
Thesis for the Degree of Doctor of Philosophy

Moment estimation using extreme value techniques

N. C. Joachim Johansson

Department of Mathematical Statistics
Chalmers University of Technology and Göteborg University

Göteborg, Sweden, 2003



Moment estimation using extreme value techniques
N. C. Joachim Johansson
ISBN 91-7291-305-3

c© N. C. Joachim Johansson, 2003

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 1987
ISSN 0346-718X

Department of Mathematical Statistics
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Printed and bound at the School of Mathematical Sciences
Chalmers University of Technology and Göteborg University
Göteborg, 2003



Abstract

The thesis is composed of three papers, all dealing with the application of extreme
value methods to the problem of moment estimation for heavy-tailed distributions.

In Paper A, an asymptotically normally distributed estimate for the expected value
of a positive random variable with infinite variance is introduced. Its behavior
relative to estimation using the sample mean is investigated by simulations. An
example of how to apply the estimate to file-size measurements on Internet traffic
is also shown.

Paper B extends the results of Paper A to a situation where the variables are m-
dependent. It is shown how this method can be applied for estimating covariances
and be put to use as a diagnostic tool for estimating the order of an ARMA-processes
with heavy-tailed innovations.

Paper C further extends the methodology to the case of regression through the
origin with heteroscedastic errors. In a simulation study, the estimate is compared
to some standard alternatives and used for estimating the population total in a
superpopulation sampling framework.

Keywords: Pareto distribution, mean estimation, heavy tailed distributions, telecom-
munication, m-dependence, superpopulation sampling, peaks over threshold
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1 Introduction

What are the people at UC Berkely doing on the Internet in the wee hours of the
morning? They are sure up to something, at least they were between November 6
and 9 in 1996, as is apparent from Figure 1 below.
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Figure 1: UC Berkeley mean file-sizes over 10 minute intervals. Dotted lines are 95%
pointwise confidence intervals. Note that the network was down for approximately
2.5 hours on Friday afternoon.

The graph shows estimates of the average file-size downloaded on the Home IP ser-
vice offered by UC Berkely to its students, faculty and staff. The dataset was divided
into ten-minute intervals and the average estimated over each such interval. (The
complete dataset is available on-line at http://ita.ee.lbl.gov/html/contrib/UCB.home-
IP-HTTP.html). Note how the file-sizes seem to increase early in the morning.

A closer inspection of the data (Johansson, 2001) shows that the number of down-
loads decrease at night, at the same time as the files grow larger. A possible ex-
planation for this could be that users wait until the traffic has slowed down before
downloading large files – thus making the downloads faster. If this is the case, it is
an interesting observation of human behaviour on the Internet which might be of
use for the network administrators.

This investigation may sound like a straightforward application of basic statistics,
however there are mathematical elements in this that may cause trouble. It turns
out that the distribution of the file-sizes is heavy-tailed. Here, the term heavy-tailed
refers to a distribution lacking finite variance. This type of distributions are common,
not only in telecommunications (Crovella et al., 1998; Resnick and Rootzén, 2000;
Deng, 2001) but also in finance (Davis and Mikosch, 2001), insurance (Tajvidi, 1996;
Embrechts et al., 1997; Rootzén and Tajvidi, 2001) and hydrology (Naveau et al.,
2001) to name but a few areas. See also Leadbetter et al. (1983); Reiss and Thomas
(2001); Adler et al. (1998); Uchaikin and Zolotarev (1999) and Coles (2001). The
list could be made substantially longer.
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The reason the lack of finite variance may be a bit of a snag is that the common
method for estimating the mean does not work in the usual manner. Recall that if
X1, . . . , Xn are iid random variables (r.v.’s) with common distribution function F
and with E[X1] = µ and Var(X1) = σ2 < ∞, the well known method of estimating µ
is by looking at the sample mean X̄n = n−1(X1 + . . . + Xn), which has the property
that

X̄n − µ

σ/
√

n
→d N (0, 1), as n → ∞. (1)

This result does not hold for the case when Var(X1) = ∞, hence an alternative
approach is needed. The two main alternatives are described below, followed by a
suggestion of a third, new methodology.

1.1 The stable distribution approach

We begin by looking at an analogue of (1) for the case where the underlying distri-
bution is heavy tailed.

Whether a random variable X has finite variance or not is a property of the tail of
its distribution. Assume that

(i) lim
x→∞

P(X > x)/P(|X| > x) = c ∈ [0, 1]

(ii) P(|X| > x) = x−αL(x),

where L is a slowly varying function at infinity, i.e L(tx)/L(x) → 1 as x → ∞ for
all t > 0. See Bingham et al. (1987) for further properties of such functions.

For α ∈ (1, 2) the mean of X is finite but the variance is not. In this case X̄n is still
a valid estimate of the mean in the sense that X̄n →a.s. µ. For the estimate to be
useful for inferential purposes, its distribution needs to be determined. It turns out
that (see e.g. Theorem 7.7 in Chapter 2 in Durrett (1996)) under assumptions (i)
and (ii)

X̄n − µ

an

→d Y, as n → ∞,

where Y ∼ Sα(σ, β, 0) is a stable random variable and

an = n−1 inf{x : P(|X1| > x) ≤ n−1}.

There is in general no closed form of the distribution of Y , the theory of which goes
back as far as to Cauchy (1853), but its characteristic function can be written as

E[exp{itY }] =

{

exp{−σα|t|α(1 − iβ(sign t) tan πα
2

) + itµ} if α 6= 1
exp{−σ|t|(1 + iβ 2

π
(sign t) ln |t|) + itµ} if α = 1

,

where α ∈ (0, 2] is the index of stability, σ ≥ 0 is the scale parameter, β ∈ [−1, 1]
is the skewness parameter and the shift parameter µ ∈ R is equal to the mean if
α ∈ (1, 2].
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Other equivalent parametrisations exist, see Samorodnitsky and Taqqu (1994) for
an overview of the theory of stable distributions. Nolan (1998) suggests a parametri-
sation, S∗, which is more suitable for computational and modelling purposes. It has
the feature that the characteristic function is jointly continuous in all four parame-
ters. Further, the mode is equal to the location parameter and, as α → 2, the scale
tends to the variance for a normal random variable and as α → 1, σ is the standard
scale parameter.

In practice it is necessary to estimate the parameters of the asymptotic stable dis-
tribution of the normed mean. If X1, . . . , Xn are iid with stable distributions then
there are basically three main methods of estimation available (Nolan, 1999). The
first one is the quantile method, which uses sample quantiles and match these to sta-
ble distributions, see McCulloch (1986). A second approach is to use the fact that
the stable distributions have a closed form for their characteristic function (chf).
Methods for using the sample chf have been suggested for instance by Kogon and
Williams (1998). The third approach is to use numerical maximisation of the likeli-
hood function, an approach made possible with the rapid development of powerful
computers, see Nolan and Rajput (1995); Nolan and Panorska (1997); Nolan (1997,
1998, 1999, 2001); Nolan et al. (2001) and Uchaikin and Zolotarev (1999).

If the variables X1, . . . , Xn are not stable, then the index of stability (or tail index)
α may be estimated by a tail estimator. Graphically, this can be done by looking at
the slope of a log-log plot of 1−Fn, where Fn is the empirical distribution function.
Another alternative is to use the popular Hill-estimator (Hill, 1975). The estimation
of α has received a lot of attention, see for instance Embrechts et al. (1997) for an
introduction and overview of the area. Note that the performance of tail estimators
depends heavily on the nature of the slowly varying part L(·) of the distribution
(see condition (ii) above). For X1 ∼ Sα(σ, β, µ) the polynomial tail behaviour sets
in very late when α > 1.2, see Fofack and Nolan (1999), which implies that tail
estimators of α are not likely to be very useful for such distributions.

The skewness parameter β can easily be estimated in some special cases. If the
distribution is symmetric, then β = 0. If it has a finite right (left) end point, then
β = −1 (β = 1) and α < 1. And finally if xαP(X1 > x) → c1 and xαP(X < −x) →
c2 as x → ∞, then β = (c1 − c2)/(c1 + c2).

Estimation of the mean could also be made by dividing the sample X1, . . . , Xn into
parts of length k and computing X̄k,j = k−1(Xjk + . . .+X(j+1)k−1). The X̄k,j will be
approximately stable and can thus be used for estimating the parameters α, β, σ and
µ, possibly in conjunction with a bootstrapping scheme. More on bootstrap below.
A difficulty would be how to select the block size k, see Crovella and Taqqu (1999) for
one possible graphical approach for estimating α. No other, non-bootstrap, results
have been found in this area.
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In summary, one of the difficulties for making inference about the mean µ is that
there does not seem to exist any obvious pivotal statistic, i.e. a statistic involving
only µ as the population parameter in its definition and whose limiting distribution
is parameter free (Athreya et al., 1998). There are methods available for generating
confidence intervals for the mean in case the observations follow a stable law –
methods which require estimation of several parameters of the limiting distribution.
In case the observations are not stable, more work is needed for creating a unified
estimation framework.

1.2 Bootstrap

Bootstrapping is a resampling method that goes back to Efron (1979). It has gained
increased popularity with the advent of ever faster computers. Below, we describe
the basic methodology for the finite and infinite variance cases.

1.2.1 The bootstrap idea

A brief description of the original bootstrap idea, which does not rely on any par-
ticular class of distributions, is as follows. Assume that X1, . . . , Xn are iid random
variables with distribution function F and Var(X1) < ∞. Further assume that there
exists an estimator θ̂ of a parameter θ, (how this estimator was discovered is unim-
portant to the bootstrap methodology), and that θ can be defined as θ = g(F (·))
for some function g, in principle. Then the corresponding bootstrap estimate is
θ̃ = g(Fn(·)), where Fn is the empirical distribution function for the data. Since Fn

is close to F , we also expect that θ̂ is close in distribution to θ̃.

The bootstrap method can be summarised as

1. Let X∗
1 , . . . , X

∗
n be iid r.v’s with distribution function Fn. This is the bootstrap

sample.

2. Compute the parameter estimate θ̂∗ = θ̂(X∗
1 , . . . , X

∗
n).

3. Repeat 1 and 2.

This simple scheme allows us get simulated estimates of quantities such as E∗[θ̂
∗ −

θ̃] = E∗[θ̂
∗ − θ̃|Fn(x)], P∗(θ̂

∗ − θ̃ ≤ x) and so on. The ∗ denotes that the quantities
above only take the variations in the bootstrap simulations into account, while Fn

is kept fixed.

For the sample mean estimate X̄n, Singh (1981) and Bickel and Freedman (1981)
showed that if

Hn(x, ω) := P
(X̄∗

n − X̄n

sn

≤ x|X1, . . . , Xn

)

where

X̄∗
n =

1

n

n
∑

k=1

X∗
k , X̄n =

1

n

n
∑

k=1

Xk and s2
n =

1

n

n
∑

k=1

(Xk − X̄n)2
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then supx |Hn(x, ω) − Φ(x)| → 0 with probability one. Singh (1981) showed that
Hn(·, ω) is a better approximation to the distribution of (X̄n −µ)/σ than the Edge-
worth approximation up to the first order term. Further, Bickel and Freedman
(1981) showed that, under second moments, the bootstrap asymptotics is the same
as that supplied by the normal theory for a variety of statistics. Hence it is possible
to draw conclusions from the behaviour of the bootstrap estimate and apply these
to the original one. For a more thorough introduction to the area, see for instance
the excellent books by Hall (1992) and Hjorth (1994).

1.2.2 Bootstrapping with heavy tails

However, Athreya (1987) showed that if X1 is in the domain of attraction of a stable
law with index 0 < α ≤ 2 and E[X2

1 ] = ∞, applying the bootstrap methodology in
the way described above breaks down in the sense that, for any set of real numbers
x1, . . . , xn, the sequence of random vectors (Hn(xi, ω), i = 1, . . . , k) converges in
distribution to a non-degenerate random vector (H(xi, ω), i = 1, . . . , k). This means
that the limiting distribution of the bootstrap mean is random (see Cuesta-Albertos
and Matrán (1998) for more on this).

All is not lost, however. One method suggested by Athreya et al. (1998) uses the
possibility of having a smaller order bootstrap sample X∗

1 , . . . , X
∗
m where m = o(n).

In this article the authors work under the assumption that X1, X2, . . . is an iid sample
from F , where

1 − F (x) ∼ px−αL(x) and F (−x) ∼ qx−αL(x)

with 0 ≤ p = 1 − q ≤ 1, 1 ≤ α < 2 and L is a slowly varying function at infinity.

Building on the results of Resnick (1986, 1987), let an → ∞ be a sequence such that
n(1 − F (an) + F (−an)) → 1, Mn = max{|Xj| : 1 ≤ j ≤ n} and µ = E[X1]. Then

(n(X̄n − µ)

an

,
Mn

an

)

→d (Z1, Z2),

where Z1 is a stable random variable and Z2 ∼ G with

G(x) =

{

exp{−|x|−α} x > 0
0 x ≤ 0

.

Denote the distribution of Z1/Z2 by K(·, α, β). The authors then show that if

X̄∗
m =

1

m

m
∑

k=1

X∗
k , M∗

m = max{X∗
j : 1 ≤ j ≤ m} and T ∗

n =
m(X̄∗

m − X̄n)

M∗
m

then
sup

x
|P(T ∗

n ≤ x|X1, . . . , Xn) − K(x, α, β)| = op(1),

a result which can be readily used for generating bootstrapping confidence intervals
for the mean µ.
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There are a number of other results available on the bootstrap method in the pres-
ence of heavy tails and various forms of dependence, see for instance Lahiri (1995),
Feigin and Resnick (1997), Davis and Wu (1997), Bickel et al. (1997), Hall and Jing
(1998), Pictet et al. (1998), Romano and Wolf (1999), Politis et al. (1999), del Bar-
rio and Matrán (2000) and the references therein. The examples above only serve
to illustrate the methodology and are by no means an exhaustive treatment of this
area.

A drawback with the subsample method is that, even when the subsample size is
chosen optimally, the error between the subsample bootstrap approximation and the
true distribution is often an order of magnitude larger than that of an asymptotic
approximation (Hall and Jing, 1998). So, even if neither the bootstrap nor the
asymptotic approximation succeeds in capturing the first term in an Edgeworth-
type expansion of error, the asymptotic approach will be more accurate.

To be more specific, assume that (following Hall and Jing (1998)) the random vari-
ables Xk are distributed as sign(Yk)|Yk|−1/α where Yk has a continuous distribution
FY . Let the distribution of Sn = n−1/α

∑n
k=1(Xk − µ) be Gn. Then Gn tends to a

stable distribution H(·|α, σ) with characteristic function φ(t) = exp(−σ|t|α).

If FY has three continuous derivatives in a neighborhood of zero, then P(|X1| > x) =
2x−αF ′(0) + x−3αF ′′′(0)/3 + o(x−3α). The Hill estimator can be used for estimating
α and

σ = 2F ′(0)

∫ ∞

0

x−α sin xdx =
2πF ′(0)

Γ(α) sin(απ/2)
> 0.

In their article, Hall and Jing (1998) show that the difference Gn − H(·|α̂, σ̂) is of
size n1−2/α ∨ (n−2/5 log n).

For the subsample bootstrap method, let Ĝm be the bootstrap distribution of
m−1/α

∑m
k=1(X

∗
k − X̄) conditional on the observations X1, . . . , Xn and where

X̄ = n−1
∑n

k=1 Xk. That is, Ĝm is the percentile bootstrap distribution of Gm. If

m = o(n), then Ĝm also tends to H. In the article it is shown that, with an optimal
choice of m = m(n), Gn − Ĝm is of order n−(α−1)(2−α)/α which is of larger order than
for the asymptotic approximation.

The conclusion is that, even when a comparatively simple estimator of α is used, the
asymptotic method outperforms the subsample bootstrap in this important class of
distributions.
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2 Semi-parametric estimation

The thesis explores a third, new, idea for estimating the mean of F . It can roughly
be described as follows. Assume that the tails of the unknown distribution F start
at some levels ±u. (In the papers, the thresholds for the upper and lower tails can
differ). Fit a parametric model to the upper and lower tails, respectively, and weigh
this together with the sample mean of the truncated variables at this level

ν̂ =
1

n

n
∑

k=1

Xk1{−u<Xk<u}.

More specifically, we may write

E[X] =

∫ ∞

−∞

xdF (x) =

∫ −u

−∞

xdF (x) +

∫ u

−u

xdF (x) +

∫ ∞

u

xdF (x).

Now make a parametric estimate of the distribution for the excesses over the thresh-
olds ±u, call these F̂ . For the middle part, F is approximated by the empirical
distribution function Fn. Hence we arrive at

Ê[X] =

∫ −u

−∞

xdF̂ (x) + ν̂ +

∫ ∞

u

xdF̂ (x).

A natural model for F̂ can be found by applying the so called Peaks Over Threshold
(POT) method. See for instance Smith (1987), Leadbetter (1991) or Embrechts
et al. (1997). It is based on the observation that, if F has polynomially decaying
tails, e.g. 1 − F (x) = cx−1/ξ, for constants c and ξ, then

P(X − u > x|X > u) =
1 − F (x + u)

1 − F (u)
=

(

1 +
x

u

)−1/ξ

=
(

1 + ξ
x

β

)−1/ξ

,

where β = uξ. This is the generalised Pareto (GP) distribution. Hence, a natural
parametric estimate F̂ is

F̂ (x) = 1 − P̂(X > u)
(

1 + ξ̂
x − u

β̂

)−1/ξ̂

,

for suitable estimates of β and ξ. See for instance Smith (1987). The resulting
estimate is then of the form

Ê[X] = P̂(X < −u)
(

u − β̂

1 − ξ̂

)

+ ν̂ + P̂(X > u)
(

u +
β̂

1 − ξ̂

)

,

where β/(1 − ξ) is the expected value of the GP distribution.

