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Abstract

This thesis presents methods for estimating the locations (including depth) of
spherical colloidal particles in images recorded in video microscopy. Understand-
ing the behavior of colloidal interactions and diffusion is of crucial importance in
a vast number of areas. However, since the theory fails to predict the behavior of
several important colloidal suspensions, observations and measurements on the
microscopic level are needed. Examples of common, everyday colloids are milk,
paint and pharmaceuticals. The positioning methods developed here can be used
for tracking of particles in three dimensions observed in video microscopy. We
make several suggestions on how the positioning method should be modified and
implemented to be used for this purpose.

Paper I introduces a method based on rotational symmetry to estimate the center
of circular objects in images. Standard errors are also estimated. The accuracy
of the estimates goes well beyond sub-pixel accuracy, which is validated in a
simulation study. A modification of the local polynomial kernel estimator for
censored data is also suggested. In Paper TT we estimate the intensity profiles
of particles at different known depths. These intensity profiles are then used
for depth estimation in a template matching approach. The matching criterion
takes into account both different background levels and censoring of pixel values.
Paper TIT deals with the estimation of the diffusion coefficient from particle
trajectories observed with measurement noise. The model includes two types
of particles, fixed and diffusing. This is appropriate since this is the typical
situation for particles in the images considered.

Key words: censored regression, colloidal chemistry, depth estimation, diffusion
coefficient, nonparametric function estimation, position estimation, rotational
symmetry, tracking, template matching, video microscopy
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Chapter 1

Introduction

The understanding of the behavior of colloidal suspensions is of crucial
importance in a vast number of different areas. The standard theory
for the interactions of colloidal particles, the DLVO-theory (see for ex-
ample Evans and Wennerstrom (1999)), is merely an approximation, and
experiments have shown that it fails to predict the behavior of several im-
portant suspensions, see for example Crocker and Grier (1994) and Grier
(1998). Therefore, observations and measurements on the microscopic
level are needed if we are to fully understand the behavior of colloidal
systems.

Examples of common, everyday life colloidal systems are milk and paint.
In milk, various interactions between the small (100 nm to 1 gm in diame-
ter) colloidal milk fat particles and proteins suspended in the fluid, decide
whether it coagulates into cheese or yoghurt. These interactions depend
on how the milk was treated before the coagulation. For the second ex-
ample, the pigments in the paint must stay suspended in the liquid in a
can for years, yet, as they are spread on a wall, be able to coagulate fast.
Another example of important everyday colloids are pharmaceuticals.

This thesis presents techniques developed for the quantitative study of
diffusing particles in a colloidal system using video microscopy. The prin-
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cipal application is to pharmacy, where properties such as diffusion co-
efficients and interaction between particles are important factors when
formulating drugs. Here, possible modifications of for example the sur-
face characteristics of the colloids are believed to have a large impact
on modern therapies such as oral vaccines. However, the effects of such
modifications need to be quantitatively measured and verified.

The idea is to make inference on properties of a colloidal particle system,
such as diffusion coefficient of the particle, from a series of light micro-
scope images of moving latex spheres. Figure 1.1 illustrates an example
of what an image from such a sequence may look like. The particles in
these image are spherical, made of latex (polystyrene), and have all a
diameter of 494 nm. Each image consists of 512 times 512 square pixels
with a side-length of 0.18um. The reason for studying latex spheres, and
in particular, of a single size, are that suspension of these kind of poly-
mer colloids can be used to simulate many features of a colloidal system
by varying the solvent and salt concentration. Therefore they are widely
used for studying the behavior of colloidal suspensions, see Evans and
Wennerstrom (1999, chap. 9). For a recent review of different kinds of
microscopy used for colloids, see Elliot and Poon (2001).

The apparent differences in size and brightness variations of the particles
are due to different depths relative to the focal plane. Particles in the focal
plane are depicted as small, distinct, black spots, while particles above
or below the focal plane, are either light or dark in middle, respectively.
Also, the further away from the focal plane a particle is, the larger and
more blurred it appears. This out-of-focus effect will give us a method
to estimate the depth of a particle. It should be mentioned that the
light is practically considered as coherent, which is the reason for this
optical effect. If light would have been incoherent, particles off-focus
would simply be blurred.

This thesis introduces precise methods for estimating the locations (in-
cluding depth) of particles in images like the one in Figure 1.1. A highly
precise method for estimating particle centers in the image plane (that is,
the horizontal and vertical coordinates) is presented in Paper I. The stan-
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Figure 1.1: A single microscope image in a sequence of images. The particles
are all equal in size and the difference in the appearances of the particles in the
image is an optical effect of particles being at different depths relative to the
focal plane.

dard errors of the estimates are between 0.02 and 0.10 pixels, depending
on the appearance of the particle, with lower values for particles closer to
the focal plane. The method makes use of the rotational symmetry of the
appearances of the particles in the image and the accuracy is well less than
the sub-pixel level, by which we mean that the standard deviation of the
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positioning error is less than one pixel. Standard errors for the position
estimates are also estimated for each particle. Furthermore, we present a
method for nonparametric function estimation when the response values
are censored. This is needed since pixel values in the images are censored
above a certain level. The depth is estimated using a template matching
approach, covered in Paper IT. The templates are empirically constructed
using images of particles at known relative depth to the focal plane. Each
template represents the appearance of a particle at a certain depth z and
the corresponding depth between the templates is 0.2um. In Paper III
we consider the estimation of the diffusion coefficient given a set of par-
ticle trajectories observed with measurement noise. However, since some
particles seem to be fixed, a model with two kinds of particles, fixed and
diffusing, is introduced . This is the typical situation for trajectories of
particles in images like the one in Figure 1.1. Instead of manually dis-
carding the particles which are fixed, the model permits them to be used
in the estimation, which is the appropriate approach since they contain
information on the measurement noise.

The latex particles in the sequence images like the one in Figure 1.1 have
been treated in such a way that the suspended particles can be assumed
to perform Brownian motion. This is the case at least for particles not
too close to the confining glasses of the specimen, since the glass surfaces
act attractively on the particles. These sequence images were solely con-
structed so that estimated properties can be easily verified, since the true
properties of the suspension are known.

Methods commonly used for measurements on colloidal suspensions make
collective measurements of properties for the entire sample, by which we
mean that they cannot measure properties of each single colloid parti-
cle. Rather, the properties related to the entire population of colloids
in the suspension is measured. Examples of such methods are various
light-scattering techniques, for example dynamic light scattering (DLS).
Nuclear magnetic resonance (NMR) and neutron scattering, are also used,
see Evans and Wennerstrom (1999) and the references therein.

Previous work using digital video microscopy for quantitative colloidal
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studies, have been made by Crocker and Grier (1996, 1998). There how-
ever, the depth of focus was +500 nm, which makes the particles similar
in appearance and therefore easier to find in the images, since the sought-
after objects in each image are similar. In their study, each particle is a
bright spherical set of pixels and they achieve sub-pixel accuracy by calcu-
lating the geometric center of the brightness-weighted centroid, achieving
standard errors of about 0.1 pixels (where each pixel is 85 nm). The shal-
low focal depth also restricts their methods to measurements in colloids
confined to a crystallized structure. In our case, the depth of focus is +
15um, resulting in a much wider variety of appearances of the particles in
the image. The strength of the methods for particle position estimation
developed here, is that our method is not restricted to particles similar in
appearance. This opens up for position estimation for particles in a much
wider range of depths. What we need however, is rotational symmetry of
the appearance of particles in the images.

1.1 Guide for the Thesis

Preferred reading order

In Chapter 2, various aspects of the images used in this thesis are ex-
plained. Chapter 3 covers the main ideas as well as some extensions to
the methods of estimating the particle locations developed in Paper I and
II. In Chapter 4 we propose how the positioning methods can be used
for the tracking of particles in three dimensions. Problems are also high-
lighted and possible modifications are discussed. Chapter 5 consists of
two supplementary simulation studies related to Paper I.

If a quick start is preferred, Paper I and IT should be read first and then
Chapters 2 through 5. There is no preferred order of when to read Paper
III.
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Paper I: Estimating centers and intensity profiles of spherical
particles in microscopy

This paper deals with estimation of particle position in the image plane.
The underlying assumption for the estimation is the rotational symmetry
of the appearance of particles. For a particle with true center at z € R?,
the main idea is to use the minimizer of

S =min 3 {L—Je)} = 3 AL - few))

€N €N,

for y € R?, where I; for i € N, are the pixel values in a neighborhood
of pixel locations close to z and r;(y) the distance between the candidate
center y and pixel location i. Furthermore, C? is the set of functions
f : R+~ R with second order continuous derivative and symmetric in r.
We calculate f using a local quadratic kernel estimator with (appropri-
ately chosen) bandwidth A. The idea behind minimizing the equation
above is to find the position of (local) maximum rotational symmetry.

We also present a method for estimating the standard error of each parti-
cle center estimate, by using a sandwich estimator, see for example Owen
(2001). A simulation study shows that these standard error estimates
are consistent with the observed root-mean-square errors of the position
estimates. The standard errors of the particle position estimates depend
on the depth of the particle, and are in the range of 0.02 to 0.10 pixels,
with larger values for depths further away from the focal plane. This
is comparable to the results of Crocker and Grier (1996), however our
method is not confined to particles of similar appearance.

A method for nonparametric function estimation when the response values
are censored at a fixed level, is also introduced in this paper. We modify
the local quadratic kernel estimate to take care of the censored values
under the assumption of normally distributed observation errors. We
have not found this anywhere else in the literature.

Supplementary studies for this paper can be found in Chapter 5 where
we investigate the bias and the mean squared error when estimating the
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intensity profiles, in particular when the bandwidth is varied. Further-
more in Chapter 5, the way the standard errors depend on the size of the
neighborhood N, for particles at different depths, is investigated.

Paper II: Depth estimation of colloidal particles in microscopy

Having found the particle center, the depth is estimated by comparing
the pixel values I; and distances r;(y), with templates (intensity profiles)
of the appearance of particles at different depths. The templates are
constructed by estimating the intensity profiles of a particle at known
distances relative to the focal plane. The distance in depth between each
template is 0.20pum. The matching criterion we propose here takes care
of different background intensities and possible censoring of pixel values,
both of which are important features of the images considered.

This empirical approach to template construction was chosen since the-
oretical derivation of the appearance of the latex particles at different
depths seems difficult. For example, a ray-tracing methods such as Fourier
optics, used by for example Young et al. (1998) for constructing templates
in DIC microscopy, does not work here since the wavelength of light is
in the same order of magnitude as the size of the particles. An alterna-
tive and more advanced approach to Fourier optics is to use Mie-theory,
which was used by Ovryn and Izen (2000) to predict the appearance of
a polystyrene sphere of diameter 7ym. However this is 14 times bigger
than the particles considered here and it is unclear to what extent this
approach can be applied to our particles. In fact, the imaging of spherical
objects is still a topic of large theoretical interest in the optics research
society.

Other particles at known depths were used to validate the estimation
procedure. The root-mean-square error is concluded to be at least in the
order of the distance in depth between the templates, that is 0.2um, at
least for particles not too far away from the focal plane.
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Paper III: Estimation of the diffusion coefficient in a mixture
model

In Paper TTT we estimate the diffusion coefficient given a set of particle
trajectories performing Brownian motion, observed under measurement
noise. However, since some particles seems to be fixed, a model is in-
troduced with two kinds of particles, fixed and diffusing. We regard the
problem as an incomplete data problem since we do not know a priori
which particles are really diffusing. The maximum likelihood estimator
is computed via the EM algorithm, see Dempster et al. (1977), and it is
shown to be strongly consistent and asymptotically normal, as the num-
ber of particles approaches infinity, under a reasonable restriction on the
parameter space. A simulation study shows that the method is robust
even for large measurement errors, and that the estimated parameters
are approximately normally distributed even for small sample sizes.

The position estimates of the particles used in this paper are integer val-
ued. They were estimated using a filtering technique called the rotational
Hough Transform which is a common tool in image processing used for
circle detection in images. See for example Gonzales and Woods (2002)
or Kerbyson and Atherton (1995). For the full details on estimating these
trajectories, the reader is referred to Kvarnstrom (2002). The reason for
not using the methods developed in Paper I and II for the trajectories in
this paper, is that Paper III was written first.




Chapter 2

Data

There are two kinds of images considered in this thesis, sequence images
and z-scans. Sequence images are the ones used for inference on proper-
ties of the colloidal particles. An example of such an image is given in
Figure 1.1. Z-scans are images of particles at known relative depths from
the focal plane and they are mainly used for constructing the templates
used in the depth estimation. In this chapter, we will explain the various
aspects of the images together with the general setup of how the images
were constructed.

2.1 Instrument setup

Latex particles made of polystyrene with a diameter of 494nm were placed
between an objective and a cover glass and sealed. The illumination
consisted of coherent light. The sample was studied in a Zeiss Axiovert
135 TV microscope equipped with a Newicon video camera. The video
signal was then digitized and stored as TIF files.

Pixel values are stored as unsigned integers in 8 bits. The pixels assumes
integers between 0 and 255 which are interpreted as gray scale intensity
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values. This means that zero means black while 255 means white. For
pixel values in between, the larger the magnitude, the brighter the shade
of gray.

An important effect of this truncation to integer values is that we get cen-
soring of pixel values above 255. This is dealt with both in the estimation
of particle centers in Paper I, and the template matching procedure of
finding the depth in Paper II. In Figure 2.1 we illustrate censoring by
zooming in on two particles from Figure 1.1. Below each image, the pixel
values surrounding the estimated particle center (using the method of
finding the position of maximal rotational symmetry from Paper I) are
plotted versus their corresponding distances to the center. We do not have
censoring for pixel values below 0, however there seems to be a lower limit
of pixel values around 30-35. If this is censoring or not is not known.

2.2 Sequence images

The image in Figure 1.1 is an example of what a sequence image looks
like. These are the kind of images that will be used to make inference on
the properties of the colloidal system of particles. On the left in Figure 2.2
we have zoomed in on the middle region of size 256 times 256 pixels of
the sequence image in Figure 1.1. To the right of this, the same region in
the next consecutive image in the sequence is shown. The movement in
the image plane of the particles between two consecutive images are on
the scale of a few pixels. In Figure 2.3 we display the difference between
the two images and if it was not apparent from Figure 2.2, we see here
that most of the particles have moved.

Each image in the video sequence consists of 512 times 512 pixels. Each
pixel has a side length of 180 nm. The focal plane is set at a depth
approximately between the cover and the specimen glass of the sample
specimen. The maximal difference in depth (relative to the focal plane)
is believed to be 15um. Therefore, the domain in which the particles
are confined, and are available for our inspection through the images,

10
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Figure 2.1: Zooming in on two particles in Figure 1.1 to illustrate censoring of
pixel values at 255. Below each image the pixel values surrounding the estimated
particle center are plotted versus the distances to the estimated center. This
figure also demonstrates that the rotational symmetry assumption of pixel values
surrounding a particle center is reasonable.

is a box with equal length of the sides of about 90um, and a depth of
(approximately) 30pm.

11
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Figure 2.2: Magnified part of two consecutive sequence images. The displace-
ment in the image plane of the particles between two consecutive images is on
the scale of a few pixels. In Figure 2.3 we display the difference between the two
images.

Figure 2.3: The difference between the two images in Figure 2.2. Mid-gray
represents zero. Notice that movement in depth is also apparent for some parti-
cles.

Even and odd frames

The images are recorded at video rate, which is 50 images (or frames) per
second. In practice however, only half of the rows in each image contain
12
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new information. The camera records only half of the rows at each scan,
alternating between the even and odd rows (also called the even and
the odd fields) and duplicates this information to the rows which were
not scanned. The images are called even and odd frames, respectively,
depending on whether the even or the odd rows were updated. The
images of Figure 2.4 show the same region zoomed in, for two consecutive
frames, one even and one odd. Note that the pixels look rectangular,
this is because of the duplication of pixel values from the rows that was
updated to the ones that where not.

There are three possibilities on how to deal with even and odd frames in
the image sequence; interlacing, interpolating, or raw images. Interlaced
means that two consecutive frames (one even and one odd) are interlaced
into a single image, using the even rows from the even frame and the
odd from the odd frame. However, since there is an interval of a 1/50 of
a second between the even and the odd frame, this will cause problems
when we are observing moving particles, which is the case here. Figure 2.4
illustrates this problem with interlacing two consecutive frames. Clearly,
interlacing is not a good idea when observing moving particles. An alter-
native is to interpolate the pixel values. We use the updated rows (that
is, even rows for even frames) and interpolate these to the pixel values on
the non-updated rows (that is, odd rows, for even frames). In the bottom
left image of Figure 2.4 we have displayed the linearly interpolated version
of the even frame (located straight above in the figure). However, what
interpolating does, is just making the image look nicer to the eye; we do
not add information, rather, if anything, we distort the information.

For sequence images we will therefore use the raw images, by which we
mean that we use each frame separately. Practically each frame is an
image consisting of 256 times 512 pixel values. The coordinates (pixel
locations) to these pixel values then alternates between the two pixel lo-
cations. See the upper images of Figure 2.4. The important thing is
therefore to keep track of the location to which each pixel value corre-
sponds to; the upper pixel for the even images and the lower for the odd
images. This is important since it is these locations that correspond to
the physical locations which we are interested in measuring.

13
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(<) (a)

Figure 2.4: Illustration of even and odd frames (images) and the problem with
interlacing two consecutive frames. The two upper images are the same area
zoomed in for two consecutive frames, a) is an even image and b) is an odd
image. Note the duplication of pixel values between rows, making the pixels to
look rectangular. The interpolated version of a) is shown in ¢) and the resulting
interlaced version, using the even frame for even rows and the odd frame for the
odd rows, is shown in d).

14
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Figure 2.5: Z-scan of particles 3.0um below the focal plane. The 22 labelled
particles are the ones which are adsorbed on one of the confining glasses of the
specimen and present in all 73 z-scans. The other particles in the image is
either moving or not at the same depth relative to the focal plane as the labelled
particles.

2.3 Z-scans

In order to know what particles look like at various depths from the focal
plane, z-scans were constructed. In Figure 2.5 we display the z-scan at
depth approximately 3.0um below the focal plane. We have 73 z-scans at
our disposal ranging from 7.2um below to 7.2um above the focal plane.
The distance in depth between two consecutive z-scans is 0.2pum.

The z-scans have been constructed by letting particles adsorb on the cover

15
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glass surface of the specimen, and then the specimen was moved relative
to the optics of the microscope. However, there are other particles than
the adsorbed ones present in the z-scans. In Figure 2.5 the particles la-
belled with numbers are adsorbed on the glass. These 22 particles are the
ones that were practically fixed in position through all z-scans. (We write
"practically” since they are moving slightly, about 2 pixels throughout
the entire sequence of z-scans.) As seen, there are several other particles
present, some of which are moving but also some which are fixed in po-
sition but not adsorbed on the cover glass. Since the z-scans are used to
depict fixed particles, they are presented in interlaced format; we will see
that the interlacing effect is visible for moving particles.

In Figure 2.6 we have zoomed in on the region containing the particles
labelled 6, 8, 10, 11, and 12 for the z-scan in Figure 2.5 and for three
other z-scans. Note that particles below the focal plane are bright in the
middle and particles above the focal plane are dark in the middle.

Here it is clear that other particles are present in the z-scans. We also
see the same kind of interlacing effect for moving particles as we saw in
Figure 2.4; look at the particle to the right above particle number 12 in
image a). Furthermore, there are particles that seem to be fixed, but
at another depth; these are the more vague particles, for example to the
right below particles 6 and 12. These are particles adsorbed somewhere
else in the specimen, possibly on the outer surface of the glass. Note
also the black dot to the left of particle number 11, which looks the same
throughout all z-scans and is probably a stain or defect in the optics. In
¢) we also see that mobile particles in the specimen sometimes occlude
the 22 fixed particles; see particles number 8 and 11 in ¢).

Most importantly however, the 22 labelled particles in Figure 2.5 seem
to be at a slightly different depth relative to each other. In Figure 2.6
this is clearly visible in the z-scan b), corresponding to particles at the
focal plane, and in z-scan d). Particles 8 and 12 seem to be slightly more
above the focal plane (since the are larger and dark in the middle than
the others). The same is true for all z-scans and this also applies to the
particles labelled 15, 17, 20 and 21 in Figure 2.5. This was also validated

16
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Figure 2.6: Zooming in on four z-scans. a) is the same z-scan as in Figure 2.5
and b) is the z-scan corresponding to particles at the focal plane. ¢) and d) are
z-scans corresponding to 7.2um below the focal plane and 3.0um above the focal
plane. Note that there are other particles present and that the labelled particles
are (partially) occluded for some z-scans.
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when estimating the depth of the particles in the z-scan in Paper II, see
below.

This observation is important when the z-scans are used for constructing
templates for depth estimation, and also when validating the performance
of the depth estimation. The templates for depth estimation in Paper II,
were constructed using mainly the particle labelled number 6. In z-scans
where particle 6 was occluded by a moving particle, particle 14 was used.
This way, we constructed templates of the appearance of particles at
depth indexed by the z-scans, enabling us to estimate the depth of the
rest of the particles in the z-scans by comparing the appearance of the
particles to the templates. Of course, since we only had templates for
particle appearance indexed by the z-scans, the precision in the depth
estimation will be limited by the distance in depth between the z-scans,
at least if no other assumptions are made. Note that since we only have
a finite number of templates, estimating the depth this way is a kind of
a classification problem.

