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Position Estimation and Tra
king in Colloidal Parti
le Mi
ros
opyMats Kvarnstr�omDepartment of Mathemati
al Statisti
sChalmers University of Te
hnology and G�oteborg UniversityAbstra
tThis thesis presents methods for estimating the lo
ations (in
luding depth) ofspheri
al 
olloidal parti
les in images re
orded in video mi
ros
opy. Understand-ing the behavior of 
olloidal intera
tions and di�usion is of 
ru
ial importan
e ina vast number of areas. However, sin
e the theory fails to predi
t the behavior ofseveral important 
olloidal suspensions, observations and measurements on themi
ros
opi
 level are needed. Examples of 
ommon, everyday 
olloids are milk,paint and pharma
euti
als. The positioning methods developed here 
an be usedfor tra
king of parti
les in three dimensions observed in video mi
ros
opy. Wemake several suggestions on how the positioning method should be modi�ed andimplemented to be used for this purpose.Paper I introdu
es a method based on rotational symmetry to estimate the 
enterof 
ir
ular obje
ts in images. Standard errors are also estimated. The a

ura
yof the estimates goes well beyond sub-pixel a

ura
y, whi
h is validated in asimulation study. A modi�
ation of the lo
al polynomial kernel estimator for
ensored data is also suggested. In Paper II we estimate the intensity pro�lesof parti
les at di�erent known depths. These intensity pro�les are then usedfor depth estimation in a template mat
hing approa
h. The mat
hing 
riteriontakes into a

ount both di�erent ba
kground levels and 
ensoring of pixel values.Paper III deals with the estimation of the di�usion 
oeÆ
ient from parti
letraje
tories observed with measurement noise. The model in
ludes two typesof parti
les, �xed and di�using. This is appropriate sin
e this is the typi
alsituation for parti
les in the images 
onsidered.Key words: 
ensored regression, 
olloidal 
hemistry, depth estimation, di�usion
oeÆ
ient, nonparametri
 fun
tion estimation, position estimation, rotationalsymmetry, tra
king, template mat
hing, video mi
ros
opy
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Chapter 1
Introdu
tion

The understanding of the behavior of 
olloidal suspensions is of 
ru
ialimportan
e in a vast number of di�erent areas. The standard theoryfor the intera
tions of 
olloidal parti
les, the DLVO-theory (see for ex-ample Evans and Wennerstr�om (1999)), is merely an approximation, andexperiments have shown that it fails to predi
t the behavior of several im-portant suspensions, see for example Cro
ker and Grier (1994) and Grier(1998). Therefore, observations and measurements on the mi
ros
opi
level are needed if we are to fully understand the behavior of 
olloidalsystems.Examples of 
ommon, everyday life 
olloidal systems are milk and paint.In milk, various intera
tions between the small (100 nm to 1 �m in diame-ter) 
olloidal milk fat parti
les and proteins suspended in the 
uid, de
idewhether it 
oagulates into 
heese or yoghurt. These intera
tions dependon how the milk was treated before the 
oagulation. For the se
ond ex-ample, the pigments in the paint must stay suspended in the liquid in a
an for years, yet, as they are spread on a wall, be able to 
oagulate fast.Another example of important everyday 
olloids are pharma
euti
als.This thesis presents te
hniques developed for the quantitative study ofdi�using parti
les in a 
olloidal system using video mi
ros
opy. The prin-1

