ps) and belongs to a class
of sampling schemes called order sampling with fixed distribution shape.
But, as in the CPS case, the exact inclusion probabilities for the PPS scheme
are to be found.

In the first part of this paper, algorithms to find numerical values of the
exact inclusion probabilities for both sampling schemes are given along with
a few examples. A method to compute the second order pair specific inclu-
sion probabilities is also provided and compared for the CPS and the PPS
schemes. Finally, we introduce numerical methods to adjust the parameters
when the exact inclusion probabilities are given for both procedures.

The procedures described in this paper can be used in different ways.
For instance, the exact first order inclusion probabilities can be used in the
Horvitz-Thompson estimator formula to eliminate the estimator bias. Sec-
ond order inclusion probabilities can be used to calculate the exact variance
of Horvitz-Thompson estimators in simulation studies where the response
variable is known or for variance estimation. On the other hand, the adjust-
ing procedures provide the parameters to achieve desirable exact inclusion
probabilities. The calculations may be achieved in reasonable execution
time for small and moderate samples. In addition, the importance of these
calculations is to make it possible to check the asymptotic behaviour of the
inclusion probabilities and the possibility to use the latter in survey sam-
pling; some results can be found in Aires (1998). Further research is in
progress to systematically compare both 7ps procedures and to study the
precision in earlier results where asymptotical approximations were used,
cf. Aires (2000).



2. First order inclusion probabilities

2.1. Conditional Poisson Sampling (CPS) Design

Poisson Sampling is a method for choosing a sample s, of random size |s|,
from a finite population U consisting of N individuals. Each individual i
in the population has a predetermined probability p; of being included in
the sample s. A Poisson sample may be realised by using N independent
Bernoulli trials to determine whether the individual under consideration is
to be included in the sample s or not. Héjek (1981) showed that condition-
ing on the sample size n in a Poisson Sampling Design, yields the maximum
entropy distribution of s among all sampling procedures of size n, with in-
clusion probabilities of the individuals equal to those of this CPS procedure.
In fact, the N trials form one experiment. Any experiment that results in
other than n out of the NV individuals being picked is rejected. One performs
sequentially independent experiments until one of the experiments results
in n out of the N individuals being picked. Let A, denote the class of all
possible samples of size n and A%, the set of elements of 4,, containing 4, so
that

ESEAZ HjES pj Hk¢s(1 _pk)
ESEA,, HjES pj Hk¢3(1 _pk),
@2.1)
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# = m(p)=Ples||sl=n)=

i = 1,...,N, are the inclusion probabilities of the individuals in the CPS
procedure. It is hardly ever true that 7; = p;. Nevertheless a choice of the
pi’s can be made by solving the following equation system, for any given set
of probabilities z;, i = 1,..., N satisfying 3., z; = n,

Zi = wi(p),i=1,...,N. (2.2)

Furthermore, the equation system (2.2) has a unique solution such that
Eﬁilpi:n, as shown by Dupacova (1979). Héjek also showed that for large
samples one can let p; equal the desired conditional inclusion probabilities
z; to get a good approximation of the solution of equation (2.2). For mod-
erate sample sizes he also suggested more elaborate approximative formulas
in order to get more precise inclusion probabilities or vice versa approxima-
tive adjustment of the unconditional inclusions. However, it is of interest
to achieve the exact inclusion probabilities to avoid biases of population
estimators. How to solve (2.2) numerically will be discussed in Section 4.
An important application of the idea to sample with unequal inclusion
probabilities occurs when for each individual i a positive quantity z; is
known and it is believed that x; is approximately proportional to a study
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variable y;. In order to use this information to get good estimators of the to-
tal, t, = >, ¥i, the choice of the sample s can be made using inclusion prob-
abilities m; proportional to z;, and then the Horvitz-Thompson estimator
fy = ) ics ¥i/ T may be adopted to estimate the population total. This esti-
mator is unbiased and has small variance, cf. Sdrndal et. al. (1992). In some
cases, it may not be possible to select a sample based on strictly proportional
inclusion probabilities 7;, simply by taking, m; = nx;/ Y, z;, i =1,...,N
since one or more of the n's may exceed 1. This obstacle is usually cir-
cumvented in practice by introducing a “take all” stratum of units with the
largest sizes. We shall assume from now on that nz; < >, zj, i =1,...,N.

We return to the problem of calculating exact inclusion probabilities 7;
for CPS, using the Bernoulli parameters p;’s. But let us first analyse the
structure of equation (2.1).

Lemma 1. Consider a sequence of probabilities p1,pa, ... and let A,(N) be
the subset of all samples of size n among {1,...., N} for n < N. Then the
quantities

SN(pr, )= Y. [ » JJQ -2 (2.3)

€A, (N)i€s  jés
with N =0,1,2,... andn =0, ..., N, may be calculated recursively by
Sy (p1,-pN) = PNSR G (P15 pn—1) + (1= pN)SY T (D1, - PN 1),
forn=1,...N — 1 using the observations that
Sy = (A-p)A-p2)---(1—pn)
and

Sﬁ = DPip2-**PN-

Proof. The proof follows by separating terms according to whether N is
or is not in s. [

The inclusion probability of any unit 4, 4 = 1,..., N, can be written as,

5 = piSY 3 (p1, -, Dic1,Pig1, -, PN)

2.4
Sy(plaapN) ’ ( )

so that Lemma, 1 can be used to calculate it.
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Example 1 The conditional inclusion probabilities are calculated by a
computer program! using the recursion in Lemma 1. For any vector of
unconditional Bernoulli probabilities (p1,...,pn) the program returns the
vector of conditional inclusion probabilities (71, ...,7n). In Table 1 these
inclusions are shown for the vector p = (0.1 0.2 0.3 0.5 0.9), with N =5
and n = 2. Notice that "N  p; = SN #; = 2.

Table 1: 1st. order inclusions, CPS.

[

p i
0.1 0.06947026022305
0.2 0.15427509293680
0.3 0.25999070631970
0.5 0.57318773234201
0.9 0.94307620817844
Sum: 2.0 2.00000000000000

Example 2 From a given vector of proportional inclusions, for a popu-
lation of size N = 284 and sample size n = 80, the conditional inclusion
probabilities were calculated. These resulting inclusions are very similar to
the input vector, they differ in the fourth decimal. The execution time was
ten minutes. An indication of the high quality of these numerically derived
probabilities is that their sum is 80 using 8 decimals precision.

2.2. Order Sampling

Consider a population U = {1,..., N}. To each unit ¢ in the population
is associated a probability distribution F;(t) with density f;(¢), 0 < ¢ <
00. To realize an Order Sampling scheme of sample size n, with n < N,
we consider independent ranking variables @1, Q2, ..., @y with distribution
functions F1, F, ..., Fiy. The units with the n smallest ()-values constitute
the sample. The idea of Order Sampling originates from the special case
where all @); are uniform in which case the inventor Esbjorn Ohlsson (1995),
named the resulting procedure Sequential Poisson Sampling. The idea was
further developed by Rosén (1997a), who also introduced the PPS scheme.
Thus an important subclass is derived by the assumption that all F; belong
to the same scale family and in the case these distribution functions are
defined as F;(t) = 6;t/(1486;t), 6; > 0, we have a PPS procedure. PPS based

IThe programs used in the examples in this paper are written in Matlab (ver. 5.2)
for the Unix system.
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Horvitz-Thompson estimators are asymptotically uniformly optimal among
order sampling schemes with inclusion probabilities proportional to given
size measures and with fixed distribution shape, cf. Rosén (1997b). Here we
shall first discuss a numerical algorithm suitable for calculation of inclusion
probabilities for a general order sampling scheme and then implement this
algorithm for the PPS case. A key ingredient in the method is numerical
calculations of the distribution functions of order statistics of a sample of
independent, but not necessarily identically, distributed random variables.

Lemma 2. Consider a sequence 1, @2, -.. of independent random variables

with distribution functions Fy, Fs, ... . Let Qé\fl) be the n:th order statistic
among Q1,Qa, ..., QN with distribution function FY. Then FN(t), N =
1,2,..., n=1,...,N, satisfy the recursive equation:

EY(t) = FEN7'(t)+ Fn@)[FY 7' () — FEY ()], (2.5)

where FY¥ (t) = 1, for all N and t.
Proof. Observe that,

{Qy <t = {Q(,)' <ty UHQ4 1) <t <@, YN{Qn <t})
so that

Py <t) =P@Q)' <)+ (P@))) <1)

~P(Q) " <))P@Qn < 1),
which is equivalent to (2.5). [ |

Returning to the order sampling procedure, the probability of element
N belonging to the sample s is

mn = P(N €s)=P( gb)_l>QN)

/0 T (1= BN @) f (1. (2.6)

The inclusion probability of any other unit 7 is derived similarly, from the
corresponding formula for the rearranged sequence

Q17Q27 “‘JQi—l)Qi+1) "')QN: Qz

instead. The algorithm above is related to the one used earlier to calculate
the conditional inclusion probabilities under CPS design.
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2.3. The Pareto 7ps Sampling (PPS) case

Consider an Order Sampling procedure as described in Section 2.2 and sup-
pose that F;(t) = 6;t/(1 + 6;t) is the standard Pareto distribution func-
tion with parameter §; > 0, for ¢ = 1,..., N. The densities then become
fi®) = 6;/(1 +0;t)?, i = 1,...,N. Parallel to this § parametrisation we
shall use an alternative set of parameters which are more directly coupled
to the inclusion probabilities: A\; = F;(1) = 6;/(1+6;), ¢ = 1,...,N. This
is motivated by the fact that A; approximates the inclusion probabilities in
case » .; A; = n, cf. Rosén (1997b). Let #; denote the inclusion proba-
bilities as functions of A. The resulting inclusion probabilities 7; from the
choice A are not exactly the desired ones, but they are good approximations
for large samples.

We have developed a method for calculating the exact inclusion proba-
bilities, given by the integral in (2.6) with help of Lemma 2.2. The exact
inclusion probabilities 7; are computed by numerical approximations with
a computer program. The input of this program is a vector of distribution
function values evaluated in ¢t = 1, (A1, ..., An). To solve the integral, we
first build a recursive function to calculate FY. The function returns for
any vector of time points (¢, ...,tx) the vector of distribution function val-
ues (EN(t1),..., FN(t;)). In a second step the integral (2.6) is calculated
by using the built-in Matlab function, guad which performs numerical in-
tegration using the adaptive recursive Simpson’s rule, cf. Atkinson (1988).
Since the Simpson’s algorithm, quad in Matlab has too narrow limits for the
number of grid points used to give sufficient precision, to calculate integrals

of the form
| noa,
0

for different functions u, we have used the standard algorithm on the rewrit-
ten, interval summed, equivalent integral expression

L 1\ 1
— i +0.1 i +0.1- ) — | dt.
/0 10;(,u(z+0 t)+u<z+0 t)t2>dt

(To avoid division by zero for ¢ = 0 we have translated the summand for
i = 0 with the negligible amount 0.0000000000001). This transformation
gives good precision. However the computation gets slower because of the
massive amount of summations involved.

Example 3 For the vector A = (0.1 0.2 0.3 0.5 0.9), we compute the first
order inclusion probabilities, 7, when sampling n = 2 elements according
to the PPS scheme. The execution time is four minutes and Eil T =
1.99997669002569, see Table 2.
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Table 2: 1st. order inclusions, PPS.

A w
0.1 0.09455331055179
0.2 0.18973382222461
0.3 0.28982049217919
0.5 0.51794513397826
0.9 0.90792393109184
Sum: 2.0 1.99997669002568

Example 4 Consider the population in Example 2. We compute the
first order inclusion probabilities for PPS scheme by using the program
in Example 3. The resulting inclusions are equal to the A-values, with
precision 10~4. The execution time is almost seven days in a SGI Origin
2000 computer and the control sum is 79.9994.

3. Inclusion probabilities of second order

An important application of the calculation of the inclusion probabilities
of second order occurs in computing the variance for an estimator of a
population total by using the Yates-Grundy-Sen variance formula for fixed
sample size.

2
V(tAy) = —% Z (7‘(,']‘ — 7Ti7l'j) (& — y—") . (31)
i,jeu T T
Here, 7;;, denotes the probability that both elements 7 and j belong to the
sample s. They also derived an estimator of V (£,), cf. Sérdal et. al. (1992),
which is unbiased for a sampling design of fixed size, provided that m;; > 0
for all i # j € U. In the following sections, we derive different methods
for numerical calculation of second order inclusion probabilities for both
sampling schemes.