When estimating the depths in the z-scans, we raised doubts about if all
adsorbed particles in fact were at the same depth. The particles labelled
8, 10, 15, 17, 20, and 21 were easily recognized as having an offset in
depth relative to the particles 6 and 14, which were the ones used for
template construction. However, there were also some disturbing depth
estimates for other particles. The grounds for these doubts were that
when the depth of supposedly adsorbed particles were estimated, there
seemed to be a systematic error in the their estimated depths in the order
of one z-scan above or below the depth of the template. (See also the next
section.) One should keep in mind that the particles are approximately
0.5pum in diameter and the distance between z-scans are 0.2um. Hence,
the distance between two consecutive z-scans is smaller than the radius
of the particles. Therefore, some fluctuations in estimated depth may be
accounted to the uncertainties in the true actual depth of the particles in
the z-scans.

18
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2.4 Use of the z-scans in Paper I and 11

In Paper I we restricted the number of depths considered in the particle
position estimation. We used the z-scan of particles at the focal plane
together with every third z-scan below and above, up to a maximal dis-
placement in depth of 4.2um. We indexed these from -7 to 7. Particle
number 6 was used when constructing the true intensity profiles used in
the Simulation Study (it is also this particle that is displayed in Figure
2 in Paper I) and in the Result section, particles 6, 7, 13, 14, 19 and 19
were used when estimating the standard errors for real data.

In Paper II we constructed the templates using the particles labelled 6
and 14. We used 61 z-scans (of the total amount of 73), from 6um below,
to 6um above the focal plane, and they were indexed from -30 to +30.
In a pre-study, we estimated the depth for all non-occluded particles in
all z-scans and by looking at the median of the offset in estimated depth,
relative to the template particles and calculated over all depths, three
categories of particles stood out; the six particle mentioned above, which
were 2 z-indices, that is 0.4um, above the template; particle 1, 3, 5 and
9 which were 0.2um below the template; the remaining 12 particles had
median offset equal to zero, relative to the template particle. It was this
latter category that was used in the Results section of Paper II, however,
particles 2 and 4 were not part of the study.

19
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Chapter 3

Position Estimation

3.1 Model of the appearance of pixels in the im-
ages

We denote an image by I. This is effectively a matrix of pixel values I;
for pixel locations i = (i1,i2) € Dr C Z?, where Dy is the set of pixel
locations 4 for which the image is defined. We will use the terms pixel
and pixel location interchangeable to mean the same thing when no risk
of ambiguity exists.

A particle center is denoted by = = (z1,z2) € R?, and to each particle, we

associate a set N, C Dy of pixels in the image I called the neighborhood
of the particle at x. Typically, we let

Ny ={i € Dr:ri(z) < rmas}, (3.1)

where r;(z) is the Euclidean distance from the particle center z to the
pixel location i, and r,,,, is an appropriately chosen distance.

The main assumption is that, for a particle center at = € R? and at depth
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z € R, we have
I = f.(ri(2)) + a+ ¢ for i € Ny, (3.2)

where f, is called the intensity profile for depth z. The image noise,
¢; for i € Dy, is assumed to be normally distributed with isotropically
correlated pixel values. The intensity profile is furthermore assumed to
be a smooth function f : R — R with at least two continuous derivatives
and symmetric in r. Furthermore, o € R corresponds to the background
intensity in the image and this is generally different for each particle. This
is an important factor to take into account when estimating the depth.

In Figure 3.1 we display zoomed-in sub-images of what the particles look
like at different depths. The true depth between to consecutive indices is
0.2pm and index 0 represents the focal plane. These sub-images are from
the z-scans. The rotational symmetry assumption seems reasonable, at
least for particles not too close to the focal plane.

3.2 Estimating particle positions in 2-D

The idea for estimating the particle center in 2-D goes as follows. For a
particle located at = € R?, we use the minimizer of equation (1.1) repeated
here for convenience

S(y) = min S - 1)} = YL - fnw))

€N €N

for y € R%, as an estimate of z. The idea behind minimizing equa-
tion (1.1), is to find the position of (local) maximal rotational symmetry.
This method of estimating the particle center in the image plane to sub-
pixel accuracy is dealt with in Paper 1.

In practice, we calculate fusing a local quadratic kernel estimator with a
Gaussian kernel with (appropriately chosen) bandwidth A. References on
nonparametric function estimation are, for example Hastie and Tibshirani
(1990), Fan and Gijbels (1996), or or Gyorfi et al. (2002). In Paper I, we
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Figure 3.1: The appearances of particles at different depths relative to the
focal plane. Sub-image 0 corresponds to a particle at the focal plane, and sub-
images with negative and positive labels are below and above the focal plane,
respectively. The distance in depth between two consecutive label numbers is
0.2pm.

introduced a modification of the local quadratic kernel estimates when
the response variables are censored above a certain (known) value. We
call this censored regression. If nothing else is said however, when talking
about the local quadratic kernel estimate, we mean the standard local
quadratic kernel estimates, without taking care of censored pixel values.
A simulation study, the results of which are presented in Paper I, showed
that the difference in estimating the particle center is very small between
using the censored and standard local quadratic method.

The reason for choosing the local quadratic kernel estimate as nonpara-
metric method, instead of for example a spline smoother, is that the
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estimate of the derivative of f is practically given to us for free using a
local quadratic, and the derivative is needed when estimating the stan-
dard errors (see Paper I for details). The Gaussian kernel was chosen
since it is smooth and has unbounded support, which makes the function
S differentiable. Regarding the choice of bandwidth, simulation studies
have shown that the choice of bandwidth is not very important when
estimating the particle centers (see Chapter 5). This is good, since one
of the main ideas with this method (that is, minimizing equation (1.1))
of estimating particle centers, is that it should be applicable to particles
with different appearances, as long as they look rotational symmetric in
the image. The idea presented in Paper I was to use a pilot bandwidth
hpitor of 0.7 to find a first, preliminary particle center and then update this
bandwidth with a cross-validation study. Then the final center estimate
is calculated using the updated bandwidth.

Regarding the neighborhoods, we will in Chapter 5 conduct a study of
how the standard errors in the 2-D estimation depends on r,,q,. Also,
when two or more particles are close together however, the assumption
in (3.2) these circular neighborhoods with a fixed 7,4, does not apply,
if the neighborhoods of the particles intersect. In Chapter 4, we will
present a way to circumvent this, by adaptively selecting the shape of the
neighborhood according to nearby particles. Another aspect concerning
the choice of neighborhood N by (3.1), is that it depends on the unknown
center z. Nevertheless, if we are given an approximate particle center
yo, we let N = Ny, where Ny, is defined by equation (3.1) for z =
10. Approximate particle centers can be given either manually, or by
some automatic image analysis method. Below, we will present one such
automatic method.

Candidate particle centers

Before we can estimate the particle center by minimizing the criterion (1.1),
dealt with in Paper I, we need to have a first approximate position. We
call these approximate positions candidate particle centers. Candidate
particle center are usually integer valued positions if they are the results
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from an image analysis stage using some filtering technique (with appro-
priate post-processing). For tracking in sequence images however, we will
use the position estimates in the previous image as candidate particle
centers and this is dealt with in Chapter 4. Below, we will present one
idea to a filtering technique for getting candidate particle centers.

Local maximal rotational symmetry

We will here introduce a (non-linear) filter that could be used to find
positions of local maximal rotational symmetry. It is also presented to
give the flavor of the difficulties one run into when trying to automatically
find the objects of interest in an image, particularly when the sought-after
objects are different in appearance.

The main computational effort in the minimization of (1.1), is spent on
calculating the nonparametric estimate of the intensity profile f at each
candidate position y. In particular, much of the effort is spent on cal-
culating the distances r;(y) and the inter-distances between these, which
are needed when calculating the weights in the equivalent kernels. Each
estimate f(r,(y)) in a local quadratic kernel estimate can be written as a
linear combination of response values (pixel values):

Flrily) = Y- Wy,

JENY

for all . The ith row of the matrix W is the equivalent kernel for the
estimated value at point 7;(y). The elements in the matrix W only depend
on ri(y) and the bandwidth h. (This is however not true if we use the
modified version of the local quadratic kernel estimate, that takes care of
censored pixel values.)

If y € Dy, that is, if the candidate center is an (integer valued) pixel
location, and we use A, as neighborhood, the set of distances r;(y) for
i € Ny, are the same for all y € D; (apart of course from pixels near the
boundary of the image). Therefore, since the matrix of equivalent kernels
depend only on 7;(y), the matrix W only has to be calculated once. This
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speeds up things considerable. Assuming there are n pixels in Ay, the
calculation of W takes O(n?) multiplications into account, which for the
original minimization of equation (1.1) has to be done for each y since
the distances 7;(y) are different for each y € R?. Given the matrix W,
the calculation of S(y) takes n? multiplications.

Note that this approach is different from the method of minimizing (1.1),
in the way that A, here changes with y. In (1.1) we first fix the neighbor-
hood N, and then search for the minimizer of S(y). Therefore, in order
to separate the two sums, we denote by Sp;;, the pixel-wise calculation of
S introduced above

Spiz(y) = Z {Li- .f(ﬁ'(?/))}2 = Z {Li - Z WijI]}2 (3.3)

ieNy ieNy JENy

for y € D;. The matrix W does not depend on either y or the pixel
values I; which is the important fact about S,;;. It depends only on the
bandwidth A and the radius of the neighborhood 7,44

In Figure 3.2a we display a sub-region of a sequence image. In b) we
display Sy computed for this image with 7, = 6 and bandwidth h =
0.7. Sub-figure c) is the same as b) but displayed as a contour plot. The
idea is to use the local minima of Sp;, as candidate particle centers.

Now we can use morphological operations to find the local minima. The
classical reference of morphology in image analysis is Serra (1982). To
extract the minima, we will preform an operation called bottom hat. Tt
is defined as follows. First we define a structuring element B, which we
here let be a ball in the image plane of radius r. For an image J, the
closing J® of J using structure element B is defined as

By _ .
J7(i) = {EE{JJ&"L_ J(m)}

where B; is the structure element centered at i. Finally, the bottom hat
of J is defined as the difference

Jvothat = J° —J
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(a) (b)

() (d)

Figure 3.2: A sub-region of an sequence image a), together with its Spi, in
b). In ¢) we display the logarithm of S,;, as a contour plot instead, making
it somewhat easier to localize the local minima in S,;,, which are to used as
candidate particle centers. In d) we show the result of a morphological operation
called bottom hat to Sp;,. In Figure 3.3, the result after thresholding the image

in d) can be seen.
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between the closing J? and the original image .J. In Figure 3.2d, the
bottom hat of Sp;; in Figure 3.2b is shown, using a ball with radius 3 as
structuring element (that is, all pixels within radius 3 from origo).

All values in the bottom-hat filtered S, that are below a certain thresh-
old ¢ are set to zero, and the largest element in each connected component
in this thresholded image is denoted a candidate particle center. In Fig-
ure 3.3, we have plotted the original sub-image from Figure 3.2, together
with the candidate particle centers using threshold ¢ = 10. As seen from
the figure, the operation with finding the positions local rotational sym-
metry works fairly well, most of the true particles have been found and
only a few false particles were found. The true particles that were missed,
were all particles close to other particles. The reason for this is of course
that particles close together, disrupt the rotational symmetry.

One problem with using a filtering method like the one illustrated above,
is the large number of parameters, which were here chosen more of less
ad hoc. The parameters here are four: the bandwidth A, the size of the
neighborhood 70z, the radius r of the structuring element, and finally,
the threshold ¢.

Even though a filtering step like this is not good enough for finding all
particles present in an image, it could be used as a ”watch-dog” to look for
"intruder particles” that comes into the image domain as we are tracking
particles.

3.3 Estimating the depth

The idea for estimating the depth, as presented in Paper II, goes as fol-
lows. After a particle center has been estimated in the image plane, we
estimate the depth by comparing the pixel values I; and their distances
r;(£) from the estimated center Z with a set of templates intensity profiles
of what particles look like at different depths. The corresponding depth
of the one that gives the best correspondence is the estimate of the depth
of the particle. Consequently, what it comes down to, is to construct
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Figure 3.3: The resulting candidate particle centers after thresholding the
bottom-hat filtered S;, and taking the maxima in each connected component.
The result is fairly good, the only true particles missed, are the ones that are
close to other particles.

templates and to find a suitable measure on what best correspondence
means.

The templates were constructed by estimating the intensity function of
the adsorbed particles at different depths in the z-scans, see Section 2.3.
Since the exact true depth of the particles in the z-scans were hard to
verify (see the discussion in Section 2.4), we focused on using as few
particles possible when constructing the templates. We used mainly the
particle labelled number 6 in Figure 2.5 but for the z-scans in which this
was occluded, particle 14 was used instead.
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In Figure 3.1 we have displayed the appearance of particles at a subset of
depths used for template construction. The template intensity function
for these depths are plotted in Figure 3.4. These profiles were estimated
using the modified version of the local quadratic kernel estimate, taking
care of censored pixel values above 255. That this is the case, is evident
from the observation in Figure 3.4 that the profiles are assigned values
greater than the censoring limit 255. The template profile for depth z is
denoted f,.

To measure best correspondence between template and pixel values sur-
rounding a particle that we want to estimate the depth of, we use the
criterion function

1 . 2 fori(w)) + 4. - T
M(z) = —= ILi—a,— fy(ri(z - lo {@( )}
(2) UziEZAT{ (ri(2))} % g .

(3.4)
where @, is the minimizer of the expression (3.4) viewed as a function of
both z and «, but where we keep z fixed. As seen, this criterion function
takes care of both censored pixel values for the particle that we want
to estimate the depth for, and, in fact more importantly, the different
background intensities « (see the assumption regarding the appearances
of particles in the images in equation (3.2)).

The main problem with this approach to depth estimation is first that we
only have a finite set of template profiles, indexed from -30 to -30, thus
limiting the precision by the corresponding depth between the indices of
0.2pum. Also, since it is the cover glass that is moved relative to the optics
of microscope when constructing the z-scans, it is important that the
particles from which we estimate the templates, are at the same relative
depth to the cover glass in all z-scans. Otherwise the distance in depth
between each template will not be the same between the templates.

Tn Paper I1, a simulation study showed a good precision in depth estima-
tion, at least for particles within 3.0pm from the focal plane (correspond-
ing to index -15 to 15 in Figures 3.1 and 3.4). For these depths, the depth
was only misclassified for 14 simulations out of 25000. One objection to
this highly optimistic result should be that the image noise seems to have
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(a) indices -30 to -12 (in steps of 3) (b) indices -10 to -4
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Figure 3.4: A subset of the template profiles used for template matching in the
depth estimation. The distance between two consecutive indices is 0.2uym. The
sub-figures correspond to the rows in Figure 3.1.
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larger variance for particles close to the focal plane, as reported in Paper
I. Even so, compared with the result for the real images for these depths,
the conclusion is that the template matching approach works well and
the precision is at least within one z-index of the z-scans, corresponding
to +£0.2um. Compared with the standard errors for estimating the center
in the plane, which were between 0.02 and 0.10 pixels (3.6nm - 18nm) is
is of course much worse.

3.4 2-D template surface for sub-index estima-
tion

We will here present an idea on how to construct a bivariate regression
surface f,(r), as a function of both depth z and distance from center r
simultaneously. This will lead us in to a discussion on how to measure the
distances between two intensity profiles, which obviously is also a crucial
matter in depth estimation. The matching criterion (3.4) presented above,
is basically the Ly-norm, but it is quite unsatisfactory from a theoretical
point of view since it does not take special consideration of the functional
features of the intensity profiles, such as for example the first stationary
point of the intensity profile.

We record the pixel values I; and corresponding distances r;(x) surround-
ing an adsorbed particle in the z-scans for each depth z we want to esti-
mate the template for. To illustrate what a template surface might look
like, we have in Figure 3.5 displayed the bivariate regression surface calcu-
lated via a local bilinear kernel estimate. No special care have here been
taken to censored pixel values. In Figure 3.6 we present the template
surface as an image instead.

The bandwidths for the bivariate regression are two; the first, h,, is for
the r-direction (in the same way as before), and the second, h, is for the
depth z. For the template surface in Figure 3.5, both bandwidths were a
function of z. For the bandwidth in the r-direction, h,, this is the same
as we did in Paper I and II when estimating the intensity profiles for each
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Figure 3.5: The two-dimensional template surface of intensity profiles con-
structed via a local bilinear kernel estimate. The estimation, as well as the
presentation here, was split in two parts, one each for particles below and above
the focal plane, respectively. The reason for this is the apparent phase shift at
the focal plane. No consideration to censoring has been done here.
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Figure 3.6: The same two-dimensional template surface as in Figure 3.5 pre-
sented as an image and reflected around r = 0.

depth; particles close to the focal plane need a small bandwidth h, and
vice versa for particles further away from the focal plane. The amount of
smoothing in the z-direction is changed since the resemblance in appear-
ance between particles at consecutive z-scans varies (see Figure 3.1 and
Figure 3.4) with depth. For particles further away from the focal plane,
smoothing between the depths can be quite large, whereas for particles
close to focal plane, one must be careful not to smooth to much. This is
an important point and has to do with how we measure distance in the
functional space of intensity profiles, which we will get back to below. The
most extreme occurrence of this, is obviously the difference in appearance
between a particle at the focal plane compared to a particle just below
(see Figure 3.4). Because of this, the estimation of the template surface
in two parts, one for particles below and one for particles above the focal
plane. In effect, this means that we do not allow for any smoothing in
the z-direction at z = 0.

The main benefit of a template surface instead of a set of template profiles
for a fixed number of depth, is that we can use the template surface to
estimate what a particle would look like at an arbitrary depth. Hence,
at least in theory, we can use this surface to estimate the depth for a
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continuously varying z. Another benefit is that we can get estimates of
the standard error of a depth estimate, using the same approach as we
used for the 2-D estimation. The reason for this, is that we can estimate
the derivative of f,(r) in the z direction. Compare with the standard
error derivation in Section 3 in Paper T.

Possibly the main problem with using a 2-D template is the smoothing in
the z direction. This problem is related to the notion of distance between
the intensity profile for different depths. For two particles at different
depths, it not really clear how to smooth (or interpolate for that matter)
the corresponding pixel values from the two particles, if the objective is
to estimate the appearance (that is, the intensity profile) of a particle at
a depth between. The way one usually does it, is to, for fixed r, smooth
across the z direction. Let us for arguments sake, say that the intensity
profile of the first particle has a peak at this , and the intensity profile
of the second particle "almost” has a dip at this r (this is almost the case
for particles close to the focal plane). Then the resulting estimate for the
depth between the two particles becomes something in-between. In these
cases, the smoothing in the z-direction must be quite small, which were
the case in the computation of the template surface in Figure 3.5.
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Chapter 4

Tracking

The methods from the previous chapter will here be combined to illus-
trate the possibilities the positioning methods in three dimensions give to
tracking. Possibly more, however, various problems for tracking colloidal
particles in a dilute suspension using a large focal depth, as is the case
for the sequence images considered here, will be highlighted.

In Figure 4.1 we demonstrate what occlusions might look like. The parti-
cles depicted in the two images are the two big particles in the upper part
of Figure 3.2a. The image on the right, b), is recorded 20 time steps (0.4
sec) after the image on the left. As can be observed in the images, the two
particles (optically) interfere with each other, causing a partial occlusion
of the bright particle on the left. In b), the bright particle is almost fully
occluded by the dark one. Note however that the actual particle centers
in 3-D are far apart.

Remember that 50 sequence images are recorded each second and that
the video camera alternates between updating the even and the odd rows
in the image. See Section 2.2 for further details. The sequence starts with

an even frame and then alternates between even and odd.

We will present a method that manages, to some extent, to handle dis-
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(a) (b)

Figure 4.1: The two images demonstrate occlusion of particles. The image
region is the same in both images, however the image b) is recorded 20 time
steps (0.4 sec) after a).

tortion and partial occlusion. First we will however discuss two different
approaches to linking position estimates of particles to trajectories.

4.1 Linking positions to trajectories

Assume first that our sequence of images only consists of two images.
Now we want to track the particles present in the two images. There are
basically two methods to do this. Either we first find all the particles
in the two subsequent images and then find the correspondences between
the two sets of particle positions, or we find the particles in the first image
and then, for each particle in the first image, search in the vicinity of this
particle in the second image for the corresponding particle.

There are pros and cons with both methods. For the first method, the

drawbacks compared to the second are two: We do not use our knowledge
of the positions of the particles in the previous image, and also, we have
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to find the correspondences between the particles in the two images after
we have estimated their positions. The drawback of the second method,
is, at least unmodified, that it only allows for tracking of particles found
in the first image.

As we saw in Section 3.2, it is very hard to find a method of finding all
the particles in an image without a large amount of false particles, that
is, candidate particle positions that do not correspond to true particles.
Hence, we have to allow for a lot of false positives since we do not want
to fail to hit the true particles, and consequently, the linking procedure
of finding correspondences will involve a lot of candidate particles and
inevitably becomes trickier. Examples in the literature of finding corre-
spondences between sets of point patterns are Lund and Rudemo (2000),
were correspondences between estimated tree positions from aerial pho-
tographs and the true positions were linked, or Cross and Hancock (1998),
where the two sets of points were assumed to be the same up to an affine
transformation plus a Gaussian error in the positions and where the false
points were modelled by a Poisson process.

One simple approach to tracking would be: Manually assign the candi-
date particle positions in the first image, refine these positions, and then
update the positions for each new image using the information contained
in the previous particle configuration.

4.2 Handling partial occlusion

Let us start by considering the image on the left in Figure 4.1. Denote
the true centers of the two particles in this image by z; and x5, where
z7 is the true center of the brighter particle on the left. Assume we are
given initial candidate centers y; and ys, for example from the filtering
method in Chapter 3 of finding the local maximal rotational symmetry.
Using all pixels within let us say r.; = 15 from a candidate center as
neighborhood, the two neighborhoods N, and N, would intersect, with
the result that they would use the same pixels for estimating the particle
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centers. This is illustrated in Figure 4.2a, where the candidate centers
are indicated by plus signs and where the two neighborhoods are we have
plotted a circle of radius 7,4, = 15 around each candidate center.