The thesis investigates the semi-parametric approach to estimating the mean in
three different papers which are summarised below.
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2.1 Summary of Paper A

The approach described above was used in Paper A, which is based on the results
in Johansson (2001). It is assumed that the random variables, Xk, are positive with
distribution function 1 − F (x) = cx−1/ξ(1 + x−δL(x)), as x → ∞, where c > 0,
ξ ∈ (0, 1) and δ > 0 are constants and L is a slowly varying function at infinity.

In the article, a two parameter GP distribution was fitted to the tail and it was shown
that the resulting estimator is asymptotically normally distributed and unbiased.
The result is easily extendable to distributions with unbounded support and different
tail-indices for the upper and lower tails.

A similar approach was considered by Peng (2001) who worked under the tail balance
condition

lim
t→∞

P(|X1| > tx)

P(|X1| > t)
= x−1/ξ, x > 0 and lim

t→∞

P(X1 > t)

P(|X1| > t)
= p ∈ [0, 1].

This time a one parameter tail was fit to the distribution.

One of the main advantages of the semi-parametric approach is that the estimate
has a normally distributed limit which makes it possible to construct confidence
intervals and tests for the mean. This may not always be as easily done in the
bootstrap and other asymptotic approaches, as described above. Other advantages
include ease of computability and that the estimate has an intuitive form.

Further, it is shown that a confidence interval based on the semi-parametric approach
has a width proportional to nα(ξ−1/2)−1/2, where α ∈ ((2δξ)−1, 1). This can be
compared to the stable distribution approach described above, where the interval
width is proportional to nξ−1. This means that, for the infinite variance case where
ξ ∈ (1/2, 1), the semi-parametric estimator converges at a faster rate than the one
based on the sample mean.

One of the problems, however, is how to select the threshold values on which the
estimates of the tail parameters are based. The specific problem of threshold selec-
tion for estimating the parameters in the GP distribution is discussed e.g. in Dupuis
(1998).

In Paper A the performance of the estimator is also assessed through a small simula-
tion study. In particular, it displayed a smaller median bias than the sample mean.
The methodology was also applied for estimating the mean file-size of downloaded
files on a computer network. That this kind of traffic is often heavy-tailed is also
described for instance in Crovella et al. (1998).

8



2.2 Summary of Paper B

Plotting the autocorrelation function (acf) is a common diagnostics tool for assessing
dependence, or testing for independence, in a time series {Xt}n

t=1. For the heavy
tailed case the sample acf can be defined as

ρ̂(h) =
n−1

∑n−h
t=1 XtXt+h

n−1
∑n

t=1 X2
t

, h = 0, 1, 2, . . . .

See for instance Brockwell and Davis (1987). However, it may happen that the
distribution of ρ̂(h) is random, see Resnick et al. (1999), which might make the use
of the sample acf unreliable.

The numerator in the expression for ρ̂(h) is an estimate of E[X1X1+h] and this
quantity may be estimated using the same methodology as in Paper A. The difference
is that, even if the random variables Xk are independent, the sequence {X1X1+h}
will be dependent.

Paper B extends the methodology from Paper A to the case where the random
variables are m-dependent. This model for the dependence arises when looking at
products such as X1X1+m of independent r.v’s Xk, as described above. It may also
be a natural first attempt at modelling dependence, based on graphical diagnostics
methods such as the acf.

The resulting estimator is asymptotically normally distributed and unbiased. In the
paper, its properties are examined by simulations for a variety of different cases and
it is also used for estimating covariances. Finally, it is described how the technique
may be used as a diagnostics tool for estimating the order of ARMA processes.

2.3 Summary of Paper C

Paper C examines the problem of regression through the origin with heavy-tailed
heteroscedastic errors. More specifically, estimation of the parameter a in the model

Yk = aXk + εkσ(Xk)

is investigated. It is assumed that σ(·) is a positive function and, in the asymptotic
analysis, that the constants Xk and σ(Xk)/Xk are bounded away from zero and
infinity. The errors εk are iid with regularly varying tails, zero mean and infinite
variance.

The estimate is based on the observation that E[Yk/Xk] = a and that very few
assumptions about σ(·) and Xk are needed in order to apply techniques which are
similar in principle to those in Paper A. The resulting estimator, âM , is asymptot-
ically normally distributed and unbiased. It is also robust against changes in the
underlying variance structure, described by σ(·).
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These properties contrast those of the standard least squares estimate

âLS =
(

n
∑

k=1

XkYk/σ(Xk)
2
)/(

n
∑

k=1

X2
k/σ(Xk)

2
)

,

which is sensitive to outliers (Chambers, 1986). Further, âLS is not asymptotically
normally distributed, unless the errors εk have finite variances. Finally, it requires
knowledge about the function σ.

In a small simulation study, the performance of the estimator is compared to that
of some standard alternatives. It is also shown how to apply the technique for using
a sample to estimate a population total under superpopulation assumptions.

2.4 Further work

It would be interesting to extend the model in Paper C to a superpopulation sampling
context, i.e. take the sampling variability into account for different kinds of sampling
distributions. It is not clear how this should be done at this time, but it is work in
progress.

Another extension of Paper C is to try to apply the same ideas in a more general
regression setting. A first step would be to examine how to estimate the parameters
a and b in a model such as Yk = a + bXk + εkσ(Xk), where the εk’s are heavy-tailed.

It would also be interesting to try and find better estimators for the variance of
the proposed estimators. One possibility might be to apply the methodologies in
conjunction with bootstrapping schemes.
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Abstract

An asymptotically normally distributed estimate for the expected value of a
positive random variable with infinite variance is introduced. Its behavior
relative to estimation using the sample mean is investigated by simulations.
An example of how to apply the estimate to file-size measurements on Internet
traffic is also shown.
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1 Introduction

When modelling phenomena in telecommunications, finance, insurance or sociol-
ogy, to name but a few areas, heavy-tailed distributions are sometimes encountered.
Heavy-tailed is used here to describe a distribution with the property that some of
its moments are infinite. In telecommunications it has been observed that the dis-
tribution of file sizes on the Internet has this property, see e.g [2]. And in insurance,
heavy tails are encountered when modelling for instance fire and storm damages
[4, 14]. In sociology it might be interesting to estimate the average income in a pop-
ulation. It would be reasonable to assume that only a small number of individuals
have a large income and thus that the distribution has a pareto like tail. There are
many other situations where similar reasoning could be applied.

A large body of work is available on estimating quantiles of heavy-tailed distribu-
tions, see [4] for an excellent introduction and overview of this area. In this paper,
however, we attempt to estimate the expected value of the distribution instead.
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In the second section of the paper, the estimate is introduced and its properties
examined. This is followed by a simulation study of its behaviour relative to esti-
mating the mean using the sample mean. Finally, two applications of the estimate
to telecommunications data are shown.

2 The Estimate

Let X,X1, X2, . . . , Xn be iid positive random variables with distribution function F ,
where

F̄ (x) := 1 − F (x) = cx−1/ξ(1 + x−δL(x)), (1)

for ξ ∈ (0, 1), δ > 0, L ∈ RV0 and some constant c. L ∈ RV0 means that L is a
slowly varying function, i.e L(tx)/L(x) → 1 as x → ∞ for all t > 0. For further
properties of these functions, see Chapter 0 in [10], or either of [12] or [1], where the
latter is very extensive.

For ξ ∈ (0, 1/2), X has finite variance and estimation of E[X] could be done using
the sample mean X̄ = (X1 + . . . + Xn)/n which, by the Central Limit Theorem,
is asymptotically normal as n → ∞. If ξ ∈ (1/2, 1), X̄ converges to a stable
distribution (see e.g. [3]) and is still a valid estimate. There are, however, some
difficulties in estimating the parameters of the limiting stable distribution. If the
sample is big enough, it could be partitioned into sub-samples, for which the mean
of each could be calculated. Such a procedure would render X̄1, . . . , X̄k, which
would be iid with a distribution that is nearly stable. Inference about the unknown
parameters could then for instance be based on maximum likelihood methods. If
the sample size, n, is not big enough to accommodate this method, bootstrapping,
as described in [11], is an alternative.

Below, a different procedure is suggested for the model in (1). It gives estimators
which are asymptotically normally distributed and unbiased with an easily estimated
variance. In the calculations, δ will not be estimated. The reason for this is that,
normally, the sample size n would have to be very large in order to estimate it
reasonably well. Instead the properties of the mean estimate will be examined as
functions of δ.

The standard estimate of E[X] is

X̄ =

∫
xdFn(x) =

1

n

n∑

k=1

Xk,

2



where Fn is the empirical distribution function. Building on this we propose an
estimate of the form

Ê[X] := M̂ := µ̂ + τ̂ :=

∫ un

0

xdFn(x) +

∫ ∞

un

xdF̂ (x), (2)

where τ̂ is the part of M̂ originating from the tail of the distribution. The tail is
assumed to start at some level un, which in the analysis will be assumed to tend to
infinity. F̂ is an estimate of the tail distribution function, as described below.

Let Fu(y) = P(X − un ≤ y|X > un) be the distribution of the excesses over the
threshold un. It follows from (1) that

F̄u(y) =
F̄ (un + y)

F̄ (un)
=

(
1 +

y

un

)−1/ξ 1 + (un + y)−δL(un + y)

1 + u−δ
n L(un)

, (3)

and if βn = β(un) = unξ, then F̄u(y) is a perturbed GPD, where the df of the
generalised Pareto distribution (GPD) has the form

Gβ,ξ(x) =

{
1 −

(
1 + ξ x

β

)−1/ξ

, ξ 6= 0

1 − e−x/β, ξ = 0
, x ∈

{
[0,∞), ξ ≥ 0
[0,−β/ξ] , ξ < 0

.

This means that for large values of un, Fu(y) ≈ Gβ(un),ξ(y) in the sense that

lim
un↑yF

sup
0<y<yF−un

|Fu(y) − Gβ(un),ξ(y)| = 0,

where yF is the right end point of F and β is some positive function. See also
Theorem 3.4.13 in [4].

By definition F̄ (un + y) = F̄ (un)F̄u(y). And, for N = Nn = |{i : Xi > un}|, the
number of Xi’s which exceed un, we have N ∼ Bin(n, pn) with pn = P(X1 > un),
and estimation of pn = F̄ (un) may be done using

p̂ = ̂̄F (un) =
1

n

n∑

i=1

1{Xi>un} =
N

n
.

For large values of un, use
̂̄F u(y) = Ḡβ̂,ξ̂(y),

for appropriate estimates ξ̂ = ξ̂n and β̂n = β̂(un). Note that β will be estimated
separately, i.e. β = ξun will not be used. The reason for this is to achieve greater
flexibility in the parameter fitting, compensating for the underlying distribution not
being an exact GPD.
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We have now arrived at an alternative estimate, M̂ , of E[X],

M̂ :=

∫ un

0

xdFn(x) +

∫ ∞

un

xdF̂ (x)

=
1

n

n∑

i=1

Xi1{Xi≤un} +

∫ ∞

un

x
N

nβ̂

(
1 + ξ̂

x − un

β̂

)−1−1/ξ̂

dx (4)

=
1

n

n∑

i=1

Xi1{Xi≤un} + p̂
(
un +

β̂

1 − ξ̂

)
, for ξ̂ ∈ (0, 1), (5)

where p̂ = N/n. As seen above, the main interest is in the case ξ ∈ (1/2, 1). It will
be seen later that, if ξ ∈ (0, 1) then P(ξ̂n ∈ (0, 1)) → 1, so the convergence of the
integral will asymptotically not be a problem.

If ξ̂ ≥ 1, then M̂ should be set to ∞ since this would indicate that the first moment
of the distribution in (1) is infinite.

There are different ideas on how to select the threshold level un. In the applications
shown later, un was selected so that the estimates of β and ξ were stable around
that value of un, see Section 3, Figure 6.

Theorem 2.1 (Distribution of M̂)
Let X1, . . . , Xn be positive iid random variables with distribution function F , such

that F̄ (x) = cx−1/ξ(1 + x−δL(x)), for some constants c > 0, ξ ∈ (0, 1) and δ > 1/2ξ,
where L(x) is a slowly varying function such that x−δL(x) is non-inceasing and
L(x) is locally bounded in [x0,∞) for some x0 ≥ 0. With un = O+(nαξ) for some
α ∈ (1/2δξ, 1), pn = P(X1 > un), µn = E[X11{X1≤un}], γ2

n = Var(X11{X1≤un}), β as

in (3), M = E[X1] and M̂ as in (5),
√

n

γn

√
kn

(M̂ − M) →d N (0, 1),

where

kn = 1 +
pn(1 − pn)

γ2
n

(
un +

β

1 − ξ

)2

+
pnβ

2

γ2
n

(1 + ξ)2

(1 − ξ)4
= O+(1),

and O+(1) denotes a sequence bounded away from zero and infinity.

Proof: See Appendix A. ¤

Note that there is no closed expression for the asymptotic variance of the estimate M̂
under the conditions in Theorem 2.1. This is because only the tail behaviour of the
distribution function F is specified and hence the assumptions do not determine the
value of γ2

n. An exact limit could be obtained, should F be more closely specified,
but this would in turn mean placing extra conditions on L(x). Since L(x) is not
known in practice, such conditions would be of limited practical use. In applications,
γ2

n is estimated by the sample variance for the truncated variables {Xk1{Xk≤un}}.
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Also note that a confidence interval for the expected value, based on Theorem 2.1,
would have a width proportional to γn/

√
n ∝ nα(ξ−1/2)−1/2. This can be compared

to a confidence interval based on the sample mean, which has width proportional
to nξ−1. This means that, for the infinite variance case ξ ∈ (1/2, 1), M̂ converges
faster than X̄n.

3 Simulations

Usually the expected value is estimated using the sample mean, X̄n which, properly
normed and in the infinite variance case, tends to a stable distribution, see e.g.
Theorem 7.7 in Chapter 2 in [3].

Simulations were made in order to determine the behaviour of M̂ , and its relation
to X̄n. The parameters β and ξ were estimated using the Splus program-package
EVIS, Version 3, written by Alexander J McNeil. Refinements could be made for
these estimates, of course, and there is a large body of work done in this area, see
for instance [13] or [14] and the references therein. Improvements to X̄n could also
be made, for instance by bootstrapping from the sample as described in [11].

Depending on the value of ξ̂, different estimates of the mean were made, as illustrated
in Figure 1. ξ̂ > 1 would indicate that the mean is infinite, and so the estimate should
be infinity in this case. Further, if ξ̂ < 0 this would indicate a distribution with finite
tail and then the ordinary Central Limit Theorem will be used.

sample estimate
ξ

ξ̂ > 1
Ê[X] = ∞

ξ̂ ∈ (0, 1)
Ê[X] = M̂

ξ̂ < 0
Ê[X] = X̄

Figure 1: The figure shows how M̂ is
used in the simulations.

constant

f(x)

xw

− ∂
∂xcx−1/ξ(1 + x−δ)

Figure 2: The distribution used in the
simulations.

A few simulations were done where samples were drawn from the pdf in Figure 2 with
parameters w = 10, ξ = 0.7 and δ = 1, corresponding to a mean of approximately
15.7. 500 samples, varying in size from 1000 up to 100000, were generated and the
estimates calculated for different values of the threshold un. If the perturbation
1 + x−δ was replaced by 1 − x−δ, similar results were obtained.
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An additional simulation was made with ξ = 0.3 and the other parameters un-
changed. This case corresponds to the variance being finite, and again M̂ was
compared to X̄n. The results of the simulations are found in Figure 3. As can be
seen in the figure, M̂ and X̄ give similar results in this case. This could be expected
since the tail is comparatively light and does not influence the estimate all that
much.

For un = 5 the estimate is very biased. This is as expected since the density, f(x),
is constant up to x = 10 and only after that decreases polynomially.

0

10

10

15

20

20

25

30

30

35

40

40

45

50

55

60

un = 5

pn = 0.70

10

0.40

15

0.22

20

0.14

25

0.10

30

0.08

35

0.06

x̄
12

14

16

18

20

22

24

26

28

30

32

0

1

2

un = 5

pn = 0.70

10

0.40

15

0.22

20

0.14

25

0.10

30

0.08

35

0.06

x̄

13

14

15

16

17

18

19

20

21

22

0

1

2

3

un = 5

pn = 0.70

10

0.40

15

0.22

20

0.14

25

0.10

30

0.08

35

0.06

x̄
6.8

6.9

7

7.1

7.2

7.3

7.4

0

1

2

un = 5

pn = 0.61

10

0.23

15

0.06

20

0.02

x̄

Figure 3: The results from the simulations. The sample sizes for ξ = 0.7 were top

left: 103, top right: 104, bottom left: 105 and bottom right: for ξ = 0.3 the sample
size was 104. un is the selected threshold and pn = F̄ (un). The bar-charts indicate
how many observations were too large to be displayed in the box-plots underneath.
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Applications

The aim of this section is to outline applications of M̂ to telecommunication data.
Focus will be on the estimate, rather than on how to model network traffic, which
is a large area on its own. References to this area will therefore be very sketchy and
we will not go into any details, but see for instance [6], [8], [5], [7] and its companion
paper [9], for suggestions of different models.