3.1. Conditional Poisson Sampling (CPS)

Consider a CPS of size n from U = {1, ..., N} with unconditional Bernoulli
parameters pi,...,pn. We denote by 7;;, the second order inclusion proba-
bilities for CPS design,

EseAij P(s)
ZseAn P(s)’

iy = P@,j€s ||s|=n)=
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where A,, denotes the class of all possible samples of size n and A% is the
set of elements of A,, containing both i and j, 4,5 = 1,..., N. The second
order inclusion probability of units ¢, j to be included in the sample s, i # j,
can be derived similarly as in the univariate case, using Lemma 1 and by
consideration of the equations,

P pipjsfr]lv—az(pla"'7pi—17pi+17"'7 j—17pj+17"'7pN)
Y S,le(pl,...,pN) ‘

Based on the recursive idea from before a computer program was developed
to compute the bivariate inclusion probabilities using this method. But
some examples calculated, cf. Aires (1998), showed that this procedure
requires more execution time than those calculations made with the method
we present, below.

Let? 7;; denote the probability that element 1 but not element j belongs
to the sample s, for a Conditional Poisson sample of size n. We denote the
odds by v; = p;/(1 — p;). From equation (2.1) it may be deduced that,

St = ZseAi\j (15117;) HkES’ pk/(l _pk)
W Ysea, Llies /(L=p)) 7

where Af%\j is the subset of s € A, with i € s, j ¢ s, and s’ is the set s
excluding element ¢. Furthermore,

ro, = oot g Heew PO ZPO 3
1 - - 1 b
! Ysen, Iies 2o/(1—pr) v Yy

[\ /

T\
and by using the odds ratio, we can write,

v Yio.
Vi

On the other hand,
T = 77','\]' + ﬁij

T = 7u'l'j\z' + 5.
By substituting (3.2) in (3.3),

7Tj = 7l'j\i +7Tij-

2This method was developed with Prof. O. Nerman.
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Combining the two equations, we get

y Yittj — Vi
y = LD (3.9

in case v; # ;.

For the case vy; = v;, fix a pair ¢ and jo such that v; = «;,, and observe
that 7;; /7; may be regarded as the probability of the j:th unit in CPS of
size n — 1 taken from {1,..,N}\ {¢}, so that

Ej:#i Tij
T

= (TL— 1)7

and hence

(=D = > dy=( > #g)+ ki,

Jig# JiFE

where k; is the number of elements j # ¢ such that y; = +; or equivalently
Dj = Di. Thus,

=17 =, Tij
’7{'1]0 = ¢ k JyiFy "YW . (3‘5)
(2

Note that the number of pairs of different individuals in a sample of size n
is always n - (n — 1)/2 and therefore > j =n-(n—1)/2 can be used as
a check.

o

i<j i

Example 5 Second order inclusion probabilities are calculated given p =
(0.1,0.2,0.3,0.5,0.9) and 7 = (0.0695,0.1543,0.2600,0.5732, 0.9431). The
execution time is 0.0053 seconds and the control sum is 1 with 15 decimals.
The results follow in Table 3.

Example 6 For the population in Example 2 and using the same pro-
gram in Example 5, the second order inclusion probabilities are calcu-
lated. The execution time is 7 seconds and the check sum is ) ._.7; =
3.159999999513763 - 103, which should be compared to 3.16 - 103.

1<j
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Table 3: 7;;, 2nd. order inclusion probabilities, CPS.

J
1 2 3 4 )
0.0016  0.0028 0.0065 0.0586
0.0063 0.0146 0.1317
0.0251  0.2258
0.5270

,_.
=W N =

3.2. The Pareto 7mps Sampling (PPS) case

Comnsider an Order Sampling scheme with V units and sample size n. Then
the bivariate inclusion probability of the units N — 1, N is given by:

vy = P(N—-1les,Nes)= P(Qg;zl) > maz(Qn-1,QN))
- / (1= EY22(0) frsas(0ns.0w) (DL (3.6)

This is a special case of a more general higher order inclusion probability
formula derived from the observation that

{N-k+1€s,..,N € s} {Qg;iﬂ) > maz(QN—k+1,--- QN)},
which in general yields

P(N—-k+1€s,...,N€s)=P(( g;lzﬂ)) > maz(QN—k+1,---, QN))

- / (1= FY75 () Frnan(@nesrnon (L.

As in the univariate case, the inclusion probability of an arbitrary pair of
units ¢ < j may be determined by consideration of the rearranged sequence:

Qla QZa (3T Qi—17 Qi+17 () Qj—l: Qj+17 () QN7 Qi7 Q]

In the Pareto case, by the differentiation chain rule,

7

fmaw(Q,-,Qj) (t) = Fmaz(Qi,QJ‘)

- (1+6)70t)2 (1 e +10jt)) Ta +0§jt)2 (1 S +19z't)) '
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According to the Formula (3.6), a program is built to calculate the sec-
ond order inclusion probabilities for PPS scheme. Analogous to the one
dimensional case, to solve the integral we first build a recursive function to
calculate FT]LV_ 2. In a second step the integral in (3.6) is calculated using the
built-in Matlab function quad exactly in the same way as the one described
in Section 2.3 for the one dimensional inclusions.

Example 7 In this example the input parameters are A = (0.10.2 0.3 0.5
0.9), N =5 and n = 2. The resulting bivariate probabilities are shown in
Table 4. The control sum is Y~ " Eﬁvzl 7i; = 0.99997. The routines to

Table 4: 7;;, 2nd. order inclusion probabilities, PPS.

J
1 2 3 4 )
0.0033 0.0054 0.0112 0.0747
0.0113 0.0234 0.1517
0.0375  0.2357
0.4458

,_.
= N =

calculate second order inclusion probabilities for the Pareto case requires
large execution time.

4. Adjusting the parameters

4.1. Conditional Poisson Sampling (CPS) scheme

Assume that the exact inclusion probabilities z; are given and that we wish
to adjust the unconditional inclusion probabilities p;, so that the conditional
inclusion probabilities equal z;, i = 1,..., N. As shown in Dupacova (1979),
the equation system (2.2) has a unique solution, and thus the p;-values can
be found, by solving a non-linear equation system with N unknown variables
and N + 1 equations:

( ESEAL Hjes p] Hk¢3(1 _pk) = 0
Decan HjEspj Hk¢5(1 — Dk) !
) : (4.1)
Doeay jesPi Trgs(1 = o) =0
ZSEAn HJ'Es pj Hk¢s(]‘ _pk) N
p1+..+pnv—n=0.

\
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There are numerical methods for solving nonlinear equations systems
of the form f(x) = 0 as in (4.1). We choose the built-in function fsolve in
Matlab, which uses the Gauss-Newton method, cf. Atkinson (1988), to built
a program that calculates the vector of adjusted unconditional inclusion
probabilities p?.

Example 8 Given the desired inclusion probabilities z = (0.10.2 0.3 0.5
0.9), we calculate the adjusted unconditional inclusion probability vector
p?. The program is executed a second time with the vector p* as input to
calculate 74 = #(p{', ..., px’)- The resulting values 74 are extremely similar
to the z values as expected, see Table 5. For larger populations this method

Table 5: Adjusted Conditional Poisson scheme.

2z 7 pA A
0.1 0.0694 0.13283686195059 0.10000001974508
0.2 0.1543 0.23867750414515 0.19999999990091
0.3 0.2600 0.32526121539275 0.30000000063677
0.5 0.5732 0.45945330941274 0.49999999390902
0.9 0.9431 0.84377110396854 0.89999998580823
Sum: 2.0 2.0000 1.99999999486977 2.00000000000001

is very slow. In the case where the population size is N = 284 and the
sample size is n = 80, the execution time to calculate the adjusted inclusion
probabilities is 36 hours and the control sum is 80 with precision 1074,

4.2. Pareto mps Sampling (PPS) scheme

Consider a small Pareto mps sample of size n with target inclusion probabil-
ities z1, ..., 2N, strictly positive and less than 1. In this section we introduce
a method to adjust the A-parameters, using the Gauss-Newton procedure
to solve the equation system:

7?,’()\1,...,/\1\[) = Zi, 1= 1,...,N
(4.2)
Zﬁl Ai = 1.

Here 7;(A1, .., An), @ =1,..., N, are derived through the earlier described
procedure. The existence and uniqueness of the solution of equation (4.2)
has not been justified by a stringent argument but preliminary results indi-
cate that this conjecture is true.
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Example 9 Given the vector z of target inclusion probabilities, we cal-
culate the adjusted inclusions for the PPS scheme. The results, denoted by
A4, are shown in Table 6. We also calculate #4 = #(A{}, ..., A\4). Due to the

Table 6: Adjusted inclusion probabilities for PPS.

2z 7 A4 74
0.1 0.0946 0.10528414513777 0.09999484693095
0.2 0.1897 0.20958638050326 0.19999469027722
0.3 0.2898 0.30857771776815 0.29999548194969
0.5 0.5179 0.48480955603085 0.49999528497564
0.9 0.9079 0.89174250169828 0.89999591692859
Sum: 2.0 2.0000 2.00000030113832 1.99997622106209

fast convergence for this case, no adjustment routines are needed for larger
populations.

4.3. An alternative algorithm

Unfortunately the programs to adjust the parameters in both methods re-
quire long execution time if we wish to ensure a high approximation preci-
sion. For that reason and lead by observation of the pattern of pA and A4
values in relation to the z values, we have also applied a more simple idea
to achieve the adjusted values. In the PPS case the alternative adjusting
procedure consists in iterating

ME+1) = XA (E) + (2 — 702 (k))) (4.3)
until 4
max M - 1‘ <1074, (4.4)
given the start value
2(0) = 2. (4.5)

After each iteration we adjust the 7;(A(k)) values slightly by normalising,
AOAR)
> miAAR) )

To get the CPS variant substitute A by p. This algorithm was implemented
for both sampling methods and applied in some of our larger sample size
examples. For the population size N = 284 and the sample size n = 80

Ti(M (k) = ( (4.6)
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for the CPS case, the execution time to calculate the adjusted inclusion
probabilities, was 15 minutes and the control sum was 80 with precision
10~

5. Conclusions

We have shown that it is feasible to calculate first and second order inclu-
sion probabilities in both CPS and PPS Designs. The program routines
provide good numerical precision and reasonable execution times for quite
large sample sizes. For the PPS case the routines to calculate the first
and second order inclusion probabilities are more time consuming due to
the numerical integration required. For the Conditional Poisson case, the
execution performance is quite good and the algorithms to compute the
inclusion probabilities are fast and effective. Second order inclusion proba-
bilities are as easily calculated as first order ones. Further work to achieve
more precision in reasonable execution time in the numerical integration for
the Pareto case is in progress, as well as the improvement of the routines
that implement the calculations of second order inclusion probabilities for
this scheme. It is also feasible to generalise the programs now developed for
the PPS procedure to other order sampling schemes with fixed distribution
shape.

Acknowledgements. I wish to thank Professor Olle Nerman for his valu-
able help throughout this work. My sincere thanks also to Bjorn von Sydow
for computational advice.
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20 1 INTRODUCTION

1. Introduction

Héjek in 1964 showed that conditioning on the sample size n in a Poisson
Sampling Design, yields the maximum entropy distribution of the sample s
among all sampling procedures of size n, with inclusion probabilities of the
individuals equal to those of these Conditional Poisson Sampling (CPS) pro-
cedures, see Héjek (1964). In the same paper, he developed an asymptotic
theory for inclusion probabilities and estimator distributions in this scheme.
Based on a refined asymptotic study of the relation between the conditional
and unconditional inclusion probabilities, he also proposed formulas to ap-
proximate and adjust the inclusion probabilities, see Héjek (1981).

On the other hand, an asymptotic theory for the Pareto 7ps Sampling
(PPS) design is introduced by Rosén (1997a, 1997b). He shows that this
scheme is asymptotically uniformly optimal among the procedures which
have inclusion probabilities proportional to given size measures (7ps) and
belong to a class of sampling schemes called Order Sampling with fixed
distribution shape. In addition, the asymptotic results of previous studies
make us believe that CPS and PPS schemes are very similar.

In a recent paper, Aires (1999), algorithms are introduced to calculate
first and second order exact inclusion probabilities for both schemes. This
fact make it possible to compare the CPS design with the PPS scheme.
In Aires (1999) very small illustrating examples are given. Here we shall
study the properties of the two schemes more systematically and compare
convergence behaviour of first and second order inclusions and estimator
distributions, using the results in Aires (1999) as our main tool.