The corresponding results from the two optimizations of S in equation (1.1),
using these neighborhoods for the two particles, would affect the particle
center estimation in the plane, most probably with a bias directed away
from the other particle. The reasoning behind this, is that the position
of local maximal rotational symmetry would be pushed away from the
interfering particle. In Figure 4.2b we have plotted the scatter plot of
pixel values within 15 pixels away from the candidate center y; for the
bright particle in Figure 4.2a. We clearly see the interfering pixel values
resulting from the fact that there is another particle nearby.

An easy way to get around this, at least to some extent, is to allow pixel
locations to be part of AV, to the kth particle, only if the corresponding
candidate center yj is closest to the pixel among the other candidate
centers. Let K denote the set of candidate centers in the image. Then
we let the neighborhood of the kth particle be

Nzk = {7 €Dy Ti(yk) < Tipae and Tl(yk) = nlelg’rl(ym)} (41)
m

Compare this with equation (3.1). This definition of neighborhood thus
requires that we are given a set of candidate centers. In Figures 4.2¢
and 4.2d, we display what the two neighborhoods look like by letting the
pixel values be black for the pixel locations that are in the neighborhood
of the other particle.

In Figure 4.3 we plot all pixel values within distance 15 from the two
candidate particle centers. The pixel values in the two neighborhoods
illustrated in Figure 4.2c¢ and 4.2c, respectively, are however displayed
with dots and the others are displayed with plus signs. It is obvious that
the pixels outside the corresponding neighborhoods are interfering.

Furthermore, we will iteratively update the neighborhoods according to

(4.1) as we are minimizing the criterion for maximal rotational symme-
try (1.1). After the particle center in the plane has been found, the depth
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(c) (d)

Figure 4.2: In a), the two plus signs are the two candidate particle centers.
The two big circles have radii 15 and are centered at the candidate centers,
representing possible neighborhoods of the particles. In b) there is a scatter plot
of the pixel values up to distance 15 from the candidate center on the left in
a). In ¢) and d) we demonstrate what the modified neighborhoods, defined by
equation (4.1), look like, where a black pixel represents that the pixel is closer
to the other particle.
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0 ) : 0

Figure 4.3: Scatter plots of the pixel values surrounding the estimated centers
of the two particles in Figure 4.2a. The pixel values not in the corresponding
neighborhood but within distance 15 from the candidate center are displayed
with plus signs.

is estimated as in Paper TI. Note that the precision in the position esti-
mates will usually be worse when using smaller neighborhoods (compare
with the simulation study in Section 5.1). Furthermore, the precision of
the particle center estimate in the plane, will in general differ for the two
coordinates.

The proposed algorithm for tracking in 3-D is as follows:

1. Calculate the distances between the candidate particle centers and
construct the neighborhoods to each particle according to equa-
tion (4.1).

2. Minimize the local rotational symmetry function S for each particle
using the corresponding neighborhood from Step 1.

3. Use the minimizers from Step 2 as candidate center and go to Step
1. Continue this until there are no changes in the position estimates.

4. Estimate the depth for each particle using template matching.

5. Load a new image from the sequence and let the estimated position
from above be the candidate centers for the new image. Goto Step
1.
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4.3 Results for tracking two particles

The two particles in Figure 4.1 were tracked using the proposed algorithm
above. However, for the 16:th image the estimation broke down. This
was indicated by that the estimated positions of the particles practically
coincided.

In Figure 4.4a we show the same region as before, but for the 15:th image
in the sequence together with the center estimates of the two particles
in this image, after having tracked them for 14 images. A plus sign sur-
rounded by a small circle will indicate a resulting particle center estimate.
We see that the two particles have moved slightly towards each other,
compared to the initial image in the sequence. Here, one could possibly
argue that the estimated center of the particle on the left is somewhat
biased downwards to the left.

The estimated centers in Figure 4.4a are used as candidate centers for
the next image in the sequence, which is shown in Figure 4.4b together
with the candidates. This next image comes from an odd frame, see
Section 2.2. It seems as if both particles have moved upwards in the image
plane. However, it is easy to be deceived by the eye since a transition
from an even to an odd frame has the effect that everything seems to have
moved upwards in the image.

As shown in Figure 4.4c, the estimation of the center of the particle
on the left does not work. There are probably several reasons for this
breakdown, but the main underlying cause is of course that one of the
particles is heavily occluded by the other. Probably a more restrictive
choice of neighborhood would be able to track both particles past this
image. A few modifications in this direction will be discussed below.
Nevertheless, it is hard to believe that it would be possible to track both
particles past the image on the right in Figure 4.1, which is the 21st
image in the sequence. There, the dark particle almost totally occludes
the bright one.

When the position of a particle is wrongly estimated, we say that we
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(a) Image 15 (b) Image 16

(c) Tmage 16

Figure 4.4: The resulting estimates of the particle centers for the 15:th image
is shown in a). In b) the estimates from a) are plotted on the next image (which
is an odd frame). The estimated positions for image b) is displayed in c) and
clearly the tracking of the particle on the left has broke down.

lose the particle and call it a lost particle. Detecting the loss of a particle
should not be hard. By looking at the increments of the particle trajectory
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and at the distance to its nearest particles, it should be easy to detect the
loss of a particle. A lost particle should probably not be discarded. The
main benefit of the approach presented above for tracking, is that we get
estimates of where the other particles in the image are located. One could
say that these estimates tell us when to be cautious about which pixels
to choose when estimating the center. A lost particle should therefore be
kept since it signals that there could be another particle present in this
part of the image.

4.4 Modifications

There are of course numerous ways to modify the presented tracking al-
gorithm above. We here present a few ideas. Much of the issues have a
strong algorithmic nature, by which we mean that much is associated with
various tricks used in the implementation of tracking, however inspired
by statistical and probabilistic reasoning.

First of all, the presented method of tracking does not make use of the
depths of the particles in the previous image in the sequence. As is the
case for the positions in the image plane, the depths of the particles cannot
change so much in the time interval between two consecutive sequence
images. A modification would be to incorporate the information of the
appearance of the particles in the previous image when constructing the
neighborhoods of the particles in the present image, since this tells us
how big the domain of interfering pixels is.

More generally, this brings up the subject of using different shapes of
neighborhoods to particles in the image. The method we presented is
based on dividing the image plane into Voronoi cells. More elaborate
methods could of course be used. One possibility would be to modify
equation (4.1) such that the distance r;(yx) must be smaller than a con-
stant ¢ < 1 times the minimum distance to the other candidate centers
Mingyeg\ (k) Ti(Ym). The reason why this is believed to perform better, is
that pixels in the region in-between particles are affected by both of the
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nearby particles, and hence should not be used for positioning at all.

One could also incorporate detection of outliers in the scatter plot of
pixels in the neighborhood compared to the fitted intensity profile. It is
important then to relate the possible outliers, to where in the image they
are located, in other words, we have to incorporate the spatial nature of
the data. Drawing conclusions on outliers simply from pixel values plotted
versus distance, is highly unsafe. Only if a possible group of outliers in
the one-dimensional scatter plot can be spatially related in some way,
can we allow to discard them. (By spatially related pixels, we mean
pixels that are connected in the image plane.) This is the main reason
why a robust method such as the LOWESS (locally weighted scatter
plot smoother), Cleveland (1979), was not used for the nonparametric
estimation of f in the estimation of particle centers in the plane. One
way to spatially relate outliers could be to discard them only if they are
sufficiently close to the boundary of the neighborhood used. This way,
we could let the neighborhood shrink, as outliers near the boundary are
discarded.
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Supplementary studies

We will present some supplementary studies based on simulations which
might be of interest when reading Paper I and to some extent Paper II.
Therefore it is advisable to have read at least Paper I before reading this
chapter.

5.1 Dependence between the size of N, and the
standard error in the 2-D estimation

We will investigate how the estimated standard error of the particle center
estimate varies as a function of r,,4,, when circular neighborhoods N,
as in equation (3.1), around the particle center z, are used.

As in Paper I, we let g denote the R? valued function of z = (z1, z9) with
kth element gg(z) = f(r;(z)). Also, J denotes the Jacobian of g, the
n times 2 matrix with element (J(z))k,m = (.;?f”; (y) for k =1,...,n and
m = 1,2. The sandwich estimator of the variance matrix Var{z} of the
estimated position error at the true center z is

v=ur Utssgty) L (5.1)
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where ¥ is the variance matrix of the residuals between the pixel values
and the corresponding estimates of f.

In this simulation study, the intention is to focus on the dependence of
Tmaz ON the diagonal elements of V. Therefore we will use the true (but
random) value of the particle center z. Furthermore, instead of estimating
the image noise parameters as we did in the simulation study of Paper I,
the true values of the image noise parameters o and ¢, will be used. The
elements of J are approximated in the same way as in Paper I, that is,
by the estimated derivatives of the intensity profile.

For each simulated image I with random particle center z, we calculated
V for rymq; between 3 and 15 from the true center z. The parameters of
the image noise were o2 = 25 and ¢ = 0.6.

Let 0 (Tmaz) be the square-root of the maximal element of the two di-
agonal elements of V' for the mth simulated image with 7, as radius
of the neighborhood N;. In Figure 5.1 the result after M = 100 simu-
lations each for particles 3um below and above the focal plane is shown.
These depths correspond to indices £5 in Paper 1. For each 7,4, the
mean &(rmey) = M 1 Zﬁ{:l O (Tmaz) over the M simulated images, is
displayed. Below this, we have plotted the intensity curve f, used in the
simulation. See also Figures 5.2 and 5.3, where the same kind of depen-
dence is illustrated, this time for particles £1.8pum and +4.2um from the
focal plane, corresponding to depths indexed by +3 and +7 in Paper L.

The observation made from the plots, is that the way & varies with 7,4,
clearly seems to depend on f,. After each point r where f, has zero
derivative (that is, after each stationary value of f,), the standard error
seems to drop. Furthermore, the magnitude of this dip depends on the
distance from the particle center, . Then, for a sufficiently big 7,4z,
the increase in 7., does not seem to affect the standard error. Note
also the non-symmetry around the focal plane in each figure; the plots on
the left and right represent particles at the same distance from the focal
plane, but the shapes of the standard error curves are different. This is
consistent with that the location of the first stationary value of f, for
r > 0 is closer to r = 0 for a particle below the focal plane than for a
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Figure 5.1: The upper curves show how the estimated standard error from the
sandwich estimator varies with r,,,, for a particle 3um below (left) and above
(right) the focal plane, respectively. Below the curve, the corresponding intensity
profile for the particle is shown. The way the standard error varies with 7,4,
clearly depends on the underlying intensity curve. These depths correspond to
depths -5 and 7 in Paper I.

. 0

Figure 5.2: The same as Figure 5.1 but here for particles 1.8um below (left)
and above (right) the focal plane. These depths correspond to -3 and 3 in Paper

particle at the same distance, but above the focal plane; compare the two
intensity profiles to the left and right in each figure.

The computational effort of calculating the estimate of the intensity pro-
file at a candidate center y from pixels in a neighborhood N, with radius
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r '

Figure 5.3: The same as Figure 5.1 but here for particles 4.2um below (left)
and above (right) the focal plane. These depths correspond to -7 and 7 in Paper
I

Tmaz, iNcreases quadratically in 7,,,,. Therefore there is a trade-off be-
tween increased precision in the estimated particle center and the time it
takes to estimate the center. As seen from Figure 5.1, 5.2, and 5.3, after
a certain value of r,,,,, depending on depth of the particle, there is no
decrease in standard error as we increase the neighborhood. Therefore,
there is no need to use a larger neighborhood than necessary. On the
other hand, since the depth of the particle is unknown, we want to use
the same 7,4, for all particles. 7., = 15 seems to be a good choice
since this includes the major fluctuations of the intensity profiles for the
majority of the depths considered.

There are also times when a small r,,,, is preferable (when the shape of
N is fixed). This is the case when particles are close together since then
the assumption of rotational symmetry might not be fulfilled if 7,45 is
taken too large and consequently we probably get a bias in the particle
center estimation directed from the interfering particle (because the value
of (1.1) is probably smaller away from the interfering particle). However,
in those cases, we have hopefully already detected the interfering particle
and adjusted the shape of the neighborhood accordingly, as discussed
in Chapter 4. However, for automatically finding candidate centers as
proposed in Section 3.2, we use the same shape of the neighborhood for
all pixel locations and then a small 7,4, might perform better.
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A note of warning should also be said about over-interpreting the depen-
dence of the standard error estimates on the size of the neighborhood.
The sandwich estimator is sort of an estimate of the local curvature of
S(y) at the true center z. It does not say anything about how to get to
this true center. In other words it says nothing about the consistency of
the particle center estimator, only what the standard error will be if the
estimated % gets sufficiently close to z.

5.2 Estimated intensity profiles for different band-
widths

In Paper I a cross-validation study was performed on the data correspond-
ing to the sub-images of a particle at 15 different depths. The conclusion
was first of all that the local quadratic kernel estimate was relatively in-
sensitive to the choice of bandwidth and secondly, that bandwidth h = 0.7
worked sufficiently well to be used as a pilot bandwidth when finding the
particle centers. Before the actual estimation of the intensity profiles
however, a cross-validation study was made for each particle separately.
Here we will first investigate the bias in the nonparametric estimation of
the intensity profile at different depths for different bandwidths. Then,
we will investigate the accuracy of cross-validation for the kind of data
considered here.

By an estimate of an intensity profile f given pixel values I; and corre-
sponding distances r;(z), we will below mean the local quadratic kernel
estimate of f with (I;,r;(z)) as data, with no censoring.

Here we will focus on the estimation of intensity profiles, and instead
of using the data-driven method of cross-validation, we will conduct a
simulation study to illustrate how the estimated intensity profiles depend
on the choice of bandwidth. We simulate images of particles with added
image noise (in the same way as in Paper I and II), and then the intensity
profiles will be estimated using the true center as the particle center. This
will be done for different bandwidths for each image.
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The mean of the estimated intensity profiles from 100 simulated images
of a particle at the focal plane, using bandwidths A = 0.5,0.7, and 1.0,
respectively, from left to right, is shown in solid in the three sub-figures
in the upper row of Figure 5.4. The true intensity profile used in the
simulations, is displayed in dashed and the dotted lines are the point-
wise maximum and minimum of the estimated values of the intensity
profiles. The bias in the estimation is very high for the largest bandwidth
and almost zero for the smallest bandwidth. Interestingly, the pointwise
distance between the minimum and maximum value of the intensity func-
tions is not increased much for the lowest bandwidth, compared to the
highest.

The story for the two other depths of Figure 5.4, 1.8um and 4.2um above
the focal plane, is basically the same as the story for the upper three sub-
figures. Furthermore, this is true for all other depths; the pointwise bias is
lower for smaller bandwidths. However, looking at functional characteris-
tics of the estimated functions, such as the position of the first stationary
value of the estimated function, we get another story. Using a smaller
bandwidth than necessary, makes the intensity profile estimates too un-
regular with too much fluctuation. Therefore, the plots in Figure 5.4 are
a bit misleading, as one might think that we should always choose a small
bandwidth. Anyhow, it is of course clear that the bandwidth A = 1.0 is
too large for estimating the intensity profiles in the two upper rows.

In Figure 5.4 we calculated the estimate for uniformly spaced values of
r. The covariates, the distances r;j(z) from particle center z to the pixel
locations 4, are however not uniformly spaced. More precisely, they are
randomly distributed (since the particle center z is random), with linearly
increasing density of covariates with distance, since the number of pixels
within distance r from a particle center increases quadratically. Since
there are few pixels for small r values, the variation is fairly large for
all bandwidths at small r values, as seen by the larger span between the
pointwise minimum and maximum of estimated functions in Figure 5.4.
Remember also that the image noise in the simulations is correlated.
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Figure 5.4: Mean of the estimated intensity profiles (solid) from 100 simulations
corresponding to a particle at the focal plane in the upper row, together with
particles 1.8um and 4.2um above in the middle and lower row, respectively, when
using three different bandwidths. The bandwidths 0.5, 0.7, and 1.0, are shown
from left to right, respectively. The true intensity profile is displayed in dashed
and the dotted lines are the pointwise maximum and minimum values of the
100 estimated intensity profiles. Clearly the function estimates have a large bias
when using too large a bandwidth; see for example the plot in the upper right
corner, where the mean of the estimated functions (solid) is far from the true
function (dashed).

Validating Cross-validation

Let us denote by f,; i the local quadratic kernel estimate of f when leaving
out the i:th data point, and using h as bandwidth. For each h the cross-
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validation score is defined as

OV = = Sl f ) (5.2)

€Nz

The cross-validation score is calculated at a finite number of bandwidths.
The idea behind the cross-validation score, is that it is an estimate of the
expected value of the squared difference between the estimated and the
true regression curve (intensity profile) under the bivariate distribution
of covariates and response values, (r;(z), I;),

B/ / (F(r) — F(r))2dpu(r)} (5.3)

where y is the (marginal) distribution of covariates. In a simulation study,
we know the true intensity profile, and therefore we can estimate expres-
sion (5.3) by

S
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where f is the intensity profile estimate using the data from the mth
simulated image and i',...,4" is an arbitrary enumeration of the n,, pixel
values within distance 7,4, of the (random) particle center z,,. Note that
for each simulation, both the pixel values I; as well as the distances to
the pixels from the particle center, ;% (zy,), are random. The pixel values
are implicitly present in the summation (5.4) above, in the estimate of
the intensity profile fh.

=

We conducted a new simulation study of M = 100 images for each of
the 15 depths from -4.2pum to 4.2pm with 0.6xm in between. These are
the same depths considered in Paper I. For each image, we estimated
the intensity profile f up to distance 7,4, = 15 using 17 different band-
widths h = 0.4,0.45,0.5,...,1.2. Then F in equation (5.4) was calculated
for each depth. Also, for each image, the cross-validation score was cal-
culated, using the same set bandwidths. In Figure 5.5 we present the
h minimizing F for each depth in solid together with the mean of the
bandwidths minimizing the corresponding cross-validation score for each
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Figure 5.5: For each depth, the minimizer of E(h) in equation (5.3) using 100
simulated images of particles at this depth is shown in solid. The dashed plot
is the mean over each depth of the minimizers of the cross-validation score for
each image.

image. The shape of the two plots is the same, but there is a discrepancy
of roughly 0.06 between the two plots. It seems as if the cross-validation
minimizer is biased. In practice however, this discrepancy in bandwidth
does not affect the estimation of f severely.
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Chapter 6

Conclusions and Future
Research

6.1 Depth estimation using templates

As discussed in Section 3.4, there related to the estimation of a 2-D surface
of intensity profiles, a measure of distance between the intensity profiles
should take special consideration of the functional features unique for each
profile. One example of such a feature is the first dip or peak of the inten-
sity profile, depending on if the particle is below or above the focal plane.
Looking at the intensity profiles, it seems as if the profiles are related to
each other with a scaling parameter depending on depth, that acts on the
argument r and the amplitude of the variation, stretching out the pro-
file with increasing distance to the focal plane. An improved measure of
distance between intensity profiles should take this into consideration. Tn
short, it would be nice to have a measure of distance between shapes that
exploits the important functional features like the first dip, in a more ex-
plicit manner than the Lo-norm, which what the matching criterion (3.4)
basically is.
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Templates that allow for continuous depth estimation are also desirable.
In Section 3.4 we presented one method for construction a two dimensional
regression surface of intensity profiles. From a theoretical point of view,
mathematically constructed templates would of course be preferable, since
this would also allow for construction of templates for particles of different
sizes and shape. However, as mentioned in the Introduction, predicting
the appearance of spherical objects in microscopy of this size still seems
to be an intriguing theoretical challenge, see Ovryn and Izen (2000).

The 2-D template approach described briefly in Section 3.4 could be de-
veloped further. However, this requires better data of the appearances of
particles at different depths. Several images at each depth would probably
improve the estimates of the intensity profiles in general. Tt should also
be possible to record the z-scans without having censored pixel values.
Even so, this approach would still confine us to the study of particles of
only the sizes and shapes we have estimated templates for.

6.2 Measurements of diffusion coefficient and in-
teraction

As illustrated in Chapter 4, it is hard to track particles unsupervised for
a longer sequence of images considered here. The main cause is that the
focal depth of the microscope is very large, causing particles to occlude
each other rather frequently, at least compared to the ratio of the total
number of particles present in the specimen and the volume of the domain
in which they are confined.

Loosing track of particles is not very important if we are only concerned
with the estimation of the diffusion coefficient of the particles. Then
broken trajectories of particles do not affect the estimation (more than
that the sample size of observed increments decreases); when a particle
is lost, we do not have to bother were it goes and when we possibly start
tracking this particle again, we could consider it as a new particle (at least
if all particles are of the same size). If interaction between particles is
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believed to be present, one could furthermore restrict tracking to regions
in the image where there are no other particles present within a reasonable
range of particle interaction.

However, when estimating a possible interaction between the particles,
it is crucial to estimate the positions of all particles. In particular, it
is important to estimate the positions of those particles which are close
to each other. But this is exactly when unsupervised tracking is hard!
Supervised estimation of particles centers is of course possible, but for a
larger sequence of images, this is a very tedious job. The interaction be-
tween particles can however in principle be estimated from the estimated
particle positions in three dimensions in a single image using methods
of statistical inference for spatial point processes, see for example Mgller
and Waagepetersen (2004).