When attempting to describe the behaviour of Internet-traffic data one often arrives
at a model like

X(t) =d µ + noise,

where X(t) describes the traffic intensity into a network node at time t, µ is a con-
stant mean traffic intensity and the noise could for instance be fractional Brownian
noise. This model is interesting when analysing network behaviour and in particular
may influence decisions about augmenting the network.

Sometimes it is more interesting to look at the accumulated traffic into a node

A(t) =

∫ t

0

X(s)ds =d νt + noise,

where ν is a constant and noise could be fractional Brownian motion. Such a process
is useful for bandwidth and buffer dimensioning in the network. There are various
models for the processes X and A, but most of them have in common that µ or ν
are expected values of some random variable. Hence, in order to have some idea
of how X or A behaves, this mean will have to be estimated. In the heavy-tailed
setting discussed earlier, M̂ could be used for this purpose.

HTTP data

The data examined is the file sizes in HTTP traffic from a modem pool. It was
generously supplied by Dr Attila Vidács at the High Speed Networks Laboratories
at the Technical University of Budapest, and is displayed in Figure 4 below.

Note that there are six large observations, five of which appear closely together. A
more detailed look at the data shows that five of these were generated by the same
user and that four appeared back to back in time and originated from the same
web site. This kind of behaviour might be observed for instance when the HTTP
protocol is used for file transfers instead of using FTP. It is not clear that this was
the case, but in order to keep the model simple, these six large observations were
taken out when the mean was estimated, so that the Pareto-tail assumption would
more realistic, see Figure 5.

The mean was then estimated using the same strategy as in Figure 1. The result is
displayed in Figure 6 below. Visual inspection shows that the mean might be around
1.25 · 104. Estimation using the sample mean, X̄n, without removing the six largest
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observations resulted in an estimate of about 1.5 · 104, and when the observations
were removed this number changed to slightly below 1.2 · 104.

Two observations can be made. First, estimation based on the sample mean is sensi-
tive to outliers, as demonstrated by the large difference between the estimates above
when 6 out of 7627 observations are removed from the sample. Secondly, it would be
difficult to find a simple model for this situation. An alternative estimation strategy
would be separate modelling of the six large observations and then concatenation of
the resulting two estimates. When using X̄n, such a strategy would result in just
using the whole sample. For M̂ , though, this might not necessarily be the case. The
problem would be that six observations would not be enough for making a good
estimate.

0
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Figure 4: File sizes [bytes].

A regression-type application

This section presents a regression-type application of the mean-estimation procedure
described earlier. This procedure will, in turn, be compared to the standard methods
otherwise used.

The dataset to be investigated is a portion of the publically available measurements
of HTTP data gathered from the Home IP service offered by UC Berkeley to its
students, faculty and staff. The dataset is described in detail on http://ita.ee.lbl.gov
/html/contrib/UCB.home-IP-HTTP.html. Due to the size of the dataset, only the
measurements between Wed Nov 6 12:46:59 1996 and Sat Nov 9 20:47:01 1996, were
used. And of these, only the GET requests were looked at. This left 1 577 582
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Figure 5: QQ-plot of data against a generalised Pareto distribution. The six largest
observations have been removed.

observations of file down-loads to be examined.

The dataset was then divided into 10-minute intervals and the mean file-size was
estimated for each of these. The division into small intervals was done so that trends
and other non-stationarities would be negligible in each small interval. Then, esti-
mates of the parameters β and ξ, as in Equation (5) were calculated for different
thresholds un. Which threshold to choose was based on examination of qq- and
probability-plots and on comparing the excesses over the treshold to a generalised
Pareto distribution using a Kolmogorov-Smirnov test. The threshold for each inter-
val was selected so that it passed the test at the 5% significance level. The result is
presented in Figure 7.

The estimation procedure used to generate Figure 7 should be compared to the one
using the sample mean for the same disjoint intervals. In Figure 8 a plot of the
difference between these estimates is displayed. Note that the sample average tends
to yield larger estimates for this data set.
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Figure 9: Histogram of the differences between the estimates, M̂ − X̄n. The two
largest negative observations are not shown.

The number of observations used for estimating the tail-parameters ξ and β is dis-
played in Figure 11. Note that few observations were used for Wednesday afternoon,
due to a drop in overall traffic. The relatively few observations, in turn, lead to
greater variability in the estimate of the mean file-size for the same period.

Examining the results, it appears that file-sizes increase slightly after midnight. This
might indicate that users wait for periods of low traffic intensity before download-
ing large files, thus making the downloads faster, or it could be due to network
administration tasks.
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A Proof of Theorem 2.1

First note the following straightforward result.

Proposition A.1
Let X be a positive random variable with distribution function F as in (1) and let
un → ∞ as n → ∞ be a sequence of numbers. Then

pn = P(X1 > un) = O+(u−1/ξ
n )

γ2
n = Var(X11{X1≤un}) = O+(u2−1/ξ

n ),

where rn = O+(an) denotes a sequence such that rn/an is bounded away from zero
and infinity.

Proof: F̄ (x) = cx−1/ξ(1 + o(1)) = x−1/ξO+(1) and the results follow from standard
calculations, using E[Xk] =

∫ ∞

0
kxk−1P(X > x)dx for positive random variables X

and k = 1, 2, 3, . . .. ¤

Theorem 3.2 in [13] gives us the asymptotic distribution of the tail parameters (β̂, ξ̂)
as

√
nQ1/2

(
β̂n − β

ξ̂n − ξ

)
→d N (0, I), as n → ∞, (6)

where

Q−1 = (1 + ξ)

(
2β2 −β
−β 1 + ξ

)
, (7)

under the assumtion that
√

nu−δ
n L(un) → 0 and that x−δL(x) is non-increasing.

Especially, this condition is met if un = nαξ with α ∈ (1/2δξ,∞).

The distribution of µ̂ is given by the following lemma:

Lemma A.1 (Distribution of µ̂)
Let X1, X2, . . . be positive iid random variables with df F given by (1). Further,
let µn = E[X11{X1≤un}] and γ2

n = Var(X11{X1≤un}), with un = O+(nαξ) for some
α ∈ (0, 1) and ξ ∈ (0, 1), where δ > 0. Then

√
n

γn

(µ̂ − µn) →d N (0, 1), as n → ∞,

or, equivalently,

E[exp{it
√

n

γn

(µ̂ − µn)}] → e−t2/2, as n → ∞,

where µ̂ is defined in Equation (2).

Proof: The proof is straightforward in that all that has to be done is to verify that
the Lindeberg-Feller Theorem (see e.g. Chapter 2 in [3]) is applicable. To this end,
note that √

n

γn

(µ̂ − µn) =
n∑

k=1

Xk1{Xk≤un} − µn

γn

√
n

=:
n∑

k=1

Yk,n,

where E[Yk,n] = 0, E[Y 2
k,n] = 1/n and hence

∑n
k=1 E[Y 2

k,n] = 1 for all n ≥ 1.
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Further, by Proposition A.1,

µn ± εγn

√
n = ±nα(ξ−1/2)+1/2O+(1) → ±∞, as n → ∞

for all α ∈ (0, 1), δ > 0, ξ ∈ (0, 1) and ε > 0, where un = O+(nαξ) was used. This
means that

n∑

k=1

E[|Yk,n|2; |Yk,n| > ε] =
1

γ2
n

E[(X11{X1≤un} − µn)2; |X11{X1≤un} − µn| > εγn

√
n]

≤ u2
n

γ2
n

P(|X11{X1≤un} − µn| > εγn

√
n)

=
u2

n

γ2
n

(
P(X11{X1≤un} > µn + εγn

√
n)

+ P(X11{X1≤un} < µn − εγn

√
n)

)

=
u2

n

γ2
n

(F̄ (µn + εγn

√
n) + F (µn − εγn

√
n)) → 0, as n → ∞,

since F (x) = 0 for x < 0, F̄ (x) = x−1/ξO+(1) and u2
n/γ2

n = nαO+(1). The conver-
gence holds for all ε > 0, α ∈ (0, 1), δ > 0 and ξ ∈ (0, 1). The result now follows
from the Lindeberg-Feller Theorem. ¤

Now examine the joint distribution of the parameters.

Lemma A.2 (Joint distribution)
Let X1, X2, . . . be positive iid random variables with distribution function F as in
(1) and N = |{Xi : Xi > un}| ∼ Bin(n, pn), where pn = F̄ (un) and un = O+(nαξ)
for some α ∈ (1/2δξ, 1), δ > 1/2 and ξ ∈ (0, 1). Then

φ(t1, t2, t3, t4) = E[exp{it1
√

n

γn

(µ̂ − µn) + i
√

npnQ1/2(t2, t3)

(
β̂N − β

ξ̂N − ξ

)
+ it4

√
n(p̂ − pn)√
pn(1 − pn)

}]

→ exp{−t21
2
− 1

2
(t2, t3)

(
t2
t3

)
− t24

2
} as n → ∞,

where Q is given by (7), µn = E[X11{X1≤un}], γ2
n = Var(X11{X1≤un}) and p̂ = N/n.

Proof: Let

φµ|N(t1) = E[exp{it1
√

n

γn

(µ̂ − µn)}|N ]

φβ,ξ|N(t2, t3) = E[exp{i√npnQ
1/2(t2, t3)

(
β̂N − β

ξ̂N − ξ

)
}|N ]

φp|N(t4) = E[exp{it4
√

n(p̂ − pn)√
pn(1 − pn)

}|N ] = exp{it4
√

n(p̂ − pn)√
pn(1 − pn)

},

then φ(t1, t2, t3, t4) = E[φµ|N(t1)φβ,ξ|N(t2, t3)φp|N(t4)]. Note that, conditional on N ,

µ̂ is independent of (β̂N , ξ̂N).
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If {φn}∞n=1 is a sequence of characteristic functions such that φn(t) → φ(t), then there
is a constant n0 such that, for each n > n0 there is a ρ > 0 such that |φn(t)−φ(t)| < ρ.
This means that

P(|φN(t) − φ(t)| < ρ) = P(|φN(t) − φ(t)| < ρ,N > n0)

+ P(|φN(t) − φ(t)| < ρ,N ≤ n0)

= P(N > n0) + P(|φN(t) − φ(t)| < ρ,N ≤ n0) → 1, as n → ∞.

Using Equation 6 and Lemma A.1 together with the above property, means that

φµ|N(t1) →p exp{−t21
2
} and

φβ,ξ|N(t2, t3) →p exp{−1

2
(t2, t3)

(
t2
t3

)
},

Naturally, the product φµ|N(t1)φβ,ξ|N(t2, t3) will also converge in probability.

Further, since N ∼ Bin(n, pn), p̂ = N/n and npn = n1−αO+(1), it follows from the
Lindeberg-Feller Theorem that

√
n(p̂ − pn)√
pn(1 − pn)

→d N (0, 1) and φp|N(t4) →d exp{it4N (0, 1)}.

Finally, then

φµ|N(t1)φβ,ξ|N(t2, t3)φp|N(t4) →d exp{−t21
2
} exp{−1

2
(t2, t3)

(
t2
t3

)
} exp{it4N (0, 1)},

and the claim follows by taking expectations. ¤

All the tools are now in place for proving Theorem 2.1

Proof: Equation (5) states that

M̂ − M = µ̂ − µn + τ̂ − τ,

where

τ =

∫ ∞

un

ydF (y)

=
{
F̄ (un + y) = F̄ (un)F̄u(y) = pnF̄u(y)

}

= pnun + pn

∫ ∞

0

F̄u(y)dy

= pnun +
pnu

1/ξ
n

1 + u−δ
n L(un)

∫ ∞

un

y−1/ξ + y−1/ξ−δL(y)dy

∼
{
Karamata’s theorem and using β = ξun

}

∼ pn

(
un +

β

1 − ξ

)
+ R1,
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where an ∼ bn means that an/bn → 1 and where

R1 =
pnβ

1 − ξ

δξ

1 − ξ + δξ

u−δ
n L(un)

1 + u−δ
n L(un)

.

Karamata’s theorem requires L(x) to be locally bounded in [x0,∞) for some x0 ≥ 0.
Using Taylor expansion, we find that

M̂ − M ∼ µ̂ − µn + (p̂ − pn)
(
un +

β̂N

1 − ξ̂N

)
+ pn

( β̂N

1 − ξ̂N

− β

1 − ξ

)
+ R1

= µ̂ − µn + (p̂ − pn)
(
un +

β

1 − ξ
− β

(1 − ξ)2
(ξ̂N − ξ) + R2

)
−

− pn
β

(1 − ξ)2
(ξ̂N − ξ) + pnR2 + R1,

where

R2 = β

∞∑

k=2

(−1)k(ξ̂N − ξ)k

(1 − ξ)k+1
+

∞∑

k=1

(−1)k

(1 − ξ)k
(β̂N − β)(ξ̂N − ξ)k−1.

Muliplying by
√

n/γn and using Lemma A.2 together with the Continuous Mapping
Theorem, we find that

√
n

γn

(M̂ − M) ∼
√

n

γn

(µ̂ − µn)
︸ ︷︷ ︸

→dN (0,1)

+

√
pn(1 − pn)

γn

(
un +

β

1 − ξ

) √
n√

pn(1 − pn)
(p̂ − pn)

︸ ︷︷ ︸
→dN (0,1)

−

−
√

pnβ

γn(1 − ξ)2

√
npn(ξ̂N − ξ)︸ ︷︷ ︸

→dN (0,(1+ξ)2)

+op(1).

The sequence

kn = 1 +
pn(1 − pn)

γ2
n

(
un +

β

1 − ξ

)2

+
pnβ

2

γ2
n

(1 + ξ)2

(1 − ξ)4
= O+(1)

by Proposition A.1
¤
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Estimating the mean of heavy-tailed distributions in

the presence of dependence
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Abstract

An asymptotically normally distributed estimate of the expected value for

heavy-tailed m-dependent random variables is suggested and its behaviour rel-

ative to estimation using the sample mean is investigated. It is also shown how

covariances can be estimated using the same technique, making the method

suitable as a diagnostic tool for fitting the order of ARMA-processes. In a

small simulation study, the suggested estimate exhibits smaller median bias

compared to standard methodologies.

Keywords: Pareto distribution, mean estimation, covariance estimation, heavy

tailed distributions, m-dependence
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secondary – 62F10, 62F12, 62P30

1 Background

When modelling phenomena in as diverse fields as telecommunications, finance, in-
surance and hydrology, heavy-tailed distributions are sometimes encountered. The
term heavy-tailed means a distribution with some infinite moments. In telecommu-
nications it has been observed that the distribution of file sizes on the Internet has
this property, see Crovella et al. (1998). In insurance, heavy tails are encountered in
models for fire and storm damages, see Embrechts et al. (1997) and Tajvidi (1996).
And in finance, the so-called log-returns exhibit similar behaviour (Diebold et al.,
1997; Longin, 2000). The list could be made much longer. For an introduction to
the field of extreme value modelling, see Embrechts et al. (1997), Reiss and Thomas
(2001) or Coles (2001).

∗Chalmers University of Technology, Göteborg, Sweden. E-mail: joachimj@math.chalmers.se
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Much emphasis has been placed on estimating quantiles in heavy-tailed distribu-
tions, which is of paramount importance for many risk-assessment applications. See
Embrechts et al. (1997) for an overview of this area. Such quantile estimation has
also been examined in the presence of dependence, see for instance Drees (2000). Es-
timating the mean of heavy-tailed distributions has not enjoyed the same attention,
however.

When the estimate of the mean is the sample mean X̄n = n−1(X1 + . . . + Xn) of
some random variables X1, . . . , Xn with infinite second moment, there are two main
methods available. The first is based on the well-known fact that X̄n, properly nor-
malised, tends to a stable distribution. If the Xk’s are themselves stable, estimation
of the parameters of this limiting distribution can be made, see Nolan (1999, 2001).

In case the observations Xk are not stable, one alternative might be to base esti-
mation on X̄k,j = k−1(Xkj + . . . + Xk(j+1)−1), where the X̄k will be approximately
stable. The difficulty here is to select the block-size k. No (non-bootstrap) results
seem to be available for this case though. However, see Crovella and Taqqu (1999)
where such an approach is used for estimating the tail index from scaling properties.
There are special cases where at least some parameters of the resulting limiting dis-
tribution can be estimated; if the observations are bounded from below, the limiting
distribution will also be totally skewed to the right, and so on. But more work seems
to be needed for creating a unified estimation framework using this approach.

The second main possibility is to use resampling methods. In the infinite variance
case, Efron’s original bootstrap for the sample mean does not work (Athreya, 1987).
However, sub-sampling methods, based on Politis and Romano (1994), are available
and do generate consistent estimators. See also Romano and Wolf (1999) and Politis
et al. (1999), where the latter gives an introduction to the area of sub-sampling.

A drawback with the subsampling method is that, even if the subsample size is chosen
optimally, the error between the subsample bootstrap and the true distribution will
often be an order of magnitude larger than for an asymptotic distribution, see Hall
and Jing (1998). More specifically, if Gn is the distribution of n−ξ

∑n
k=1(Xk −

µ) where 1/ξ is the tail index and µ = E[X1], then the Gn tends to some limit
distribution H. The order of Gn −H(ξ̂) will then be smaller than the order of Ĝm −
Gn, where Ĝm is the subsample bootstrap estimate of Gn with optimal subsample
size m = m(n).