In the first part of this paper, we present calculations of first and sec-
ond order exact inclusion probabilities for both sampling schemes for small
and moderate population sizes. Comparisons between methods are carried
out by calculations of the relative biases and variances of the estimators of
the population totals. The results show that for the PPS design the inclu-
sion probabilities converge faster to the given inclusion probabilities than
for the CPS scheme. Additionally the bound of the measure of variance
dissimilarities and the bound for the relative biases are calculated. The re-
sults obtained in those corroborate the similarity of both schemes. Finally
examples for larger population sizes are presented. In most given exam-
ples it is observed that even if the asymptotic variances are very close in
both schemes, the asymptotic variance for PPS design approximates the
real variance better. This real variance is slightly smaller for CPS.
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2. Conditional Poisson and Pareto mps Sam-
pling Designs

Poisson Sampling is a method for choosing a sample s, of random size |s]|,
from a finite population U consisting of N individuals. Each individual i
in the population has a predetermined probability p; of being included in
the sample s. A Poisson sample may be realised by using N independent
Bernoulli trials to determine whether the individual under consideration is
to be included in the sample s or not, i.e. by picking the individuals inde-
pendently of each other. CPS design may be defined as Poisson Sampling
conditioned by the requirement that the sample has fixed size n, c¢f. Hijek
(1964). This sampling procedure can be realised by a rejection procedure
where independent samples are sequentially drawn until we get a sample
with the required size n. Let A,, denote the class of all possible samples of
size n and A! the set of elements of A, containing 4, so that

EseAi Hje.s bj Hkgés(]‘ _pk)
Yeean jes Pi g (L — 1)’

i = 1,...,N, are the inclusion probabilities of the individuals in the CPS
procedure. These inclusions easily can be calculated using the recursive
procedure in Aires (1999). Second order inclusion probabilities may be
calculated in a similar way, but we choose to use the alternative formulas,

i, = wilp)=PE€s]||s|=n)=

gy = LT
Yi =
where v; = p; /(1 — p;) valid in the case v; # ;, and

(0 = 1) = 32y, s i
k;

Tijo

for the case v; = 7j,, ki being the number of elements j # ¢ such that
v; = 7v; or equivalently p; = p;, see Aires (1999).

An Order Sampling scheme is originally defined by considering indepen-
dent ranking random variables 1, Qs, ..., Qn with distribution functions
F;(t) and Lebesgue density f;(t), 0 <t < 00, ¢ = 1,..., N. The units with
the n smallest (Q-values constitute the sample. An important subclass is de-
rived by the assumption that all F; belong to the same scale family and in
the case these distribution functions are defined as F;(t) = 0;t/(1+6;t), t >
0, 8; > 0, we have a PPS procedure. Parallel to this 8 parametrisation we

shall use an alternative set of parameters which are more directly coupled
to the inclusion probabilities: A; = F;(1) = 6;/(1+6;), i = 1,...,N. This
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is motivated by the fact that \; approximates the inclusion probabilities in
case »_ ; A\; = n, cf. Rosén (1997b).
The probability of element N belonging to the sample s is

in(\) = P(N€s)=P@Q),"'>Qn)

-/ T - BN @) (2.1)

Here, FIV=1(¢) is the distribution function of Qé\; )_1, the n:th order statis-
tic among @1, Q2,...,Qn_1. The inclusion probability of any other unit i,
i, is derived similarly, from the corresponding formula for the rearranged
sequence

Q17Q27 "'7Qi—15Qi+15 "'5QN3 Qz

instead. It is straightforward to generalise this procedure to higher order
inclusion probabilities, cf. Aires (1999). Here we shall use the second order
inclusion probability formula

aN-1,N = P(N-1€s,Ne€s)=P( é\,ij) > maz(Qn-1,QnN))

/0 (1= FN22(0) fran(0ns.0) ()dts (2.2)

for units N —1, N. The functions FN='(¢) and FN72(t), in (2.1) and (2.2),
respectively, are calculated by using a recursive procedure and then the
integrals are computed using numerical methods, cf. Aires (1999).

2.1. Background

In many situations it is of interest to estimate the population total of
some study variable y known only for a sample s from the population
U = {1,...,N}. The estimation of the population total may be improved
in cases where for each individual ¢ in the population a positive quantity x;
is known and it is believed that z; is proportional to a study variable y;.
In order to use this information to get good estimators of the population
total, the choice of the sample s can be made using inclusion probabilities
7; proportional to x; and then the unbiased Horvitz-Thompson estimator,
> ics Yi/ T, may be adopted to estimate the population total. In some cases,
it may not be possible to select a sample based on strictly proportional in-
clusion probabilities 7;, simply by taking, m; = nz;/ >, z;, i = 1,...,N
since one or more of the 7's may exceed 1. This obstacle is usually cir-
cumvented in practice by introducing a “take all” stratum of units with the
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largest sizes. We shall assume from now on that nz; < >, z;, i = 1,...,N.
Second order inclusion probabilities m;;, are of great interest to establish
the variance, by using, for instance, the Yates, Grundy and Sen formula for
fix size sampling designs:

1 Yi yj)2
- m; —mmy) | —— =] . 2.3
7 3 (g —mim) (L-u (2.3
This formula in its turn can be used to derive unbiased variance estimators.
The theory above is developed for the situation where the vector 7 is known
exactly. Next we shall consider a situation where z is the vector of ideal
inclusion probabilities and then study several CPS and PPS schemes in this
situation. Since the results in Aires (1999) made it possible to exhibit man-
ageable exact expressions for first and second order inclusion probabilities
for both schemes, standard results can be applied for the linear estima-
tors and comparisons can be made between methods as well as to earlier
asymptotic results. First order exact inclusion probabilities for CPS and
PPS designs can be calculated based on these Bernoulli parameters and by
using the algorithms in Aires (1999). We shall refer to these procedures as
the straightforward calculations when we use p = z for Conditional Poisson
and A = z for the Pareto case. The results are denoted by 7% and 7
respectively, and > 7f = n and Y #F = n can be used as checks. In the
earlier work we also develop algorithms to adjust the p-parameters in the
CPS case and the A-parameters in the PPS scheme to achieve any desired
inclusion probability vector z exactly. We refer to these procedures as the
adjusted procedures and use a superscript A in the notation, i.e. p4 and
A4 denote the parameter vectors that give exact inclusions z. Analogously,
second order exact inclusion probabilities for both methods may be calcu-
lated using algorithms in Aires (1999). The bivariate inclusion probabilities
are denoted by wf} and ﬁf}, for the unadjusted CPS and for the unadjusted
PPS case, respectively. Similarly, for the adjusted procedures, second order
inclusion probabilities are denoted by 77;-3- and ﬁ;‘} respectively. In addition,
as the number of different pairs of individuals in a sample of size n is always
n(n —1)/2, the sum, >, . m;; =n-(n —1)/2 can be used as a check.
In the sequel we shall always start with an ideal inclusion probability
vector z and let the estimator of the population total be

fy = Zyi/zi (2.4)

irrespective of which of the four distributions that are used. Moreover, the
variance is given by

V() = —% > (mij —mimj) (Z_: - &)2, (2.5)

2
i,jeu J
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where m;; and m; are the exact inclusions of each method, see Sarndal et.
al (1992). Equally important, when comparing sampling methods, is the
calculation of the theoretical bounds for the relative bias and variance prop-
erties. For the former, Rosén (1998) develops a goodness measure comparing
inclusion probabilities and their approximations under the PPS scheme. He
shows that for a study variable y > 0, the relative absolute bias B for the
estimator fy, using the parameters A = z, can be bounded by

gzyz(/\—z —1)‘ < max ( —+ —1D = By.

Zq
In the same way, the bound for the relative bias B can be derived for the
CPS case, B < maz |(rf/z;) — 1| = By.
Using a similar idea, a bound of variance dissimilarities of the adjusted
procedures, may be derived by first defining,

E(t,) —t,
ty

B:‘

_IVAG) —VAG) |

v VAQ,)

-3 Ez’,jeU(ﬁf; - zizj) (4 — %)2 +3 Ez’,jeU(W% - zizj) (4 — %)2

1 A i j
-3 Ei,jeU(Trz’j - zizj)(g_,. - 2—2)2

where V4 and V4 denote the adjusted variance for the PPS and the CPS
cases respectively. Next, by some straightforward algebra, and using that
W;‘} < z;2; we can bound this expression by

| 7?;‘; - 77;-‘;
L R Ly 2.6
maxi; e Yu (2.6)

While By and By can be seen to be sharp bounds, 1Yy is typically an
overestimate of the possible values of ¢ for varying y’s. In the case of
variance comparisons we do two things, we compare the real variances for the
adjusted methods and on the other hand, we compare each of the asymptotic
variances with the corresponding exact variance.

3. The implementation

A computer system was developed to make comparisons between CPS and
PPS designs in terms of estimators of population totals, biases and vari-
ances.
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3.1. The input parameters

The program gives the option to load a data file consisting of a column with
the study variable y and a column with an auxiliary variable z. For simula-
tion convenience we load the MUCLUS file, which is the clustered MU284
population readily available from Statistics Sweden, at http://lib.stat.cmu.
edu/datasets/mu284, to illustrate results for small and moderate popula-
tion sizes. The MUCLUS population file consists of information about 284
Swedish municipalities clustered in 50 clusters. The variable P85, the mu-
nicipalities population in 1985 (in thousands) will be used as the study
variable y and P75, the municipalities population in 1975 (in thousands)
will be used as the auxiliary variable z which we believe is proportional to
y =P85. The user is prompted to enter the size of the population N, N < 50
and the sample size n < N. The population will consist of the first NV obser-
vations in the MUCLUS file. Based on this information a vector z of desired
proportional inclusion probabilities satisfying that Zfil z; = n is created
from P75.2 For examples with larger population sizes we load the MU284
file, which consists of all the 284 Swedish municipalities. We adopt again
y = P85 and z = P75 as the study and the auxiliary variable respectively.
For other examples we choose to work with the 271 smallest municipalities
of the MU284 file.

3.2. Calculations for Conditional Poisson Sampling (CPS)
and the Pareto mps Sampling (PPS) case

1. Given that p = z, the program calculates first order inclusion prob-
abilities for the CPS scheme, 7f. For X\ = z, the program calculates

first order inclusion probabilities for the PPS scheme, 7%.

2. The program also computes the adjusted inclusion probabilities p?,

pertaining to z, for CPS and the adjusted inclusion probabilities A4,
for PPS.

3. Using the vector p# as input, first order inclusion probabilities are
calculated for CPS, and the resulting vector of inclusions is denoted
by 74. For PPS, using the vector A as input, first order inclusion
probabilities are calculated and the resulting values are denoted by
#4. Observe that 74 and A4 should ideally equal z.

4. The second order inclusion probabilities for the straightforward schemes,
are calculated using the input vectors z and 7¥ for CPS, and z and 7%

3The programs are written in Matlab (ver. 5.2) for the Unix system, however some
routines are rewritten in Fortran77 to obtain better performance.



26

4.

4 COMPARISONS BETWEEN METHODS

for PPS. The resulting bivariate inclusion probabilities are denoted by
7} and by 7} for CPS and PPS respectively.

. The second order inclusion probabilities for the adjusted CPS scheme

are calculated with input vectors p# and 74, and the resulting values
are denoted by W;‘;. Analogous for PPS, the adjusted values 7?;3- are

calculated with input vector A4 and #4.

. In the case we select to work with the study variable y, the program

determines the relative absolute bias B for the population total esti-
mator fy, in the straightforward CPS case and the relative absolute
bias B for the straightforward PPS.

. The program also calculates the real variance given by (2.3) for both

sampling methods. Moreover, for the adjusted CPS scheme, the asymp-
totic variance, cf. Hajek (1964), given by

A
N Py LA
AVA = Lz yi _ 2%z (L) (1 = ph).

is calculated. Similarly, for the adjusted PPS scheme, the asymptotic
variance, cf. Rosén (1997b), given by

Af A
yi ¥ (1—AF)

N
N
avA = LS8 2 L) A1 - )
N—lizz1 Zi Zj)\j(l—)\j)

(3.1)
is also calculated. The factor N/(N —1), is motivated by an analogous

ad hoc argument as that given by Rosén (1997b) for the Pareto case,
and it is used here to make comparisons between the methods easier.

. The program calculates the bound for the relative absolute bias, By,

By, respectively for CPS and PPS.

The variance dissimilarity 1/ and its bound 1y are also calculated.

Comparisons between methods

The objective of this paper is to compare the CPS and the PPS designs.
For that purpose the following section presents evaluations and results of
comparisons for small, moderate and larger population sizes.
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For all cases presented below first and second order inclusion probabili-
ties are calculated for the straightforward and the adjusted procedures for
both methods.