Since unsupervised tracking is hard in dilute suspensions, one alternative
is to use an optical trapping device called an optical tweezer. An optical
tweezer is tightly focused laser beam that creates a local minimum in
the optical energy strong enough to overcome both radiation forces and
thermal forces. Thereby it is possible to attract a particle and move it
to a specified location. A dual optical tweezer could be used to attract
two particles, bring them close together, and then turn off the laser. The
particles would then diffuse freely and we can track the two particles for
a sequence of images. The whole thing can be repeated until enough data
has been collected. Optical tweezers have been used in studies of the
interaction potential in Crocker and Grier (1996) but also in for example
video microscopy studies of DNA, see Perkins et al. (1994). Given the high
accuracy of position estimation of spherical latex particles developed here,
the possibilities for high precision estimation of the interaction between
particles using this more advanced microscope setup should be large.
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6.3 Automated depth calibration

An interesting problem would be to automatically estimate the depth,
simply by observing trajectories of particles performing Brownian mo-
tion (like the sequence images we have used). Since Brownian motion is
isotropic, a particle performing Brownian motion has the same diffusion
coefficient in all three dimensions. Since tracking the position of a par-
ticle works fairly well in the image plane, we can estimate the diffusion
coefficient. Now the idea is as follows. As we track the particle in two
dimensions, we record some kind of feature that relates to the depth of
the particle. This could be the estimated intensity profile, but it could
also be a simpler attribute, for example the distance form the particle
center to the first stationary value of the estimated intensity profile, that
is, the distance to the first peak or dip in the profile. Then, if it is pos-
sible to order these measured features of the depth, and assuming that
there is a function that relates this feature with the depth of the parti-
cle, we could associate the track of this depth feature with the diffusion
coefficient already estimated from the measured diffusion in the plane.
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Estimating centers and intensity profiles of

spherical particles in microscopy

Mats Kvarnstrom and Chris Glasbey
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Abstract

We present a method for estimation of particle center in digitized mi-
croscope images, based on an assumption of rotational symmetry of pixel
values surrounding a true particle center. The functional form of how the
pixel values vary with distance from a particle center is called the intensity
profile and depends on the depth of the particle. In addition to estimating
the center, the intensity profile is also estimated using a nonparametric es-
timator. However, pixel values are censored above a certain known value.
‘We propose a modification of the local quadratic kernel estimate for non-
parametric function estimation using censored response values.

Furthermore, for each center estimate, we also estimate the standard
error of the estimate using a sandwich estimator. A simulation study shows
that these standard errors are consistent with the observed RMS errors.
The standard errors depend on distance to the focal plane and are in the
range of 0.02 to 0.10 pixels, depending on depth of the particles, with lower
values for particles closer to the focal plane.

1 Introduction

In order to track and subsequently estimate the diffusion coefficients of diffus-
ing colloidal particles observed in video microscopy, a highly precise, automatic
method for estimating particle centers is needed. It is also of interest to have
reliable estimates on the standard errors, since errors in the position estimates
affect the subsequent estimation of the diffusion coefficient. Furthermore, sub-
pixel accuracy is needed since the particles typically only diffuse distances in the
order of one or two pixels between two subsequent images.
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Figure 1: An image from a video sequence of diffusing particles. The particles are all
equal in size and the difference in the appearances of the particles in the image is due
to that the particles are at different depth relative to the focal plane.

Figure 1 shows one of the images in a typical sequence of images recorded and
digitized by the video microscope. The images are recorded at a frame rate of
50 images per second. Each image consists of 512 times 512 square pixels with a
side-length of 180 nm. The particles are all of the same size, 494 nm in diameter;
the difference in appearance is due to different depth relative to the focal plane.

Our method of estimating the particle centers in the image relies on an assump-
tion of rotational symmetry of the pixel values in the image in the vicinity of a
true particle center. We will estimate the particle center by the position with
largest rotational symmetry, where the symmetry is measured as the sum of




squares between nearby pixel values and a fitted nonparametric estimate of how
pixel values vary with distance from a (candidate) particle center. The pixel
values in the images considered are censored (saturated) at an upper limit of
T = 255 and are instead set to 7. We introduce a method for nonparametric
estimation of a regression function when the response variables (the pixel values)
are censored above an upper limit under the assumption of normally distributed
homoscedastic observation errors (the image noise).

Censored (saturated) pixel values are common in microarrays where the esti-
mated expression of genes get biased when no adjustment is done due to the
censoring, see Glasbey et al. (2005) and Ekstrgm et al. (2004). A nonparametric
approach was pursued by Glasbey et al. (2005) using a principal components
model. Ekstrom et al. (2004) used a parametric approach where several para-
metric forms were tested for the expression of genes in the microarrays.

Standard error on each center estimate will be based on the sandwich estimator,
see for example Owen (2001). These standard errors are shown to be consistent
with root-mean-square (RMS) errors in a simulation study in Section 5. In this
simulation study, we also examine the precision when only half of the rows in
the image is used in the estimation. This is done since for image like the one in
Figure 1, in fact only half of the rows are updated each 1/50 second, alternating
between the even and the odd rows. Since only half as many pixels are used,
one might have expected /2 times larger RMS errors and furthermore, since we
are losing information in the vertical direction, the errors would be greater in
the vertical than in the horizontal direction. The study shows however, that the
loss in precision is not as high as expected and especially that the precision is
still equal in both coordinates, except for the particles closest to the focal plane.

In Figure 2, we have extracted and zoomed in on a particle like the ones in
Figure 1 at different distances from the focal plane. Each sub-image consists of
27 times 27 pixels. Sub-images with negative and positive labels correspond to
particles below and above the focal plane, respectively. The distance in depth
between two consecutive sub-images is approximately 0.6um and sub-image 0
corresponds to a particle at the focal plane. These images are called z-scans
and have been constructed by letting particles adsorb on the glass surface of the
specimen, and then moving the specimen relative to the optics of the microscope.
This way, we were able to record the appearances of particles at different depths
of focus.

Previous work using digital video microscopy for colloidal studies, have been
made by Crocker and Grier (1996, 1998), but there, the depth of focus was
approximately +0.5um, which makes the particles similar in appearance and
therefore easier to find in the images, since the sought-after objects in each image
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Figure 2: The appearance of a particle at 15 different distances to the focal plane.
Sub-image 0 corresponds to a particle at the focal plane, and sub-images with negative
and positive labels are below and above the focal plane, respectively. The distance in
depth between two consecutive sub-images is approximately 0.6 pm.

are similar. In their study, each particle is a bright spherical set of pixels and they
achieve sub-pixel accuracy by calculating the geometric center of the brightness-
weighted centroid, obtaining standard errors of about 0.1 pixels (where each
pixel is 85 nm). Also, the particles in their colloidal suspensions are effectively
confined to a crystallized structure. In our case, the depth of focus is 15 pum,
resulting in a much wider variety of appearances of the particles in the image.

Assumptions and main idea

We denote an image by I. This is effectively a matrix of pixel values I; for pixel
locations i = (iy,i2) € Dy C 72, where Dy is the set of indices i for which the
image is defined. We will use the terms pixel and pixel location interchangeable
to mean the same thing when no risk of ambiguity exists.

A particle center is denoted by z = (z1,22) € R?, and to each particle, we
associate a set N, C Dy of pixels in the image I called the neighborhood of
the particle at x. For the particles in Figure 2, we can take all pixels in the




corresponding sub-image as the neighborhood for the particle, but typically, we
let.
Ny ={i € Dr:7:(2) < Trmaa } (1)

where r;(z) is the Euclidean distance from the particle center z to pixel i, and
Tmae 18 an appropriately chosen distance. In this paper, we will let 7,,,,, be 15.

The main assumption is that, for a particle center at = € R?> we have
I = f(ri(z)) + & for i € N, (2)

where f is called the intensity profile. The image noise, €; for i € Dy, is as-
sumed to be normally distributed with isotropically correlated pixel values. The
intensity profile f : R — R is assumed to be a smooth function with at least two
continuous derivatives and symmetric in its argument r, here denoted by C2.

The basic idea for estimating the particle center is as follows. For a particle
located at x, we use the minimizer of

S@) =min Y AL~ fri)} = Y AL~ fr))} 3)
PiEN,

c .
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for y € R? as estimate of z. We calculate f using a local quadratic kernel es-
timator with (appropriately chosen) bandwidth h. The idea behind minimizing
the equation above is to find the position of (local) maximum rotational sym-
metry. We denote the estimate of z by #. At &, the corresponding f will be the
estimate of the intensity profile for this particle. The idea behind minimizing
equation (3), is to find the position of (local) maximal rotational symmetry.

Pixel values are censored above an upper limit 7. Here, T equals 255. In
Figure 2, we have censoring for all particles except at the focal plane and at
depths 6 and 7. For particles below the focal plane, censoring occurs for pixels
close to the center of the particle, and for particles above the focal plane, on the
first fringe. The relative amount of censoring is however not very large; between
0.5 and 4.5 percent of the 27 - 27 = 729 pixels are censored, with the largest
amount for the particles just above the focal plane (depth 1, 2, and 3). For
estimating the particle center, that is, finding the position of maximal rotational
symmetry, censoring does not affect much, since censoring occurs at an annulus
around the true particle center. Nevertheless, for estimating the intensity profile,
it is important.

In Figure 3 and 4 we illustrate some of the assumptions and methods presented
so far. In Figure 3 we have zoomed in on the particle at depth -5 and made
a surface plot of S for a few values surrounding the minimizer. In Figure 4,
we see that it is reasonable to assume rotational symmetry of the pixel values

Figure 3: The particle at depth -5 together with a surface plot of S on the right. The
center pixel in the image is (z1,22) = (14, 14). The estimated center is at (14.21,13.67).
The estimated standard error of this position estimate is 0.035 (see Section 3). In
Figure 4 a comparison is made between the scatter plots of pixel values surrounding
(14,14) and the estimated center.

surrounding a true center. Furthermore, the two plots indicate that it should be
possible to estimate the particle center at sub-pixel accuracy; in the scatter plot
on the left, there is a clear “shift” in the scatter plot, which is not present in the
scatter plot on the right, corresponding to the estimated center. The figure also
demonstrates censoring of pixel values at the upper limit of 7' = 255.

2 Intensity profile estimation

For the case when there are no censored pixel values in N, we will use the
local quadratic kernel estimator with a Gaussian kernel function. Common ref-
erences for nonparametric local polynomial kernel estimation are Hastie and
Tibshirani (1990) and Fan and Gijbels (1996). The reason for choosing the local
quadratic kernel estimate as nonparametric method, instead of for example a
spline smoother, is that the estimate of the derivative of f is practically given to
us for free using a local quadratic, and the derivative is needed when estimating
the standard errors. Compared to a local linear kernel estimate, the quadratic is
much less sensitive to the choice of bandwidth. The Gaussian kernel was chosen
since it is smooth and has unbounded support, which makes the function S dif-
ferentiable. Regarding the choice of bandwidth, simulation studies have shown
that the bandwidth is not very important when estimating the particle centers.
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Figure 4: Two scatter plots for the particle at depth -5 in Figure 2. On the left,
the scatter plot of pixel values surrounding the center pixel of the sub-image (14, 14),
and on the right, the same for the estimated particle center at (14.21, 13.67). Note the
censoring of pixel values above T' = 255. See Figure 3 for an image of the particle and
the plot of S.

We will however use cross-validation to automatically choose bandwidth.

Local polynomial kernel estimate

We will explain briefly how a local polynomial kernel estimate is calculated. The
value of f at each point of evaluation rq is a solution to a local weighted least-
squares problem, where each observation I; is given a weight from the Gaussian
kernel function according to distance between rq and r;(y). For estimation when
there is censoring, however, we will modify this weighted least-squares problem.
For easier notation, we will henceforth write r; instead of r;(y) for i € NV, when
there is no possibility of misunderstanding.

Let K denote the Gaussian kernel, that is K (z) = exp(—22/2). The local poly-
nomial kernel estimate is based on the assumption that the unknown regression
function f can be approximated locally by a polynomial of degree p,

? (%) To 3
1= Y L

for r close to rq. To calculate the value of the estimate at an arbitrary point
ro, we locally fit a polynomial of degree p by solving the weighted least-square

problem of finding the minimizer to

> {Ii = Bilri— To)k}th(Ti — 7o) (4)
k=0

i€ENL

with respect to § = (S, ..., 3p) and denote the minimizer by 3. Here, Ky(z) =
h='K (2/h) is the kernel with bandwidth h > 0. The estimates of f(*) at rq, for
k=0,1,...,p, are

F®(ro) = k1fs.
Notice that since f(rg) is the solution to a weighted least-squares, f(ro) is a
linear combination of the pixel values I for j € N,.

Local regression with censored response values

Denote the set of uncensored pixels by A7 = {i € N, : I; < T}, where T = 255.
Then the complement, A%, is the set of censored pixels. With pixel values in N,
censored, we minimize

p .
%]0802 > Ku(ri—10) + 2}7 > {Ti - gﬁk(ﬁ - 7‘0)k}27(h(h )

i€Ar i€ Ap
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i€AS,

(5)

instead of the sum of squares (4), where @ is the distribution function of N(0,1),
that is, a zero mean, normally distributed random variable with unit variance.
The reason behind minimizing (5) is that it corresponds to maximizing the local
likelihood

T { (i Zhma el ro )y T (o (Zhza bl _rolt Ty

o
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of observations I;, that are possibly censored above T'. The weights w; = Kj,(r; —
7rq), could be interpreted as the proportions of observations from a larger sample
being at ;. We here implicitly assume the image noise ¢; to be i.i.d. and normal.
Notice however that we generally, in the main assumption (2), assume the image
noise to be correlated.

When referring to the two kinds of local quadratic kernel estimates dealt with
above, we will sometimes call the two versions ” the standard” and ”the censored”
version, respectively. We will also use ”censored regression” for the latter.




Remark 1: In order to have the estimated intensity profile symmetric, as
assumed in the model, we use the reflected data {—r;(y),I;} together with
{ri(y), I;} as data when calculating the regression. However, we only evaluate f
at the points 7;(y).

Remark 2: Note that the original local quadratic kernel estimate, defined by
the minimizer of (4), is linear in the pixel values. This means that we can write

Jri)y =" Wyl (6)

JEN

for each i € N, for some matrix W. This matrix is called the equivalent kernel
matriz. The trace of W, is a common estimate of the degrees of freedom for
fitting of f to the data {r;, I;}, see Hastie and Tibshirani (1990, chap. 3). We
will use this below when estimating the variance 0. Note that W only depends
on the bandwidth and the distances r; = r;(y).

In contrast to the local quadratic kernel estimate, the censored version, defined
by (5), is not linear in the pixel values since it contains the non-linear term

involving ®. It should also be noted that f is never linear in candidate particle
center y.

Algorithm for censored regression

The problem with equation (5), is that the parameter o2, the variance of the
image noise €;, is unknown. Hence, this needs to be estimated as well. However,
instead of minimizing (5) with respect to both B and o? locally for each r,
we will use an iterative scheme, alternating between estimation o2 globally and
updating the regression estimates.

Let f0 denote the estimate from a standard local quadratic kernel estimate at
point ;. The first, pilot, estimate of o2, is based on the residuals between f°
and the pixel values:

L 1 2
Uﬁim DIRUES (1)

i€EAT

where |Ar| is the number of elements in A7, and W the equivalent kernel matrix
defined in equation (6) above for the standard local quadratic estimate.

Next, minimize equation (5) at each point r; using the pilot estimate o7 and
denote this intensity profile estimate f! for i € N,. Then, estimate o> by (7)
again (using the same W as before), however this time using f! instead of f°.

+
)

Figure 5: The resulting estimate of the intensity profile for the particle at depth -
5 from Figure 2. For particles with censoring for small r-values it is essential to use
reflected data when calculating the estimate (see Remark 1 after equation 5). Otherwise
the estimated profile would have had a large negative derivative.

This above is repeated until the relative difference |07 — (7';),+1\/r7% between the
two consecutive estimates of ¢ is smaller than a certain limit &, chosen such
that an update gives a negligible effect on the minimization of (5). Here, we
let 6 = 0.01 and the iterative scheme typically converges after two or three
iterations.

In Figure 5 we have plotted the resulting intensity profile to the particle at depth
-5 in Figure 2. Without reflecting the data around r = 0 (see Remark 1 above),
the estimated f would have been quite different, with a large negative derivative
of the estimated profile at zero.

Bandwidth selection: cross-validation

Denote by f}_j’ the (standard) local quadratic kernel estimate of f when leaving
out the i:th data point, and using h as bandwidth. For each h we construct the
cross-validation score

OV = = Y T~ i) ®)
iEN,

In practice, CV is computed for a finite number of suitably chosen bandwidths.
For the data considered in this paper, bandwidth between 0.4 and 1.2 have
turned out to be suitable choices. The bandwidth minimizing the cross-validation
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is denoted by h,p;. When pixel values are censored, the summation in (8) is
restricted to Ap, the uncensored pixels.

When estimating the centers, a pilot bandwidth hy;0; will first be used to find
the minimizer of S. Then, a cross-validation study will be performed and the re-
sulting h,p: will be used to re-estimate the center, if needed. As pilot bandwidth
h = 0.7 has turned out to work well for estimating the center for all appear-
ances of particles considered. In fact, the center estimation procedure is highly
insensitive to the choice of bandwidth. Simulation studies have also shown that
the difference between updating and not updating the bandwidth for a second
re-estimation of the center is practically negligible. For the estimation of f, it
is more important however. Choosing a too large bandwidth causes a large bias
in the estimation and picking a too small bandwidth increases the variance.

3 Particle Center Estimation

Given a neighborhood N, to a particle with center in z, we estimate the center
by the minimizer & of

S = S AL~ friw)}’ 9)

i€ Ar

for y € N,, where f is the local quadratic kernel estimate using {r;(y), I;} for
i € N, as data, as discussed in the previous section. Furthermore, A+ is the set
of uncensored pixels, that is, pixels below the censoring limit 7'.

Note that in (9), it is the covariates r;(y) that change with y. The response
variables, the pixel values I; for i € A, are the same for each y.

Choice of N,

Before the minimization of (9), we need a neighborhood N, of pixel locations
to . However, when z is unknown, so is N,. Nevertheless, if we are given an
approximate particle center yo, manually or by some automatic image analysis
method, we can let N, = N, where N, is defined by equation (1) for z = yo

for a suitable choice of 7,45 -

The choice of 7,4, is a balance between wanted precision of the estimated center
on one hand, and computational effort and distance to nearby particles on the
other hand. Picking a large 7,4, increases the number of pixels in the sum (9)
and we therefore expect the estimate to get better. This vague argument is of
course only true to a certain extent, since assumption (2) is in practice only
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valid up to a certain size of the neighborhood, since there are other interfering
particles present in the image. This is realized after looking at the sequence
image of Figure 1. In the simulation study, we will use 7,4, = 15 and for the
particles in the sub-images of Figure 2, we will take the entire sub-image as
neighborhood.

Algorithm for estimating the center

We assume that a first, candidate position yg is given to us. We also assume that
a suitable neighborhood N, is picked according to the discussion in the previous
section. Furthermore, a pilot bandwidth hy;,¢ should also be chosen. For the
data considered here, we use hpijo; = 0.7.

To calculate S(y) at a candidate center y, do as follows:

1. Calculate the distances r;(y) for the candidate center y to all pixel locations

i€ N,.

2. Compute f(r,-(y)) for each point of evaluation r;(y) using bandwidth hp;io-

3. Calculate S(y) according to equation (9).

The minimizer & of S using hpiy, as bandwidth is a preliminary estimate of
the particle center z. A cross-validation study is then conducted using the data
{ri(z), I;} for i € N, and the minimizing bandwidth is called h,,:. After this,
the center is re-estimated as above using h,y¢ as bandwidth.

The actual optimization scheme can be chosen according to personal taste. We
used a greedy search: compute the value of S(y) for values y in a 5 times 5
uniform mesh with distance dy to nearest horizontal and vertical neighbour.
Find the minimizer y; among these, and re-calculate S(y) for a similar mesh,
but this time centered above y; and with inter-distance dy/2.

Remark: In Step 2, f(ri(y)) is calculated either using the algorithm for censored
regression in Section 2, or using the standard local quadratic kernel estimation.
However, note that finding the minimizer of equation (5) is much more compu-
tationally costly than finding the minimizer to equation (4). Therefore, one way
of reducing the computational cost when estimating the center, would be to first
use the standard version to find a preliminary estimate as above. After the pre-
liminary estimate has been found, an update in position is done, this time using
the censored version of the local quadratic kernel estimate. For the degrees of
censoring present in the data considered here, simulation studies has shown that
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the difference in precision of the particle center estimate is practically negligible
between the two methods of local quadratic kernel estimates.

Standard Error Estimates

Estimates on the standard error on particle center estimation will be derived
using a sandwich estimator, which allows for the residuals to be correlated. See
for example Owen (2001).

Recall that the estimate of the particle center z was the y minimizing

sw) = 3 {1 i)’

i€EAT

This expression is differentiable with respect to y since the Gaussian kernel is an
infinitely differentiable kernel with unbounded support. If we had used a kernel
with bounded support, a small perturbation in y can change the covariates r;(y)
within the supported region centered at the point of evaluation rq in equation (4),
and hence change the estimated valued.

Assume that there are n pixels in V, and enumerate the pixels (arbitrarily) as
i',i2,...,i" (We use super-indices since sub-indices denotes the two coordinates
of a pixel location.) We will now let g denote the R" valued function of z =
(z1,z2) with kth element gj(z) = f(ry(x)). The reason is that we want to
emphasize that we here consider the estimated intensity profile f as a function
of .

Let J denote the Jacobian of g, that is the n times 2 matrix with element
(J(@),,, = 88;““ (y) for k =1,...,n and m = 1,2. Furthermore, we let R be
the vector of residuals at

I = gi(z)
PRI R
I — ga(2)
where we have used the less awkward notation I}, instead of Ijx, for k = 1,...,n.

Moreover, let ¥ = %(2) = Var{R(z)} denote the variance matrix of the residu-
als.