A third, new approach, based on extreme value theory was recently independently
proposed by Peng (2001) and Johansson (2001). The idea is to fit a parametric
model for the tails but use a non-parametric estimate for the distribution centre.
Peng (2001) worked under a tail-balance condition and used a one-parameter model
for the tail. Johansson (2001) assumed positive r.v.’s and fitted a two-parameter
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model. The latter method can easily be extended to allow for distributions with
unbounded support as well, and there is no need for tail-balance in that case. Both
approaches assume mutually independent observations.

The aim of this paper is to extend the results of Johansson (2001) to include m-
dependence. There are several reasons why this kind of structure is interesting.
One of the standard diagnostics tests for data is to plot sample correlations. If the
data seems to be dependent then m-dependence may serve as preliminary model. In
fact, even if the r.v.’s {Xk} are iid, the products {XkXk+m} will be m-dependent.
Estimation of E[X1X1+m] may be used as an alternative diagnostics tool for fitting
ARMA-models to data, see Brockwell and Davis (1987). A third reason is that the
actual data-generating mechanism may suggest this type of model.

Section 2 of the paper introduces the estimate and examines its statistical properties.
The estimate is then compared to the standard methods for estimating the mean
and the covariance in Section 3. In Section 4 some concluding remarks are made
and the paper ends with an appendix where most proofs have been gathered.

2 A semi-parametric estimate of the mean

In this section we propose a semi-parametric estimate of the mean of m-dependent,
heavy-tailed random variables. First we introduce a model for the underlying dis-
tribution. Let X1, X2, . . . , Xn be stationary m-dependent positive r.v.’s with distri-
bution function F , where

F̄ (x) := 1 − F (x) = cx−1/ξ(1 + x−δL(x)), (1)

for ξ ∈ (0, 1), δ > 0 and some constant c. L is a slowly varying function, i.e
L(tx)/L(x) → 1 as x → ∞ for all t > 0. See Bingham et al. (1987) for further
properties of these functions.

The model in (1) is justified by the fact that the tail of many heavy-tailed distri-
butions can be approximated by a series expansion. The use of the slowly varying
function L makes this even more general in that it captures the behaviour of the
remainder term of such an expansion. We assume that F is one sided purely for
notational convenience. The same arguments that are made below are easily ex-
tended to the case where the distribution function has unbounded support. Our
main interest is in the case ξ ∈ (1/2, 1) for which the variance is infinite, but the
mean is finite. However, the method suggested below will work also in the finite
variance case where ξ ∈ (0, 1/2).
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For motivating the alternative estimate, first look at the standard estimate of E[X],
namely the sample mean, which can be written as

X̄ =

∫
xdFn(x) =

1

n

n∑

k=1

Xk,

where Fn is the empirical distribution function. Building on this we propose an
estimate of the form

Ê[X] := M̂ := µ̂ + τ̂ :=

∫ un

0

xdFn(x) +

∫ ∞

un

xdF̂ (x),

where τ̂ is the part of M̂ originating from the tail of the distribution. The tail is
assumed to start at some level un, which in the asymptotic analysis will be assumed
to tend to infinity. F̂ is an estimate of the tail distribution function, as described
below.

It is desirable to find a model for the tail. To do this, follow Pickands (1975) and
let Fu(y) = P(X − un ≤ y|X > un) be the distribution of the excesses over the
threshold un. It follows from (1) that

F̄u(y) =
F̄ (un + y)

F̄ (un)
=

(
1 +

y

un

)−1/ξ 1 + (un + y)−δL(un + y)

1 + u−δ
n L(un)

, (2)

and if βn = β(un) = unξ, then F̄u(y) is a perturbed generalised Pareto distribution
(GPD), where the df of the GPD has the form

Gβ,ξ(x) =

{
1 −

(
1 + ξ x

β

)−1/ξ

, ξ 6= 0

1 − e−x/β, ξ = 0
, x ∈

{
[0,∞), ξ ≥ 0
[0,−β/ξ] , ξ < 0

.

This means that for large values of un, Fu(y) ≈ Gβ(un),ξ(y) in the sense that

lim
un↑yF

sup
0<y<yF−un

|Fu(y) − Gβ(un),ξ(y)| = 0,

where yF is the right end point of F and β is some positive function, see Theorem
3.4.13 in Embrechts et al. (1997).

By definition F̄ (un + y) = F̄ (un)F̄u(y). And, for N = Nn = |{i : Xi > un}|, the
number of Xi’s which exceed un, we estimate the probability pn = F̄ (un) by

p̂ = ̂̄F (un) =
1

n

n∑

i=1

1{Xi>un} =
N

n
.

For large values of un, use
̂̄F u(y) = Ḡβ̂,ξ̂(y),

for appropriate estimates ξ̂ = ξ̂n and β̂n = β̂(un). Note that β will be estimated
separately, i.e. β = ξun will not be used. The reason for this is to achieve greater
flexibility in the parameter fitting, compensating for the underlying distribution not
being an exact GPD.
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We have now arrived at an alternative estimate, M̂ , of E[X],

M̂ :=

∫ un

0

xdFn(x) +

∫ ∞

un

xdF̂ (x)

=
1

n

n∑

i=1

Xi1{Xi≤un} +

∫ ∞

un

x
N

nβ̂

(
1 + ξ̂

x − un

β̂

)−1−1/ξ̂

dx

=
1

n

n∑

i=1

Xi1{Xi≤un} + p̂
(
un +

β̂

1 − ξ̂

)
, for ξ̂ ∈ (0, 1),

where p̂ = N/n. It will be seen later that, if ξ ∈ (0, 1) then P(ξ̂n ∈ (0, 1)) → 1, so
the convergence of the integral will asymptotically not be a problem.

If ξ̂ ≥ 1, then M̂ should be set to ∞ since this would indicate that the first moment
of the distribution in (1) is infinite.

If the precise nature of the dependence between the random variables Xk is known,
it might be possible to use the maximum likelihood estimates of β and ξ. Naturally,
this would be the preferable situation, but in practise this may be impossible.

Instead β and ξ will be estimated in the following way. Let the excesses over the
threshold un be {Yk} and assume that Yk ∼ Fu, where Fu is given in (2). Further,
let the pseudo-loglikelihood function be

l(β, ξ) =
n∑

k=1

ln
( 1

β

(
1 + ξ

Xk − un

β

)−1−1/ξ)
1{Xk>un}, (3)

i.e. the likelihood function we would get if the exceedances over the threshold were
independent. The estimates will then be (β̂, ξ̂) = arg max l(β, ξ).

2.1 Properties of the estimator

We now examine the properties of the proposed estimator and how the tail-parameter
estimates β̂ and ξ̂ are distributed. After that, we state a few lemmas that will be
needed in the process of calculating the asymptotic distribution of M̂ , which is given
in Theorem 2.1.

The log-likelihood function in (3) gives us the score function (as in Smith (1987))

U(βn, ξn) =

[
Uβn

Uξn

]
=

n∑

k=1




1
βξ

− 1
β

(
1
ξ

+ 1
)(

1 + ξ Xk−un

β

)−1

1
ξ2 ln

(
1 + ξ Xk−un

β

)
− ξ+1

ξ2

(
1 −

(
1 + ξ Xk−un

β

)−1)



1{Xk>un}

(4)
and the information matrix

Jn =

[
− ∂2l

∂β2 − ∂2l
∂β∂ξ

− ∂2l
∂β∂ξ

− ∂2l
∂ξ2

]
=

[
Jββ Jβξ

Jβξ Jξξ

]
,
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where

Jββ =
n∑

k=1

{ 1

β2ξ
− 1 + ξ

β2ξ

(
1 + ξ

Xk − un

β

)−2}
1{Xk>un}

Jβξ =
n∑

k=1

{ 1

βξ2
+

1

βξ

(
1 +

1

ξ

) (
1 + ξ

Xk − un

β

)−2

− 1

βξ

(
1 +

2

ξ

) (
1 + ξ

Xk − un

β

)−1}
1{Xk>un} (5)

Jξξ =
n∑

k=1

{ 2

ξ2

(
1 +

2

ξ

) (
1 + ξ

Xk − un

β

)−1

+
2

ξ3
ln

(
1 + ξ

Xk − un

β

)

− 1

ξ2

(
1 +

1

ξ

) (
1 + ξ

Xk − un

β

)−2

− 1

ξ2

(
1 +

3

ξ

) }
1{Xk>un}.

The proof now proceeds with first looking at the distribution of the tail-parameters
(β̂n, ξ̂n). Then the other two parameters µ̂ and p̂ are investigated. Finally, the
joint distribution of all parameters will be needed for arriving at the main result in
Theorem 2.1. But first a note about asymptotics.

The proposed model in (1) specifies the tail behaviour for the distribution of the
observations Xk. Since the tail behaviour, by definition, is an asymptotic property of
F we want pn = F̄ (un) ∝ u

−1/ξ
n → 0 (where an ∝ bn means that an/bn → constant).

Since ξ ∈ (0, 1) this means that un → ∞, and for ease of analysis we specifically
assume un ∝ nθ for some θ > 0. This restriction means that we let the tail speak
for itself and not be influenced by the bulk of the distribution.

Further, we want npn → ∞, i.e. we want the number of observations in the tail to
grow as the sample grows. This is equivalent to requiring n1−θ/ξ → ∞ or θ < ξ.
This is achieved by selecting un = O+(nαξ) for some α ∈ (0, 1), where an = O+(nα)
denotes a positive sequence such that an/nα is bounded away from zero and infinity.

This leads to the following assumption, which will be assumed to hold throughout
the rest of the paper.

Assumption 2.1 (Basic assumptions)
The random variables X1, . . . , Xn are stationary and m-dependent with distribution
function F as in (1). Further, the threshold un = O+(nαξ) for some α ∈ (0, 1). ¤

Further restrictions will have to be placed on α later on, which will be apparent
from the proofs.

In order to find the asymptotic distribution of (βn, ξn), we need the following lemma,
where an ∼ bn means that an/bn → 1 as n (and hence also un and βn) tend to infinity.
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Lemma 2.1 (Expected values)
Let Y ∼ Fu, where Fu(y) = P(Y ≤ y) = P(X1 − un ≤ y|X1 > un) is given in (2).
Then

E
[(

1 +
Y

u

)−r]
∼ 1

1 + rξ
+

1

1 + rξ
· rδξ2

(r + δ)ξ + 1
u−δL(u)

E
[
ln

(
1 +

Y

u

)]
∼ ξ − ξ

δξ

1 + δξ
u−δL(u)

E
[
ln

(
1 +

Y

u

)2]
∼ 2ξ2 − 2ξ2 δξ(2 + δξ)

(1 + δξ)2
u−δL(u)

E
[(

1 +
Y

u

)−r

ln
(
1 +

Y

u

)]
∼ ξ

(1 + rξ)2
+

ξ

(1 + rξ)2
· δξ(r2ξ2 − δξ − 1)

((r + δ)ξ + 1)2
u−δL(u).

Proof: This follows from straight-forward calculations using Karamata’s Theorem
(see e.g. Bingham et al. (1987)). See Appendix A.1 for details. ¤

Lemma 2.2 (Score function and information matrix)
Let the log-likelihood function be as in Equation (3) and let pn = P(X1 > un).
Then, for the score function U(β, ξ) defined in Equation (4),

E[Uβ] ∼ −δξ

β((1 + δ)ξ + 1)
npnu

−δL(u)

E[Uξ] ∼
−δξ

(1 + δξ)((1 + δ)ξ + 1)
npnu

−δL(u).

Further, the information matrix, Jn in (5) satisfies

E[Jββ] ∼ npn

β2(1 + 2ξ)
+

npn

β2(1 + 2ξ)
· 2δξ(ξ + 1)

(2 + δ)ξ + 1
u−δL(u)

E[Jβξ] ∼
npn

β(1 + ξ)(1 + 2ξ)
+

npn

β(1 + ξ)(1 + 2ξ)
· δξ(3 + (6 + δ)ξ + 2ξ2)

((1 + δ)ξ + 1)((2 + δ)ξ + 1)
u−δL(u)

E[Jξξ] ∼
2npn

(1 + ξ)(1 + 2ξ)

+
2δ

ξ

( 1

1 + δξ
+

ξ + 2

(1 + ξ)((δ + 1)ξ + 1)
− ξ + 1

(1 + 2ξ)(1 + (2 + δ)ξ)

)
npnu

−δL(u).

Finally, let C =diag(βn, 1). Then

C
1

npn

JnC →p G−1 =
1

1 + 2ξ

(
1 1

1+ξ
1

1+ξ
2

1+ξ

)
, for n → ∞.

Proof: See Appendix A.2. ¤

Lemma 2.3 (Distribution of the score function)
Assume that α ∈ ((1 + 2δξ)−1, 1), where ξ and δ are parameters in the definition of
F in (1). Let (Uβ, Uξ)

t be the score function for the GPD defined in (4) and assume
that

Var(βUβ) → ∞, Var(Uξ) → ∞
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and that these variances are of the same order. Then

1√
npn

Σ−1/2
n

(
βUβ

Uξ

)
→d N (0, I),

where the covariance matrix Σn is best estimated numerically since it is rather
cumbersome and uninformative to write out explicitly. Refer to Section A.3.1 below
for a discussion of how this could be done.

Proof: See Appendix A.3. ¤

Lemma 2.4 (Distribution of (β̂n, ξ̂n))
Assume that α ∈ ((1 + 2δξ)−1, 1) and let

G = (1 + ξ)

(
2 −1
−1 1 + ξ

)
.

Then
√

npn(GΣnGt)−1/2

(
β̂n/β − 1

ξ̂n − ξ

)
→d N (0, I),

where Σn is the matrix in Lemma 2.3.

Proof: A sketch of the proof follows below. Taylor expansion of the score function
U around the ML-estimate Ψ̂n = (β̂n, ξ̂n)t gives us the result

U(Ψ̂n) ≈ U(Ψ) +
∂U(Ψ)

∂Ψt
(Ψ̂n − Ψ),

where U(Ψ̂n) = 0 (since Ψ̂n is the ML-estimate) and ≈ means that higher order
terms have been neglected. Then

√
npn(Ψ̂n − Ψ) ≈ (npnJ

−1
n )

1√
npn

U(Ψ).

Let C = diag(β, 1), then

√
npn

(
β̂n/β − 1

ξ̂n − ξ

)
≈ C−1npnJ−1

n

1√
npn

(
Uβ

Uξ

)

= C−1npnJ
−1
n C−1C

1√
npn

(
Uβ

Uξ

)

= C−1npnJ
−1
n C−1 1√

npn

(
βUβ

Uξ

)

→d N (0, GΣG),

by Lemmas 2.2 and 2.3. The proof implicitly assumes that there exists a solution Ψ̂
to the maximum likelihood equations, see e.g. Smith (1985, 1987) for a discussion
of this. ¤
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Now turn to the distribution of µ̂ and p̂.

Lemma 2.5 (Distribution of µ̂)
Let µ̂ = n−1

∑n
k=1 XkIk, where Ik = 1{Xk≤un}. Further, let µn = E[X1I1], σ2

µ =
Var(µ̂) and γ2

n,k = Cov(X1I1, X1+kI1+k), k = 0, 1, . . . ,m. Then

1

σµ

(µ̂ − µn) →d N (0, 1),

where we assume that σ2
µ ∼ γ2

n,0 + 2γ2
n,1 + . . . + 2γ2

n,m ∝ nρ, with ρ > 2αξ − 1.

Proof: See Appendix A.4. ¤

Note that σ2
µ ∝ nα(2ξ−1) if the Xk’s are independent. Hence Lemma 2.5 holds in this

case.

Lemma 2.6 (Distribution of p̂)
Let p̂ = n−1

∑n
k=1 1{Xk>un}, pn = P(X1 > un) and σ2

p = Var(p̂). Then

1

σp

(p̂ − pn) →d N (0, 1), as n → ∞.

Proof: See Appendix A.5. ¤

In order to be able to prove the main theorem, the joint distribution of the param-
eters is needed. This is given by the following lemma.

Lemma 2.7 (Joint distribution)
Let

Ψn =





(µ̂ − µn)/σµ

(p̂ − pn)/σp

βUβn/
√

npn

Uξn/
√

npn



 and Fn =





σµ 0 0 0
0 σp 0 0
0 0 2(1 + ξ)/

√
npn −(1 + ξ)/

√
npn

0 0 −(1 + ξ)/
√

npn (1 + ξ)2/
√

npn



 .

Assume that Var(AΨn) = AΣnA
t = O+(nτ ) for some τ ≥ 0 and all A ∈ R4 \ {0}.

Then

(FnΣnF
t
n)−1/2





µ̂ − µn

p̂ − pn

β̂n/β − 1

ξ̂n − ξ



 →d N (0, I).

Proof: See Appendix A.6. ¤
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Finally, let

Bn =
[
1; un + β/(1 − ξ); pnβ/(1 − ξ); pnβ/(1 − ξ)2

]

and σ2
µ = Var(µ̂). Then we can formulate the main theorem as follows.

Theorem 2.1 (Distribution of M̂)
Assume that σ2

µ = O+(nρ−1) with ρ = α(2ξ − 1) and α ∈ ((1 + 2δξ)−1, 1). Then,
under the assumptions in Lemma 2.7,

(BnKnB
t
n)−1/2(M̂ − M) →d N (0, 1)

where Kn = Cov([µ̂ − µ, p̂ − pn, β̂n/β − 1, ξ̂n − ξ]t).