In the next examples, we use the MUCLUS file to illustrate the conver-
gence behaviour of first order inclusion probabilities for small and moderate
sample sizes, as well as the behaviour of biases and estimator variances.
Then, the aim is to estimate the population total of the study variable
y = P85, using inclusion probabilities proportional to the auxiliary variable
x = P75, see Section 3.1 for more details. For these cases tables containing
first order inclusion probabilities for the straightforward and adjusted proce-
dures for both methods are presented. Second order inclusion probabilities
are summarised by tables showing results of calculations of the estimator
variances and the dissimilarity bounds for these adjusted schemes.

For the examples of larger population sizes the file MU284 is used, see
Section 3.1, where again, two variables are recorded for each element in the
file: the population of Swedish municipalities in 1985, y = P85, and the
population of Swedish municipalities in 1975, z = P75. For these cases
tables for first order inclusion probabilities are omitted, but tables of the
estimator variances and their bounds for the adjusted schemes are presented.

The bias and the bound of the bias for the straightforward procedures
are also calculated for all examples.

5. Bias and variances

In the following examples we will use the option to include in the calculations
the study variable y = P85. In short, the program works with the MUCLUS
data file which consists of information on N = 50 clustered Swedish munic-
ipalities. For each example we choose the population size and the sample
size. Then, the inclusion probabilities are determined proportional to the
auxiliary variable x = P75.

5.1. Example N =5,n=2

In the first example we choose N = 5 and n = 2 and we compute first and
second order inclusion probabilities. From the results shown in Table 1, we
already note that the approximation of first order inclusion probabilities in
the PPS case to the given z-values is better than in the CPS case. For the
PPS case By, B should be read as By, B. Table 2 describes the relative
absolute biases and variances. The former, as well as its bound, is smaller
for the PPS case. The variances are very similar but, on the other hand,
the asymptotic variance is better for the CPS case.
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Table 1: Exact and adjusted inclusion probabilities, N=5 and
n=>2.

y P ﬂ.R pA 7rA 7~TR AA ~A

28 03218 0.3031 0.3371 0.3219 0.3187 0.3248 0.3218
36 03448 0.3303 0.3562 0.3448 0.3423 0.3472 0.3448
31 03678 0.3583 0.3750 0.3678 0.3661 0.3694 0.3678
39 04598 04750 0.4478 0.4598 0.4623 0.4573 0.4598
43 0.5057 0.5333 0.4839 0.5057 0.5105 0.5012 0.5058

Sum: 177 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

Table 2: N=5 and n=2, z as in Table 1.

Method By B va  AvA
CPS 0.05816923 0.00177287 84.22 85.11
PPS 0.00972744 0.00030478 84.21 85.94
Variance

comparison: Yy = 0.00665939 ¢ = 0.00006109

5.2. Example N=14,n=25

We now consider the population described above with N = 14 elements
and the sample size n = 5. Table 3 shows the calculations of exact and
adjusted inclusion probabilities for the CPS and the PPS schemes. We
see that the first order inclusion probabilities for the PPS scheme are very
close to the intended z-values. As it is shown in Table 4, the relative
bias under PPS design, as well as its bound, is smaller than for the CPS
case. The asymptotic variance approximates the variance better for the PPS
case but the real variance is slightly smaller for CPS design. The values of
the second order inclusion probabilities are very similar, this is observed
from the variance comparison in Table 4. The control sum of second order
inclusions is 10.0000 for the CPS and 9.99999999999996 for the PPS case.

5.3. Example N=50,n=5and n=9

In the next two examples we consider the cases where N = 50, n = 5
and N = 50 and n = 9. We omit here the results for first order inclusion
probabilities for the straightforward and adjusted schemes, but we note that
the 7F-values are very similar to the z-values under the PPS scheme. The
smallest z; value is 0.0171 and the largest is 0.54143 in case n = 5. Similarly,
for n = 9 the smallest is 0.03079 and the largest is 0.9746.
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Table 3: Exact and adjusted inclusion probabilities, N=14 and
n=>4.

Y z Tk pl 7 R A i

28 0.2035 0.1946 0.2121 0.2035 0.2030 0.2040 0.2035
36 0.2180 0.2094 0.2263 0.2180 0.2175 0.2185 0.2180
31 0.2326 0.2244 0.2404 0.2326 0.2321 0.2331 0.2326
39 0.2907 0.2851 0.2959 0.2907 0.2903 0.2911 0.2907
43 0.3198 0.3160 0.3232 0.3198 0.3195 0.3201 0.3198
53 03706 0.3707 0.3705 0.3706 0.3706 0.3707 0.3706
50 03779 03786 0.3772 03779 03779 0.3779 0.3779
55 0.3924 0.3943 03906 0.3924 0.3925 0.3924 0.3924
54 0.4070 0.4101 0.4040 0.4070 0.4072 0.4068 0.4070
54 0.4070 0.4101 0.4040 0.4070 0.4072 0.4068 0.4070
57 04142 0.4180 0.4107 0.4142 0.4145 0.4140 0.4142
59 04215 0.4259 0.4173 04215 04218 0.4212 0.4215
62 0.4506 0.4576 0.4440 0.4506 0.4511 0.4501 0.4506
66 0.4942 0.5051 0.4840 0.4942 0.4950 0.4934 0.4942

Sum: 687 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Table 4: N=14 and n=¥5, z as in Table 3.

Method By B VA AVA
CPS 0.04368502 0.00033962 179.5383 185.7819
PPS 0.00246133 0.00002088 179.5504 182.2331
Variance

comparison: 9y = 0.00333009 1+ = 0.00006716

From Tables 5 and 6, we observe that the relative bias is small for both
schemes but slightly smaller under the Pareto case. The real variances
are very similar for both sampling schemes. In addition, the asymptotic
variance, for the respective schemes, approximates the real variance better
as the sample size increases. This approximation is better under PPS design.

6. Examples with larger populations

From the MU284 population we choose now the 271 smallest communities
to be able to vary the sample size and still have the z-values proportional
to x = P75. For this population, where N = 271, calculations of first and
second order inclusion probabilities are realized for different sample sizes,
as for the other examples. Results for measures of variance dissimilarities
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Table 5: N=50 and n=45.
Method By B yA AVA
CPS 0.04589144 0.00047470 39098.17 39351.00
PPS 0.00258615 0.00002201 39088.52 38963.56
Variance
comparison: ¢y = 0.01593345 ¢ = 0.00024693
Table 6: N=50 and n=49.
Method By B vA AVA
CPS 0.02911717 0.00023734 18849.45 18937.27
PPS 0.00095265 0.00000803 18872.96 18795.31
Variance
comparison: Yy = 0.48211450 1 = 0.0012472

and the variance bound, as well as bounds for the relative bias for the
straightforward procedures are shown in Table 7 and in Figures 1 to 4.

Table 7: N=271.

n (4

YU B By B By

5 | 0.000044
12 | 0.000120
20 | 0.000199
30 | 0.000286
50 | 0.000379
60 | 0.000373
65 | 0.000359

0.000057 0.000029 0.008773 0.00000026 0.000110
0.001672  0.000028 0.008211 0.00000025 0.000097
0.003187 0.000027 0.007487 0.00000023 0.000081
0.005580 0.000025 0.006530 0.00000021 0.000061
0.013475 0.000021 0.005838 0.00000015 0.000027
0.023121 0.000017 0.005882 0.00000011 0.000021
0.066843 0.000015 0.005876 0.00000009 0.000019

We observe that the measure for the variance dissimilarities is very small
even for larger sample sizes. This value, as well as its bound increases as the
sample size increases. On the other hand, the bound for the relative bias
decreases as the sample size n increases for both sampling schemes. But for
the PPS case, these values are much smaller than for the CPS case.

In order to appreciate the behaviour of these measures as the sample
size increases the plots are presented in different scales.

In Table 8 results for variances calculations are shown. The real variance
and the asymptotic variance are denoted by V4, AVA and VA, AVA for
CPS and for PPS schemes respectively. We note that the real variance
for both methods are very similar. The approximation of the asymptotic
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variance to the real variance is better for the PPS case, but the convergence
is better for both schemes, as the sample size increases.

The computer programs to make this calculations work very fast since
these are developed in Fortran 90 and Fortran 77. For small and moderate
populations all results are calculated in some minutes. For larger popula-
tions and larger sample sizes the execution time can take approximately one
hour. There is a big difference between the complexity of the procedures
especially the second order inclusions in the Pareto case take 50 minutes
for a population of size N = 271 and a sample of size n = 65 when for
the CPS case, second order inclusion probabilities take the same time for a
population of size N = 542 and a sample of size n = 120.

7. Overall conclusions

7.1. Comparisons of the exact and approximative meth-
ods

The implementations made it possible to compare the two methods with
each other and to study earlier asymptotically motivated approximations.
This has been done with help of a specially designed computer program.
The most important consequences of these investigations are sketched next.
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There are essentially four main alternatives (described in this paper) for
an investigator who is going to make a wps sample.

e CPS with straightforward approximations of inclusions and variances.

e CPS with adjusted unconditional inclusions and corresponding exact
inclusions of second order.

PPS with straightforward approximations of inclusions and variances.

PPS with adjusted parameters and corresponding exact inclusions of
second order.

Both of the approximative methods are easy to implement, but the straight-
forward PPS method works much better than the straightforward CPS
method. On the other hand if one chooses between the more demand-
ing unbiased methods, the resulting variances and second order inclusion
probabilities are very similar. Still, there may be advantages with the PPS
in connection with multiple or “permanent” samples, where one wants big
overlaps between the samples, cf. Ohlsson (1995).

Two natural alternative “exact procedures” that are simpler to imple-
ment and faster than the adjustment procedures are derived by the use of

R, nft, 78, &ft, a.s.f. in construction of the Horvitz-Thompson estimators
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Table 8: N=271.

n vA AVA vA AVA
5 | 56186.76 56232.46 56189.26 56146.85
12 | 22665.37 22686.72 22668.08 22650.90
20 | 13087.68 13101.98 13090.29 13080.40
30 | 8298.67 8309.31 8301.03  8294.88
50 | 4467.02 447430  4468.71  4465.76
60 | 3508.87 3514.99 3510.18  3508.08
65 3140.27 3145.85 3141.40 3139.61

and in the calculation of variances. These latter alternatives have not been
systematically studied in this paper, but we believe that they, in typical
applications, will have properties similar to the two studied.

Another conclusion from the results is that the convergence behaviour
of first order inclusion probabilities is very fast for the PPS method. This
approximation is good also for very small population sizes. We also observe
that the PPS method has less bias in all cases and the approximation of the
asymptotic variance to the real variance is better for this design. At the
same time, this approximation is better for both schemes as the sample size
increases.

Of course, this is a first approach to study and compare the characteris-
tics of these two methods. To really understand for example the asymptotic
behaviour larger and more systematic studies of the relation between the
p, A and 7 parameters are needed. A such study for the PPS is under
development (Aires & Rosén report).
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1.