CHAPTER 1. INTRODUCTION
ipal appli
ation is to pharma
y, where properties su
h as di�usion 
o-eÆ
ients and intera
tion between parti
les are important fa
tors whenformulating drugs. Here, possible modi�
ations of for example the sur-fa
e 
hara
teristi
s of the 
olloids are believed to have a large impa
ton modern therapies su
h as oral va

ines. However, the e�e
ts of su
hmodi�
ations need to be quantitatively measured and veri�ed.The idea is to make inferen
e on properties of a 
olloidal parti
le system,su
h as di�usion 
oeÆ
ient of the parti
le, from a series of light mi
ro-s
ope images of moving latex spheres. Figure 1.1 illustrates an exampleof what an image from su
h a sequen
e may look like. The parti
les inthese image are spheri
al, made of latex (polystyrene), and have all adiameter of 494 nm. Ea
h image 
onsists of 512 times 512 square pixelswith a side-length of 0.18�m. The reason for studying latex spheres, andin parti
ular, of a single size, are that suspension of these kind of poly-mer 
olloids 
an be used to simulate many features of a 
olloidal systemby varying the solvent and salt 
on
entration. Therefore they are widelyused for studying the behavior of 
olloidal suspensions, see Evans andWennerstr�om (1999, 
hap. 9). For a re
ent review of di�erent kinds ofmi
ros
opy used for 
olloids, see Elliot and Poon (2001).The apparent di�eren
es in size and brightness variations of the parti
lesare due to di�erent depths relative to the fo
al plane. Parti
les in the fo
alplane are depi
ted as small, distin
t, bla
k spots, while parti
les aboveor below the fo
al plane, are either light or dark in middle, respe
tively.Also, the further away from the fo
al plane a parti
le is, the larger andmore blurred it appears. This out-of-fo
us e�e
t will give us a methodto estimate the depth of a parti
le. It should be mentioned that thelight is pra
ti
ally 
onsidered as 
oherent, whi
h is the reason for thisopti
al e�e
t. If light would have been in
oherent, parti
les o�-fo
uswould simply be blurred.This thesis introdu
es pre
ise methods for estimating the lo
ations (in-
luding depth) of parti
les in images like the one in Figure 1.1. A highlypre
ise method for estimating parti
le 
enters in the image plane (that is,the horizontal and verti
al 
oordinates) is presented in Paper I. The stan-2



CHAPTER 1. INTRODUCTION

Figure 1.1: A single mi
ros
ope image in a sequen
e of images. The parti
lesare all equal in size and the di�eren
e in the appearan
es of the parti
les in theimage is an opti
al e�e
t of parti
les being at di�erent depths relative to thefo
al plane.dard errors of the estimates are between 0.02 and 0.10 pixels, dependingon the appearan
e of the parti
le, with lower values for parti
les 
loser tothe fo
al plane. The method makes use of the rotational symmetry of theappearan
es of the parti
les in the image and the a

ura
y is well less thanthe sub-pixel level, by whi
h we mean that the standard deviation of the3

CHAPTER 1. INTRODUCTIONpositioning error is less than one pixel. Standard errors for the positionestimates are also estimated for ea
h parti
le. Furthermore, we present amethod for nonparametri
 fun
tion estimation when the response valuesare 
ensored. This is needed sin
e pixel values in the images are 
ensoredabove a 
ertain level. The depth is estimated using a template mat
hingapproa
h, 
overed in Paper II. The templates are empiri
ally 
onstru
tedusing images of parti
les at known relative depth to the fo
al plane. Ea
htemplate represents the appearan
e of a parti
le at a 
ertain depth z andthe 
orresponding depth between the templates is 0.2�m. In Paper IIIwe 
onsider the estimation of the di�usion 
oeÆ
ient given a set of par-ti
le traje
tories observed with measurement noise. However, sin
e someparti
les seem to be �xed, a model with two kinds of parti
les, �xed anddi�using, is introdu
ed . This is the typi
al situation for traje
tories ofparti
les in images like the one in Figure 1.1. Instead of manually dis-
arding the parti
les whi
h are �xed, the model permits them to be usedin the estimation, whi
h is the appropriate approa
h sin
e they 
ontaininformation on the measurement noise.The latex parti
les in the sequen
e images like the one in Figure 1.1 havebeen treated in su
h a way that the suspended parti
les 
an be assumedto perform Brownian motion. This is the 
ase at least for parti
les nottoo 
lose to the 
on�ning glasses of the spe
imen, sin
e the glass surfa
esa
t attra
tively on the parti
les. These sequen
e images were solely 
on-stru
ted so that estimated properties 
an be easily veri�ed, sin
e the trueproperties of the suspension are known.Methods 
ommonly used for measurements on 
olloidal suspensions make
olle
tive measurements of properties for the entire sample, by whi
h wemean that they 
annot measure properties of ea
h single 
olloid parti-
le. Rather, the properties related to the entire population of 
olloidsin the suspension is measured. Examples of su
h methods are variouslight-s
attering te
hniques, for example dynami
 light s
attering (DLS).Nu
lear magneti
 resonan
e (NMR) and neutron s
attering, are also used,see Evans and Wennerstr�om (1999) and the referen
es therein.Previous work using digital video mi
ros
opy for quantitative 
olloidal4