Proof: See Appendix A.7. ¤

3 A simulation study

In order to compare the estimate M̂ of the expected value to the standard method
using the mean X̄, some simulations were made. First the mean was estimated
based on a sample of independent r.v.’s (a similar simulation was done in Johansson
(2001)). The reason for this was to see how the methodology behaved in a standard
situation. In the second simulation data was generated by an MA(3)-process and
the mean was again estimated using M̂ .

One of the main reasons for contemplating m-dependence was that it would open
a way to estimate covariances. Ultimately, such a method could be used as a diag-
nostics tool for determining the order of ARMA-processes, see Brockwell and Davis
(1987). An example of how this may be done is shown in the last simulation.

The tail-parameters β and ξ were estimated using the S-plus program package EVIS,
Version 3, by Alexander J McNeil. Depending on the value of ξ̂, different estimates
of the mean were made, as illustrated in Figure 1. ξ̂ > 1 would indicate that the
mean is infinite, and so the estimate should be infinity in this case. Further, if
ξ̂ < 0 this would mean a distribution with finite tail and then the sample mean was
used. Except in degenerate cases, the sample mean tends to a normally distributed
random variable also for m-dependent variables, provided that the variance is finite.

3.1 Simulation based on independent data

In simulation one, 500 samples of independent random variables were drawn from a
distribution with pdf as in Figure 2 with parameters ξ = 0.7, w = 10 and δ = 1. The
results are displayed in Figure 3. For the case w = 10 the tail starts at approximately
p = P(X > u) = 0.4, which explains the bias for p = 0.45 and p = 0.50. In the
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sample estimate
ξ

ξ̂ > 1
Ê[X] = ∞

ξ̂ ∈ (0, 1)
Ê[X] = M̂

ξ̂ < 0
Ê[X] = X̄

Figure 1: The figure shows how M̂ is
used in the simulations.

constant

f(x)

xw

− ∂
∂xcx−1/ξ(1 + x−δ)

Figure 2: The distribution used in the
simulations.

light-tailed case with ξ = 0.3 and w = 10, the tail starts at p = 0.23, with similar
implications for the bottom graph in Figure 3. (More simulations of this kind can
be found in Johansson (2001)).

There appears to be less of a median bias in the heavy tailed cases using M̂ compared
to using X̄. In the case of light-tailed data, there is not much of a difference between
the two methods.

3.2 Data from an MA(3)-process

In simulation two, independent samples were fed to the MA(3) process Yk = 0.25(Xk+
Xk−1 + Xk−2 + Xk−3), where the Xk have a distribution as in Figure 2 with param-
eters ξ = 0.7, δ = 1 and w = 10. The mean was estimated using M̂ and X̄ as in
simulation one and the results are displayed in Figure 4.

Noticeable in simulation two is the larger median bias for M̂ compared to the case
with independent observations. The reason for this lies in the fact that the tail
behaviour for Yk = (Xk + . . . + Xk−3)/4 sets in later than for the Xk. This is
illustrated in Figure 5 where the pdfs for sums of iid GPD random variables with
parameters ξ = 0.7 and β = 10 were plotted. This in turn means that ξ̂ was
underestimated, but that the bias in the ξ estimates decreased as p decreased/ the
threshold u increased.

3.3 Covariance estimation

In the case of an MA(1)-process, Yk = (Xk + Xk−1)/2, the covariance Cov(Y1, Y2) =
Var(X1)/4. In simulation three, iid GPD-distributed innovations Xk with parameters
ξ = 0.35 and β = 10 were fed to the above MA-process and the covariance was
estimated in the following way:

1. The estimate of E[Yk], denoted M̂1, was calculated as described in Figure 1.

2. Then E[YkYk−1] was estimated by M̂2 in a similar fashion.

3. The estimate of Cov(Yk, Yk−1) was then set to M̂2 − M̂2
1 .
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Figure 3: Simulation one, independent r.v.’s. Top left: ξ = 0.7, δ = 1, w = 10 and
sample size 1000. Top right: Same as top left but with sample size 10000. Bottom:

ξ = 0.3, δ = 1, w = 10 and sample size 10000. The bar graphs indicate how many
observations were too large to be displayed in the graphs. This includes the cases
where the mean was estimated to infinity using M̂ . The dashed lines indicate the
true values of the mean.

This was then compared to the standard method for estimating the covariance

ρ̂(1) =
1

n − 1

n−1∑

k=1

(Xk − X̄)(Xk+1 − X̄).

The results are displayed in Figure 6.

There appears to be a smaller median bias for the estimate M̂2 − M̂2
1 compared to

ρ̂(1). The median bias also decreases as p decreases, that is when we move further
out on the tail.
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Figure 4: Simulation two, data from an MA(3)-process. 500 samples with parame-
ters ξ = 0.7, δ = 1 and w = 10 and sample sizes top left: 1000, top right: 5000 and
bottom left: 10000. The bar graphs show how many observations were too large
to be displayed in the boxplots and the dashed lines indicate the true value of the
mean. Bottom right: a typical sample from the MA(3) process.

4 Concluding remarks and suggestions for further study

Judging from the simulations, the suggested method appears useful for sample sizes
over 1000. However, it could also be noted that the simulations do not completely
mimic how the estimate would be used for a single sample. In the one sample case,
the threshold would be set so that good estimates of the tail could be made. In the
simulations, no such considerations were made. The probability of exceeding the
threshold (p) was fixed for all samples, regardless of their individual characteristics.

Finally, note that even though the calculations in the paper were made for the case
of m-dependence, it should be fairly easy to apply the same techniques of proof for
other kinds of dependence. The pseudo maximum likelihood estimates of β and ξ
could also be replaced by more advanced ML estimates if more was known about
the dependence structure. See for instance Drees (2000).
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Figure 5: Note the different behaviours for the tails and how this would affect the
estimation of ξ so that smaller values of ξ̂ would be expected for large values of p,
i.e. when we are far from the asymptotic tail-behaviour.

4.1 Further applications

A common diagnostics tool for fitting the order of an ARMA-process is to examine
the behaviour of

ρ̂n(h) =
1
n

∑n−h
k=1 XkXk+h

1
n

∑n
k=1 X2

k

, h = 0, 1, 2, . . . .

In the heavy-tailed case, this might not be a good idea since the distribution of ρ̂n(h)
may sometimes be random, see Resnick et al. (1999).

Since the numerator in ρ̂n(h) is an estimate of E[X1X1+h] and the denominator is
an estimate of E[X2

1 ], an idea would be to replace these by estimates of the kind
described in Section 2. Let M̂(h) be such an estimate of E[X1X1+h] for h = 0, 1, 2, . . .
and approximate ρ̂n(h) by ρ̂M(h) = M̂(h)/M̂(0). Further, in the heavy-tailed case,
ρ̂n(h) is expected to be close to zero in case of independent variables.

For ρ̂M(h) to be useful as a diagnostic tool, we need to know its asymptotic vari-
ance. Let µh = E[M̂(h)], σ2

h = Var(M̂(h)) and σkh = Cov(M̂(k), M̂(h)) for h, k =
0, 1, 2, . . .. Using the δ-method we find that

Var(ρ̂M(h)) ≈ σ2
h

µ2
0

+
µh

µ3
0

[µh

µ0

σ2
0 − σ0h

]
.

How estimation of σ0h should be made is not clear at this time and further research
is required. One possible way around this problem might be to use a bootstrapping
scheme for M̂ .
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Figure 6: Simulation three. 500 samples of the MA(1) process with GPD(ξ =
0.35,β = 10) innovations and with sample sizes Top left: 1000, top right: 5000 and
bottom: 10000. The bar graphs show how many observations were too large to fit
into the boxplots and the dashed lines indicate the true value of the covariance.
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A Proofs

Repeated use will be made of the following theorem which follows directly from Utev
(1990).

Theorem A.1
Let ξn,1, . . . , ξn,Nn , n ≥ 1 be a triangular array of m-dependent random variables
with zero mean and finite variances. Put

Sn,Nn =
Nn∑

i=1

ξn,i and σ2
n,Nn

= E[S2
n,Nn

]

and assume that

1

σ2
n,Nn

Nn∑

i=1

E[ξ2
n,i; |ξn,i| ≥ εσn,Nn ] → 0, as n → ∞,

for each ε > 0. Then
Sn,Nn

σn,Nn

→d N (0, 1).

¤

Corollary A.1
Let ξ

(i)
n,1, . . . , ξ

(i)
n,Nn

, n ≥ 1, i = 1, . . . , r be triangular arrays of m-dependent r.v.’s with

zero mean and finite variances. That is, the r.v.’s {ξ(i)
n,k, . . . , ξ

(i)
n,k+m, i = 1, . . . , r} are

dependent, k = 1, . . . , Nn − m. Let Si =
∑Nn

k=1 ξ
(i)
n,k, i = 1, . . . , r and σ2

i = E[S2
i ].

In order to conclude that

1

σ1




S1
...

Sr



 →d N (0, T ),

for some matrix T , it is enough that all the σ2
i are of the same order, i.e.

(i)
σ2

i

σ2
j

= O+(1), i 6= j

and that the row-sums satisfy a Lindeberg condition

(ii)
1

σ2
i

Nn∑

k=1

E[(ξ
(i)
n,k)

2; |ξ(i)
n,k| ≥ εσi] → 0, for all ε > 0

Proof: The proof is based on the Lindeberg-Feller theorem and the Cramér-Wold
device. Let θ = (θ1, . . . , θr) ∈ Rr and define Sθ = θ · (S1, . . . , Sr) =

∑Nn

k=1{θ1ξ
(1)
n,k +

. . . + θrξ
(r)
n,k}.

16



By theorem A.1 we have that Sθ/σ1 →d N (0, σθ), for some constant σθ, if the
following tends to zero for all ε > 0

1

σ2
1

Nn∑

k=1

E[(θ1ξ
(1)
n,k + . . . + θrξ

(r)
n,k)

2; |θ1ξ
(1)
n,k + . . . + θrξ

(r)
n,k| ≥ εσ1] = (∗).

If this holds for all θ then, by the Cramér-Wold device, the vector σ−1
1 (S1, . . . , Sr)

t

also converges to an r-dimensional normal distribution.

Now apply the inequality

E[(ξ1 + . . . + ξr)
2; |ξ1 + . . . + ξr| ≥ ε] ≤ r2E[ξ2

1 ; |ξ1| ≥ ε/r] + . . . + r2E[ξ2
r ; |ξr| ≥ ε/r]

to (∗). Then

(∗) ≤ θ2
1r

2

σ2
1

Nn∑

k=1

E[(ξ
(1)
n,k)

2; |θ1ξ
(1)
n,k| ≥ εσ1/r] + . . .

. . . + θ2
rr

2σ2
r

σ2
1

1

σ2
r

Nn∑

k=1

E[(ξ
(r)
n,k)

2; |θrξ
(r)
n,k| ≥ εσr(σ1/σr)/r] → 0

by assumptions (i) and (ii) and the result follows. ¤

A.1 Proof of Lemma 2.1

Sketching the proof, let Y ∼ Fu. Then, following Smith (1987)

E
[(

1 +
Y

u

)−r]
=

∫ ∞

y=0

(
1 +

y

u

)−r

fu(y)dy =

∫ ∞

t=1

t−rfu(tu − u)udt

= 1 −
∫ ∞

t=1

rt−r−1−1/ξdt −
( ∫ ∞

t=1

rt−r−1−1/ξ−δ L(tu)

L(u)
dt

−
∫ ∞

t=1

rt−r−1−1/ξdt
) u−δL(u)

1 + u−δL(u)

= {Use Karamata’s Theorem, assume that u is large}

∼ 1

1 + rξ
+

1

1 + rξ
· rδξ2

(r + δ)ξ + 1
u−δL(u).

The other results follow in a similar fashion.

17



A.2 Proof of Lemma 2.2

Let Y1, . . . , Yn ∼ Fu where Fu is defined in (2). Then, using Lemma 2.1, we find that

E[Uβ] =
n∑

k=1

E
[ 1

βξ
− 1

β

(1

ξ
− 1

)(
1 + ξ

Xk − un

β

)−1∣∣∣Xk > un

]
P(Xk > un)

=
n∑

k=1

E
[ 1

βξ
− 1

β

(1

ξ
− 1

)(
1 + ξ

Yk

β

)−1]
pn

∼
n∑

k=1

{ 1

βξ
− 1

β

(1

ξ
+ 1

)[ 1

1 + ξ
+

1

1 + ξ
· δξ2

(1 + δ)ξ + 1
u−δL(u)

]}
pn

=
−δξ

β((1 + δ)ξ + 1)
npnu−δL(u).

E[Uξ], E[Jββ], E[Jβξ] and E[Jξξ] are calculated in a similar fashion.

Let C = diag(βn, 1). To prove that C(npn)−1JnC →p G−1, we examine each of the
components of the matrix individually. Let rn be a sequence of numbers and recall
that β = O+(un). Further, let β2Jββ be the (1, 1) component in the C(npn)−1JnC
matrix, see Equation (5). Let σββ = Var(β2Jββ) and select rn so that σββ/r2

n → 0.
It then follows that r−1

n (β2Jββ − E[β2Jββ]) →p 0.

From (5) and using the m-dependence between the random variables Xk, Cauchy-
Schwarz inequality and Lemma 2.1, we find that

σ2
ββ = Var

( n∑

k=1

{1

ξ
− 1 + ξ

ξ

(
1 + ξ

Xk − un

β

)−2}
1{Xk>un}

)

≤ n(2m + 1)E
[{1

ξ
− 1 + ξ

ξ

(
1 + ξ

X1 − un

β

)−2}2

1{X1>un}

]

= {Y ∼ Fu, where Fu is defined in (2)}

= npn(2m + 1)E
[{1

ξ
− 1 + ξ

ξ

(
1 + ξ

Y

β

)−2}2]
∼ npn(2m + 1)(a + bu−δL(u)),

for constants a and b which can be found from Lemma 2.1. Hence, selecting rn = npn

we obtain (npn)−1β2
nJββ − E[(npn)−1β2

nJββ] →p 0. Similar calculations are done for
the other components. From the earlier results it also follows that (npn)−1E[CJnC]−
G−1 → 0, which proves the last assertion of the lemma.

A.3 Proof of Lemma 2.3

This is a direct application of Theorem A.1 and Corollary A.1. The aim is to show
convergence of (npn)−1/2U(β, ξ), where U(β, ξ) = (Uβ, Uξ)

t is the score function from
Equation (4). Let

ξn,k =
[ 1

βξ
− 1

β

(1

ξ
+ 1

)(
1 + ξ

Xk − un

β

)−1]
1{Xk>un} and

ηn,k =
[ 1

ξ2
ln

(
1 + ξ

Xk − un

β

)
− ξ + 1

ξ2
+

ξ + 1

ξ2

(
1 + ξ

Xk − un

β

)−1]
1{Xk>un}.
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Further, let

T1,n =
β√
npn

(Uβ − E[Uβ]) =
n∑

k=1

β√
npn

(ξn,k − E[ξn,k]) and

T2,n =
√

npn(Uξ − E[Uξ]) =
n∑

k=1

1√
npn

(ηn,k − E[ηn,k]).

We now apply Corollary A.1. First look at

σ2
1,n = Var(T1,n) =

β2

npn

[
nVar(ξn,1) + 2(n − 1)Cov(ξn,1, ξn,2)+

. . . + 2(n − m)Cov(ξn,1, ξn,m+1)
]

A similar calculation holds for σ2
2,n = Var(T2,n). Had the variables ξn,k been inde-

pendent, σ2
1,n = O+(1). For the case with m-dependent r.v.’s this can be modified

a bit and we assume that Var(βUβ) = npnσ
2
1,n → ∞, Var(Uξ) = npnσ2

2,n → ∞ and
σ2

1,n/σ2
2,n = O+(1). This means that σ2

k,n, k = 1, 2, can be allowed to tend to zero,
as long as the rate is not too fast.

It is straightforward to check convergence for T1,n using Theorem A.1:

1

σ2
1,n

n∑

k=1

E
[( β√

npn

(ξn,k − E[ξn,k])
)2

;
∣∣∣

β√
npn

(ξn,k − E[ξn,k])
∣∣∣ ≥ εσ1,n

]

=
1

pnσ2
1,n

E
[({1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

X1 − u

β

)−1}
1{X1>u} −

E[ξn,1]

β

)2

;

∣∣∣
{1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

X1 − u

β

)−1}
1{X1>u} −

E[ξn,1]

β

∣∣∣ ≥ ε
√

npnσ1,n

]

= {Let Y ∼ Fu, where Fu is given in (2), condition on {Xk > u}
and use Cauchy-Schwarz inequality }

≤ 1

σ2
1,n

E
[{1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

Y1

β

)−1

− pnE
[1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

Y1

β

)−1]}4]1/2

· P
(∣∣∣

1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

Y1

β

)−1

− pnE
[1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

Y1

β

)−1]∣∣∣ ≥ ε
√

npnσ1,n

)1/2

→ 0

since the expected value tends to a finite constant by Lemma A.1 and the probability
tends to zero since npnσ

2
1,n → ∞ by assumption and the term within | · | is smaller

than a constant. The second sum, T2,n, is treated similarly although the calculations
for that case are slightly longer.