Poisson Sampling is a method for choosing a sample s, of random size |s|,
from a finite population U consisting of N individuals. Each individual i
in the population has a predetermined probability p; of being included in
the sample s. A Poisson sample may be realised by using N independent
Bernoulli trials to determine whether the individual under consideration is
to be included in the sample s or not. Héjek (1964) showed that condition-
ing on the sample size n in a Poisson Sampling design, yields the maximum
entropy distribution of s among all sampling procedures of size n, with in-
clusion probabilities of the individuals equal to those of this Conditional
Poisson Sampling (CPS) procedure. In fact, the N trials form one experi-
ment. Any experiment that results in other than n out of the N individuals
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Abstract

Conditional Poisson Sampling design as developed by Hajék may
be defined as a Poisson sampling conditioned by the requirement that
the sample has fixed size. Algorithms were implemented to calculate
the first and second order conditional inclusion probabilities given the
inclusion probabilities under Poisson Sampling. Numerical methods
were also introduced to compute the unconditional inclusion probabil-
ities when the conditional inclusion probabilities are predetermined.
In this paper we extend the second order algorithms to a recursive
fast procedure to derive higher order inclusion probabilities for Con-
ditional Poisson Sampling design.
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being picked is rejected. One performs sequentially independent experi-
ments until one of the experiments results in n out of the N individuals
being picked. Let A, denote the class of all possible samples of size n and
Al the set of elements of A,, containing i, so that

ZseA; Hje.s' bj Hk¢5(1 - pk)

7, =7i(p) =P €s||s|=n) = )
i (p) ( | | | ) ZseAn Hjespj Hk¢5(1 _pk)

(1.1)

i = 1,..., N, are the inclusion probabilities of the individuals in the CPS

procedure. It is hardly ever true that 7r; = p;. Nevertheless a choice of the

pi’s can be made by solving the following equation system, for any given set
e . e N

of probabilities z;, i = 1,..., N satisfying >°."; z; = n,

Furthermore, the equation system (1.2) has a unique solution such that
Zililpi:n, as shown by Dupacova (1979). Hajek also showed that for large
samples one can let p; equal the desired conditional inclusion probabilities z;
to get a good approximation of the solution of equation (1.2). For moderate
sample sizes he also suggested more elaborate approximative formulas in
order to get more precise inclusion probabilities or vice versa approximative
adjustment of the unconditional inclusions. In Aires (1999), methods are
given to calculate the exact inclusion probabilities of first and second order.
In the same paper, numerical methods are also given to solve (1.2). The
second order conditional inclusions, 7;;, turned out to have a surprisingly
simple relation to the first order conditional inclusions and the unconditional
inclusion probabilities. Namely,

Fij = LKL Bt Kk (1.3)

in case v; # vy, where v; = p;/(1 — p;). For the case y; = ;, consider jg
such that ~; = v;,, then

o

(n = D = Xy s Ti
ks ’

(1.4)

Tijo =

where k; is the number of elements j such that j # ¢ and v; = ;. A
straightforward, but more time consuming, generalisation of the numerical
procedures for calculations of first order inclusions were also given for second
order inclusions.
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In this paper we generalise these two methods to calculate inclusion
probabilities of higher order for the CPS design. These inclusion proba-
bilities are of interest for calculation and estimation of moments of higher
order, e.g. to facilitate corrections on the coverage accuracy of the confi-
dence interval of the estimator, cf. Thompson (1997) and Hall (1992).

2. Inclusion probabilities of higher order

For simplicity of presentation and ease of understanding, the results will be
explicitly given, but the argument will be presented only for third order in-
clusion probabilities. The generalisation to inclusion probabilities of higher
order should be straightforward once the principal ideas have been grasped.
Consider a CPS of size n from U = {1, ..., N } with unconditional Bernoulli
parameters pi, ..., pn. We denote by 7, the inclusion probabilities of third
order, n > 3 and by P(s) the probability distribution for the unconditional
Poisson design. Moreover

ZseAij’“ P(S)
ZseAn P(s) ’

fijr = P(i,j,k €s || s|=n) =

where A, denotes the class of all possible samples of size n and A¥* is
the set of elements of A,, containing elements ¢, j and k; 4,5,k = 1,..., N.
The inclusion probability of third order of units 4, j, k to be included in the
sample s, ¢ < j < k, can be derived similarly as in the univariate case, using
Lemma 1 in Aires (1999). In that paper, it is shown that the quantities,

Sy (prsmon) = Y. [[ »i [J—ps) (2.1)
s€A,(N) i€s s
with N =0,1,2,... and n = 0,..., N, may be calculated recursively by
Syly(pla JpN) = pNS,JLV__ll(pl, -"apN—l) + (]— - pN)Sév_l(pla “'7pN—1)J
for n =1,..., N — 1 using the observations that
So =L =p)(L—=p2)---(1-pn)
and
SIJ\\JI =Dpip2 " PN-
Thus the third order inclusion probabilities are obtained by consideration
of the equations,
I pip;iPeSp s ([pi: pj, Pe])
N Sy (p1; -, PN)
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where [p;,pj,pr]° denotes the vector of inclusion probabilities [pi, ..., pn]
excluding elements p;, p;, and py.

For the general case a similar reasoning should be used to derive the
formula for the r:th order inclusion probabilities, for ;7 < ... < i, and
n>r,

e - Diis ey Din S,JLV__TT([pil, "'7pi.,,]c)
et Srjlv(p177pN)

For larger populations this method can be slow and ineffective due to the
amount of operations required to complete the recursion process. Therefore
we present below an alternative method to calculate third order inclusion
probabilities that is a straightforward generalisation of the second order
methods in (1.3) and (1.4).

Let 7;j\x denote the probability that elements 7,j but not element k
belong to the sample s, for a Conditional Poisson sample of size n, n > 3.
We denote the odds by v; = p;/(1 — p;). From equation (1.1) it may be
deduced that,

. D gcai\k (13_;) [Ines Pr/(1—pa)
Fonn =
A ZseAn Hle.s /(1 —pr)

where A9\ is the set of s € A, with ij € s, k ¢ s, and ¢ is the set s
excluding element j. Furthermore,

Fing = ZseA;’“\j (13’;,7) HhES* pr/(1—pr) Vi _ %.k\‘ 7 (2.2)
A ZseAn Hles pl/(l _pl) Tk V 'Yk’

[\ /
~"

Tik\;

s* is the set s excluding element k. On the other hand,

Tij = Tij\k t Tijk

(2.3)
Tk = Tjk\i + Tijk-
By substituting (2.2) in (2.3),
Tij = %ﬁ'ik\j + ik
ik = Tik\j + Tijh-
Combining the two equations, we get
i = Lk Z T (2.4)

Vi~ Yk
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in case v; # Vk-
For the case v; = v, we need:

Lemma 1. For o sampling design with fixed sized n and for i # j,

Z Tijk = (n - 2)7Tij (2.5)
k:k¢{i.j}

where 7;;;, and 7;; are the obviously defined multiple inclusion probabilities.
Proof: The inclusion of a given element k in a sample s may be regarded
as a random event indicated by the random variable I}, defined as

I 1 ifkes
E=11 0 ifnot

By the relations ), Iy = > 7 = n and E[I;I;] = m;j, see Sarndal et al.
(1992), page 36-38, we then get

S mig = Y BE(LLIL)=E[LLO I — I — 1))
k:k¢{i,j} 1%
E[LIj(n — I; — I;)] = nE[L;I;] — E[I}1;] - E[I; L]
= (n — 2)7rij.

Now fix ko such that v, = 7;. From the lemma we get that:

(n—2)7t; = Z Tijle = ( Z Tijk) + Milijhg,

kik@ {i,5} kb {i,5}ve i

where h is the number of elements k ¢ {i,j} and vx, = y; (or equivalently
Dko :pj). Thus,

(0 = )i = D kg {i,iy ety Tk
; .

(2.6)

Tijko =

Note that the number of unordered triplets in a sample of size n is always
( g ) and therefore -,  Tije = ( g ) can be used as a checksum.

In the general case an analogous reasoning can be done to show that:
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Theorem 1. For a Conditional Poisson sample of size n, the inclusion
probabilities of r:th order, n > r and i, < ... < i,, are

o o
_ ’yir_lﬂ.ih...,ir_g,i-,‘ - %’,T"il,...,i,_l

o
ﬂ.il,...,’ir -
Yir—1 — Yin

in case v;._, # 7i,. For the case v;._, = i, fix ig such that vi._, = Vi, ,
then

o o

= )y iny — Do PRI
N ( i1 5eensin—1 (S TEPE o Ty A S S e S
Ti1yeiiyine1,yi0 — h

where h is the number of elements i, # i1, ...,4,—1 such that v, = vi._, or
equivalently p;, = pi,_,. The control sum for the general case is

z o _ n
) ) ﬂ-il,...,ir - r -
11<...<%p

Remark: In a computer implementation for the algorithm in the theo-
rem, one shall permute the individuals and choose 7;,_, and «;. such that
the difference +;,_, — ;. become large enough to avoid values close to zero
in the denominator.
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Abstract

Order Sampling with Fixed Distribution Shape is a class of sam-
pling schemes with inclusion probabilities approximately proportional
to given size measures. Methods were provided to compute the exact
first and second order inclusion probabilities numerically when the
distribution shape is of the Pareto type. Procedures were also pro-
vided for this case to adjust the parameters to get predetermined
inclusion probabilities. In this paper we prove the existence and
uniqueness of a solution for the latter problem, in general for any
order sampling of fixed distribution shape.
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1. Introduction

An asymptotic theory for order sampling is given by Rosén (1997a, 1997b).
He introduces the notion of Order Sampling with Fixed Distribution Shape
and he also shows that the Pareto mps sampling design (PPS), which is
a scheme that belongs to this class, is asymptotically uniformly optimal
among the schemes in this class which have inclusion probabilities asymp-
totically proportional to given size measures (wps). Algorithms to find nu-
merical values of the exact first and second order inclusion probabilities
were proposed in Aires (1999), for PPS, as well as two procedures to adjust
the parameters when the exact inclusion probabilities are given. However,
the latter were based on a conjecture assuming the existence of a unique
solution given the exact inclusion probabilities. In this paper we prove this
conjecture, i.e. that these parameters can be arbitrarily prescribed for any
order sampling with fixed distribution shape. The argument will follow the
same line as in Jonasson et al. (1997), where a corresponding theorem was
proved for Conditional Poisson Sampling procedures. However since during
the publication procedure an old quite different proof of that theorem was
found, see Dupacovd (1979), the proof was never published. Thus we shall
here give a full account of all the quite involved arguments.
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50 2 PRELIMINARIES

2. Preliminaries

2.1. Order Sampling

Consider a population U = {1,..., N}. To each unit ¢ in the population is
associated a probability distribution Fj;(t) with density f;(¢), 0 < < oo. To
realize an Order Sampling scheme of sample size n, with n < N, we consider
independent ranking variables @1, @2, ..., @n with continuous distribution
functions Fi, Fy, ..., Fiy. The units with the n smallest @)-values constitute
the sample s. The idea of Order Sampling originates from the special case
where all (); are uniform in which case the inventor Esbjérn Ohlsson (1995),
named the resulting procedure Sequential Poisson Sampling. The idea was
further developed by Rosén (1997a, 1997b), who also introduced the PPS
scheme and stated the following definition of Order Sampling with fixed
distribution shape:

Definition 1. Let H(t) be a probability distribution with density h(t) >
0, t € [0,¢], where ¢ = oo is allowed; and let § = (61,...,0n), 6; > 0, be
real numbers. An Order Sampling scheme with F = (Fy, Fs, ..., Fn), is said
to have fized order distribution shape H(t) and intensities 0, if either, and
hence both, of the following two equivalent conditions are met.

1. The ranking variables Q1,...,Qn are of type Q; =V;/0;, i =1,...,N,
where Vi, ...,V are iid random variables with common distribution
H.

2. The order distributions are F;(t) = H(t-6;), 0 <t < o0, i=1,...,N.

Thus an important subclass is derived by the assumption that all F;
belong to the same scale family and in case these distribution functions are
defined as F;(t) = 6;¢t/(1 + 0;t), 6; > 0, we have a PPS procedure. PPS
based Horvitz-Thompson estimators are asymptotically uniformly optimal
among order sampling schemes with inclusion probabilities proportional to
given size measures and with fixed distribution shape, cf. Rosén (1997b).
To calculate the exact inclusion probabilities for an element i € U under
order sampling design, we calculate first the distribution functions of or-
der statistics of a sample of independent, but not necessarily identically,
distributed random variables, see Aires (1999),

Lemma 1. Consider a sequence Q1,Q2, ... of independent random variables

with distribution functions Fy,Fs,... . Let le) be the n:th order statistic
among Q1,Qa, ..., QN with distribution function F~. Then FN(t), N =
1,2,..., n=1,..., N, satisfy the recursive equation:

FY(t) = FY ') + Fn@IF,5 ' (6) = FY L), (2.1)
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where F{ (t) = 1, for all N and t.

Returning to the order sampling procedure, the probability of element
N belonging to the sample s is

™ = P(iES)ZP( ' >QN)
= [Ta-ETamon (2.2
0

The inclusion probability of any other unit 4 is derived similarly, from the
corresponding formula for the rearranged sequence

Q17Q27 "'7Qi—17 Qi+17 "'7QN7Qi

instead. The recursion in (2.1) and the integral in (2.2) can be implemented
to calculate 7; numerically with high precision.

Let g; be m; as defined in (2.1) and (2.2) seen as a function of the 6-
parameters,

gi(61, ) = / (1= ENU8°, ) fos ().

This means that FN~! is the distribution function of Qé\; 1 as in (2.1),
fo.(t), i = 1,..., N is the density of Q; and {6;}° is the set {61, ...,0n}\{6:}.