The sandwich estimator of the variance matrix Var{#} is

V=N tgrsgar )t (10)

13

Since we do not know J = J(z) and ¥ = £(z), we have to estimate or approxi-
mate them.

The standard way to approximate .J(z) would be by .J(Z), but this involves
differentiating each gy with respect to x, which is very cumbersome. Instead, we
approximate the derivatives of g, in the following way. First we use the chain
rule to get . .

dgi _ 0f(rn(x) _ 8f oru(a)

oz oz or Ox

Then we approximate the derivative of f with respect to r with the estimate
of the derivative of the intensity profile, namely £; at the point of evaluation
ra (z), that is, the estimate of the derivative of the intensity profile. Therefore
we get:

Ogr m il
By = Bi(rax () ()

since the derivative of the distance 7;x () with respect to zy is (71 — i) /ru ().
The analogous is done for the derivative of gx with respect to x5. Finally, since

z is unknown, we approximate z by Z. We denote the approximate .J at point &
by J.

Image noise model

Here, we assume that the image noise, and therefore the residuals, are spatially
correlated with covariance function Cov{e;,e;} = 0% exp(—c||i — j||) between
pixels 4,5 € N, C Dy, for some constants o and ¢ > 0, see Section 4. This has
been observed to be a reasonable model when the noise structure of background
images (that is, images where no particle in present) has been examined. Conse-
quently, the variance matrix ¥(z) is replaced by the estimate ﬁ, with elements

Sie = 6% exp(—¢]i* —i'|))

where ||i — j|| is the Euclidean distance between the two pixel locations i and j €
N, and 62 and ¢ are the estimated parameters to the model v(7) = o2 exp(—c 1),
using the observed residuals. See Section 4 for how to estimate o2 and c.
For a given estimate of a particle center, we let V denote the estimated covariance
matrix

V=% Lttt
when the estimated model parameters of the noise, 6> and ¢ from the residuals
are used in the expression for X.

The square-root of the diagonal elements of the estimated variance matrix f",
are called the estimated standard errors.
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4 Results

In Figure 6 we display the reconstructed versions of the sub-images of Figure 2
after the centers and the intensity functions had been estimated. Below the
reconstructed sub-images, we have displayed the spatial residuals between the
original image and the reconstructed version.

The fit is clearly better for particles with more smoothly varying intensity profile,
that is, for particles further away from the focal plane. This could be interpreted
as the assumption of rotational symmetry does not fit very well for particles near
the focal plane. However, small perturbations in the center estimate make large
difference in the residuals when the underlying intensity profile is varying quickly.
See Figure 7, where the pixel values surrounding the particle at the focal plan
are plotted together with the corresponding estimate of the intensity profile.
The residuals are in general larger for particles closer to the focal plane than
for particles further away. This is probably due to that the model of rotational
symmetry is not entirely correct for these depths, due to some unknown optical
effect. Also, it may be so that the image noise is multiplicative rather than
additive. This would partly explain why the noise seems to have larger variance
and for particles with large fluctuations in the intensity profile.

Spatially correlated residuals

A close-up view of the residuals reveals that there seems to be some correlation
between the residuals. On the left in Figure 8 we have displayed the sample auto-
covariance scores from the residuals between the original and the reconstructed
version of the particle at depth -5. The sample autocovariance Cl,, for lags k
and m, in the vertical and the horizontal direction, respectively, is defined as

Crom = N Y ARy i) = B)(Biiy o igem) — )}

where the summation is made over all pixel locations i = (i1,i2) € A7 at uncen-
sored pixels, such that both i and the shifted version (i; + k, i3 + m) is in Ap.
Moreover, Ny, is the number of elements in the summation, and R is the sample
mean of the residuals. Note that pixels that are censored are not included in the
sample covariance. In Figure 8, the largest value is represented as white and the
smallest as black. It is immediate that the residual are correlated.

On the right of Figure 8, we have plotted Cy,,, as a function of 7 = Vk? + m?
instead. We have also plotted the fitted exponential correlation function () =
o? exp(—c7) in solid and in dashed, the nonparametric smooth of Cj., using a
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Figure 6: Above: The reconstructed versions of the sub-images in Figure 2. Below, we
display the differences (magnified 5 times) between the original and the reconstructed
versions. Clearly the fit is better for particles with less rapid changes in the intensity
function.
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Figure 7: The resulting estimate of the intensity profile for the particle at the focal
plane from Figure 2. Comparing f for this depth with the scatter plot, the rotational
symmetry seems reasonable. However the residuals are larger than for particles further
away from the focal plane, see Figure 4. This is reflected in the spatial residuals in
Figure 6.

Figure 8: Sample autocovariance for the spatial residuals to fit of the particle at depth
-5 in Figure 2. On the left they are displayed as as image for horizontal m and vertical
k lags separately, and on the right as a function of 7 = V/k? + m?, where we also
have plotted the fitted exponential correlation function o” exp(—c7) with ¢? = 14.9
and ¢ = 0.51 in solid. The dashed line is the nonparametric smooth of Cy., using a
local linear kernel estimator with bandwidth 0.5. As seen, the exponential correlation
function is a bit pessimistic regarding the decay of the correlations.

local linear kernel estimator with bandwidth 0.5. The exponential correlation
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function was fitted by estimating ¢ and ¢ by

52 = Coo

and
&= —1log(C1/Cu),

where C; is the mean of Cy; and Cjg, that is, the mean of the two sample
autocovariance scores for lags of length 1.

Standard errors and estimated noise parameters

We estimated the particle center for another 5 particles present in the same kind
of images (z-scans) as the particle in Figure 2, were we know the depth of the
particles. For each particle, the noise parameters o> and ¢ were estimated as
above, and the standard error for the center estimate, was estimated as described
in Section 3.

In Figure 9 we have plotted the mean of the resulting standard errors for the 15
depths (the off-diagonal terms were negligible for all particles). Not surprisingly,
the precision in the estimation depends on the appearance of the particle, and
hence, on the depth of the particle. On the right in Figure 9, the mean of
the corresponding estimates of o> and c¢ are displayed for each depth. The
noise parameters also depend on the depth of the particles, probably due to the
worse fit of the rotational symmetry model near the focal plane, as observed in
Figure 6. As mentioned above in connection with Figure 7, multiplicative image
noise could also be a contributing factor to the larger residuals near the focal
plane.

5 Simulation Study

We conducted a simulation study using artificially produced images of particles
to examine if the root-mean-square (RMS) error of the estimated particle centers
vary with depth in the same way as the estimated standard errors of the real data
displayed in Figure 9. Furthermore, we wanted to see if the estimated standard
errors from the simulated images were consistent with the RMS errors. The third
objective was to examine how much the RMS errors were affected when pixel
values were censored but if we used the standard local quadratic kernel estimate
in the calculation of S, instead of the censored version, see Section 3.

We created an artificial image of size 33 times 33 for a particle at depth z as
follows. The true center for the particle was chosen as the middle pixel of the
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Figure 9: We estimated the particle center for 6 particles at each of the depths in
Figure 2. On the left, the mean of the estimated standard errors of the particle center
estimation is displayed and on the right the estimated noise parameters o and c to
the exponentially decaying correlation function.

image (17,17) but with an offset chosen uniformly from [-0.5,0.5] independently
for both coordinates. We choose the particle center at random in order to get
randomness in the distances r;(z). Then the pixel values for all pixel locations are
given the value predicted by the corresponding intensity profile f to depth z. As
true intensity profiles, we used the ones estimated for the particle in 2. To this we
add zero mean Gaussian image noise with covariance function o2 exp(—c||i—j||)
between pixels i and j in the image. The realization of this noise is done via a
Cholesky factorization of the covariance matrix with the elements o2 exp(—c ||i—
jll). We used noise parameters 0> = 25 and ¢ = 0.6, which was considered a
suitable choice of parameters, both from looking at the estimated parameters
in Figure 9 but also after an examination of the noise structure in background
images (that is images with no particles present) where the noise variance were
generally lower, around 13-15, and the correlation factor ¢ around 0.6. Finally,
the pixel values are rounded to the nearest integer. Regarding censoring, this
was only done in one of the studies, see below.

The middle pixel in the artificial image was used as approximate starting center
and the pixels within distance 7,,,, = 15 from this center pixel was used as
neighborhood A,,. Bandwidth hpitot = 0.7 was used as pilot bandwidth for all
depths, see Section 3 for details on estimating the center.

We conducted three different simulation studies, each of which consisted of 500
simulated images with subsequent particle center estimation for each depth. In
Figure 10 we have displayed the resulting errors in the center estimation as a
boxplot. The results in the horizontal and vertical coordinates are presented
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Figure 10: Boxplot of the resulting particle center estimation errors for 500 simulated
images at each depth. The errors in both coordinates are presented simultaneously so
each boxplot consists of 1000 values. The solid line is the calculated RMS error from
the same simulation study for each depth. See Figure 11 for the consistency check of
the estimated standard errors in this simulation.

together since there was no correlation between the coordinate position errors.
The box has lines at the lower quartile, median, and upper quartile values and
the length of the whiskers are 1.5 times the interquartile range, which is defined
as the difference between the 75th percentile and the 25th percentile of the data.
Outliers are displayed using the symbol '+’. The solid lines are the RMS errors
plotted symmetrically on both sides of the x-axis.

Regarding the consistency of the estimated standard errors with the RMS er-
rors, we have in Figure 11 plotted the RMS errors (boxes), and the mean of
the 500 estimated standard errors for each depth (stars). Tt seems as if the
estimated standard errors slightly over-estimates the standard errors. The qual-
itative shape of the two curves is however the same. In Figure 11, we have also
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Figure 11: Left: Comparison between the RMS errors (boxes) of the particle center
estimation errors (in both coordinates simultaneously) and the mean of the estimated
standard errors (stars) for the simulation study of 500 simulated images presented in
Figure 10. The standard errors slightly over-estimates the RMS errors, which could be
due to the rather pessimistic noise correlation model, see Figure 8. Right: Comparison
between the RMS errors (boxes), also plotted in the left plot, and the mean of the
standard errors estimated from the real data (stars), which are also plotted in Figure 9.

plotted the estimated standard errors from the real data compared with the RMS
errors from the simulation study. The most probable reason why the standard
errors from the real data, is due to larger estimates of the variance of the noise
for particle in the real data close to the focal plane, and vice versa for particles
further away.

Two more simulation studies were conducted. In the first of these we wanted to
compare the RMS errors if we censored pixel values in the images at 255 but did
not take this into consideration when estimating the center, that is, we used the
standard local quadratic kernel estimator when calculating S. The numbers of
simulations were again 500 images per depth. The difference between the result-
ing RMS errors here and in the previous study, were not statistically significant
on a 95 percent confidence level (based on a normal distribution assumption on
the errors, which by a chi-square plot was seen to be highly plausible).

In the last simulation study the objective was to investigate how the precision in
estimating the center was affected if only the even rows in the images were used
for the estimation. The reason for this investigation is that for sequence images
like the one in Figure 1, only half of the rows contain information. These kind
of images are recorded in video format and only half of the rows are updated for
each image. Therefore, we would perhaps expect a lower precision in the vertical
coordinate.

21

009 009
008 008
007 007
1 00 0 0%

2 2

S o0 S 005
004 004
003 003
00 00y
oot

= 4 o 0 g £ © + o g B

depth depth

Figure 12: In the plot on the left, we have plotted the RMS errors for the horizontal
(boxes) and the vertical coordinates (stars) separately for the simulation study where
we only use the pixels on the even rows. The plot on the right is a comparison between
the magnitude of the absolute values of the RMS errors in the two simulation studies,
using only even rows (boxes) and using all rows (stars).

In Figure 12, the resulting RMS errors for the two coordinates separately are
presented and quite surprisingly, the difference between the errors in the two
coordinates is small. The depths for which the difference between the RMS
errors are statistically significant on a 95 percent confidence level, are for depths
-1, 0, and 1. Furthermore, considering both coordinates simultaneously, in the
plot on the right, the RMS errors are hardly affected even though only half as
many pixels are used in the estimation.

The reason for the first observation that the errors are almost the same in both
coordinates, is probably that the rotational symmetry imposes such a strong
condition on the estimation procedure so that all pixels contribute equally, dis-
regarded of the fact that we actually have half as many pixels in one direction.
For the particles closest to the focal plane, the particles are smaller, and hence
there are fewer pixels involved. Possibly more surprising is that the magnitude
of the errors hardly increases. This is probably due to that the image noise
is correlated; the relative increase in effective sample size is not 1/2 but much
smaller since the observations are correlated.

6 Conclusions and Discussion

Our method of estimating the centers of spherical particles in images is possi-
ble up to precision well beyond sub-pixel accuracy. Since it only relies on the
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assumption of rotational symmetry of the appearance of the particles in the
images, it can be used for tracking even when the appearance of the particles
changes (just as long as the rotational symmetry assumption still holds). We
therefore believe it to be a highly versatile tool for automatic measurements in
video microscopy of for example colloidal suspensions.

The simulation study showed that the estimated standard errors are consistent
with the RMS errors. It is however necessary that the assumptions on rotational
symmetry and the isotropy of the image noise are correct. For the real data in
Figure 2, the spatial residuals showed an increasingly worse fit for particles near
the focal plane (see Figure 6). One reason could be that the image model in
equation (2) with additive image noise is not correct. In Figure 9, the estimated
noise parameters from the real images show signs of some kind of dependence
of depth, and hence of the appearance of the particles. It could be so that the
image noise is multiplicative, since we seem to have larger variance and shorter
correlation length (larger ¢) for particles near the focal plane.

The estimator for the noise parameters is clearly biased. An improvement in
this estimation might give better results in the estimation of the standard error.
However, the standard error estimator, predicts the magnitude of the errors
fairly well, see Figure 11, and it is only here that the noise estimates are needed.

An alternative measure of the local rotational symmetry to use when pixels are
censored, is

Suil) = 5 1 Fr)) 3 toafa({002 T

o
i€Ar i€Ag,

where, as usual, A7 is the set of uncensored pixels in N, and f the censored
version of the local quadratic kernel estimate using the data {r;(y),;}. Here,
02 is the estimated variance from equation (7). This measure of rotational
symmetry takes care of the censored pixels in an appropriate manner. Note that
the equation above equals (3) when there is no censoring. However, since the
proportion of censored pixels is so small here, it would probably not change the
result.

The result of the simulation study where we only used the even rows in the
images, is interesting; see Figure 12. First since the difference between the
particle estimation errors in the vertical and the horizontal coordinates were
very small. Second because the magnitude of the RMS error did not decrease
with a factor v/2 as one might have expected considering that we used half as
many pixels in the particle center estimation. Both these observations are good
news for estimating particle centers in images recorded in video rate, where only
half of the rows in the images are updated at each recording instant.
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There is no known parametric form for the intensity profiles. In fact, imaging
of spherical objects is still a topic of large theoretical interest in optics research,
see for example Ovryn and Izen (2000). Ray-tracing using Fourier optics (see for
example a standard textbook on optics as Hecht (1998)) does not work here since
the size of particles is in the scale of the wavelength of light used. An alternative
and more advanced approach to Fourier optics is to use Mie-theory, which was
used by Ovryn and Izen (2000) to predict the appearance of a polystyrene sphere
of diameter 7um. However, no closed functional form of the intensity profiles is
known. For a review of colloidal suspensions in microscopy see Elliot and Poon
(2001).
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Abstract

Estimates of the locations of particles are crucial for subsequent esti-
mation of interaction of particles. Tt is also of interest for tracking particles
in three dimensions. Here we focus on the estimation of depth of colloidal
latex particles observed in bright-field video microscopy. Precise estima-
tion of the particle centers in 2-D of spherical particles in microscopy is
covered in Kvarnstrom and Glasbey (2005). Here, we introduce a method
for estimating the depth of spherical colloidal particles, using empirically
derived templates. The criterion function used for finding the best cor-
respondence between the template and the image takes care of possible
censoring of pixel values in the image and different levels of background
intensity. From both real data and a simulation study, the conclusion is
that the depth estimation has a standard error below at least 0.2pm, which
is the corresponding distance in depth between the templates used.

1 Introduction

In colloidal chemistry, it is crucial to quantitatively be able to measure the sta-
bility of the colloidal system of particles. Digital microscopy offers vast oppor-
tunities for automated measurements of interaction and diffusivity of particle
systems, both of which are important factors when determining the stability.
However, estimating interaction of particles in a three dimensional domain de-
mands position estimates of all three coordinates. In Figure 1 we give an example
of an image that could be used for measurements of the properties of a colloidal
suspension. The particles in the images are diffusing in a dilute solution and the
image is taken from a larger sequence of images, recorded at a frame rate of 50
images per second. The particles are made of latex and are all of the same size,
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Figure 1: An image of latex particles diffusing in a dilute solution. The difference in
appearance is due to an out-of-focus effect.

494 nm in diameter. Difference in appearance of particles in a given image is
due to an out-of-focus effect caused by difference in depth relative to the focal
plane. It is this difference in appearance that will be used when estimating the
depth of the particles.

The image in Figure 1 consists of 512 times 512 square pixels of side-length 180
nm, so the distance is roughly 90 um across the horizontal and vertical domain
of the image. The exact maximum deviation of the particles from the focal plane
in this experimental setup is unknown but it is believed to be at least £10 pm.
In Figure 2, the sub-images show the appearance of particles at known depths
relative to the focal plane. Images like these will be used to construct templates




of what the particles look like, at a set of different depths. The templates could
then be used for depth estimation of particles in images like the sequence images
of Figure 1. Previous studies of measurements of colloidal particles using digital
microscopy include Crocker and Grier (1996, 1998), however their studies con-
cerned systems of particles efficiently confined at a single depth. For an overview
of colloidal chemistry in general, see Evans and Wennerstrom (1999) and for an
overview of microscopy used for observing colloidal suspensions, see Elliot and
Poon (2001).

Examples of depth estimation in vision and image processing are several. The
problem formulation is however usually rather different, as is the solution. One
application is reconstruction of 3-D scenery from video sequences. For example,
in Chowdhury and Chellappa (2001), this is done by tracking correspondences
of various landmarks of geometrical objects (such as corners of a building) and
relate these to the known movements of the camera. Another application is to
determine the distance from the camera to various objects in an image scenery,
see for example Gil et al. (2004) and Ahn et al. (1997). The underlying assump-
tion is that the images of objects not in focus, are convolutions of the original,
true image, and a linear (known) low-pass filter. The depths of the objects in
the image are then estimated by means of estimating the amount of smoothing
in the observed image, either by a deconvolution or a measure of the fraction of
high-pass versus low-pass components. None of these techniques are applicable
here since there are obviously no suitable landmarks on the latex particles, and
the different appearances of the de-focused particles cannot be represented by a
linear operation.

Precise estimation of the centers in the image plane (2-D position estimation),
is covered in Kvarnstrom and Glasbey (2005). This estimation was based on
the assumption of rotational symmetry of the pixel values surrounding a particle
center. The standard errors of the estimates were both estimated and verified in
a simulation study to be between 0.02 and 0.10 pixels, depending on the distance
in depth from the focal plane, with larger deviation for particles further away
from the focal plane. This corresponds to standard errors between 3.6 and 18
nm. Furthermore, a method was developed to estimate the functional form of
how pixel values change with distance (in the image domain) from the particle
center. In the present paper, the intensity profiles, for particles at different
(known) depths will first be estimated and then used as template profiles to
determine the depths of particles for which we do not know the true depth.
This kind of approach is called template matching. The intensity profiles (or
templates) will be estimated nonparametrically using a local quadratic kernel
estimate. From now on, we will by particle center mean the 2-D center, that the
location of the particle center in the image plane. The third coordinate will be
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Figure 2: The appearances of the particles at 35 different depths relative to the focal
plane. Sub-image 0 corresponds to a particle at the focal plane, and sub-images with

negative and positive labels are below and above the focal plane, respectively. The
distance in depth between two consecutive label numbers is 0.2 pm.

called depth and denoted by z.

Template matching is a fairly common method in image processing where the
best correspondence between an image and a set of templates is sought. Exam-
ples where the method has been used successfully, is in Young et al. (1998) to
automatically identify and measure yeast cells in DIC microscopy, and Dralle and
Rudemo (1997), where positions of trees are estimated from areal photographs.
Here, our set of templates should mimic the appearance of particles at different
depth of focus. Given an image of a particle at an unknown depth, the corre-
sponding depth of the template that gives the best correspondence, would then
be the estimate of the depth of the particle in the image. We therefore need
both to construct the set of template profiles and to define a suitable criterion
function to find the “best correspondence”.

The templates will be constructed by estimating the intensity profiles in images of




particles at known depths, like the sub-images of Figure 2. Images like these were
recorded by first letting particles adsorb on one of the confining glasses of the
specimen, and then move the specimen relative to the optics of the microscope.
We have 61 z-scan images like these to our disposal, with distance to the focal
plane ranging from -6 pm to +6 pm with 0.2 pm between each. In Figure 2,
we display a subset of the total number of depths. For each z-scan, there are
10 particles present and believed to be totally adsorbed on the glass, and hence,
at the same relative depth. In each sub-image in Figure 2 we have extracted
the neighborhood around a particle in the z-scan for the depth specified by the
corresponding label. We have used the same particle in all sub-images except
for depths -2, -1, 8, and 12. In the z-scans for these depths, the original particle
was occluded by other, mobile particles in the specimen. Therefore, for sub-
images -2, -1, 8, and 12, another particle was used. We are not able to present
the appearance of the same particle at each depth since all of the 10 adsorbed
particles are occluded in at least one of the 61 z-scans.

The criterion function used here is based on least squared distance between the
template profile and the pixel values surrounding the particle center. Care must
however be taken since censoring in the images occurs for pixel values larger
than an upper limit 7. Also, particles in the images are generally at different
background pixel levels. This affects the relative level of censoring for particles
at different background levels; a particle at a location with large background
intensity has more pixels censored than a particle with low background inten-
sity. Hence, the criterion function should also take this into account. We will
compare the performance between five different criterion functions and find out
that taking care of different background levels is far more important than taking
care of censored pixel values.