Further, by Lemma 2.1 and for any a and b,

aβ√
npn

E[Uβ] +
b√
npn

E[Uξ]

∼ −δξ
( a

(1 + δ)ξ + 1
+

b

(1 + δξ)((1 + δ)ξ + 1)

)√
npnu

−δL(u) → 0
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only if
√

npnu−δ ∝ n1/2−α(1/2+δξ) → 0, i.e. if α > (1 + 2δξ)−1. Then, under this
assumption and using Corollary A.1

1√
npn

[
βUβ

Uξ

]
→d N (0, Σ), as n → ∞,

where Σ is the covariance matrix. This concludes the proof.

A.3.1 Estimating Σ

The covariance matrix Σ is most easily estimated numerically. This can be done,
for instance, by first substituting estimates β̂ and ξ̂ for β and ξ in the expressions
for ξn,k and ηn,k above. Then calculate the sample equivalents of σ2

1,n and σ2
2,n as

indicated above. The off-diagonal term in Σ is treated similarly.

The difficulty here is how to know how many of the covariance terms Cov(ξn,1, ξn,1+k)
to include in the estimates of σ2

1,n. One possibility is to make an autocorrelation
plot and try to estimate how far the m-dependence goes. Another possibility might
be to make a plot of σ2

1,n for different choices of m and select an m where the plot
seems to flatten out.

A.4 Proof of Lemma 2.5

The proof is a direct application of Theorem A.1. Let

µ̂ − µn =
n∑

k=1

XkIk − µn

n
=:

n∑

k=1

ζn,k =: Sn.

Then E[ζn,k] = 0 and we denote

σ2
n = E[S2

n] = {m-dependence and stationarity}

=
1

n
Var(X1I1) +

2(n − 1)

n2
Cov(X1I1, X2I2) + . . . +

2(n − m)

n2
Cov(X1I1, Xm+1Im+1).

Assume that σ2
n ∝ nρ−1 for some ρ. Since, for positive r.v.’s η

E[ηk] =

∫ ∞

0

kxk−1P(η > x)dx,

we note that if X1, . . . , Xn were independent, then σ2
n = O+(u

2−1/ξ
n ). Since un =

O+(nαξ) for α ∈ (0, 1), this corresponds to ρ = α(2ξ − 1) for the independent case.

We now turn to the Lindeberg condition in Theorem A.1:

1

σ2
n

n∑

k=1

E[ζ2
n,k; |ζn,k| ≥ σn] =

1

nσ2
n

E[(X1I1 − µn)2; |X1I1 − µn| ≥ nσn]

= {E[|XY |] ≤ E[X2]1/2E[Y 2]1/2, and E[(X1I1 − µn)4] = O+(u4−1/ξ)}

≤ u
2−1/2ξ
n

nρ
O+(1)

{
P(X1I1 ≤ −nσn + µn) + P(X1I1 ≥ nσn + µn)

}1/2

= (∗).
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Since ξ ∈ (0, 1) it follows that µn = E[X1I1] tends to a finite, positive constant.
Further, X1I1 > 0 and nσn = O+(n(ρ+1)/2) → ∞ if ρ > −1, so P(X1I1 ≤ −nσn +
µn) = 0 for large enough n.

Finally, X1I1 ≤ un, so if nσn = O+(n(ρ+1)/2) grows faster than un, then P(X1I1 ≥
nσn + µn) = 0 for large enough n. This corresponds to ρ > 2αξ − 1.

Hence (∗) = 0 for large values of n if ρ > 2αξ − 1. The result now follows from
Theorem A.1.

A.5 Proof of Lemma 2.6

Let Hk = 1{Xk>u}, where X1, . . . , Xn ∼ F and are m-dependent. Then

p̂ − pn =
n∑

k=1

Hk − pn

n
=

n∑

k=1

ζn,k

n
= Sn,

where pn = E[H1]. Further, let

σ2
p = E[S2

n] = {m-dependence and stationarity}

=
1

n

[
Var(H1) + 2Cov(H1, H2) + . . . + 2Cov(H1, H1+m)

]

− 2

n2

[
Cov(H1, H2) + 2Cov(H1, H3) + . . . + mCov(H1, H1+m)

]

where Var(H1) = pn(1 − pn) and −p2
n ≤ Cov(H1, Hk) ≤ pn(1 − pn) for k = 1, . . . ,m.

It follows that σ2
p = O+(pn/n). We now use Theorem A.1 and, for each ε > 0,

examine

1

σ2
p

n∑

k=1

E
[(ζn,k

n

)2

;
∣∣∣
ζn,k

n

∣∣∣ ≥ εσp

]
=

1

nσ2
p

E[(H1 − pn)2

︸ ︷︷ ︸
≤1

; |H1 − pn| ≥ εnσp]

≤ 1

nσ2
p

P(|H1 − pn| ≥ εnσp) → 0,

since nσp → ∞. Hence, by Theorem A.1

1

σp

(p̂ − pn) →d N (0, 1), as n → ∞.

A.6 Proof of Lemma 2.7

Let

ξn,k =
1√
npn

{1

ξ
−

(1

ξ
+ 1

)(
1 + ξ

Xk − un

β

)−1}
1{Xk>un} and

ηn,k =
1√
npn

{ 1

ξ2
ln

(
1 + ξ

Xk − un

β

)
− ξ + 1

ξ2

(
1 −

(
1 + ξ

Xk − un

β

)−1)}
1{Xk>un}.
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Then the score function U(β, ξ) = (Uβ, Uξ)
t defined in (4) can be written as

βUβ =
n∑

k=1

ξn,k and Uξ =
n∑

k=1

ηn,k.

Let

S1 =
1

σµ

(µ̂ − µn) =
1

σµ

n∑

k=1

(Xk1{Xk≤un} − µn) as in Lemma A.4,

S2 =
1

σp

(p̂ − pn) =
1

σp

n∑

k=1

(1{Xk>un} − pn) as in Lemma A.5,

S3 =
1√
npn

(Uβ − E[Uβ]) =
1√
npn

n∑

k=1

(ξn,k − E[ξn,k]) and

S4 =
√

npn(Uξ − E[Uξ]) =
1√
npn

n∑

k=1

(ηn,k − E[ηn,k]) as in Lemma A.3.

Then, by Corollary A.1 and the proofs of Lemmas A.3 – A.5

Σ−1/2
n





S1

S2

S3

S4



 →d N (0, I), where Σn = Cov((S1, S2, S3, S4)
t),

since the Sk all have variances of the same order. By Lemma 2.3

Σ−1/2
n





0
0

βE[Uβ]/
√

npn

E[Uξ]/
√

npn



 → 0,

which means that

Σ−1/2
n Ψn = Σ−1/2

n





(µ̂ − µn)/σµ

(p̂ − pn)/σp

βUβ/
√

npn

Uξ/
√

npn



 →d N (0, I).

Another way to express this is to let

F =





σµ 0 0 0
0 σp 0 0
0 0 2(1 + ξ)/

√
npn −(1 + ξ)/

√
npn

0 0 −(1 + ξ)/
√

npn (1 + ξ)2/
√

npn



 , so that FΨn ≈





µ̂ − µn

p̂ − pn

β̂n/β − 1

ξ̂n − ξ



 .

This latter form will be used in the proof of the following theorem. This means that
(FΣnF

t)−1/2(FΨn) →d N (0, I).
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A.7 Proof of Theorem 2.1

We will begin by Taylor expanding the expression for M̂−M . After that we identify
which components are of order op(1) and finally apply the Continuous Mapping
Theorem and Lemma 2.7 in order to arrive at the asymptotic distribution. So, let

M̂ − M = µ̂ − µn + p̂
(
un +

β̂n

1 − ξ̂n

)
− pn

(
un +

β

1 − ξ

)

= µ̂ − µn + (p̂ − pn)
(
un +

β̂n

1 − ξ̂n

)
+ pn

( β̂n

1 − ξ̂n

− β

1 − ξ

)
.

Taylor expansion and dividing by σµ leaves us with

1

σµ

(M̂ − M) =
1

σµ

(µ̂ − µn) +
1

σµ

(p̂ − pn)
(
un +

β

1 − ξ

)

+
1

σµ(1 − ξ)
(p̂ − pn)(β̂n − β)(1 + op(1))

+
β

σµ(1 − ξ)2
(p̂ − pn)(ξ̂n − ξ)(1 + op(1))

+
pn

σµ(1 − ξ)
(β̂n − β)(1 + op(1)) +

βpn

σµ

ξ̂n − ξ

(1 − ξ)2
(1 + op(1))

= I + II + III + IV + V + V I.

We look at these components one at a time. Assume that ρ = α(2ξ − 1). Then
σp/σµ ∝ u−1

n so, using β = O+(un),

III =
p̂ − pn

σp︸ ︷︷ ︸
→dN (0,1)

(√npn

β
(β̂n − β)

)

︸ ︷︷ ︸
→dN (·,·)

σpβ

σµ
√

npn(1 − ξ)
︸ ︷︷ ︸

∝(npn)−1/2→0

(1 + op(1)) →p 0

by Lemmas 2.6 and 2.4.

IV =
p̂ − pn

σp︸ ︷︷ ︸
→dN (0,1)

σpβ

σµ(1 − ξ)2

︸ ︷︷ ︸
=O+(1)

√
npn(ξ̂n − ξ)︸ ︷︷ ︸
→dN (·,·)

1√
npn︸ ︷︷ ︸
→0

(1 + op(1)) →p 0,

by Lemma 2.6. Further

V =
pn

σµ(1 − ξ)
(β̂n − β)(1 + op(1))

=

√
npn

β
(β̂n − β)

︸ ︷︷ ︸
→dN (·,·)

pnβ√
npnσµ

(1 − ξ)

︸ ︷︷ ︸
=O+(1) if ρ=α(2ξ−1)

(1 + op(1)).

Finally

V I =
βpn

σµ

ξ̂n − ξ

(1 − ξ)2
=

βpn

σµ
√

npn(1 − ξ)2

︸ ︷︷ ︸
=O+(1)

√
npn(ξ̂n − ξ)︸ ︷︷ ︸
→dN (·,·)

(1 + op(1)).
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Summing up, we’ve shown that

1

σµ

(M̂ − M) =
1

σµ

[
1, un + β

1−ξ
, pnβ

1−ξ
, pnβ

(1−ξ)2

]




µ̂ − µn

p̂ − pn

β̂n/β − 1

ξ̂n − ξ



 + op(1)

→d N (0, σ2
M),

for some constant σ2
M , by Lemma 2.7 and using the Continuous Mapping Theorem.

More specifically

σ2
M = lim

n→∞

1

σ2
µ

AFΣnFAt,

where
A =

[
1, u + β

1−ξ
, pnβ

1−ξ
, pnβ

(1−ξ)2

]

and F and Σn are the matrices from the proof of Lemma 2.7.

24



References

Athreya, K. B. (1987), “Bootstrap of the mean in the infinite variance case,” The

annals of statistics, 15, 724–731.

Bingham, N., Goldie, C., and Teugels, J. (1987), Regular Variation, no. 27 in Ency-
clopedia of Mathematics and its Applications, Cambridge University Press.

Brockwell, P. and Davis, R. (1987), Time Series: Theory and Methods, Springer,
2nd ed.

Coles, S. (2001), An introduction to statistical modeling of extreme values, Springer.

Crovella, M. E. and Taqqu, M. S. (1999), “Estimating the heavy tail index from
scaling properties,” Methodol. Comput. Appl. Probab., 1, 55–79.

Crovella, M. E., Taqqu, M. S., and Bestavros, A. (1998), “Heavy-Tailed Probability
Distributions in the World Wide Web,” in A Practical Guide to Heavy Tails, eds.
Adler, R. J., Feldman, R. E., and Taqqu, M. S., Birkhäuser, pp. 3–25.

Diebold, F., Schuermann, T., and Stroughair, J. D. (1997), “Pitfalls and oppor-
tunities in the use of extreme value theory in risk management,” Advances in

computational management science, 2, 3 – 12.

Drees, H. (2000), “Weighted approximations of tail processes for β-mixing random
variables,” Ann. Appl. Probab., 10, 1274–1301.

Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997), Modelling Extremal Events,
Springer.

Hall, P. and Jing, B.-Y. (1998), “Comparison of bootstrap and asymptotic approxi-
mations to the distribution of a heavy-tailed mean,” Statist. Sinica, 8, 887–906.

Johansson, N. C. J. (2001), “A semiparametric estimator of the mean of heavytailed
distributions,” Licentiate thesis, Chalmers University of Technology, Sweden.

Longin, F. M. (2000), “From value at risk to stress testing: the extreme value ap-
proach,” Journal of banking and finance, 24, 1097–1130.

Nolan, J. P. (1999), “Fitting Data and Assessing Goodness-of-fit with
Stable Distributions,” Available from http://academic2.american.edu/ jp-
nolan/stable/stable.html.

— (2001), “Maximum likelihood estimation and diagnostics for stable distributions,”
in Lévy processes, Boston, MA: Birkhäuser Boston, pp. 379–400.

Peng, L. (2001), “Estimating the mean of a heavy tailed distribution,” Statistics and

probability letters, 52, 255–264.

Pickands, III, J. (1975), “Statistical inference using extreme order statistics,” Ann.

Statist., 3, 119–131.

25



Politis, D. N. and Romano, J. P. (1994), “Large sample confidence regions based on
subsamples under minimal assumptions,” Ann. Statist., 22, 2031–2050.

Politis, D. N., Romano, J. P., and Wolf, M. (1999), Subsampling, Springer Series in
Statistics, New York: Springer-Verlag.

Reiss, R.-D. and Thomas, M. (2001), Statistical analysis of extreme values, Basel:
Birkhäuser Verlag, 2nd ed., from insurance, finance, hydrology and other fields,
With 1 CD-ROM (Windows).

Resnick, S., Samorodnitsky, G., and Xue, F. (1999), “How misleading can sample
ACFs of stable MAs be? (Very!),” Ann. Appl. Probab., 9, 797–817.

Romano, J. P. and Wolf, M. (1999), “Subsampling inference for the mean in the
heavy-tailed case,” Metrika, 50, 55–69.

Smith, R. (1987), “Estimating Tails of Probability Distributions,” The Annals of

Statistics, 15, 1174–1207.

Smith, R. L. (1985), “Maximum likelihood estimation in a class of nonregular cases,”
Biometrika, 72, 67–90.

Tajvidi, N. (1996), “Characterisation and Some Statistical Aspects of Univariate and
Multivariate Generalised Pareto Distributions,” Ph.D. thesis, Chalmers University
of Technology.

Utev, S. (1990), “The central limit theorem for ϕ-mixing arrays of random variables,”
Theory of probability and its applications, 35, 131–139.

26



 
 
 
 
 
 
 
 
 
 
 
 

     Paper C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 



An extreme value approach to regression through the

origin with an application to superpopulation

sampling

Joachim Johansson∗

May 6, 2003

Abstract

Consider the model Yk = aXk +εkσ(Xk) for regression through the origin with

heteroscedastic errors. In the model, a is a constant and the Xk are assumed

known and bounded away from zero and infinity. The errors εk have one or

two polynomially decreasing tails and lack finite variance. Finally, σ(·) is an

unknown function such that σ(Xk)/Xk is bounded away from zero and infinity.

In the paper, an extreme value based estimate, âM , of the unknown constant

a is suggested. It is shown that âM is asymptotically unbiased and normally

distributed and also robust against changes in the underlying variance struc-

ture.

In a small simulation study, âM is compared to the standard least squares

estimate of a. The estimation technique is also applied in a superpopulation

sampling framework.

Keywords: Regression, extreme value theory, peaks over threshold, sampling,

superpopulation model.
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1 Background

Consider the model
Yk = aXk + εkσ(Xk) (1)

for regression through the origin. The parameter a is unknown and the constants
Xk and the function σ(·) are bounded away from zero and infinity. The εk are iid
random variables with (at least one) polynomially decreasing tail and E[εk] = 0.

∗Chalmers University of Technology, Göteborg, Sweden. E-mail: joachimj@math.chalmers.se
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We are interested in estimating the regression coefficient a. The common method is
to use the least squares estimate of a:

âLS =
(

n
∑

k=1

XkYk/σ(Xk)
2

)/(

n
∑

k=1

X2

k/σ(Xk)
2

)

,

where n is the sample size. However, âLS has some undesirable properties: it is
sensitive to outliers (Chambers (1986)), which makes it unsuitable for the model in
Equation (1) if the εk have heavy tails. Further, âLS will not be asymptotically nor-
mally distributed, unless the εk have finite variances. Finally, it requires knowledge
about the function σ.

The aim of this paper is to suggest a different approach for estimating a when large
samples are available and outliers are considered representative. In Section 2, such
an alternative estimate of a is suggested and in Section 3 the method is evaluated
through simulations. The proofs have been gathered in an appendix, in order to
facilitate reading.

2 Estimating a

In this section we suggest an estimate for the unknown constant a in (1) based on
extreme value theory. First the estimate is motivated and then its properties are
stated in Theorem 2.1. All proofs can be found in the appendix.

First note that
Yk

Xk

= a + εk
σ(Xk)

Xk

,

which can be written as Zk = a + εkσk, where Zk = Yk/Xk and σk = σ(Xk)/Xk.
Throughout this paper we will work under the following assumption.

Assumption 2.1
σk = σ(Xk)/Xk is bounded away from zero and infinity. Further,

P(εk > x) = cux
−1/ξu(1 + x−δuLu(x)), x > 0 and

P(εk < x) = cl|x|−1/ξl(1 + |x|−δlLl(|x|)), x < 0,

where cu and cl are real constants, ξu, ξl ∈ (0, 1), δu, δl > 0 and the functions Lu and
Ll are slowly varying at infinity, i.e. Lu(tx)/Lu(x) → 1 for every t > 0 as x → ∞.