In Aires (1999), two methods are introduced to adjust the §-parameters
for the PPS design to solve the equation system:

gi(el, ...,HN) = Zi,

SN EQ) =N H@)=n

Here we show the existence and uniqueness of the solution of (2.3):

(2.3)

Theorem 1. For any set of values of z1,...,zn such that 0 < z; < 1 and
Zﬁil z; = n, the system of equations (2.3) has a unique solution for any
fized On € [0, 00). Furthermore it is always possible to choose On such that
this solution satisfies Zfil F;(1)= Ef\il H(0;) =n.

3. Proof of the theorem

As already mentioned, the technique we use here is based on ideas in an
earlier proof of a corresponding result for Conditional Poisson Sampling
procedures Jonasson et al. (1997).
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Remark: Assuming that 0 < z; < 1 for every i is no less of generality;
extending to the situation where some z;’s are 0 or 1 is a trivial task.
For simplicity of notation, write (2.3) as

91(617"'70N) =z (61)

gN(gla"'aeN) = ZN (eN)

Note first that all g;’s are continuous and strictly increasing in 6;. To
see this, we observe from the recursive equation (2.1) in Lemma 1 that all
FXN(t) are continuous and strictly increasing in [0, c].

Furthermore, from Definition 1,

P(z’es):P(Qi< é\;)‘l) :P(GK: < %‘1) :P(V,»<0,~ f‘fl)‘l)
is increasing in 6;.

Now to solve the system of equations we will calibrate the 8;’s one by one
and keep the remaining ones fixed. We assume without loss of generality
that 21 < 29 < ... < zyx and that g1, ...,gn are ordered in the same order as
01,...,0Nn. Also Ef;l 9i(01, -..,0n) = n is always automatically true.

First, we fix (02, ...,0n) at arbitrary values in [0, 00). Since g1 (61, -..,0n)
is increasing in #; and tends to 0 as #; — 0 and to 1 as #; — oo there
is by continuity a unique 8 satisfying (el). This 6; can be written as a
function g} (02, ...,0n), where gi is of course continuous. Inserting this into
(e2) yields the equation

Z9 = gz(g}(ﬂg, ...,01\[),92, ...,HN)

which we next, for arbitrary 03, ..., 0, will show has a solution
02 = 93(03, ceey GN)

Since g; is increasing in #; and decreasing in 65 it follows that gi is
increasing in 65.

Furthermore, g1(gi (02, ...,0N),02,...,0n) = z1 and g;(g1 (02, ...,0n), 02,
...,0n) is decreasing in 6, for j > 3, as g} is increasing in 65. Thus it follows
that

g2=mn—21 —gs — ... — gN

is increasing in fs and by continuity of g{ it is also continuous in . To
see that zo is in the range of this function, we recall the assumption that
z1 < 29 < ... < zn. Letting 2 — oo, which means that eventually 6> >
max(f3, ...,0n), we then have that g = max(gz,...,gn) > (n — 21) /N > z2.
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On the other hand letting 6 — 0, will either imply that 62 < gi (2, ..., ON)
for some 65 so that go < g1 = 21 < 2z for this 6> or that g% will also tend to
zero. If n < N —2 the latter would mean that g; — 0, a contradiction, and if
n = N —1it would imply that g; = 1, 7 > 3, so that g1 +g2 = 21 +g2 = 1.
But since n = N — 1 we have that z; + 22 > 1, so that g» < z5 for small
enough 0 as desired. Thus, there is an unique pair 62 = g3(6s, ...,0x) and

01 = g%(037 "'70N) = g%(g%(gg, "'70N);037 ---aON);

so that (el) and (e2) are both satisfied. Moreover, observe that g7 and g3
are continuous.

Now, suppose that the procedure indicated above has been carried out
for | = 2,3,...,k, Kk < N —1, so that at each step we have found unique
values of 61, ...,0; as continuous functions of ¢!, ..., g} of 611, ...,0n so that
(el),...,(el) are satisfied. It is then straightforward to carry out step [ = k+1,
if we verify first that g7, ..., g% are increasing functions of 6j41. To see this,
we assume that increasing 641 to a larger value 8} |, causes gF to decrease
for i € B, where B is a nonempty subset of {1,...,k}, and the others to
increase or stay fixed then the sum ), p g; would decrease. To see that
this cannot happen we proceed in two steps. First we increase 61 and
0; for i ¢ B, i < k, to their larger new values and keep all the other 6;’s
at the original values. Then all g;’s for ¢ € B decrease. Second we change
the 6;’s for i € B to their smaller new values. This causes all g;’s for
i € {1,..., N} \ B to increase and thus ), 5 g; to decrease even further as

Eﬁil g; always remains equal to n.

The special treatment of the case n = N — 1 above must be extended to
the cases n > N — k; let 041 tend to zero and assume that g;‘ also tends
to zero for j = 1,..., k, then, for such an n, g;, ¢t = k+ 2,..., N all tend to
one, which implies that gi+1 < 2g4+1 for small enough 1 in the same way
as for [ = 2.

Thus we can proceed inductively to get, for each fixed 6, uniquely
determined values of 61, ...,0n_1 satisfying (el),...,(eN-1). Since Zi\il 9i =
n, (eN) will be automatically satisfied. However, since all 8;’s,i = 1,..., N—1
are increasing functions of @y, it is clear that Zf\il g; is increasing in fy.
Letting §n — 0 implies that this sum also tends to 0 as 6 < ... < fy. On
the other hand we can at this stage equally well regard 65, ..., 0 as functions
of 6; and letting 6, — oo implies that Zfil 9; — N by the same reason. It
is easy to see that Oy plays the role of an arbitrary scale parameter so that
this sum equals n.

Now let 64, ...,0n_1 correspond to 8 = 1, then (61 -k, ...,0n_1 K, k) Will
correspond to Oy = k. And for Oy = k, we get Zfil F;(1)= Zf;l H(0;-x),
this sum is continuous and strictly increasing, from 0 to IV, on the interval
K € [0, 00], so there exist a unique & such that this sum is n.
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Remark: If ¢ < co, we can not use H (;) as unique parameters, since we
can not discriminate between all 8; > ¢. However observe that if ¢ = co we
may use A\; = H (6;) as an alternative parametrisation. This parametrisation
plays a fundamental role in an effective algorithm for finding the parameters
in the Pareto case, Aires (1999). We conjecture that a direct generalisation
should work well also in the general case.
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1. Introduction and outline

A means for utilising auxiliary information in surveys is to sample with
inclusion probabilities proportional to given size values, to use a mps design,
preferably with fixed sample size. A candidate in that context is Pareto
mps, introduced independently by Rosén (1997) and Saavedra (1995). This
scheme has, as accounted for in Rosén (1997), many attractive properties,
notably simple sample selection, good estimation accuracy, simple variance
estimation and simple procedures for coordination of samples by permanent
random numbers.

Pareto wps was derived by limit considerations, and works with some ap-
proximation. In particular, desired and factual inclusion probabilities do not
agree exactly. Rosén (2000) proved, though, that they under very general
conditions are asymptotically (as the sample size tends to infinity) equal.
Numerical investigations by Rosén (2000) and Aires (1999, 2000) indicated
that the convergence is rapid. These studies were too limited, though, to
allow for general conclusions on how well desired inclusion probabilities are
approximated by the factual ones. This paper reports on a much more ex-
tensive numerical study, in which the chief tool has been the algorithm in
Aires (1999) for computation of Pareto 7ps inclusion probabilities.

The problem of how well desired inclusion probabilities are approximated
has per se mainly basically theoretical interest. However, as is emphasised
in the following, there is close connection between approximation accuracy
for inclusion probabilities and estimator bias, the latter being an issue of
great practical relevance. The convergence of inclusion probabilities implies
that estimator bias is asymptotically negligible. Its magnitude for finite
samples has been an open question, though. The chief aim in this paper
is to enlighten this problem. The main conclusion is, somewhat sweepingly
formulated, that the bias is negligible in practical survey situations.

The paper is organised as follows. Sections 2 and 3 are expository and
review some basics on 7ps sampling in general respectively on Pareto wps.
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58 2 GENERALITIES ON wPS SAMPLING

Measures of approximation accuracy for inclusion probabilities and estima-
tor bias are introduced in Section 4. Section 5 specifies certain size value
patterns which play a distinguished role in the numerical study. The de-
tailed numerical findings are presented in Appendices 1 and 2, containing
tables and graphs respectively. Recommendations for practical use of Pareto
7ps are formulated in Section 6.

2. Generalities on 7ps sampling

We consider probability sampling without replacement with fixed sample
size from a population U = (1,2,...,N), on which a study variable y =
(y1,92,--,yn) is defined. A frame which one-to-one corresponds with the
population units is available. It is presumed that the frame contains unit-
wise auxiliary information s = (s1, $2, ..., 8n), 8; > 0, ¢ € U, interpreted as
size values which typically are positively correlated with the study variable.

A sampling design is a strict mps scheme if its factual inclusion prob-
abilities m;, ¢ € U, are the following desired inclusion probabilities
A= (A1, A2, ..., AN), n standing for sample size,

N
Xi=n-si/ Y s, i=1,2,..,N. (2.1)
j=1

Remark 1. Formula (2.1) can lead to A-values exceeding 1, which is incom-
patible with being probabilities. If so, the usual “adjustment” is to assign the
units with largest size values to a “sample for certain” stratum. A wps sam-
ple is then drawn from the remaining units (with remaining sample size).
In the sequel is presumed that 0 < \; < 1, i € U.

As stated, a strict wps scheme is characterised by the relation m; =
Ai, © € U. We will be more generous, though, and accept a sampling scheme
as a mps scheme if (2.2) below is met,

holds with good approximation for ¢ = 1,2,..., N. In the strict wps case,
the Horvitz-Thompson (HT) estimator for a total 7(y) = y1 +¥2 + --- + Y~
is as stated below. As is well known, this estimator is unbiased.

iar= Y, & (2.3)

i€Sample v
We presume that the estimator in (2.3) is used also under the more generous
7ps notion based on (2.2). Then it may have some bias, though. The
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estimator is re-stated in (2.4) where it is denoted 7(y), which will be useful
a bit later on. Iy, I, ..., Iy denote the sample inclusion indicators,i.e. I; =1
if unit ¢ is selected to the sample and = 0 otherwise.

N

= Y F=Y i—ilz-. (2.4)

i€Sample v i=1

3. On Pareto mps

3.1. Definition

Definition 1. The Pareto wps scheme with size values s = (s1, 82, ..., SN)
and sample size n generates a sample by the following steps.

1. The desired inclusion probabilities X = (A1, Az, ..., AN) are computed
by (2.1).

2. Independent random variables Ry, Rs, ..., Ry with uniform distribu-
tion on [0,1] are realized, and ranking variables @ are computed as
follows,

Q=10 (3.1)

i1=1,2,...,N.
3. The sample consists of the units which have the n smallest )-values.

It is by no means obvious that the above scheme actually is a 7wps scheme
(in the (2.2) sense). However, Rosén (2000) proved that (2.2) holds with
asymptotic (as n — 00) equality.

As stated earlier, a main task for the present study was to find out how
well approximation (2.2) works for finite Pareto mps samples. The central
measure of approximation goodness will be the mazimal absolute relative
bias (for inclusion probabilities),

i
T = i g
II’lZ],X‘)\'z

,i=1,2,...,N. (3.2)

¥ is a natural performance measure in the approximation problem,
which is rather theoretical, though. However, ¥ also has considerable prac-
tical interest due to fact that there is close connection between ¥ and the
magnitude of estimator bias, which is discussed next.
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3.2. On estimator bias for Pareto nps

We presume that the sample is drawn by Pareto 7ps and that the estimator
7(y) in (2.4) is used. As in Section 2, we confine the estimation considera-
tions to the “fundamental” problem, estimation of a population total. Since
(2.2) holds, 7(y) is afflicted with some bias. To get an expression for it, we
take expectation in (2.4),

Bl = Y 4Bl =Y =)+ S (T 1) (9)

Hence, the bias for the estimator 7(y) is

N -
El#(y)] - r(v) = 3 v (r - 1) . (3.4)

Formulas (3.3) and (3.4) yield, the absolute relative bias for the estimator

7(y) is

‘ E[#(y)] - 7(y) ‘ _
(¥)

gyi : (% - 1) /7(¥)

N
<T- <Z |Zli|/T(Y)> :
- (3.5)

If the study variable y takes only non-negative values, as is the case in most
practical surveys, the last factor in (3.5) equals 1. Hence, for a non-negative
study variable y, the absolute relative bias for 7(y) is

‘E[f(Y)] - 7(y) ‘

e <0 (3.6)

Remark 2. The bounds in (3.5) and (3.6) are often conservative for the
following reasons. (i) They disregard cancellation effects due to alternating
signs of m; [A; —1. (ii) All discrepancies |m; /i — 1| do not have the mazimal
value ¥. The bounds can be attained, though, e.g. with y; = 0 for i with
|mi/Ai — 1| < ¥, and y; = sign(m;i/Xi — 1) for i with |m;/\; — 1| = .