2 Assumptions

The underlying assumption of the appearances of the particles in the images we
are considering here, is the rotational symmetry of the pixel values close to the
true particle center. More precisely, for a particle located at x = (z1,z2) € R?,
we assume that there exists a neighborhood N, of (integer valued) pixel centers
i = (i1,12) such that

Ii= fo(ri(@) + o+ & (1)
for i € N, where I; is the pixel value at i and r;(z) is the Euclidean distance
from the particle center z to the pixel center i. We denote the domain for which
the image I is defined by D;. The function f, is called the intensity profile at
depth z of a particle. It is assumed to be a smooth function with at least second

order continuous derivative. Also, we assume that f, is an even function of r
(even though r is never negative), so that the derivative of f, at r = 0 is equal
to zero, that is f.(0) = 0. The image noise, ¢; for i € Dy, is assumed to be
normally distributed, with (isotropically) correlated pixel values, which is what
have been observed in the images considered here. The background level « is
generally different for each particle.

Regarding the neighborhood N, there are several choices. For the particles in
Figure 2, we can take all pixels in the corresponding sub-image as the neighbor-
hood A,. More typically however, we let

N, ={i € Dr:ri(z) < Tmaa } (2)

for an appropriately chosen maximum distance rm,,. For images like Figure 1,
when the distance between two particles is closer than 2 7,,,, we might however
need to exclude some pixels from the two neighborhoods. This will however not.
be dealt with in this paper. Throughout this paper, we will use a neighborhood
like the one given in (2), with 7,4, equal to 15.

As mentioned earlier, the pixel values in the images are censored above an upper
limit 7. Here, T equals 255. Censoring has to be dealt with properly, both when
estimating the template profiles and in the subsequent matching. In Figure 3,
the scatter plots illustrate what censoring typically looks like. Each scatter plot
consists of the pixel values I; and the distances r;(y) from a candidate particle
center y of the particle. The scatter plots on the right are for distances r;(#)
from the corresponding estimates of the particle centers. Henceforth, when we
refer to a scatter plot for a particle, we mean the plot of pixel values I; to the
distances r;(y) for a candidate or estimated particle center y.

We assume the noise in the images to be zero-mean additive Gaussian noise with
isotropic covariance o2 exp(—c ||i — j||) between pixel centers i and j € D;. The
constants o2 and ¢, are the variance and the inverse correlation length, respec-
tively and || - || denotes the Euclidean distance. This was found in Kvarnstrém
and Glasbey (2005) to be a reasonable approximation of the correlation structure
of the noise in the considered images. Even though the noise assumed to be cor-
related, when estimating the intensity profiles, we proceed in a quasi-likelihood
approach, implicitly assuming independent errors ¢;. In fact, the correlation
structure will in this paper only be used when simulating image noise in the
simulation study. The noise parameters 0> = 25 and ¢ = 0.6 are thought to be
sufficiently conservative estimates.




MY g SRR g |

w0 o

Figure 3: Here we have zoomed in on depth -15 (top row) and 8 (bottom row) of
the particle in Figure 2. The middle column show the scatter plots of pixel values and
distances from the center pixel in the sub-images, and the right columns the scatter
plots after refining the center (separately for each). Notice the censoring of pixel values
above 255.

3 Template construction

Figure 2 shows what a particle looks like at 35 different depths. In sub-image 0,
the particle is at the focal plane. Negative labels correspond to particles below,
and positive labels to particles above the focal plane. The distance in depth
between two consecutive labels is 0.2 pm.

The scatter plots in the middle and the right columns of Figure 3 for the two
particles, illustrate the need to refine the centers of the particles at greater
accuracy than to the (integer-valued) pixel centers.

For a particle at known depth z, the template profile is constructed as follows:

1. Refine the position estimate by finding the position with maximal rota-
tional symmetry by minimizing equation (3) below.

2. Find the bandwidth h,,; that minimizes the cross-validation score for the
local quadratic kernel estimate used on the pixel values I; and the distances
to the estimated center.

3. Estimate the intensity profile with the bandwidth hgp. If there are cen-
sored pixels, use censored regression as described below..

The resulting intensity profile estimate for this depth z is denoted by f..

Much of the material found in this section can be found in greater detail in Kvarn-
strom and Glasbey (2005).

3.1 Estimating centers in 2-D

We estimate the particle center by minimizing

S@) = S {li— g, rw)}’ (3)
€N

for the particle located at x (see Kvarnstrom and Glasbey (2005)). Here, g(y,-)
is a scatter smooth of the data points {r;(y), I;} calculated by means of a local
quadratic kernel estimate with a Gaussian kernel function (see below). We let
% denote the minimizer of S and call it the estimate of z. The idea behind
minimizing equation (3), is to find the position of (local) maximal rotational
symmetry.

For easier notation, we will henceforth write r; instead of r;(y) when there is
no possibility of misunderstanding. We will now explain briefly how the local
quadratic kernel estimate is calculated. Standard references for nonparametric
local polynomial kernel estimation are Hastie and Tibshirani (1990) and Fan and
Gijbels (1996). Let K denote the Gaussian kernel, that is K (z) = exp(—z?/2).
The local quadratic kernel estimate is based on the assumption that the unknown
regression function f can be approximated locally by a polynomial of degree two,

for r close to rg. To calculate the value of the estimate at an arbitrary point rg,
we locally fit a quadratic polynomial using weighted least-squares by minimizing

> {Ii - Bulri— To)k}th(n ) (4)
=0

€N
with respect to 3 = (8o, 51, 82) and denote the minimizer by 3. Here, Kp(z) =
h 'K (x/h) is the kernel with bandwidth h > 0. The estimates of f(¥) at r, for

k=0,1, and 2 are

f(k)(rn) = k!Bk




The value of g at the point 7g = r;(y) for the candidate center y, is then
9(y,m:(y)) = fO(rs(y)). For each candidate center y in the evaluation of S(y)
in expression (3), this is done for all distances r;(y) to the pixel center i € N,.
Notice also that since g is the solution to a weighted least-squares, g(y,ri(y)) is
a linear combination of the pixel values I; for j € .

For the data considered here, the local quadratic model is not very sensitive to
choice of bandwidth. This was shown in a cross-validation study in Kvarnstrom
and Glasbey (2005), where h = 0.7 turned out to be a good choice of a pilot
bandwidth when estimating the particle center, for the depths considered here.
The bandwidth is then updated, via a cross-validation study, as we get closer to
the minimizer of S. How to conduct a cross-validation is explained below.

3.2 Estimating the intensity profiles

When the particle center has been found, we estimate the intensity function f..
First of all, the bandwidth has to be updated from the pilot bandwidth A = 0.7
in the center estimation. The bandwidth minimizing the cross-validation score
CV, defined as
, poir a2
cvry= 3 {Ti- fi @)},
iEN,

is denoted by h,ps. where fAh"' is the local quadratic kernel estimate using all
pixels except the ith. In practice, the set over which C'V is calculated, is finite.
Here, we calculate CV for h = 0.5,0.6,...,1.5.

When none of the pixel values I; are censored, f, is re-estimated with the local
quadratic kernel estimate, this time with h,y; as bandwidth. If there is censoring
however, we will use a slightly modified estimation scheme.

Censored regression

Let A7 denote the set of uncensored pixels, that is Ar = {i € N, : I; < T}.
Hence, the complement Af. is the set of censored pixels. For an arbitrary point
ro, denote the minimizer of

2 2
%logoz Z Kp(ri — 7o) + # Z {L: - ;ﬁk(m - Tn)k})Kh,(th — 1)

i€Ar i€AT

-3 log{q)(—Z::” Bulri = ro)* = T) }Kh(ri —rq)

a
i€As,

by ﬁ Here, @ is the distribution function of a standard normal random variable.
The problem with equation (5), is that the parameter o, the variance of the
image noise ¢;, is unknown. Hence, this needs to be estimated as well. However,
instead of minimizing (5) with respect to both 3 and o2 locally for each ry,
we will use an iterative scheme, alternating between estimation o2 globally and
updating the regression estimates.

Let flo denote the estimate from a standard local quadratic kernel estimate at
point 7;. The first, pilot, estimate of 2, is based on the residuals between f°

and the pixel values:
1 2012
A7l S -1} (6)

i€Ar

65 =

where |Ar| is the number of elements in A;. Next, minimize equation (5) at each
point r; using the pilot estimate o2 and denote this intensity profile estimate f}

for i € N,. Then, estimate o2 by (6) again, this time using f'. Repeat this
until the relative change |0} — o7, ,|/0} between two consecutive estimates of o
is smaller than a certain limit 0, chosen such that an update gives a negligible
effect on the minimization of (5). Here, we let 6 = 0.01 and the iterative scheme
typically converges after two or three iterations.

Remark: The estimator of ¢ in equation (6) is biased. In Kvarnstrém and
Glasbey (2005) it was proposed to use |Ap| — tr{TV} in the denominator in-
stead of |Ay|. Here, W is the equivalent kernel matriz, for which f(r;(y)) =
ZjeN.T Wi;l;, where f is the standard local quadratic kernel estimate. (Re-
member that this was linear in the pixel values since it is the solution to a
weighted least-squares problem.) Thus, |Ap| — tr{W} is an estimate of the de-
grees of freedom in the local quadratic kernel estimate. An better alternative is
therefore to use this in the denominator.

Resulting intensity profiles

The set of final estimates of the profiles are called template profiles and denoted
by {f.}, thus dropping the hat-sign for easier notation. They are calculated and
stored for 200 equally spaced points between 0 and 15. In Figure 4, the resulting
profiles for the 35 depths corresponding to the sub-images of Figure 2 are shown.

Intensity profiles of particles closer to the focal plane have larger fluctuations
than the corresponding intensity profiles for particles further away. Further-
more, for particles below the focal plane, the intensity profile assumes large
values close to r = 0, whereas the opposite is valid for particles above the focal
plane (compare with Figure 2). Notice that the estimated intensity profiles can
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Figure 4: The resulting template profiles for the sub-images of Figure 2. The intensity
profiles corresponding to sub-images with negative labels are plotted on the left and
the ones with positive labels, including the particle at the focal plane, on the right.

assume larger values than the censoring level T' = 255. For particles below the
focal plane, where censoring occurs for small r-values, this was possible since we
assume the true profile to be an even function of r, which is natural consider-
ing the assumptions of rotational symmetry and the smoothness of the intensity
profile.

4 Template matching

Let us assume that the center 2 of a particle is given. Then our data consist of
{ri, I;} = {ri(x), I}, of pixel values and distances to 2. Having constructed the
template profiles in Section 3, we are to search for the template profile f, that
gives the best correspondence to the data {r;, I;}. This correspondence can be
measured in a number of ways.

Arguably the most popular criterion is the square difference between the tem-
plate and the data, which in our case would be to let the minimizer of

IRV AGIE)

ieNa

with respect to the profiles f., be the estimate of the depth. This criterion
function does not however take into account either censored pixels or different
background levels a. Since both these issues are typical for our data, a modifi-
cation is called for.
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Assume first that the image noise variance o> and background level a are hoth
known. Then the minimizer of

E Y e L)) - Y eg{a(EHELrazTHL g

o
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would be an estimate of the depth z taking into account both censoring and
different background levels. As before, T is the censoring level, and ® the cu-
mulative distribution function of a standard normal random variable. In fact,
this estimate of z is the maximum likelihood estimate of z under the assumption
that the pixel values I; are

Ii = f.(ri(z)) + o + ¢

for some f, in our set of templates, the true 2-D center is at z, and that the
image noise variables ¢; are i.i.d. and N(0,¢?)-distributed. Since the templates
f- are stored only for 200 equally spaced values over the interval [0,15], the values
of f. at the points r;(x) are evaluated by linear interpolation from these stored
values of the template profiles.

Regarding ¢, we will use the residuals between the pixel values /; and the local
regression smooth g; = g(z,r;(z)) from the particle center estimation procedure
of minimizing (3) using only the uncensored pixel values, in exactly the same
that we did in equation (6).

For a, we will use a profile likelihood approach, estimating a separately for each
candidate template profile f.. Thus, the minimizer of

1 . 2 L(ri(z)) + 4. - T
ME) = Y {lima L)) = Y tog{o (LT
i€AT i€ A
will be used as an estimate of z, where @. is the minimizer of equation (7) with
respect to a, given f..
For comparison, we will use four other criterion functions, namely:
2
Mi(2)= > {Ii = f-(ri(=))}
iEN,

My(z)= Y AL~ T~ (fo(ri(2) — F2)}
ieNa
My(z) = S {T &, = f.(rs(@))}

ieN,
2

Mi(z) =Y {Li—a:— f-(ri(a)}

i€AT
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where @, is computed for each z separately as the minimizer of

AL -a- Fe(ri(@)}’

i€ AT

while keeping z fixed, and where I is the mean of the pixel values in A, and f.
the mean of f.(r;(z)) for i € N.

The criterion function M; is not believed to perform very well if we have either
censoring or different background levels. The last three criteria all take into
account the background level. The difference between them is subtle. M, simply
subtracts the corresponding mean from each term, without bothering about the
possibility of censoring; one could say that M, estimates a by T — f.. On
the other hand M3 and M, estimate o from the uncensored pixel values only.
Also, whereas M;, M, and M3 all sum over all pixels in N, M4 only sums
over the uncensored pixels. Furthermore, note that when there is no censoring,
M = M, = Ms = M,.

For particles for which we want to estimate the depth, we first estimate the
particle center by minimizing equation (3). The pixel values and distances from
the estimated particle center, {r;, I;} = {r;(&),I;}, are then used in template
matching.

Matching example

In Figure 5 we have displayed the scatter plot from a particle from the same
z-scan as sub-image -15 in Figure 2 after the center has been refined. We have
also plotted the template profile f. that gave the best fit, the template for depth
z = —15. The logarithm of the matching criteria M, M;, M3, and M, are plotted
in the right panel of Figure 5. To be comparable, we divided the matching criteria
My, k =1,3,4, by 0. M is the solid line, M; the dotted, Mz the dashed, and
M, the solid-dotted. We see that all four have a dip towards z = —15. Ms is
not displayed since it was indistinguishable from Mj. The difference between
the criteria is clearly visible for templates corresponding to particles above the
focal plane (the positive labels), since they all have low pixel values for d close
to zero, and this is where censoring occurs for this particle. Compare also this
result with the template profiles in Figure 4.
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Figure 5: The scatter plot in the left panel is from a particle, presumed to be at

depth -15. The matching criteria M (solid), M; (dotted), M3 (dashed), and My (solid-

dotted) are plotted on the right and they all have a dip towards -15. M, is practically

indistinguishable from Ma; the difference is only visible around the dip and for z smaller

than -20.

5 Results

We conducted a small performance study of the depth estimation procedure
developed in Sections 3 and 4 using real data consisting of the z-scans. In
the 61 z-scans used in the construction of the templates, we have in total 10
particles believed to be at the same relative depth as the corresponding particles
in the sub-images of Figure 2. All 10 particles are however not present in every
z-scan, since even though our particles are adsorbed on one of the glasses of
the specimen, not all other particles in the specimen are. As a consequence,
the adsorbed particles are sometimes occluded by the mobile ones. For each
particle, we do not use the z-scans where it is occluded. Therefore, the number
of particles for each depth used varies between 8 and 10. (There are 10 particles
in 43 z-scans, 9 in 14 z-scans, and 8 in 4 of the z-scans.)

The only criterion function used here, was M. Also, we used the neighborhoods
N, of equation (2) with 74, = 15, that is, all pixels within distance 15 from
the corresponding estimate of the particle center are taken into account.

In the left panel of Figure 6, we have plotted the difference between the estimated
depth using our constructed templates, and the (believed) true depth for the
depths between -30 and 30. A dot indicates that at least one of the particles
had this error for that depth, therefore multiple errors at a specific depth are
not visible in this plot. We also calculated the sample mean error (bias) and
sample standard deviation of the errors for each z. The solid line in Figure 6

14




Eror
RMS

Figure 6: On the left, the dots represents the errors in depth versus the (believed)
true depth for all ten particles. The solid line is the smoothed sample bias. The
dashed-dotted lines are the smoothed bias plus and minus three times the smoothed
sample standard deviation for each depth. The dots on the right are the pointwise
root-mean-square errors for each depth and the solid line is the smoothed RMS.

is the smoothed mean of the error (bias) and the two dashed-dotted lines are
the smoothed sample bias plus and minus three times the smoothed sample
standard deviation, respectively. The pointwise root-mean-square (RMS) errors
are plotted in the right panel of Figure 6, together with its smoothed version. All
smoothing was conducted using a local linear kernel estimate with bandwidth 5.
The two figures tell us that the accuracy in depth estimation is better for depths
closer to the focal plane.

The RMS error calculated over all depths and particles is 0.60 z-units and the
mean bias is -0.23 z-units. Even though the number of replicates are few, the
investigation indicates that depth estimation is possible at least with a level of
accuracy corresponding to a standard deviation of one z-unit, which corresponds
to 0.2 pm. This should be compared with the accuracy of the position estimation
in 2-D reported in Kvarnstrom and Glasbey (2005), namely the accuracy varying
from 0.02 to 0.10 pixels in RMS error, which corresponds to 3.6 nm and 20 nm,
respectively.

The major contributing factor to the RMS errors for this study however, seems
to be the systematic offset in depth relative to the depth of the two particles used
in the template construction. Furthermore, for some particles this offset seems
to vary for the z-scans. For example, in Figure 7 we have plotted the errors in
depth estimation as a function of depth (that is, for different z-scans) for two
particles. There clearly seem to be a negative and positive trend, respectively,

Eror
Eror

Figure 7: The errors in the depth estimates versus the (believed) true depth, for two
different particles. There seems to be a trend upwards and downwards, respectively for
the two particles, as the depth goes from negative to positive.

as the depth goes from negative to positive. The reason for this behavior is not
known. Naturally, systematic offsets from the believed true depth makes it hard
to draw conclusions on the accuracy of the depth estimation.

6 Simulation study

Since the number of particles in the z-scans is so small, and since the true depth
of them did not seem to be same as the corresponding depths for the particles
used in the template construction, a simulation study was conducted.

We create an artificial image of size 33 times 33 for a particle at depth z as
follows. First the center for the particle is chosen at the middle pixel of the
image (17,17) but with an offset chosen uniformly from [-0.5,0.5] independently
for each coordinate. We choose the particle center at random in order to get
randomness in the distances r;(z). Then the pixel values for all pixel centers are
given the value predicted by the template profile f. for depth z plus a random
background level «, chosen uniformly among the real values between -40 and
10. This variability is typically what is observed in images like the ones in
Figure 1. To this we add zero mean Gaussian image noise with covariance
function o exp(—c||i — j||) between pixels i and j in the image. The realization
of this noise is done via a Cholesky factorization of the covariance matrix with
the elements o2 exp(—c||i — j||). Finally, the pixel values are rounded to the
nearest integer between 0 and 255.
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Figure 8: Example of a simulated image (left) of a particle at depth 10. The mid-
dle panel shows the scatter plot together with the template profile corresponding to
the correctly estimated depth. The criterion functions M (solid), M (dotted), M3
(dashed), and M. (solid-dotted) are plotted in the right panel.

In Figure 8, we have, from left to right, an example of a simulated image at
depth z = 10, its scatter plot, and the resulting matching criteria. With the
scatter plot, we have also plotted the fitted template profile corresponding to
the (correctly) estimated depth. The background level  used here is 15 which
explains the fairly large amount of censoring. The image noise parameters o>
and ¢, were 25 and 0.6, respectively.

For each of the 35 depths in Figure 2, we simulated 1000 independent images
and estimated the depth for each using the four template matching criteria of
Section 4. The matching for each image was done using all 61 template profiles,
that is, we use all templates from depths -30 to 30, not just the 35 depths for
which we simulate images for. We did not estimate the particle centers z for the
distances 7;(z), but used instead the known (but random) centers. We used the
same neighborhoods A, as in the previous section, that is pixels up to distance
Tmaz = 15 from the particle center.

The overall RMS in the simulation study for all 35 depths was 0.24 z-units or
49 nm. However, the errors were practically zero for depths between 15 z-units
from the focal plane. For these depths there were only 14 misclassifications.
Considering that the total number of simulations for these depths were 25 000,
we can conclude that the precision is very high for depths close to the focal plane.
Therefore, the main contribution to the overall RMS of 0.24 z-units comes from
the depths further away from 15 z-units from the focal plane. The RMS goes
up almost linearly from zero at depth +15, to 0.6 and 0.8, for depths -30 and
+30, respectively. Looking at the estimated intensity profiles in Figure 4 or
the appearance of the particles in Figure 2, the general tendency of precision is
maybe not surprising. The particles are more similar looking for depths further
away from the focal plane.
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Compared to the other matching criteria, all but M; were almost identical in
performance. The overall RMS errors for My, Ms, and M, where 0.24, 0.25 and
0.25 z-units, respectively. M; however, the matching criterion that did not take
into account either censoring or different background levels, had an overall RMS
error of 5.0 z-units. The conclusion is therefore that taking into account different
background levels is far more important than taking care of the censored pixels.

7 Conclusions and discussion

As discussed in Section 5, it is hard to draw conclusions on the accuracy of the
depth estimation presented here by using real data as the z-scans. We simply
cannot infer whether the errors are due to our depth estimation or an effect
of deviances in depth among our ten particles. The simulation study however
shows that the depth estimation is highly accurate with an overall RMS of 0.25 z
units, or 50 nm. However the RMS varies heavily with the true depth, with RMS
errors up to 0.8 z-units for particles 6 ym from the focal plane, and practically
zero for particles within 2 pgm from the focal plane. This should be compared
with the simulation study for the 2-D estimation in Kvarnstréom and Glasbey
(2005), where the RMS errors varied from 0.020 to 0.10 pixels (3.6 nm to 18 nm)
depending on depth.