¤

For further properties of slowly varying functions, see Bingham et al. (1987). In the
calculations below, more restrictions will be placed on δu and δl.
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The aim is now to find parametric models for the tails of Zk. We first look at the
upper tail, where

P(Zk > x) = P
(

εk >
x − a

σk

)

= cu

(x − a

σk

)−1/ξu

·
[

1 +
(x − a

σk

)−δu

Lu

(x − a

σk

)]

and thus

F̄u,k(x) = P(Zk > x + uu|Zk > uu) =
(

1 +
x

uu − a

)−1/ξu

Ru,k

=
(

1 + ξu
x

βu

)−1/ξu

Ru,k(x), (2)

where βu = ξu(uu − a) and

Ru,k(x) =
1 +

(

x+uu−a
σk

)−δu

Lu

(

x+uu−a
σk

)

1 +
(

uu−a
σk

)−δu

Lu

(

uu−a
σk

)

. (3)

Hence, the exceedances over the upper threshold uu follow a distribution that looks
like a perturbed generalised Pareto distribution, where only the perturbation Ru,k

depends on the unknown σk. This method of approximating the exceedances over a
threshold goes under the name Peaks Over Threshold (POT), see Leadbetter (1991),
Embrechts et al. (1997) or Coles (2001) for an introduction.

A similar result holds for the lower tail, for which the perturbation is called Rl,k for
the kth term; let y > 0 and ul → −∞, then

F̄l,k(y) = P(−(Zk − ul) > y|Zk < ul) =
(

1 + ξl
y

βl

)−1/ξl

Rl,k(y) (4)

where

Rl,k(y) =
1 +

(

ul−y−a
σk

)−δl

Ll

(

ul−y−a
σk

)

1 +
(

ul−a
σk

)−δl

Ll

(

ul−a
σk

)

. (5)

Note that, had it not been for the perturbations Ru,k, the exceedances over the
upper threshold would be iid, and similarly for the lower tail. Still, the observations
of the exceedances can be used for calculating maximum likelihood estimates of the
GPD parameters (βu, ξu) and (βl, ξl) for the upper and lower tails, respectively. The
likelihood function is then based on the exact GPD, but the underlying distribution
is that in (2) and (4). Thus we can estimate the upper and lower tails as

F̂u,k(x) = 1 −
(

1 + ξ̂u
x

β̂u

)−1/ξ̂u

and F̂l,k(x) = 1 −
(

1 + ξ̂l
x

β̂l

)−1/ξ̂l

. (6)

These models for the excesses over the upper and lower thresholds, uu and ul, will
be used in the estimation of the parameter a below.
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Let Fk(x) = P(Zk ≤ x) and note that we may express a in the following way:

a = E
[ 1

n

n
∑

k=1

Zk

]

=
1

n

n
∑

k=1

{

∫ ul

−∞

zdFZk
(z) +

∫ uu

ul

zdFZk
(z) +

∫ ∞

uu

zdFZk
(z)

}

=
1

n

n
∑

k=1

{

∫

0

−∞

(x + ul)dFZk
(x + ul) +

∫ uu

ul

zdFZk
(z) +

∫ ∞

0

(x + uu)dFZk
(x + uu)

}

,

where n is the sample size. Let Fn,k(x) be the empirical cdf for Zk and assume that

ξ̂l, ξ̂u ∈ (0, 1). Then a can be estimated by

âM =
1

n

n
∑

k=1

{

∫

0

−∞

(x + ul)dF̂l,k(−x)pl,k +

∫ uu

ul

xdFn,k(x) +

∫ ∞

0

(x + uu)dF̂u,k(x)pu,k

}

= p̂l

(

ul −
β̂l

1 − ξ̂l

)

+
1

n

n
∑

k=1

Zk1{ul<Zk<uu} + p̂u

(

uu +
β̂u

1 − ξ̂u

)

= p̂l

(

ul −
β̂l

1 − ξ̂l

)

+ µ̂ + p̂u

(

uu +
β̂u

1 − ξ̂u

)

where p̂l and p̂u are estimates of

pl =
1

n

n
∑

k=1

P(Zk < ul) =
1

n

n
∑

k=1

pl,k and pu =
1

n

n
∑

k=1

P(Zk > uu) =
1

n

n
∑

k=1

pu,k. (7)

So p̂u is the fraction of observations that exceed the upper threshold uu and similarly
for p̂l.

Let bn = O+(an) denote a sequence such that bn/an is bounded away from zero and
infinity. The following result is proved in the appendix and describes the asymptotic
distribution of âM .

Theorem 2.1 (Distribution of âM)
Suppose Assumption 2.1 holds and assume that ul = −O+(nαξl) and uu = O+(nαξu)
for some α ∈ ( 1

2δlξl

∨ 1

2δuξu
, 1) and let γ2

n = Var(µ̂). Then

1

γnkn

(âM − a) →d N (0, 1), as n → ∞,

where

k2

n = 1 +
[pl(1 − pl)

γ2
nn

(

ul −
βl

1 − ξl

)2

+
plβ

2
l (1 + ξl)

2

nγ2
n(1 − ξl)4

]

1{ξu≤ξl}

+
[pu(1 − pu)

γ2
nn

(

uu +
βu

1 − ξu

)2

+
puβ

2
u(1 + ξu)

2

nγ2
n(1 − ξu)4

]

1{ξl≤ξu} = O+(1).

¤
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Note that, if the lower tail of the errors {εk} decays faster than polynomially, then we
may set the lower threshold ul = −∞. This means only fitting a model for the upper
tail. The theorem will be valid also for this case, with obvious changes. Naturally,
similar reasoning is applicable when the upper tail decays faster than polynomially,
this time with uu = ∞.

The proof of Theorem 2.1 makes use of a result by Smith (1987). It is possible to
use a more direct argument as that in Johansson (2002) and show that the condition
on α can be replaced by α ∈ ((1 + 2δlξl)

−1 ∨ (1 + 2δuξu)
−1, 1).

The conditions uu = O+(nαξu) and ul = −O+(nαξl) means that P(Zk > uu) and
P(Zk < ul) are both proportional to n−α → 0. This means that, as the sample
size increases, we use observations farther out in the tails for estimating the tail
parameters. This is sometimes referred to as letting the tails speak for themselves.
The condition also means that the number of observations on which the tail estimates
are based increases with n.

3 A simulation study

In order to assess the value of the proposed estimation method, two simulations were
made based on the model Yk = aXk + εkσ(Xk) in (1) with a = 1.2 and different
selections of εk, Xk and σ(·).

The parameters ξu, ξl, βu and βl were estimated for thresholds ul and uu such that
pu = pl = 0.03, 0.05, . . . , 0.15, where pu is the probability of an observation exceeding
uu and pl is ditto for ul. Selecting pu = pl is possibly a weakness in the simulations
since the underlying distributions of Yk/Xk were not selected to be symmetric and
hence, perhaps these probabilities should differ from one-another. The automatic
selection of the best combination of values is difficult however. As a result, the
estimates in the simulations might not be of the same quality as those which would
be made in a single sample case where the individual sample characteristics could
be examined more closely.

The regression coefficient âM was calculated in the following way; if either of ξ̂u or
ξ̂l were > 1, âM was set to infinity since such a tail-index would indicate that the
underlying distribution lacks finite mean. Further, if ξ̂u < 0 and ξ̂l ∈ (0, 1), we set
uu = ∞ and hence only fit a Pareto distribution to the lower tail. This is done since
this would indicate a finite upper tail. The case ξ̂l < 0 and ξ̂u ∈ (0, 1) is treated
analogously. Finally, if both ξ̂u and ξ̂l < 0, âM was simply the sample mean since
uu = ∞ and ul = −∞ in that case.
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The estimate âM was compared to the least-squares estimate âLS mentioned in Sec-
tion 1. Since âLS requires knowledge about the shape of σ, the alternative estimate

âLS(r) =

∑n
k=1

XkYk/X
r
k

∑n
k=1

X2
k/Xr

k

, r = 0, 0.2, 0.4, . . . , 2

was used. This made it possible to assess how sensitive the least-squares estimate
was to deviations from the assumptions placed on σ.

A closer examination of the estimator makes it clear that

âM ≈ τ̂l + τ̂u + a +
1

n

n
∑

k=1

εk
σ(Xk)

Xk

,

where τ̂l and τ̂u are the lower and upper tail-parts of the estimate respectively and
n is the sample size. This means that, in cases where the tail-parts are negligible,
âM is expected to behave in approximately the same manner as âLS(2.0), since

âLS(2) = a +
1

n

n
∑

k=1

εk
σ(Xk)

Xk

.

3.1 Application to superpopulation sampling

For a population of size N , the superpopulation model Yk = aXk + εkσ(Xk) might
for instance describe how an individuals actual income, Yk, is related to the declared
income Xk. In such a case the εk might be skewed to the left with a finite left
endpoint and a polynomially decreasing right tail. For an overview (and more) of
model assisted survey sampling, refer to Särndal et al. (1992).

In this framework, we are interested in estimating the regression coefficient a and
the finite population total T (Y ) =

∑

k∈U Yk, where U = {Yk : k = 1, . . . , N} denotes
the population consisting of N individuals. We will do this by drawing a sample, S,
of size n < N from U and observing {(Xk, Yk), k ∈ S}. This sample will be used for
estimating the unknown parameter a with â. The estimate of T (Y ) is then

T̂ (Y ) =
∑

k∈S

Yk + â
∑

k/∈S

Xk.

It is desirable to find estimators of T̂ (Y ) which are robust with respect to changes
in the variance structure, σ, and outlier robust. As discussed earlier, an estimator
based on âM may have these properties. We examine the following estimates of the
population total

T̂M =
∑

k∈S

Yk + âM

∑

k/∈S

Xk and T̂LS(r) =
∑

k∈S

Yk + âLS(r)
∑

k/∈S

Xk.

These were also compared to the simpler estimate

T̂mean =
N

n

∑

k∈S

Yk,

where N is the population size and n the size of the sample.
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There are other, robust, methods available for estimating the population total T (Y ).
An overview of the literature can be found in Karlberg (1999), see also Iachan (1984),
de Bragança Pereira and Rodrigues (1983) and Chambers (1986). But, as Karlberg
(1999) states, these methods are most suitable for situations in which the outliers
encountered are non-representative. That is, when the observations are in some way
unique or incorrectly recorded (Chambers (1986)). The model (1) above is suitable
for populations where outliers are to be expected.

It is important to note that âM does not take the sampling variability into account
in Theorem 2.1. Rather, the results are conditional on the sample drawn. This
means that the result presently can not be used for calculating confidence intervals
in a sampling application. Still, the sampling framework is interesting and the
simulations were made in order to assess wether or not this is a useful method for
estimating the population total.

In both simulation one and two below, populations of size N = 100, 000 were cre-
ated. From these, 50 samples of size 1000 or 10, 000 were drawn without replacement
(simple random sampling). This procedure was repeated for ten different popula-
tions. No special simulation, more adapted to the regression case, was made. The
reason is that those results would be very similar to the ones displayed below.

3.2 Simulation one

In simulation one, the Xk’s were distributed as 10+1000Wk, where Wk ∼Beta(2,10),
which conforms to the assumption above that {Xk} = O+(1). The errors were
selected as

εk =d

{

GPD(ξ = 0.7, β = 0.1) with prob 1/3
−GPD(ξ = 0.4, β = 0.1) with prob 2/3

making E[εk] = 0. The four different variance structures σ(x) = 1,
√

x, x and x2,
were all investigated. The results are found in Figures 1 - 4, The boxplots were
made using MatLab’s default settings. In order to emphasize the boxes themselves,
not all outliers are displayed in the graphs.

For the case σ(x) = 1 the estimates of ξl and ξu fluctuated quite a bit for sample
size 1000, which contributed largely to the variance of âM . In this setting, the errors
εk are very small compared to the Xk’s. Still, both estimators are quite accurate
with errors in the third decimal place. For both sample sizes, T̂mean displayed a
considerably larger variance than was the case for T̂M and T̂LS.

For σ(x) =
√

x the errors have a larger influence. It is possible that the heavier
right tail accounts for âM having less of a median bias in the large sample case. In
this case T̂mean varies substantially more than the other methods, this may also be
due to the heavy right tail.
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With σ(x) = x, it is expected that âM should perform very well. This is confirmed
in Figure 3 below. Finally, in the case σ(x) = x2, the Xk’s are drowned by the very
large errors εkX

2
k , which is noted in the large variation of the results. Here âM is a

competitive method, even though the results are generally quite far off the mark.

3.3 Simulation two

In the second simulation εk ∼ N (0, 1) and Xk ∼ Exp(2). The same four variance
structures as in simulation one were used, namely σ(x) = 1,

√
x, x and x2. The rea-

son this model was selected is that the different σ’s will illustrate some qualitatively
different situations.

A comment about the distributions of εk and Xk is in order. In the previous section
the εk were assumed to have polynomially decaying tails and σ(Xk)/Xk was assumed
to be bounded away from zero and infinity. This is at odds with the model above.
However, the important thing is that εkσ(Xk)/Xk has a distribution which is heavy-
tailed. This will be the case for σ(x) = 1 and

√
x. The cases σ(x) = x and x2 are

included here just to see what happens when these assumptions are not valid.

The results from the simulation are shown in Figures 5–8.

It is clear from Figure 5 that estimation of a using âM is not applicable in the case
σ(x) = 1 since both ξl and ξu are mainly estimated to be > 1, indicating an infinite
mean. In this case âLS(r) was the preferable method.

Figure 6 shows the results of the simulation using σ(x) =
√

x. With estimates of ξu

and ξl in (0, 1), âM is an applicable method. However, in this case âLS(r) outperforms
âM across the whole range of r values, âM being comparable only to âLS(2.0). It is
interesting to note how stable the least-squares estimate is with regards to changes
in assumptions about σ. It is also clear that the simpler estimate T̂mean does very
well in this case.

In the simulation using σ(x) = x, it is quite clear from the outset that âM is not
the method of choice since the assumptions on the errors are not met. Studying
the results, note that ξ̂l and ξ̂u are both estimated at < 0. Hence, âM is simply
the sample mean of the Yk/Xk. Here, the sample mean outperforms the maximum-
likelihood estimates over the entire range of r values, except for r = 2, as expected.
Further, T̂M outperforms T̂mean in this case.

The results of the simulation using σ(x) = x2, are presented in Figure 8. In this case
the tails are not very heavy, as seen from ξ̂l and ξ̂u. It is clear that âM is preferable
over using âLS(r), except possibly for the optimal choice âLS(2.0). This carries over
to estimation of the population total where T̂M also gives better results than T̂mean.
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Figure 1: Simulation one with σ(x) = 1. Left: sample size 1000. Right: sample size
10 000. The upper graphs display â− a where a = 1.2. The seven leftmost columns
are âM(p) for p = pu = pl = 0.03, . . . , 0.15. The remaining columns show âLS(r) for
r = 0, 0.2, . . . , 2. The middle graphs show (T̂ −T )/T , where T is the true population
total. The columns correspond to the ones in the top graphs except the rightmost
one which displays T̂mean. The bottom graphs are the estimates of ξl (left) and ξu

(right) for different values of p = pl = pu (%). Tmean had an inter quartile range of
0.08 for sample size 1000 and 0.02 for sample size 10000.
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Figure 2: Simulation one with σ(x) =
√

x. The graphs are arranged in the same
way as in Figure 1.
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Figure 3: Simulation one with σ(x) = x. The graphs are arranged in the same way
as in Figure 1.
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Figure 4: Simulation one with σ(x) = x2. The graphs are arranged in the same way
as in Figure 1. There were outliers of the order ±500 for all estimates of a with
sample size 1000. For sample size 10 000, the outliers were larger for âLS than for
âM .

12



xil: 0.03 0.05 0.07 0.09 0.11 0.13 0.15 xiu: 0.03 0.05 0.07 0.09 0.11 0.13 0.15

0

0.5

1

1.5

Samplesize = 1000

xil: 0.03 0.05 0.07 0.09 0.11 0.13 0.15 xiu: 0.03 0.05 0.07 0.09 0.11 0.13 0.15

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Samplesize = 10000

Figure 5: Simulation two with σ(x) = 1. The seven leftmost columns are ξl(pl) for
pl = 0.03, . . . , 0.15, starting with ξl(0.03) to the far left. The following boxplots are
ξu(pu) for pu = 0.03, . . . , 0.15 with ξu(0.15) being the rightmost column. The left
graph shows the results for sample size 1000 and the right graph shows the results
for sample size 10 000.
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Figure 6: Simulation two with σ(x) =
√

x. Left: sample size 1000. Right: sample
size 10 000. The upper graphs display â − a where a = 1.2. The seven leftmost
columns are âM(p) for p = pu = pl = 0.03, . . . , 0.15. The following columns show
âLS(r) for r = 0, 0.2, . . . , 2. The middle graphs show (T̂ − T )/T , where T is the
true population total. The columns correspond to the ones in the top graphs except
the rightmost one which displays T̂mean. The bottom graphs are the estimates of ξl

(left) and ξu (right) as in Figure 5.
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Figure 7: Simulation two with σ(x) = x. The graphs are arranged in the same way
as in Figure 6.
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Figure 8: Simulation two with σ(x) = x2. The graphs are arranged in the same way
as in Figure 6.
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4 Discussion and conclusions

There are some difficulties judging the behaviour of the alternative estimate âM

from simulations. The first is that it is not easy to automate the selection of pl and
pu so as to generate the best possible estimates of the tail parameters. A second
problem is in the selection of distribution of εk and Xk. Here, an infinite number
of possibilities exist and the behaviour of one such combination in comparison with
another may be quite different.