3.3. Chief questions in the numerical study

A pair (N;s) of a population size N with size values s = (s1, 82, ..., SN) is
referred to as a size measure situation. A Pareto wps scheme is specified
by (IV;s) and the sample size n. When we want to emphasise dependence on
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one or more of these parameters, we use notation as Pareto mps(N,s, n) or
Pareto mps(s), Ai(n), Ai(n;s), Ai(n; N;s) and mi(n), mi(n;s), mi(n; N;s)
for desired and factual inclusion probabilities. Analogously, ¥ in (3.2) is
often elaborated to

mi(n; N; s)

2

- 1‘ . (3.7)

The chief problems that are addressed are stated in Question 1 and
Question 2 below. Note that Question 1 is a “converse” to Question 2. For
a specific size value situation (N;s),

Question 1. How large, at most, is ¥(n; N;s) for a specific sample size n?

Question 2. Which sample sizes n imply ¥(n; N;s) < B for a specified
B8>07?

In the first round Questions 1 and 2 relate to the approximation (2.2), how
well the factual inclusion probabilities approximate the desired ones. How-
ever, by virtue of (3.5) and (3.6) answers to Questions 1 and 2 also provides
information on relative estimation bias. In the sequel the approximation
problem refers to both these aspects, estimator bias as well as discrepancy
between factual and desired inclusion probabilities.

To the best of our understanding it is in vain to hope for answers to
Questions 1 and 2 via analytical formulas. One has to be content with (fair)
coarse answers derived by numerically demanding computation efforts. The
employed numerical algorithm is described next.

3.4. The computation algorithm

The chief work in deriving answers to Questions 1 and 2 consisted of com-
putation of 7;(n; N;s), ¢ =1,2,..., N, for a rich set of values for (IV,s) and
n. For that the core tool was the algorithm for computation of Pareto 7ps
inclusion probabilities which is derived and justified in Aires (1999). To
give an idea of the numerical efforts, a sketch of the algorithm is presented
below. It describes computation of m;(n; N;s) for i = N. m;-values for a
general ¢ were computed by appropriate re-labelling of the population units.

Computation algorithm for Pareto inclusion probabilities

The given quantities are N, s and n.
Step 1: Compute A;(n,s) by (2.1).
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Step 2: For a mesh M of t-values, which is fine enough to yield desired
precision in the numerical integration in Step 3, determine {FN (), t € M}
by the double recursion (in n and N),

FY () = Fy M) + Fn([F.5 () = Fy (1)), (3.8)

where FV(t) = 1, for all N and 0 < t < co. Fn(t) = On -t/(1 + On - 1)
with 0 = An/(1 — An). Fn is the distribution function of Qn and it is
not hard to see that F2 (¢), 0 < t < 00, is the distribution function of the
n:th order statistic of Q(1), ..., Q(w)- 1/(1+ 6y -t)? is the density of Qn and
(3.9) follows by a straight forward conditioning argument.

Step 3 : Compute, by numerical integration

™ zoN-/Ooo(l—F;V—l(t))/(l + Oy - t)%dt. (3.9)

4. Bounds employed in the approximation prob-
lem

4.1. Some definitions

In the sequel size measures s = (s1, 83, ..., 55) are presumed to be normed
so that average size is 1, i.e. so that (4.1) below holds,

1 N
=Y si=1 (4.1)
N =1

A normed s is called a size value pattern. Set
Smin =min{s; 11 =1,2,..., N}, Syper = max{s;:i=1,2,..,N}. (4.2)

As stated in Remark 1, it is presumed that all \; given by (2.1) are smaller
than 1. This lays the following constraint on sample sizes n, where [-]
denotes integral part and - “less than”,

n < Ny =np(Nss) = [N/Smaw_]- (4.3)

The quantity n,, in (4.3) is called the maximal sample size in situation
(N;s). An n which satisfies (4.3) is said to be an admissible sample size
in situation (N;s). A-values close to 1 may lead to ”capricious” samples,
which can be avoided by prescribing that A\; < a, ¢ = 1,2,..., N for some
specified a < 1. a = 0.9, 0.8 were considered in the numerical context.
The a-maximal sample size n,, , and a-admissible sample sizes are
determined by,

N < Ny = Na(N;s) = [a- N/Smaaz]. (4.4)
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In Section 6 ny, is also used as a means for stating conditions to the
effect that a sample size must not be “too large”. For that purpose also
a = 0.5 was considered. We shall relate approximation error bounds to size
pattern families of the following type

S(N;7,0) = {s : the population size = N, $pin, =y and Smaz = 0},
0<y<1<d< 0. (4.5)

In words: a size pattern is in S(IV;~, d) if at least one population unit
has normed size v, at least one size § and the others have size values in
[7,6]. This type of family is of interest for at least the following reasons.

1. When all size values are equal, § = v = 1, Pareto 7ps(s) is nothing
but simple random sampling, with 7;(n) = A;j(n) = n/N, and the
approximation (2.2) is perfect. Thus, for an approximation problem to
be at hand, different size values must occur. S(V;+, d) lays constraints
on how different they may be. The smaller v and the larger § are, the
more different are the size values.

2. Tt is simple to determine to which family S(IV;~,d) a size pattern
belongs by computing the smallest and largest normed size values.

Since 1, (N;s) and ngy, o(N;s) in (4.3) and (4.4) depend only on N and
Smaz, they are the same for all patterns in S(N;+y,d). We therefore use the
following simpler notation; for s € S(N;+, ) we write

N (N;6) and Ny, o (N; 6) (4.6)

for n,,(N;s) and 7y, o(N;s).

4.2. Bounding sequences

A size value situation (N;s) determines a sequence {¥(n;N;s) : n =
1,2,...,nnp}, with ¥ given by (3.7), which we refer to as the associated
W-sequence. Such sequences will play a central role in the subsequent
considerations.

At the outset of this study we had various conjectures about the be-
haviour of ¥-sequences. Many of these turned out to be wrong when con-
fronted with numerical data. One was that all ¥-sequences have bath-
tub shape. That this is not true in general is illustrated in Figure 4.1,
which shows W-sequences for three different size value patterns, all with
N = 100,7 = 0.5 and § = 2. Their names, "boundary”, "middle” and
"even” are explained later on. A multitude of other ¥-sequence graphs are
presented in Appendix 2.
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a0z . . . T T T T T T
ElE" —&— Ewan
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o8l m —— Baundary 4]

Figure 1: ¥ sequences for three size patterns

Our aim is to answer Questions 1 and 2 in terms of the parameters
N, ~ and §. Figure 1 shows that there is no simple domination rule for
U-sequences for different size value patterns in the same family S(N;~,d).
As functions of n they can take turn to lie above each other. To find bounds
which hold uniformly for N, v and § we must introduce envelope notions.

4.2.1. VU-envelope sequences

The P-envelope sequence for the family S(NV;~,d), denoted ¥*(- ; N;~,4d),
is (recall (4.6)),

¥*(n;N;v,6) = sup ¥(n;N;s),n=1,2,..,n,(N;0). 4.7)
s€S(N;n,68)

In words, U*(- ; N;+,d) means the maximal relative approximation error in
(2.2) for a Pareto mps sample of size n selected from a population of size
N with maximal and minimal normalised size values v and 4. Technically
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formulated, for s € S(IV;~,d) and n < ny, (N;0):

mi(n,s)
)\i(n, S)

—1‘ < 9¥*(n;N,v,0),i=1,2,...,N. (4.8)

Hence, knowledge of U*(- ; N;~,d) enables answers to Question 1. In fact,
T* is the smallest possible upper bound sequence that works for all s in
S(N;7,96).

4.2.2. Quasi envelopes

The envelope (4.7) is defined in terms of suprema over the infinite family
S(N;~,d). To compute it in practice, one needs to know of a finite ex-
tremal sub-family of S(V;+,d), by which we mean a finite sub-family with
the same envelope. Regrettably, we cannot exhibit such a sub-family with
mathematical rigour. However, we strongly believe, supported by numerical
findings, that the following intuitive arguments lead to a ” close to extremal”
sub-family.

Numerically extremal size value patterns (as regards U-values) are found
among geometrically extremal patterns. In the latter category, the following
three types of size value patterns come into mind.

1. Patterns with size values (fairly) evenly spread over [v, d].
2. Patterns with the majority of size values in the middle of [y, §],
3. Patterns with the majority of size values at the boundaries of [v, §],

Precise specifications of such patterns are given in Section 5, where they are
denoted s(N;~,0,e), s(N;v,0,m) and s(N;~,d,b), e for “even spread”, m
for “middle” and b standing for “boundary”.

The quasi P-envelope sequence for S(N;~,d), denoted T**(-; N;~, ) is

T**(n; N,v,6) = max{¥(n;s(N, 7,4, e), ¥(n;s(N,v,d,m)),
U(n;s(N,v,6,b))}, n=1,2,...,n,(N,6). (4.9)

Believing that s(e), s(m), s(b) is a “close to extremal” sub-family of S(V; v, 8)
we work under the following presumption in the sequel,

Conjecture 1. U**(- ; N,~,9) yields good approzimation of the true enve-
lope ¥*(-; N,,9).

Since ¥** is determined by just three size value patterns it is computable
provided that a computation algorithm for ¥(n, N,s) for a given s and n is
available, which it is by Section 3.4. Strictly mathematically, though, Con-
jecture 1 is only a conjecture, based on intuition and numerical support. We
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made attempts to justify Conjecture 1 more rigorous by employing numer-
ical optimisation programs to find extremal size value patterns. However,
this approach turned out to be unfeasible, at least with the optimisation
programs we tried.

4.2.3. Upper sequences

The quasi envelope may be quite irregular, wiggling up and down, as seen
in Figure 1. To enable simple answers to Questions 1 and 2 we introduce
coarser upper bound sequences (than the quasi envelope), called upper se-
quences, which are non-increasing functions of sample size.

The upper sequence I'(+) for the family S(N;+y,d) is

L (no; N;7v;6) = max{¥**(n; N;v;6) : no <n < np(N;6), }
ng =1,2,...,n,(N,J). (4.10)

In words, I'(ng; N; v; ) bounds the relative approximation error in (2.2) for
a Pareto wps sample from a population of size NV, with maximal and minimal
normalised size values v and §, for all sample sizes > ng. Under Conjecture 1
the following bound holds with good approximation. For s € S(N;~,4d),

U(n;N,s) < T(ng; N;v;68), no <n <np(N,68),n9 =1,2,...,np(N; ).
(4.11)

4.2.4. Upper sequence for a-admissible sample sizes

Since Pareto wps is based on limit considerations, one believes in the first
round that conditions for good approximation basically should be of the type
“provided the sample size is at least...”. However, as seen from the graphs
in Appendix 2, U**(-) often attains its largest values for large (admissible)
sample sizes. As a consequence, sharp conditions for good approximation
must also contain an ingredient of the type “provided the sample size is
at most ...”. This aspect will technically be handled as follows. An a is
specified, 0 < a < 1, and used in conditions saying that sample sizes must
not exceed Ny, o in (4.4), which is a way of saying “provided the sample size
is at most ...”. In line with this, the notion of upper sequence is extended
as follows.

The upper sequence for a-admissible sample sizes is

Lo (no; N;7v;6) = max{¥**(n; N;v;0) : ng <n < Ny o(N36)},
ng =1,2,...,nm,o(N;0). (4.12)
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Under Conjecture 1 also the following bounds hold with good approxi-
mation. For s € S(IV;;4),

¥(n; N,s) < Ta(no; N;v;9), no < n < 1 a(N;6),
no =1,2, ..., o(N;0). (4.13)

Remark 3. The mazimmum operations in (4.10) and (4.12) add to what is
said in Remark 2. In (4.11) and (4.13) T'(n; N;v;0) and Ty (n; N;v;6) may
be quite conservative bounds for many sample sizes n.

Appendix 1 presents numerical values for general upper sequences ac-
cording to (4.10) as well as for a-admissible sample sizes, with a = 0.9,0.8,0.5.