In the simulation study, we did not estimate the particle center in the image
plane, but used the known true centers. One might think that this may con-
tribute to the optimistic result of Section 6, since errors in particle centers affect
the distances r;(z) used in the template matching. However, a simulation study
(not reported here) indicated that this is not the case at all. Probably a more
important objection to the highly optimistic result of the simulation study, is
that the image noise in real images seems to have larger variance for particles
close to the focal plane, as reported in Kvarnstrém and Glasbey (2005). Even
so, compared with the result for the real images for these depths, the conclusion
is that the template matching approach works well and the precision (measured
as standard error) is at least within one z-index of the z-scans, corresponding to
£0.2pm.

Regarding the choice of matching criterion, even though M scored best among
the five in the simulation study, the three others that at least took care of the
different background levels (My, Ms, and M>), were only slightly worse than M.
Therefore, the conclusion is that taking into account different background levels
is far more important than taking care of the censored pixels.

additive
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Our template construction was based on particles adsorbed on the specimen
glass. If the appearance of particles is affected by this adsorption, our estimated
profiles might differ from what particles look like in when they are diffusing
freely in a solution, as is the case for the particles in Figure 1. Consequently,
the depth estimation of free particles might be affected. In relation to this, it
should also be mentioned that the templates can most likely only be used for
depth estimation of particles of the same size. If there are particles of different
sizes in the solution the template matching might be of limited use, unless we
construct a set of templates for particles for a number of different sizes.

Regarding the construction of templates, an alternative method to using empiri-
cal data, would be to construct the templates mathematically, using theory from
optics for the tracing of rays in the image formation. This was done by Larsen
and Rudemo (1998) for creating templates for the appearances of tree canopies
observed from the air under different lighting conditions. However, since the
wavelength of light is in the same order of magnitude as the diameter of the par-
ticles, the two standard approximations of optics, geometric and Fourier optics
(ray-tracing), cannot be used. Therefore, this approach has not been pursued.
An alternative and more advanced approach to Fourier optics could be to use
Mie-theory, which was used by Ovryn and Izen (2000) to predict the appear-
ance of a polystyrene sphere of diameter 7 pym, that is 14 times bigger than the
particles considered here.
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Abstract

The positions of particles assumed to perform Brownian motion have been observed in a
series of images. Since some of them seem to be fixed, a model with two kinds of particles,
diffusing and fixed, is introduced. For each particle position observation we also assume an
additive normal measurement error. We regard the problem as an incomplete data problem
since we do not know a priori which particles are really diffusing. The complete data is
of curved exponential type and the observed data is a mixture of two normal components.
The maximum likelihood estimator is computed via the EM algorithm and it is shown to
be strongly consistent and asymptotically normal, as the number of particles approaches
infinity, under a reasonable restriction on the parameter space. A simulation study shows
that the method is robust even for large measurement errors, and that the estimates are close
to normal even for small sample sizes.

Key Words and Phrases: discretely observed diffusion, measurement error, mixture distribution,
EM algorithm, asymptotic normality, strong consistency, curved exponential family

1 Introduction

‘We investigate the estimation of the diffusion variance (or equivalently, the diffusion coefficient)
of colloidal particles which have been observed in a series of images recorded with a video mi-
croscope. The positions of the particles have been estimated using image processing algorithms
and tools. The moving particles are assumed to perform Brownian motion in three dimensions.
Furthermore, we assume the observed positions to be imperfect, i.e. we assume some measure-
ment error. A further complicating fact is that some of the observed particles are not moving
but are instead particles adsorbed on the objective or cover glass of the specimen. Also, some
observed particle positions are considered to be from “false” particles, which do not correspond
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Figure 1: The 26 trajectories estimated in a sequence of 12 images together with the first ima
of the sequence. The three numbered particles seem to be fixed.

to real particles, but instead, defects in the optics of the microscope. These fixed particles cou
be removed manually but we decided not to do that, first, because this should be possible to
automatically using statistical methods, and second, because the observed positions of the fix
particles actually give us information on the measurement error. Instead, we introduce a mod
which is a mixture of diffusing and fixed particles, and for both types, the positions are observ
under additive Gaussian measurement noise. The parameters of the model are the diffusion var
ance, o2, the measurement error variance, aﬁ, and the proportion of diffusing particles, p. T
problem can be considered an incomplete data problem since we do not know a priori whi
particles are diffusing.

An example of what the situation may look like, can be seen in Figure 1. The figure sho
the initial image in a sequence of 12 images, together with the positions of the particles in t
subsequent 11 images, together forming the estimated trajectories of the particles. Here, t
positions of the particles have only been estimated in two dimensions. For details regardi
the estimation of the particle positions, see KVARNSTROM (2002). By manual inspection,
made sure that no change of identities of the particles occurred in the process of converting t
observed positions in the images into trajectories. The time interval between two images is
milliseconds. The particles are spherical, made of polystyrene and are all equal in size, 494 n
in diameter. The apparent differences in size and brightness are due to an out-of-focus effe
and depend on placement in depth of the particles relative to the focal plane. Particles abo
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Estimation of the diffusion coefficient in a mixture model 3

the focal plane are bright in the middle and dark on the circumference and vice versa for the
particles below the focal plane. Also, the depicted size of a particle increases with its distance
to the focal plane. In the sequence displayed Figure 1, three particles seem to be fixed. These
are the particles with numbers next to them; particles 5 and 18 are adsorbed on the cover and the
objective glass, respectively, and particle 3 probably corresponds to a defect in the optics.

Several papers in the mathematical statistics literature deal with the estimation of the diffu-
sion coefficient of a diffusion. Usually however, only the case where data consist of a single
observed trajectory, is considered. Furthermore, the diffusion coefficient is usually a space-
dependent function which is either estimated non-parametrically or parametrically. The asymp-
totic properties are then studied either as the sampling interval goes to zero with a fixed total
observation length (see DOHNAL (1987) and FLORENS-ZMIROU (1993) for parametric, and
HOFFMANN (1999), JACOD (2000), and HOFFMANN (2001) for non-parametric estimation),
or as the total observation time goes to infinity while the sampling interval is kept constant (see
BIBBY and SORENSEN (1995) and KESSLER and SORENSEN (1999)). GENON-CATALOT
and JACOD (1994) also pursues the latter approach, but with a random sampling scheme.

In the situation covered here, we have several observed particle trajectories, each with a
fixed number of samples. Furthermore, the observed positions of the trajectories are subject to
measurement error and not all observed particles are diffusing. Our data becomes a finite mixture
of diffusing and non-diffusing particles. The asymptotic properties of the maximum likelihood
estimator of the model parameters, of which the (constant) diffusion coefficient is one, is then
analysed. We show that the estimator is strongly consistent and asymptotically normal, as the
number of particles approaches infinity, under a reasonable restriction on the parameter space.
To the author’s knowledge, this is not covered elsewhere in the literature.

As an application, we use the trajectories from the video sequence in Figure 1 as data. The
maximum likelihood estimator of the parameter is computed via the EM algorithm, which gives
us, in addition to the parameter estimate, the posteriori estimates of whether a particle is mov-
ing or fixed, called the classification variables. The estimated diffusion coefficient is in good
agreement with that predicted by Stoke-Einstein’s relation. Moreover, the classification variable
estimates correspond very well to our manual classification.

The paper is organized as follows. In Section 2 we introduce the model with two kinds of
particles, diffusing and fixed, both observed with additive measurement error on the position esti-
mates. Various properties of the likelihood and the maximum likelihood estimator are discussed
in Section 3. We introduce a simple and reasonable restriction on the parameter space and prove
that there always exists a maximum likelihood estimator under this restriction. Furthermore, we
show how to implement the EM algorithm in this particular setup.

In Section 4 we study the asymptotic properties of the estimator when we keep the obser-
vation length fixed and let the number of particles go to infinity. The estimator of the triple
0 = (0%,02, p) using the observed data, i.e. the observed increments, is verified to be strongly
consistent and asymptotically normally distributed under the previously mentioned restriction on
the parameter space. The same asymptotic result is also shown to be true if instead the complete
data is used.

In Section 5 we use the model assumption and estimate the diffusion variance for the data cor-
responding to the trajectories in Figure 1. In a simulation study, the EM algorithm is shown to be
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a practical alternative when computing the maximum likelihood estimate, at least for signal-t
noise ratios 02 /o2 above 1/2, and as long as the observation length, N, is larger than 10. Anoth
simulation study shows that normal approximation of the distribution of ¢ seems reasonable f
as small population sizes n as 10. Finally, in Section 6, we discuss the results and possible futu
developments.

2 Model assumptions and notation

Let us start by regarding one-dimensional observations of a particle and denote the true a
observed position of a generic particle at time £ = 0,..., N, by Ry and S, respectively.
For a diffusing particle we assume the following state-space model:

Rk = Rk—l + wy,
Sk = Rk + ey

for k =1,..., N. The initial position R, is assumed to be a non-random constant. Furthermor
So = Ry + eg. Since each moving particle is assumed to perform a Brownian motion, t
increments {wy}Y_, are zero mean i.i.d. normally distributed random variables with varian
0% = 2D7, where 7 is the time interval between images and D the diffusion coefficient. T
measurement errors, {ey, }1_, are assumed to be i.i.d. zero mean normal variables with varian
o2, independent of the increments {wy,}. For a fixed particle, we use the same state-space mod.
but with w; = 0 for all £.

Let n be the number of observed particles and let each particle i = 1, ..., n be diffusing wi
probability p independently of each other. Define the classification variables Z; as

g _ 1 if the i:th particle is diffusing
"0 ifthei:th particle is fixed

fore =1,...,n. We assume that a particle is either diffusing or fixed for the entire sequence
N + 1 observations.

The model can now easily be extended to noisy observations of a Brownian motion in
dimensions if we assume the measurement error in each dimension to be distributed as {e;
above and independent of each other. Then, the observations of a particle follow the state-spa
model (1) in each dimension independently of each other, and each particle will be assigned
independent coordinate processes. Henceforth, we will however for ease of notation, write as
d = 1 unless otherwise stated.

The index i = 1, ..., n, is used to distinguish between the n particles. By a subindex 7 to
entity, as in Z;, we mean that the entity belongs to the i:th particle. If the subindex i is neglecte
we mean a generic particle. The index k£ = 0,..., N, is used for a generic particle only, a
corresponds to the discrete time £ in the state-space model.

We denote the observed increments for a particle by Y, = Sy — Sk, k= 1,...,N. T
covariance matrix of the increment vector, Y = [Y7, .. ., YN}T, becomes

Y, =0’ + agT (
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for a diffusing particle and
ZU = U?T

for a fixed particle, where [ is the N x N identity matrix and 7" is the tri-diagonal matrix

2 -1 0 0
-1 2 -1 0
T—| 0 -1 2 0
0 0 0 2

We see from the covariance matrix above that the measurement error on the observed positions
induces a dependence between the observed increments, which originally, by definition of Brow-
nian motion, were independent.

2.1 Transformation of the increment vector

To make our formulas look nicer in the subsequent sections, we use some basic linear algebra to
transform the increment vector so that the elements of the transformed vectors become uncorre-
lated.

In (2), X; has the same eigenvectors as 7" since every vector is an eigenvector to /. If we
denote the eigenvalues of T'by A;, £k = 1,..., N, then the eigenvalues of ¥, are

“/k:O'Z—FO'f)\k,k:l....,N.

Let U be the matrix with the eigenvectors of 7" as columns. Then we can write, by the spectral
decomposition theorem, T' = UAUT, where A = diag{\, ..., \y}. If

v =U"Y (3)
is the transformed increment vector, its covariance matrix will be diagonal:

Var{V} = U"Var{Y}U = U (¢ + c2UAU")U =
=0’ + oA = diag{vi,...,7n}

“)

The analogous is valid for a fixed particle, but with > = 0. The dependence between the
increments is now “hidden” in U and A, which do not depend on o2 or ¢2, but only on the length
of the increment vector /N, which of course is known.

2.2 Observed and complete data

We classify data into two categories, observed and unobserved. The observed data consist of

the noise-corrupted increment vectors Y;, i = 1,...,n, while the classification variables Z; are
unobserved. Together, they constitute the complete data, denoted by X; = (Y;, Z;),i = 1,...,n.
vol. 72,2005

The probability density function of the complete data X is

ge(x10%02.p) = [pfily: 0% o) [(1 = p)foly; 0] * (

for a single generic particle, where f; and fy are the pdf:s of a zero mean N-variate normal
distributed random vector with covariance matrices ¥; = 3 (02, 02) and Xy = Y(02), respe
tively.

In the d dimensional case, f; will be a d N-variate normal density with d independent part
one for each dimension, since, by assumption, the coordinate processes of a particle are indepe
dent.

The complete data belongs to an exponential family of distributions (see for example LIN
SEY (1996)). However, if N > 1, which typically is the case, the distribution is non-regular,
curved, since the parameter space is 3-dimensional and the dimension of the minimal sufficie
statistic is NV +2 (see the Appendix for a derivation of this). This holds irrespectively of ho
many dimensions we observe. The case NV = 1 is non-typical since we think of our problem
studying a video sequence of images of particles and as such we usually observe more than o
increment.

The probability density of the observed data for a generic particle, Y, is obtained by integra
ing (5) over the distribution of Z

g(y;0%00,p) =pfi(y: 0% 0l) + (1-p) foy; 02), (

and we see that our observed data is a finite mixture of two normal components. Note howev:
that one of the parameters, o2, is present in both components, which is typically not the case fi
finite mixtures. For a thorough account on finite mixture models and their applications, we refi
to MCLACHLAN and PEEL (2000).

3 Likelihood Estimation

We denote the parameter vector by § = (02,02, p). Let Q be the parameter space consisting
those 6 defining valid finite mixture densities (6). In other words, Q = {0 = (0%,02,p) € R
p € [0,1], 62>0, 62> 0}. The true parameter point f, is always assumed to lie in the interior
Q,i.e. 0 € int(Q).

The complete likelihood L induced by the complete data (observed increments and classi
cation variables) from n observed particles is

n

Le(0) = [ [ [pfi(yi: 0% 02) [ (1=p) folwi; 02) ] * (

i=1

However, since our observed data consist of the increments only, the observed likelihood b
comes

L(0) = H{pﬁ (yi:0%02) + (1=p) folyi; 00)} (
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Often with finite mixtures, there is a problem of identifiability, i.e. that a permutation of the
parameters in the model yields the same distribution, see DAY (1969), SUNDBERG (1974),
and REDNER and WALKER (1984). In our model, as long as the true parameter ¢ lies in the
interior of €2, we do not have this problem since the two distributions in the mixture are not
interchangeable due to the presence of o2 in both mixture components.

3.1 Existence of a maximum likelihood estimator

First, we should address the important question of the existence of a global maximizer of L for
a given set of observations {Y},...,Y,}. DAY (1969) pointed out that for univariate normal
mixtures, the likelihood is not bounded if both the expected values and the variances of the
mixture components are considered as unknown parameters. Hence, with no extra conditions,
a global maximizer does not generally need to exist for normal mixtures. Even though our
present setup of the model does not involve the estimation of a drift term in the diffusion, or
systematic position measurement errors, we will propose a restriction on the parameter space that
will guarantee the existence of a maximum likelihood estimator even under the natural extension
of the model to non-zero drift components of the diffusions.
For ¢ € (0, 1), the restricted parameter space €2, is defined to be a subset of 2 such that

o2
0<c§—2§c’1<oo 9)
0-6
holds. We will assume that this holds for some ¢ € (0,1), i.e. 6y € Q. for some ¢ € (0,1). The
restriction is reasonable in the sense that we do not allow the signal-to-noise ratio to be too small,
neither too big.

This kind of restriction on the parameter space, was originally proposed by HATHAWAY
(1985). Here, it will guarantee, that for any ¢ € (0, 1), the likelihood function will have a global
maximizer for each n. In Section 4, the restriction will be used in a sufficient condition for strong
consistency as n approaches infinity (see Theorem 1), where the condition is such that we assume
that 6, € €, holds for some ¢ € (0, 1).

Lemma 1. Let {Yy,...,Y,} be a set of observations from the finite mixture specified by the
density (6) and let ¢ € (0,1). Then, with probability one, there exists a global constrained
maximizer for L(6) in Q...

Proof. The idea is to show that
sup L(#) = sup L(f)
0€Q, oK

for some appropriate, compact K C €.

With probability one, the increment vectors will all be different from the zero vector. There-
fore all the terms in the likelihood will stay bounded. Also, it will go to zero if both 2 and o2
either go to zero or to infinity. By condition (9) above however, it is enough to show that one of
the two variances goes to zero or infinity; the other variance will also be forced to go to zero or
infinity, respectively.
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So, there exist constants a; and b; such that K = {# € Q. :a; < 02 < ay, b < 0% < by
which gives the desired result.

Remark 1: A maximum hence exists, but it does not necessarily have to be unique for fixed
For p = 0, 02 becomes a free variable. Also, if p = 1 and N = 1, all values of o2 and
satisfying 0% 4+ 202 = ¢ for some constant ¢, are maximum likelihood estimators. Note howev
that the restriction is not a necessary condition for a maximizer to exist, neither is it a sufficie
condition for a unique global maximizer to exist. It is a sufficient condition for the likelihood
be bounded for all § € (2., and hence for a maximum likelihood estimator to exist.

Remark 2: Tf the number of observations n is larger than three (one more than the number
mixture components), the restriction (9) of the parameter space also gives us the conclusion
Lemma 1 even under an expanded model with a drift term in the diffusion together with sy
tematic position measurement errors, that is, if the mixture components have non-zero expect
values, p; and p9, and we need to estimate these as well; just let K be as before concerni
the parameters o2 and o2, and with |11, [po] < max;{[|Vi||} < oo (see HATHAWAY (1985)
where || - || is the Ly-norm of a vector. As mentioned previously, this might turn out to be usefi
if it is necessary to determine whether systematic effects are present or not.

3.2 The EM algorithm

When computing maximum likelihood estimates for finite mixtures, the EM algorithm is
appealing method to use. In fact, although the algorithm got its name and was generalized i
DEMPSTER et al. (1977), it was actually introduced and used, for the special case of finite mi
tures of exponential distributions as early as in HASSELBLAD (1969). For mixture distribution
the method takes full advantage of the simple structure of the complete likelihood together wi
easily calculated estimates of the unobserved data, the classification variables. For an overvie
of the theory and contemporary applications of the EM algorithm, we refer to MCLACHLA
and KRISHNAN (1997).

The algorithm is an iterative scheme consisting of two steps; the expectation and the max
mization step, accordingly called the E-step and the M-step. The E-step consists of estimati
the unobserved data, which in the case of a mixture are the classification variables. In the M-st
we maximize the complete likelihood (7) using the estimated classification variables, Z,, fro
the E-step together with our data Y;. The algorithm hence becomes:

Assume that 8™ is the estimate from the m:th iteration of the EM algorithm.

e E-step: Foreachi = 1,...,n, compute

P f (Y =)

Zi = By {Zi]Y;} = - -
P 1 (Vi £ 4 (1=pom) fo (Vi 25

o M-step: Maximize

Eyon {log Le(0)[Y} = Z{Z log{pfi(Vi;0% 02)} + (1- Z) log{(1-p) fo(Vi: 03)}}

i=1
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Estimation of the diffusion coefficient in a mixture model 9

with respect to 6 = (02, 02, p), denote the result by #"+") and go to the E-step.

In this application of the EM algorithm, each of the two steps has a probabilistic meaning;
in the E-step we classify each particle using a quadratic discriminant rule, and in the M-step we
maximize the complete likelihood using the classifications from the E-step as if classifications
from the previous E-step in fact were the observed data. Note, however, that the estimated
classification variables are not confined to zero or one, but could be any real number in-between.

As is the case for most numerical algorithms for maximizing a function, there is no way of
guaranteeing that we actually end up in the global maximum. The EM algorithm can guarantee
however, that

L") > L")

and since in our case the likelihood is bounded and continuous, every sequence of iterates {#(™}
of the EM algorithm will have a stationary value of L(f) as a limit point (Theorem 2 of WU
(1983)). This stationary value does of course not have to be the global maximum. Nothing more
than this, can in general be said about the #(™)-sequence. For a thorough discussion regarding
the convergence of the EM algorithm, we refer to the already mentioned work by WU (1983),
which is covered also in the review article by REDNER and WALKER (1984), and in the general
reference on the EM algorithm, MCLACHLAN and KRISHNAN (1997).

For the typical application of the mixture model discussed in this article, with N usually
larger than 10 and a ratio 02 /0?2 larger than 1/2, simulations show that the EM algorithm works
sufficiently well, both concerning the number of steps of the iteration until convergence to a
stationary point of the likelihood function, and with respect to its ability to converge to the same
estimate 0 regardless of starting value §°; see the simulation study in Section 5.

4 Asymptotics

Is this section we study the asymptotic properties of the maximum likelihood estimator as the
number of particles n grows large. It turns out that the estimator is both strongly consistent
and asymptotically normal. This case is not covered in the literature probably since one of the
parameters is present in both mixture components. In addition, many authors compactify the
parameter space in order to get asymptotic results, see e.g. CHENG and LIU (2001) We do not
want to do this, because we feel that it imposes an unnatural restriction on the parameter space.

For N = 1, SUNDBERG (1974) gives the consistency and asymptotic normality of the
maximum likelihood estimator 6,,, under the single condition that the information matrix Z () is
positive definite at the true parameter point 6. Since Lemma 2 below says that this is true for all
6y € int(€2), we are actually done for N = 1, both with consistency and asymptotic normality.