CHAPTER 1. INTRODUCTIONstudies, have been made by Cro
ker and Grier (1996, 1998). There how-ever, the depth of fo
us was �500 nm, whi
h makes the parti
les similarin appearan
e and therefore easier to �nd in the images, sin
e the sought-after obje
ts in ea
h image are similar. In their study, ea
h parti
le is abright spheri
al set of pixels and they a
hieve sub-pixel a

ura
y by 
al
u-lating the geometri
 
enter of the brightness-weighted 
entroid, a
hievingstandard errors of about 0.1 pixels (where ea
h pixel is 85 nm). The shal-low fo
al depth also restri
ts their methods to measurements in 
olloids
on�ned to a 
rystallized stru
ture. In our 
ase, the depth of fo
us is �15�m, resulting in a mu
h wider variety of appearan
es of the parti
les inthe image. The strength of the methods for parti
le position estimationdeveloped here, is that our method is not restri
ted to parti
les similar inappearan
e. This opens up for position estimation for parti
les in a mu
hwider range of depths. What we need however, is rotational symmetry ofthe appearan
e of parti
les in the images.

1.1 Guide for the ThesisPreferred reading orderIn Chapter 2, various aspe
ts of the images used in this thesis are ex-plained. Chapter 3 
overs the main ideas as well as some extensions tothe methods of estimating the parti
le lo
ations developed in Paper I andII. In Chapter 4 we propose how the positioning methods 
an be usedfor the tra
king of parti
les in three dimensions. Problems are also high-lighted and possible modi�
ations are dis
ussed. Chapter 5 
onsists oftwo supplementary simulation studies related to Paper I.If a qui
k start is preferred, Paper I and II should be read �rst and thenChapters 2 through 5. There is no preferred order of when to read PaperIII. 5

CHAPTER 1. INTRODUCTIONPaper I: Estimating 
enters and intensity pro�les of spheri
alparti
les in mi
ros
opyThis paper deals with estimation of parti
le position in the image plane.The underlying assumption for the estimation is the rotational symmetryof the appearan
e of parti
les. For a parti
le with true 
enter at x 2 R2 ,the main idea is to use the minimizer ofS(y) = minf2C2 Xi2Nx�Ii � f(ri(y))	2 = Xi2Nx�Ii � ^f(ri(y))	2 (1.1)for y 2 R2 , where Ii for i 2 Nx are the pixel values in a neighborhoodof pixel lo
ations 
lose to x and ri(y) the distan
e between the 
andidate
enter y and pixel lo
ation i. Furthermore, C2 is the set of fun
tionsf : R 7! R with se
ond order 
ontinuous derivative and symmetri
 in r.We 
al
ulate ^f using a lo
al quadrati
 kernel estimator with (appropri-ately 
hosen) bandwidth h. The idea behind minimizing the equationabove is to �nd the position of (lo
al) maximum rotational symmetry.We also present a method for estimating the standard error of ea
h parti-
le 
enter estimate, by using a sandwi
h estimator, see for example Owen(2001). A simulation study shows that these standard error estimatesare 
onsistent with the observed root-mean-square errors of the positionestimates. The standard errors of the parti
le position estimates dependon the depth of the parti
le, and are in the range of 0.02 to 0.10 pixels,with larger values for depths further away from the fo
al plane. Thisis 
omparable to the results of Cro
ker and Grier (1996), however ourmethod is not 
on�ned to parti
les of similar appearan
e.A method for nonparametri
 fun
tion estimation when the response valuesare 
ensored at a �xed level, is also introdu
ed in this paper. We modifythe lo
al quadrati
 kernel estimate to take 
are of the 
ensored valuesunder the assumption of normally distributed observation errors. Wehave not found this anywhere else in the literature.Supplementary studies for this paper 
an be found in Chapter 5 wherewe investigate the bias and the mean squared error when estimating the6