In the sampling application, a third difficulty is which alternative estimates to com-
pare with. There are a number of different outlier-robust estimates on the market,
for instance the one- and two-sided windsorization-based estimators discussed in
Kokic and Smith (1998b,a) and Chambers and Kokic (1993). Some other methods
are discussed in Karlberg (1999).

As is often the case, no one method consistently outperforms another. However, as
could be seen from the simulations, there are cases where the alternative estimators
âM and T̂M perform well in comparison to the competitors âLS(r) and T̂LS(r) and
to T̂mean. The sensitivity to the selection of Xk’s and σ(·) is also well illustrated by
the simulations, although the least-squares estimate performs quite well even when
σ is slightly misspecified. One of the advantages of using âM is that no knowledge
about σ(·) is required.

Another advantage of the proposed method is that the asymptotic distribution of
âM is known, which can be used for constructing confidence intervals. For the least
squares estimate âLS, on the other hand, the asymptotic distribution would be more
difficult to find. There are subsampling schemes available which generate consistent
estimators of a. However, these are believed to be less efficient than asymptotic
methods such as these investigated in this paper (Hall and Jing, 1998).

Judging from the above results, a pragmatic course of action suggests itself. If the
distribution of Yk/Xk looks heavy-tailed and seems to have a finite mean, then âM

might be a good alternative to âLS, especially if nothing is known about the variance
structure.

4.1 Possible extensions

Some improvements could be made on the estimate âM . For instance one concern is
how useful the expression for the asymptotic variance is. Assume that ξu = ξl−ε for
some small ε > 0. Then the tails are almost balanced so both the contribution to the
variance from the upper and lower tails should be taken into consideration, especially
for small sample sizes. Hence, there might be a need to find a more suitable method
for estimating the variance for finite samples. One way of doing this is to replace the
indicator functions in the expression for kn in Theorem 2.1 with the corresponding
op(1)-terms from the proof.
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It might also be possible to obtain a better estimate by replacing µ̂ with a weighted
average like

µ̂w =
n

∑

k=1

wkZk1{ul<Zk<uu},

where the weights wk are proportional to the inverse of the variances. The drawback
of this is that such a method would require knowledge about the characteristics of
σ.

A third possible extension is to replace the condition {σk} = O+(1) by {σk} =
O+(nr) for r in a suitable interval. This would add generality to the model and
could probably be done without affecting the proofs very much.

For the sampling application outlined in the simulations, a natural extension is to
include the sampling variability into the estimate. How this should be done is not
clear at the present time. Another interesting extension is to try to apply similar
methodology to the more general regression case Yk = a1 + a2Xk + εkσ(Xk), where
a1 and a2 are unknown constants.
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A Proof of Theorem 2.1
Lemma A.1 (Rates of convergence)
Let pu,k = P(Zk > uu), pl,k = P(Zk < ul) and γk = Var(Zk1{ul<Zk<uu}). Then

pu,k = O+(u−1/ξu

u ), pl,k = O+(|ul|−1/ξl) and γk = O+(|ul|2−1/ξl ∨ u2−1/ξu

u ).

Proof: By Assumption 2.1 {σk} = O+(1), and the results follow from E[ηk] =
∫ ∞

0
kxk−1P(η > x)dx for a positive random variable η and k = 1, 2, 3, . . .. ¤

Lemma A.2 (Distribution of µ̂)
Suppose that Assumption 2.1 holds and that the thresholds ul = −O+(nαξl) and
uu = O+(nαξu) for some α ∈ (0, 1). Let

µ̂ =
1

n

n
∑

k=1

Zk1{ul<Zk<uu}, µn = E[µ̂], and γ2

n = Var(µ̂).

Then
(µ̂ − µn)/γn →d N (0, 1) as n → ∞.

Proof: The proof is a direct application of the Lindeberg-Feller theorem. Hence, it
suffices to check that the following tends to zero for every ε > 0:

1

γ2
n

n
∑

k=1

E
[(Zk1{ul<Zk<uu} − µn

n

)2

;
∣

∣

∣

Zk1{ul<Zk<uu} − µn

n

∣

∣

∣
> εγn

]

≤ 1

γ2
n

n
∑

k=1

E
[(Zk1{ul<Zk<uu} − µn

n

)4]1/2

P(|Zk1{ul<Zk<uu} − µn| > εnγn)1/2 = (∗).

Since |Zk1{ul<Zk<uu}−µn| < C(nαξl ∨nαξu) a.s. for some constant C and, by Lemma
A.1, nγn ∝ n1−α/2(nαξl ∨ nαξu), it follows that there exists a constant n0 such that
(∗) = 0 for all n > n0. ¤

Lemma A.3 (Expected values, tail components)
For the upper tail, let Y ∼ Fu,k, where Fu,k(y) is given by equations (2) and (3)
above. Further, let wk = (uu − a)/σk. Then for uu → ∞

E
[(

1 +
Y

uu − a

)−r]

∼ 1

1 + rξu

+
1

1 + rξu

· rδuξ
2
u

(r + δu)ξu + 1
w−δu

k Lu(wk)

E
[

ln
(

1 +
Y

uu − a

)]

∼ ξu − ξu
δuξu

1 + δuξu

w−δu

k Lu(wk)

Similarly, for the lower tail, let Y ∼ Fl,k, where Fl,k(y) is given by equations (4)
and (5) above. Further, let wk = (a − ul)/σk, then for small enough ul such that
a − ul > 0 (ul → −∞),

E
[(

1 +
Y

a − ul

)−r]

∼ 1

1 + rξl

+
1

1 + rξl

· rδlξ
2
l

(r + δl)ξl + 1
w−δl

k Ll(wk)

E
[

ln
(

1 +
Y

a − ul

)]

∼ ξl − ξl
δlξl

1 + δlξl

w−δl

k Ll(wk).
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Proof: This follows from straight-forward calculations using Karamata’s Theorem
(see e.g. Bingham et al. (1987)). Similar calculations have been done in Smith
(1987) and Johansson (2002). ¤

Lemma A.4 (Distribution of (β̂l, ξ̂l) and (β̂u, ξ̂u))
Let r ∈ {u, l} denote either the upper-tail parameters (u) or the lower-tail (l). Then,

for maximum likelihood estimates (β̂ur
, ξ̂ur

) of the parameters in (6),

√
nrQ

1/2

r

(

β̂nr
− βr

ξ̂nr
− ξr

)

→d N (0, I), as nr → ∞,

where

Q−1

r = (1 + ξr)

(

2β2
r −βr

−βr 1 + ξr

)

,

under the condition that
√

nrw
−δr

r Lr(wr) → 0, where wu = (uu − a)/σk, wl =
(a − ul)/σk and x−δrLr(x) is non-increasing. This is true, for instance, when ur =
O+(nαrξr), αr ∈ (1/2δrξr, 1).

Proof: If the perturbations Rl,k = Ru,k (in Equations (5) and (3)) for all k then this
is Theorem 3.2 in Smith (1987). Otherwise, it follows by extension of this theorem,
using Lemma A.3. Observe that, as defined here, the exceedances below ul are
positive random variables as in Equation (4). ¤

Lemma A.5 (Distribution of (β̂Nl
, ξ̂Nl

) and (β̂Nu
, ξ̂Nu

))
Let Nu = |{i : Zi > uu}| and Nl = |{i : Zi < ul}|, then

√
nprQ

1/2

r

(

β̂Nr
− βr

ξ̂Nr
− ξr

)

→d N (0, I), as n → ∞,

where r ∈ {l, u} and Q is the matrix in Lemma A.4.

Proof: Let

φu|Nu
(t1, t2) = E[exp{i√npuQ

1/2

u (t1, t2)

(

β̂Nu
− βu

ξ̂Nu
− ξu

)

}|Nu].

Then Lemma A.4 tells us that φu(t1, t2) → exp{−(t21 + t22)/2} as n → ∞. This
means that, for some constant n0 and δ > 0, we have

P(|φu|Nu
− φu| < δ) = P(|φu|Nu

− φu| < δ,Nu > n0)

+ P(|φu|Nu
− φu| < δ,Nu ≤ n0)

= P(Nu > n0) + P(|φu|Nu
− φu| < δ,Nu ≤ n0) → 1,

as n → ∞, since Nu →p ∞. Hence φu|Nu
(t1, t2) →p exp{−(t21 + t22)/2} and the claim

follows by taking expectations. The calculations are analogous for the lower tail
parameters. ¤
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We need to estimate pu and pl. The natural estimates are p̂u = Nu/n, where Nu is
the number of observations exceeding uu. Similarly p̂l = Nl/n is used for estimating
pl, where Nl is the number of observations less than ul.

Lemma A.6 (Distribution of p̂u and p̂l)
Let pr, r ∈ {u, l} be defined as in (7). Then

( p̂l − pl
√

1

n
pl(1 − pl)

,
p̂u − pu

√

1

n
pu(1 − pu)

)t

→d N (0, I),

where I is the identity matrix.

Proof: We sketch the proof for the upper tail, pu. Let

ξk,n =
1

n
(1{εk> uu−a

σk
} − pk,u), where pk,u = P

(

εk >
uu − a

σk

)

and the distribution of εk is given in Assumption 2.1. Then E[ξk,n] = 0 and E[ξ2
k,n] =

n−2pk,n(1 − pk,n). Note that

Var
(

∑n
k=1

ξk,n

)

n−1pu(1 − pu)
=

1 − n−1
∑n

k=1
p2

k,u/pu

1 − pu

→ 1,

if

n−1

n
∑

k=1

p2

k,u/pu ≤ max
1≤k≤n

pk,u = max
1≤k≤n

P(εk > (uu − a)/σk) → 0,

which it does since the σk are bounded by assumption. Now applying the Lindeberg-
Feller theorem to

∑n
k=1

ξk,n
√

n−1pu(1 − pu)
,

it turns out that
n

∑

k=1

E
[( ξk,n

√

n−1pu(1 − pu)

)2

;
∣

∣

∣

ξk,n
√

n−1pu(1 − pu)

∣

∣

∣
> ε

]

≤ 1

npu(1 − pu)

n
∑

k=1

P(|1{εk> uu−a

σk
} − pk,u| >

√

npu(1 − pu)ε) → 0

since npu = O+(n1−αu) → ∞, as n → ∞, where αu ∈ (0, 1) by assumption. In fact,
the sum is exactly zero for n large enough. The computations are similar for the
lower tail. The joint convergence follows from a standard Cramér-Wold argument.
This completes the proof. ¤

Lemma A.7 (Joint distribution)
Use the above notation and let ul = −O+(nαξl) and uu = nαξu for α ∈ ((2δlξl)

−1 ∨
(2δuξu)

−1, 1). Further let A be the block diagonal matrix with diagonal elements

[√
npuQ

1/2

u ,
√

nplQ
1/2

l ,
1

γ
,

√

n

pu(1 − pu)
,

√

n

pl(1 − pl)

]
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and

Θ =
[

β̂Nu
− βu, ξ̂Nu

− ξu, β̂Nl
− βl, ξ̂Nl

− ξl, µ̂ − µ, p̂u − pu, p̂l − pl

]t
.

Then
AΘ →d N (0, I), as n → ∞.

Proof: Let, for r ∈ {u, l},

φr|Nr
(t1, t2) = E[exp{i√npuQ

1/2

r (t1, t2)

(

β̂Nr
− βr

ξ̂Nr
− ξr

)

}|Nr]

φpr|Nr
(t) = E[exp{it

√
n(p̂r − pr)

√

pr(1 − pr)
}|Nr]

= exp{it
√

n(p̂r − pr)
√

pr(1 − pr)
} = φpr

(t)

φµ|Nu,Nl
(t) = E[exp{it µ̂ − µ

γ
}|Nu, Nl],

where γ2 = Var(µ̂). Then, using independence conditional on Nu and Nl, the joint
characteristic function is

φ(t|Nu, Nl) = φu|Nu
(t1, t2)φl|Nl

(t3, t4)φµ|Nu,Nl
(t5)φpu|Nu

(t6)φpl|Nl
(t7).

By Lemmas A.2 – A.6

φ(t|Nu, Nl) →d

exp{−(t21 + t22)/2} exp{−(t23 + t24)/2} exp{−t25/2} exp{it6N (0, 1)} exp{it7N (0, 1)},

and the claim follows by taking expectations. ¤

Now all pieces that are needed for proving Theorem 2.1 are in place.

Proof:(Theorem 2.1) First recall that

a =
1

n

n
∑

k=1

E[Zk]

where, using previously introduced notation and writing FZk
(z) = P(Zk ≤ z) and

µk = E[Zk1{ul<Zk<uu}],

E[Zk] =

∫ ul

−∞

zdFZk
(z) +

∫ uu

ul

zdFZk
(z) +

∫ ∞

uu

zdFZk
(z)

=

∫ ul

−∞

zdF̄l,k(ul − z)pl,k + E[Zk1{ul<Zk<uu}] +

∫ ∞

uu

zdFu,k(z − uu)pu,k

= pl,k

(

ul −
∫ ∞

0

F̄l,k(z)dz
)

+ µk + pu,k

(

uu +

∫ ∞

0

F̄u,k(z)dz
)
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Using Karamata’s theorem, for small ul and large uu, we find that
∫ ∞

0

F̄r,k(z)dz ∼ βr

1 − ξr

+ Rr,k

[ βr

1 − (1 − δr)ξr

− βr

1 − ξr

]

, r ∈ {l, u}

where

Rl,k =

(

a−ul

σk

)−δl

Ll

(

a−ul

σk

)

1 +
(

a−ul

σk

)−δl

Ll

(

a−ul

σk

)

and Ru,k =

(

uu−a
σk

)−δu

Lu

(

uu−a
σk

)

1 +
(

uu−a
σk

)−δu

Lu

(

uu−a
σk

)

.

Hence

a ∼ pl

(

ul −
βl

1 − ξl

)

+ µ + pu

(

uu +
βu

1 − ξu

)

+ R,

where

R =
[ βu

1 − (1 − δu)ξu

− βu

1 − ξu

] 1

n

n
∑

k=1

pu,kRu,k−
[ βl

1 − (1 − δl)ξl

− βl

1 − ξl

] 1

n

n
∑

k=1

pl,kRl,k.

Using Taylor expansion and

Sr = βr

∞
∑

k=2

(−1)k(ξ̂Nr
− ξr)

k

(1 − ξr)k+1
+

∞
∑

k=1

(−1)k

(1 − ξr)k
(β̂Nr

− βr)(ξ̂Nr
− ξr)

k−1, r ∈ {l, u},

we arrive at

âM − a ∼ (p̂l − pl)
(

ul −
β̂Nl

1 − ξ̂Nl

)

− pl

( β̂Nl

1 − ξ̂Nl

− βl

1 − ξl

)

+ µ̂ − µ

+ (p̂u − pu)
(

uu +
β̂Nu

1 − ξ̂Nu

)

+ pu

( β̂Nu

1 − ξ̂Nu

− βu

1 − ξu

)

− R

= (p̂l − pl)
(

ul −
βl

1 − ξl

+
βl

(1 − ξl)2
(ξ̂Nl

− ξl) − Sl

)

− pl

( −βl

(1 − ξl)2
(ξ̂Nl

− ξl) + Sl

)

+ µ̂ − µ + (p̂u − pu)
(

uu +
βu

1 − ξu

− βu

(1 − ξu)2
(ξ̂Nu

− ξu) + Su

)

− pu

( −βu

(1 − ξu)2
(ξ̂Nl

− ξl) + Sl

)

− R.

Note that, by Lemmas A.1 and A.5, Su = Op(uu), Sl = Op(ul) and R = O+(u
1−1/ξu−δu

u +
|ul|1−1/ξl−δl), where uu = O+(nαξu), ul = −O+(nαξl) and α ∈ ((2ξuδu)

−1 ∨ (2ξlδl)
−1).

Hence R/γ → 0 and using Lemmas A.1 and A.7, we can write

âM − a

knγ
∼ 1

kn

[

√

pl(1 − pl)

γ
√

n

(

ul −
βl

1 − ξl

)

√

n

pl(1 − pl)
(p̂l − pl)

+

√
plβl√

nγ(1 − ξl)2

√
npl(ξ̂Nl

− ξl)
]

1{ξu≤ξl} +
µ̂ − µ

knγ

+
1

kn

[

√

pu(1 − pu)

γ
√

n

(

uu +
βu

1 − ξu

)

√

n

pu(1 − pu)
(p̂u − pu)

+

√
puβu√

nγ(1 − ξu)2

√
npu(ξ̂Nu

− ξu)
]

1{ξl≤ξu} + op(1) →d N (0, 1),
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where

k2

n = 1 +
[pl(1 − pl)

γ2n

(

ul −
βl

1 − ξl

)2

+
plβ

2
l (1 + ξl)

2

nγ2(1 − ξl)4

]

1{ξu≤ξl}

+
[pu(1 − pu)

γ2n

(

uu −
βu

1 − ξu

)2

+
puβ

2
u(1 + ξu)

2

nγ2(1 − ξu)4

]

1{ξl≤ξu} = O+(1).

¤
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