Hence, what is left to prove is consistency and asymptotic normality for N > 1. REDNER
and WALKER (1984) discuss this issue for mixtures of distributions but only for regular ex-
ponential distributions and when the parameters of separate mixture components are mutually
independent. Some modifications are thus needed.
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4.1 Consistency

To prove consistency of the maximum likelihood estimator for general N, we verify that t
classical conditions for consistency of WALD (1949) are satisfied for the mixture density in (
when the true parameter is in €2... In the process, we use results from REDNER (1981).

Theore{n 1 (Strong consistency). Let the true parameter point 6y be in ). for some ¢ € (0,
and let 6,, be the global maximizer of L(6) over Q., for each n. Then

P{f, = fpasn — oo} =1

Proof. Wald’s conditions are enumerated as in REDNER (1981) to 1 through 6. For the speci
cation of these conditions, we refer the reader to that article.

Conditions 1,2,4’ and 5 are satisfied for 2 and the mixture component densities f; and f|
Inspection of the proof of Redner’s Theorem 5 shows that Conditions 2 and 4 also are satisfi
for the mixture density (6). If we restrict €2 to €2, as defined in (9), then also Conditions 3 and
are satisfied, giving us the result by applying Theorems 1 and 2 from WALD (1949).

Remark 1: The extra condition (9) is used, first to prove that a maximum likelihood estimat
exists for all n, and second, to prove that Condition 3 of REDNER (1981) is satisfied, i.e. th:
L(6;) — 0 when d(6y, ;) — oo, where d means Euclidean distance.

Remark 2: Under the restricted parameter space, €., Wald’s conditions 1-6 are satisfied ev:
under the previously mentioned expanded model with a drift term in the diffusion and systemat
position measurement errors, that is, if the mixture components have non-zero expected valu
and we need to estimate them as well.

4.2 Asymptotic normality

Sufficient conditions for the asymptotic normality of the maximum likelihood estimator 6,, ¢
be found in for example Theorem 5.23 of VAN DER VAART (1999). Since we have consisten
and log g(y; 0) is smooth, what remains to be proved is that the mapping 0 — E,, log g(Y;

admits a second order Taylor expansion around ) € int(2) with non-singular second derivati
matrix. In other words, we have to prove that the information matrix Z(f) is positive definit
This is the result of Lemma 2 below, so Theorem 2 is a consequence of that.

Theorem 2 (Asymptotic normality). Assume the true parameter ty € int(Q.) for some ¢
(0, 1). Then the maximum likelihood estimator 0,, is asymptotically normal, i.e.

n'2(0, — 6o) > N(0,Z(65)7") (1
as n — oo.

The restriction to €). is needed only to guarantee consistency; the positive definiteness
Z(#) is in fact valid for all # € int(€2) as can be seen from the next lemma.

Below, we denote the gradient of a function f with respect to # by d f. We also refrain fro
writing down the arguments of the functions when no risk of ambiguity exists.
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Estimation of the diffusion coefficient in a mixture model 11

Lemma 2. The information matrix Z(0) is positive definite for all € int(S2).

Proof. Positive definiteness of Z(#) means that a”Z(6)a > 0, for all a € R*\ {0}. Since Z(f)
is the variance of the score function dj log g(Y; ), we interpret a’Z(0)a as the variance of the
linear combination a” 9y log g(Y'; ). Hence, what we have to prove is that

Var{a"dylogg(Y;6)} > 0

for all a € R3\ {0}.
Assume the opposite. Then we have, with probability one, that

a"9glogg(Y;60) =0 an

for some a € R*\ {0} since the mean of the score is zero. Writing out the components of the
score function 9y log g(Y'; 0), we have

aﬂz]ogg:M
pfi+(1=p)fo
9 -zl()gq :patrgfl + (1 - 7)) angfﬂ
e pfi+ (1 —=p)fo
fi—fo
Oplogg =—"———
v O8I pfi+ (1 —=p)fo
where
I Ui 1 2
of) = = =k
anf1 2;((0 +)\k0) O.2+)\kgz>f1(y (77(7(») 1( )fl(y (7 0')
N _
1 )\ka Ak L2 9y L2 2
it = 5 3 (s~ 57 01D = kAo
1

N .o
_ 7 N1 L2y L2
a”zfo - <2(0.62)2 o )\_I; - E%)fo(yﬂo-e) - k3(y)fn(y,0'e)

Equation (11) can be written as
a1p Op2f1 + az [p Op2f1 + (1-p) aazfo] +asz [fl - fo] =0.

After re-arranging in terms of f; and fy and noticing that f,(Y") # fo(Y) > 0 with probability
one for all § € int(f2), we see that this is equivalent to

{ a1pk (V) + apko(Y) + a3
ag(1—p)ks(Y) — as

For N > 1, since k1(Y"), ko(Y'), and k3(Y") are linearly independent and non-zero with probabil-
ity one for all # € int(f2), equation (12), and hence equation (11), is satisfied only if a is zero,
and we have a contradiction. For N = 1, even though k; = Ak, we still have that £,(Y") and
k3(Y') are linearly independent, which suffices to arrive at the same conclusion.

0

12
0 (12)

O
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Remark: Notice that (12) is satisfied for non-zero a if p = 0. This is also what we would expe
since then we have no information on 2. Also, if N = 1, then ky(Y) = Ak (Y), soif p =
(12) is satisfied as long as a; + Ajas = 0 and a3 = 0.

4.3 Complete data asymptotics

In applications the particles may have already been labelled manually as diffusing or fixed, i.
we have been given the complete data. If this is the case, the asymptotic properties of the est
mator become easier to verify, mainly because the likelihood is a product of probability densi
functions.

After some elementary, but fairly cumbersome, calculations we obtain

dp N 1
?ka 1 (024 Ap02)? 2 Zk 1 a“+)\L )2( : 0
_ | d A d Nd(1
ZO)=| 7 Zk 1 (,72+,\§02)2 Z Zk 1 03+Ak02)2 2(03)5 0 a
0 0

_1
p(1-p)
for the expected information matrix to the complete data. It can be seen, by applying the Cauch
Schwarz inequality on the upper-left 2 by 2 matrix, to be positive definite for all § € int(2).
For fy € int(€.) we get strong consistency directly from WALD (1949) even without t
restriction on the parameter space. Furthermore, since Z¢ () is positive definite, all conditio
for asymptotic normality are satisfied.

4.4 Note on a further generalization

An interesting article with relevance to our problem, is KIEFER and WOLFOWITZ (1956).
deals with the consistency of a maximum likelihood estimator when there are infinitely ma
incidental parameters present. These incidental parameters could be, in a generalization of o
problem, the variance of the Brownian motion o if all diffusing particles have different diffusi
coefficients. This corresponds to a so-called poly-disperse solution in contrast to our prese
problem, which is mono-disperse (every particle has the same diffusion coefficient).

Assume that foreach i = 1, ..., n, we have that Y; is N-variate normally distributed rando
variable with mean zero and covariance matrix 3; = Io? + T'o?. Then, following the langua
of KIEFER and WOLFOWITZ (1956), the o7:s are the incidental parameters and o? the para
eter (even though, in our context, these names are misleading since we consider it to be the oth
way round). Notice that if the a‘ :s are constants and different for each i we only observe o
increment vector Y; for each o2 Obv1ously the estimates of the o2:s can not be consistent.
turns out, however, that if we con%lder al ,1=1,...,n,to be independent random variables wi
common (but unknown) distribution function F', then, under certain assumptions on F', the ma:
imum likelihood estimator of F' converges to F’ at every point of continuity. Also, the maximu
likelihood estimator of o2 is strongly consistent.

The model discussed in this article is of course a special case of these o7 coming from
unknown distribution function F. This distribution has only two values; zero, for the fix
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particles, and o2, for the diffusing particles. In other words, F' can be written as

0 whenz < 0
F(z)={ 1—p when0 <z < o?
1 when o2 < z

5 Application

As an application of the model, we estimated the diffusion coefficient of the diffusing particles in
Figure 1. Here, the positions of the 26 particles were estimated in two dimensions in each image
using a simple circle detection algorithm and the resulting trajectories are displayed in Figure 1.
The total number of frames were 12, so N = 11. By manual inspection, we concluded that the
three particles in Figure 1 numbered 3, 5, and 18, were fixed. The remaining 23 were classified
as diffusing particles.

5.1 Results

We applied the EM algorithm to the observed data with initial value §°= (1, 1, 0.5). We stopped
when the change of the 7;:s between two consecutive E-steps was smaller than 19’6. This crite-
rion was satisfied after 3 steps with the resulting maximum likelihood estimates f with elements

6% =2.2058
42 =0.3172 (14)
P =0.8847

where the unit for the first two is the square of the side length of a pixel.The estimated classi-
fication variables Z;, defined as the conditional expectation of Z; given Y; at parameter point 6,
were

Zy =2.473 1073

Zs5 =1.528 107"

A 5 (15)
Z1g =1.049-107°
Z:=1.000 otherwise
in good correspondence with our manual classification.
5.2 Observed information matrix
The observed information at the maximum likelihood estimate é, can be written as
1(0;y) = ZTe(B: y) — [Eo{Sc(X;:0)SE (X:0)[9) ]z (16)

by using a result from LOUIS (1982), where Z¢(f; y) = E¢{I¢(f;2)|Y = y}, the conditional
expectation of the complete data given Y = y, and S¢(z;6) = 9ylog Lc(6), the score of the
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complete likelihood. Intuitively, the first term in (16) corresponds to the observed informati

from the complete data given the estimated values of the unobserved data Z;, and the seco

term corresponds to the missing information due to the fact that /Z; was in fact not observed.
Using this, the observed information matrix at the estimate becomes

[33.75 52.75 0 W [0.034 0.153 4).090}
1(6%,62,p;Y) = | 5275 4766 0 — ! 0153 0691 —0.405
[ 0 0 254.9J [70.090 —0.405 0.240J

33.72 52.59 0.090

= | 52.59 4759 0.405

0.090 0.405 254.7

a

with inverse
0.0358 —0.0040 0.0000

I7(6%6%p;Y) = | —0.0040 0.0025 0.0000 | . (1
0.0000  0.0000 0.0039

This gives us an approximate variance of the estimate of 62 equal to
Var{4?} ~ 0.0358. (1

Note that some elements in the matrix in (17) are close to zero. The reason for this is th:
the estimated classification variables in (15) are very close to their true values of zero or on
in other words, we are very close to our manual classification, which corresponds to havi
complete data. Compare this with the zero elements of the complete information matrix in (13

5.3 Comparing the estimate with the theoretical diffusion coefficient

The estimated 6% above corresponds to an estimated diffusion coefficient of
D =0.893 ym?/s,

where we used the relationship between diffusion variance and diffusion coefficient, 02 = 2
and scaling to ym. Here, 7=0.040 s is the time interval between observations, and each pix
corresponds to a square with side M/=180 nm.

If we assume normality, motivated by the asymptotic normality result of Section 4.2 when
is sufficiently large, we get an approximate 95% confidence interval of D of

A M?
D=D=+196- 2—\/.0358 = .893 4 .150 ym?/s. (2
T
The theoretical diffusion coefficient is given by Stoke-Einstein’s relation (see for examp
EVANS and WENNERSTROM (1999) pages 370-372)

kT

@
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Figure 2: The histograms of the estimates of o and ¢? using the EM algorithm from 1000
simulations using 2.2058 and 0.3172 as true values.

where kp is Bolzmann’s constant, 7 the viscosity of the solution, 7" the temperature and Ry the
hydrological radius of the particle. The appropriate values for the viscosity and temperature are
1n=0.9 mPa and 7'=298 K. The geometric radius of the particles are 247 nm and this is used as
the hydrological radius, even if the latter is often a bit larger than the former. Plugging all this
into (21), we get

D = 0.982 ym?/s,

which is within the 95% confidence interval of (20).

5.4 Simulation of the approximate distribution of the estimates

We simulated 1000 realizations with 26 particles, of which 3 were fixed, over 12 frames in two
dimensions, with the estimated values of 0% = 2.2058 and 02 = 0.3172 from (14) as the true
diffusion variance and error variance. For each time series, we estimated o2, crg and p using the
EM algorithm. However, since the number of fixed particles is 3 in each sequence, the estimate
of p is not very interesting and will therefore not be displayed.

The histograms of the estimated values are displayed in Figure 2. The sample mean and
covariance matrix of the 1000 estimates of o and o2 were

and
.0348  —.0040
—.0040 .0027

in good agreement with the true values of 0® = 2.2058 and 02 = 0.3172 and the upper-left block
of the inverse of the observed information matrix in (18).
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Figure 3: Simulated sequence of 50 particles of which 10 are fixed (the numbered ones) a
where 02 = 02 = 1 and N = 20, with the start positions taken uniformly on the squar

Compare with the corresponding classification variables in Figure 4.

5.5 More simulations

In the example of Figure 1, it is easy to manually classify particles as either diffusing of fix
since the measurement error is small compared to the diffusion variance. To see what the sit
ation looks like when the signal-to-noise ratio is significantly lower, we simulated 40 diffusi
particles with 02 = 1 together with 10 fixed particles, all observed under measurement error wi
af = 1. The number of observed increments, NV, was 20.

The resulting observed trajectories are displayed in Figure 3, where the starting positions ha
been chosen uniformly on the square. Clearly, here it is much harder to determine by eye, whi
particles are actually fixed, compared to the situation in Figure 1. However, using the analys
developed here, we are able to classify all the particles correctly, by which we mean that t
estimated classification variables are within 0.5 of their true value. The estimated classificati
variables for this sequence are displayed in Figure 4 where the first 40 correspond to diffusi
particles and the last 10 to fixed. The EM algorithm converged in 7 or 8 iterations. Also,
converged to the same estimate of 6 as we varied the initial parameter §° over 20 different value

To conduct a more thorough analysis of the behaviour of the EM algorithm for this model,
simulated 100 independent data sets, each consisting of 100 particles of which 20 where fixe
for different values of o2, (rf, and N. Table 1 shows the result. As can be seen, the meth
manages to estimate the variances o and o appropriately, and that it is robust for all signal-t
noise ratios when the observation length is large. However, for small observation lengths, bo
the number of misclassifications and the number of EM iterations, become large if the signal-t
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Figure 4: The estimated classification variables for the sequence in Figure 3. The first 40 corre-
spond to diffusing particles and the last 10 to fixed particles.

noise ratio is not sufficiently high. Although not presented in Table 1, it should be mentioned
that the only effect different starting values #° had on the convergence of the EM algorithm, was
to increase or decrease the number of iterations needed until convergence, by one or two steps.

Taking all of this into consideration, the EM algorithm is clearly an applicable method for
these kind of data sets, failing only to converge within 100 iterations when N = 10 and the
signal-to-noise ratio is 1/3.

In Section 4 we proved that the estimator HA,,, is asymptotically normal as n goes to infinity. In
applications, one might wonder for how small n it is reasonable to approximate the distribution
of 4, by the normal distribution. Looking at the histograms of Figure 2, it seems that, at least for
the estimated parameter values from the example trajectories of Figure 1, this is the case for the
relatively small population size of n = 26.

To investigate this further, we simulated 1000 independent sequences where N = 10, each
with n = 10 particles, of which 2 were fixed, and where the true parameters were 02 = 2and
o2 = 1. For each sequence, we estimated 02, o2, and p but, as before, since the number of fixed
particles was non-random, we do not include the estimate of p in the analysis. We calculated the
generalized distance

where 0, is the vector consisting of the final estimates of 0% and o2 from the m:th simulated
sequence, and where 6 and S are the sample mean and the sample covariance matrix, respectively,
of the 1000 estimates of o2 and o2. If the estimates 6,,, are normally distributed, each d2, is x*-
distributed with 2 degrees of freedom. In Figure 5, we have plotted both the empirical cumulative
distribution together with the distribution function of a y2-distribution. The figure suggests that
even for population sizes as small as n = 10, the estimates seem to be close to the normal
distribution. The results were similar for other combinations of true parameters o and o2.
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62 62 #of EM # of misclassi-

n=100 N mean std mean std iterations fications
o2=3,02=1 10 3.01 .188 0.99 .061 11 0.9

20 3.02  .121 1.00 .047 3.2 0.0

40 2.99 .088 1.00 .031 1.0 0
o?=2,02=1 10 1.98 .141 1.01 .068 13 2.5

20 2.01 .091 1.01  .046 5.6 0.1

40 2.00 .061 1.00 .028 1.3 0
o?=1,02=1 10 1.01  .088 1.00 .054 19 6.4

20 1.00 .054 0.99 .036 8.0 0.8

40 1.00 .037 1.00 .027 2.9 0
o?=1,02=2 10 1.00 .114 2.00 .094 33 13

20 1.00 .068 2.00 .058 12 3.0

40 1.00  .044 2.00 .044 5.0 0.1
o?=1,02=3 10 1.00 .131 3.00 .128 50! 17

20 1.00 .071 3.01 .082 14 5.4

40 1.00 .058 2.99 .059 7.8 0.4

"Here, for 7 of the simulated sequences, the EM algorithm failed to converge within 100 iterations.

Table 1: Comparison of the estimates of o2 and o2, with the corresponding standard deviation
the average number of EM iterations, and the average number of misclassifications, for 1
realizations of simulations with n. = 100 particles, of which 20 were fixed, for different valu
of 0%, 0%, and N.

6 Discussion

When comparing the estimated classification variables to the plotted trajectories, we see th:
our method indeed manages to classify the particles correctly for this data set. In additio
the theoretical diffusion coefficient derived from Stoke-Einstein’s relation is within the 95
confidence interval of the estimated diffusion coefficient. These two results, in combination wi
the simulation study in Section 5, demonstrate the efficiency of the method and are encouragi
for the future analysis of larger data sets of this kind.

We should, however, keep in mind the discrete nature of the observed trajectories; the ima
processing used for this image sequence only positioned particles up to pixel level. Hence, t
observed likelihood, here based on continuous spatial data, could be modified to take this in
consideration. Alternatively, the image processing could be refined to obtain sub-pixel accurac
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Figure 5: The x3 distribution function (dashed), together with the empirical cumulative distribu-
tion of the generalized distances of the estimates of o and ¢ from 1000 simulated sequences
of n = 10 particles, of which 2 were fixed, when N = 10 and the true parameter values were
o?=2ando?=1.

Nevertheless, the main result in this paper is the theoretical analysis and the data should primarily
be considered as an illustrative example of an application of the method.

A natural question arises on the possibility for the particles to change states during the ob-
servation period of NV + 1 images; that is, from diffusing to fixed or from fixed to diffusing. For
colloidal particles like those in Figure 1, at least the latter possibility is believed to be highly
unlikely; once a particle has become adsorbed on one of the specimen glasses, it continues to be
so for the duration of the experiment. To change from diffusing to fixed is of course possible, but
for the observation lengths we have studied so far, this has also been ruled out; remember that
N equal to 11 corresponds to a total observation length of 440 ms. After future refinements of
the image processing part however, we plan to look at far larger observation lengths and then the
scenario of a particle getting stuck becomes more likely. The model must then be modified and
one alternative might be a hidden Markov model.

Another way to generalize the model, would be to allow for the particles to have different
sizes and hence different diffusion coefficients, as discussed in Section 4.4. If we regard the
diffusion coefficients as random variables from a common (but unknown) distribution the task
would then be to estimate the distribution of the diffusion coefficients rather than the actual
diffusion coefficients. Another, simpler and more direct, alternative is to allow for two or three
classes of particles, each with a fixed (but unknown) diffusion variance.
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Appendix: Sufficient statistics

Consider the complete data density (5) with observed trajectories in d dimension. Take
logarithm and let Y}, denote the k:th element of the transformed increment vector (see se
tion 2.1) of the [:th dimension trajectory. We get

DY
log ge = zlogp — 2 kE 1 log(o? + \o?) — = E 02+/\ka§
. d Ouo?) L ik
+(1—2)log(l —p)—(1— 2)5 kg log(Moy) — > Neo?

a 1 I a1z
_ — = =2
=S A(C) (grn) (L)

k=1 k=1 I=1

N
0% + \go? d 2 )
+ 7<10g( ) - = E lo ( No? )) - <§ kg] log(Mo?) — log(1—p)
and we see that a minimal sufficient statistic can be chosen to be

d

~2

th =2 § Yn
=1

d
tN:ZZQIQN
i :Z ! 73(21,&)

k=1 =1

tNy2 =2

with the corresponding canonical parameter o

1 1
oy =————
! 202 4 \o?
1 1
ay =
N 202+ \yo?
1
QN+ :*202
| D d & . o? + \o?
oz = log(5) = 5 3 tos(5 %)

k=1
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which is a function of our parameter 6. Since this is 3-dimensional and the sufficient statistics
is (N + 2)-dimensional, we say that the complete data belongs to a curved exponential family
or, with the terminology of BARNDORFF-NIELSEN and COX (1994), a (N +2, 3)-exponential
model.

Solving for p in the expression for ay_.o above, we get

. N )2 ) /2
- N o+ o2 " N ay
QN +2 k QN2 N+1
erve2 T, ( Y e+ [T, ear
- : A2 i a2
. N a’+ A, 0? . N QN1
a; ay
1+ etns Hk:l( Py I Nean

and we can write the logarithm of the complete data density as

p=

log ge = ™t — k() (22)

where & = () and k becomes

k(a) = 4 (N+1)*ﬂlo (—2an )+1o-(1+ew+zﬁ(”~+_l)d/2) (23)
=3 gl 2 g N+1 g u Ao

From standard theory of exponential families, we get the cumulants of the sufficient statistics by
differentiating k(). In particular, we have ET = 2% and Var{T'} = ;2. which we denote
and V/, respectively.

The expectation of the sufficient statistics can be written
dp(a® + Mio?)
ET = | dp(o? 4 Ayo?)

d(1—p)No?
p
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