4.2.5. Sufficient sample sizes

Let 8,0 < B8 < 1, be a specified tolerance level for the relative approximation
error in (2.2). By disregarding the (mildly) approximative nature of the
statement in Conjecture 1, answer to Question 2 is given by the smallest
inverse ng such that I'(ng; N;v;0) < 8 which is called S-sufficient sample
size for S(IV;7,d) and denoted ng(B). It informs about sample sizes which
are large enough to guarantee approximation accuracy . Formally

no(8) = min{n : I'(n; N;7;6) < 8.} (4.14)

As discussed in Section 4.2.4, large sample sizes rather than small ones
that jeopardise approximation accuracy, which is addressed by the following
notion. The (8, a)-sufficient sample size for S(N;~,d) denoted n(3,q),
is the smallest sample size which guarantees that ¥**(n; N;~;d) < 8 for
n(B,0) < n < Ny o(N;9). Formally,

no(8,) = min{n : Ty (n; N;~;6) < g}. (4.15)

The set of n-values over which minimum is taken in (4.14) and (4.15) may be
empty. Then ng is set to none. Numerical - and (8, a)-sufficient sample
sizes are presented in Appendix 1.

4.2.6. Approximation accuracy and population size

A conjecture about ¥-sequence behaviour which was supported by the nu-
merical findings is formulated in Conjecture 2. Somewhat sweepingly ex-
pressed it says that approximation accuracy improves as population size
increases. Still, also Conjecture 2 is a conjecture without a strict mathe-
matical proof. It can be tested numerically in Appendix 1, though.

Conjecture 2. For fizredn,~y and § the values of upper sequences I'(n; N;y; §)
and T (n; N;v;8) decrease as the population size N increases.
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4.2.7. Weak quasi envelopes

The quasi envelope in (4.9) dominates ¥-sequences for all size pattern
shapes. As illustrated by the graphs in Appendix 2, the “worst possible” in
the boundary pattern unless when sample size is very small. Its ¥-values
mostly lie way above those for even spread and middle when sample size
is “non-small”. However, patterns of boundary type are unusual in prac-
tice where, at least we think so, most pattern shapes resemble even spread.
Patterns in the last category will be said to lie in the vicinity of even
spread. With this background we introduce the weak quasi envelope w¥**,
which takes into account only the even spread and middle patterns,

w¥**(n) = max{¥(n;s(N,v,d,e)), ¥(n;s(N,~,d,m))},
n=12,..,n,(N,d). (4.16)

Moreover, weak upper sequences, weakly G-sufficient sample sizes and weakly
(8, a)-sufficient sample sizes are defined in analogy with (4.10), (4.12) and
(4.14)-(4.15) by using the weak quasi envelope w¥** instead of ¥**. Nu-
merical values are presented in Appendix 1.

Remark 4. In Section 4.2.4 is pointed at the circumstance that the (full)
quasi envelope usually attains its largest values for large sample sizes. This
growth depends mainly on contribution from size patterns of boundary type.
The weak quasi envelope, which is not influenced by boundary type patterns,
behaves as “expected”, it decreases as sample size increases.

5. The special size patterns

Here we give precise specifications of the size value patterns s in S(N;~, )
which are mentioned in Section 4.2.2, boundary, middle and even patterns.
Recall that (4.1) is presumed to hold, and the relation

Y = Smin < 8 < Smaz =0, 1 =1,2,...,N. (5.1)
Set
My=N-(y=1)/(6 =), Ms =N -(1=7)/(6 =) (5.2)
Note the following relations
My,+Ms=N, v-M,+6-Msy=N. (5.3)

M., and M; split into integral parts, N, and Nj, and fractional parts, F,
and Fj as follows,

M’Y = [M’Y] + F’Y = _7\7,y + F,y, Ms = [Mg] + Fs = N5 + Fy. (5.4)
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Case 1 is said to be at hand if M, and Mj; both are integers. Then
(5.3) takes the form,

N,+Ns=N, v-N,+4-N; =N. (5.5)

Case 2 is said to be at hand if M, and M; not both are integers. Then
none of them is an integer, since N, and Ns add to an integer. Moreover,
as is readily checked

F7+F521,N,Y+N5=N—1,N—(’Y-N7+5-N§)=’y-F7+(5-F5.
(5.6)

The special patterns are first specified, and then is shown that they satisfy
(4.1) and (5.1).
The boundary pattern s(N;~,d,b)

It is presumed that N, and § are such that N, > 1 and N5 > 1 . For this
size pattern N, units are given the s-value v, and N5 units the value §. In
Case 1 all units thereby get s-values. In Case 2 one unit remains, which is
given the s-value

sN=N—(y-Ny,+6-Ny), (5.7)
which by (5.2) also means

sy=7-F,+0-F;.

The middle pattern s(N;v,d, m)

It is presumed that N,~y and § are such that vy <1—(y+4d—-2)/(N—-2) <4.
For this size pattern s-values are assigned as follows. The size values v and
0 are given to one unit each. All remaining units are given the s-value

s=1—(7+6—2)/(N—2). (5.8)

The even spread pattern s(N;7,4,e)

It is presumed that N, and ¢ are such that N, > 2 and N; > 2. The
s-values are allocated as follows.
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If  (1-7)-N,<@-1)-Ns (5.9)
si =7+ (i—1)-(1=7)/(N, - 1), (5.10)
i=1,2,..,N,,

$i=0—(Ns+Ny—i)- (1—7)-Ny/[(Ns - (N5 — 1)], (5.11)
i=N,+1,Ny+2,...N, + Ns.

If  (1-7)-N,>(©6-1)-Ns (5.12)

si=y+(-1)-0-1)-N/[N,- (N, =1)],  (5.13)
i=1,2.., N,

s;=0—(Ns+ Ny —i)- (6 —1)/(N, — 1), (5.14)
i=N,+1,N,+2,...,N, + Ns.

In Case 1 all units get s-values by (5.9)-(5.11). In Case 2 one unit remains,
which is given the s-value in (5.7).

Thereby the size patterns are defined and the remaining task is to show
that they satisfy (4.1) and (5.1). For the middle pattern the verifications
are straightforward. The same holds for the boundary pattern, when noted
that sy in (5.7) is a linear combination of v and § and, hence, lies in the
interval [y, d]. For the even pattern we start with the case (5.9). Formulas
(5.10) and (5.11) readily yield

N"/
D osi=7 Ny + Ny - (1-7)/2 (5.15)
i=1
and
N,+Ns
Y si=0-Ns—N,-1-7)/2, (5.16)
i=1

which in turn yields

N,+Ns
> si=N,-y+6-Ns. (5.17)
i=1
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In Case 1 the relation (5.1) follows from (5.17) and (5.5). In Case 2
it follows from the definition (5.7) of sy. It remains to show (5.1). The
s-values in (5.11) are generated as

si=06—(Ns+ N, —i)- (6 —€)/(Ns — 1),
i=Ny,+1,N,+2,..,N,+ Ny, (5.18)

where € solves the equality version (1 —«) - Ny = (§ —€) - +N;, of the
inequality in (5.9)

e=d—(1-1)-N,/Ns. (5.19)

(5.9) yields that 1 < ¢, and (5.19) that € < 4. Hence, all s-values in (5.11) lie
in [, 6]. The same holds for the s-values in (5.10). That sy in (5.7) satisfies
(5.1) follows from (5.7). Then case (5.12) can be treated quite analogously,
and is left to the reader. This concludes the proof.

6. On the magnitude of estimator bias

6.1. Factors that affect the bias
6.1.1. Introduction
For a practitioner who considers to use Pareto 7ps, a crucial question is,

Question 3. Will the estimator bias be negligible in my particular sampling-
estimation situation?

Answers to Question 3 in terms of practically available parameters are given
in next section. They are with necessity a bit complex, since the approxi-
mation accuracy depends on several factors, notably those listed below and
commented on thereafter.

e The study variable.

o The tolerance limit for "negligibility”.
e The size value pattern.

e The population size.

e The sample size.

As regards the study variable, we confine to the case with non-negative
variable, which is the typical situation in practice. Hence, subsequent state-
ments about bias shall be interpreted according to (3.6). It is left to the
reader to make appropriate modifications for situations with sign changing
study variable.
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6.1.2. Tolerance level for negligibility

There is of course no single answer to how large at most a “negligible” bias
may be. It depends on the intended use of the statistic and the magnitude
of other survey errors, notably the sampling error. We believe that most
statisticians say that 1%, and even 2%, relative bias is negligible, a reason
being that the sampling error commonly is a good deal larger.

6.1.3. Dependence on the size value variation

As said in Section 4.1, for an approximation problem to be at hand the size
values must exhibit variation, having the aspects range and shape. The
range is the interval [Smin, Smaz] = [7,9]. For a fixed size pattern shape
¥ — values increase with range. Based on experience we believe that in
practical surveys s;,q. = 0 seldom is larger than 5 and s;,;, = v is seldom
smaller than 0.1. Some motivation is given below.

The surveyor disposes of the size values, in the sense that “preliminary”
values may be modified. If the frame comprises units with very small (pre-
liminary) size values, such units are often either definition-wise excluded
from the target population or given larger size values.

If size values vary very much over the entire population, there are often
grounds for stratification by size before sampling, followed by selection of
independent samples from the strata. (A typical example is given by an
enterprise survey with number of employees as size. Then it is often natural
to divide into strata of types ”very big”, ”big”, "medium” and ”small”
enterprises. Mostly the ”very big stratum” is totally inspected). The strata
then take population roles, and S, and s,y in strata are considerably
smaller/larger than in the entire population.

As regards size pattern shape our experience says, as stated in Section
4.2.7, that the boundary pattern, which is most adverse for good approxi-
mation, is very unusual in practice.

Table 1 below introduces, for later use, a broad categorisation of size
value patterns.

Table 1: Some categories of size value patterns

Category A Category B | Category C | Category D
Size Pattern | In the vicinity | In the vicinity No No
shape of even spread | of even spread | restriction. | restriction.
Smax <5 <10 <5 <10
Smin >0.1 > 0.05 >0.1 > 0.05
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Comment:

Category A. Most practical sampling situations are believed to fall in
this category.

Category B. “Normal” pattern shape, while Spmax and/or smin may be
extreme.

Category C. “Normal” smax and Smin, while pattern shape may be ex-
treme (e.g. of boundary type).

Category D. Pattern shape as well as smax and/or smin may be extreme.

6.1.4. Dependence on population and sample sizes

As discussed in Section 4.2.6 approximation accuracy improves as popula-
tion size increases (while v, d, @ and n are fixed). Some of the figures in
Table 2 below are based on extrapolation from available numerical data by
employing the mentioned principle.

As regards dependence on sample size we refer to Sections 4.2.4 and
4.2.5.

6.2. Conditions for negligible estimator bias

The full numerical material to provide answers to Questions 1 and 2 is
presented in the Appendices 1 and 2. It is somewhat difficult, though, to
overview it as it stands in the appendices. The following Table 2 summarises
the numerical findings at the prize of some coarsening. In some cases it
may be helpful to consult the more detailed material in the appendices.
Population sizes smaller than 25 were not considered in the study.

From Remarks 2 and 3 follows that the sufficient sample sizes in Table 2
are more or less conservative and, hence, “overly safety”. In particular, one
should not conclude that the bias necessarily is larger than “guaranteed”
for sample sizes that are smaller than stated ng-values.

Our overall conclusion from the findings is as follows. Although the
figures in Table 2, are conservative we believe that they for most practical
situations lead to the conclusion that the bias is negligible for all admissible
sample sizes and, hence, that Pareto 7ps can safely be employed.
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Table 2: Sample sizes that imply negligible bias

*Size Tolerance limit for negligibility
Pattern 2% 1% 0.5 %
category N a ng N a ng N a ng
>25 1 1 | >40 1 1 >80 1 1
A P5-40) 1 3 | [50-80) 1 3
0-50) 1 4
>80 1 1 | >80 1 1 >125 1 1
B 25-80) 1 2 |[40-80) 1 3 |[100-125) 1 3
[B0—100) 1 4
>100 1 1 | >125 1 1 >175 1 1
C >40 0.8 1 | >100 09 1 >150 09 1
>80 09 1 | >80 08 1 >100 08 1
>25 0.5 1 | >40 05 1 >80 05 1
>150 09 1 | >175 08 1 >125 05 1
D >125 0.8 1 | >80 05 1 [100—125) 0.5 3
>80 05 1
[50 —80) 05 2

* See Table 1.

N is the population size and a states that the sample size should not exceed
Nm in (4.4). ng specifies a sufficiently large sample size, under the a-
restriction, for negligible bias with specified tolerance. The study variable
is presumed to be non-negative. Values for categories A and B are based
on the weak quasi envelope (4.16), those for categories C and D on the
(general) quasi envelope (4.7).
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