CHAPTER 1. INTRODUCTIONintensity pro�les, in parti
ular when the bandwidth is varied. Further-more in Chapter 5, the way the standard errors depend on the size of theneighborhood Nx, for parti
les at di�erent depths, is investigated.Paper II: Depth estimation of 
olloidal parti
les in mi
ros
opyHaving found the parti
le 
enter, the depth is estimated by 
omparingthe pixel values Ii and distan
es ri(y), with templates (intensity pro�les)of the appearan
e of parti
les at di�erent depths. The templates are
onstru
ted by estimating the intensity pro�les of a parti
le at knowndistan
es relative to the fo
al plane. The distan
e in depth between ea
htemplate is 0.20�m. The mat
hing 
riterion we propose here takes 
areof di�erent ba
kground intensities and possible 
ensoring of pixel values,both of whi
h are important features of the images 
onsidered.This empiri
al approa
h to template 
onstru
tion was 
hosen sin
e the-oreti
al derivation of the appearan
e of the latex parti
les at di�erentdepths seems diÆ
ult. For example, a ray-tra
ing methods su
h as Fourieropti
s, used by for example Young et al. (1998) for 
onstru
ting templatesin DIC mi
ros
opy, does not work here sin
e the wavelength of light isin the same order of magnitude as the size of the parti
les. An alterna-tive and more advan
ed approa
h to Fourier opti
s is to use Mie-theory,whi
h was used by Ovryn and Izen (2000) to predi
t the appearan
e ofa polystyrene sphere of diameter 7�m. However this is 14 times biggerthan the parti
les 
onsidered here and it is un
lear to what extent thisapproa
h 
an be applied to our parti
les. In fa
t, the imaging of spheri
alobje
ts is still a topi
 of large theoreti
al interest in the opti
s resear
hso
iety.Other parti
les at known depths were used to validate the estimationpro
edure. The root-mean-square error is 
on
luded to be at least in theorder of the distan
e in depth between the templates, that is 0.2�m, atleast for parti
les not too far away from the fo
al plane.7

CHAPTER 1. INTRODUCTIONPaper III: Estimation of the di�usion 
oeÆ
ient in a mixturemodelIn Paper III we estimate the di�usion 
oeÆ
ient given a set of parti
letraje
tories performing Brownian motion, observed under measurementnoise. However, sin
e some parti
les seems to be �xed, a model is in-trodu
ed with two kinds of parti
les, �xed and di�using. We regard theproblem as an in
omplete data problem sin
e we do not know a prioriwhi
h parti
les are really di�using. The maximum likelihood estimatoris 
omputed via the EM algorithm, see Dempster et al. (1977), and it isshown to be strongly 
onsistent and asymptoti
ally normal, as the num-ber of parti
les approa
hes in�nity, under a reasonable restri
tion on theparameter spa
e. A simulation study shows that the method is robusteven for large measurement errors, and that the estimated parametersare approximately normally distributed even for small sample sizes.The position estimates of the parti
les used in this paper are integer val-ued. They were estimated using a �ltering te
hnique 
alled the rotationalHough Transform whi
h is a 
ommon tool in image pro
essing used for
ir
le dete
tion in images. See for example Gonzales and Woods (2002)or Kerbyson and Atherton (1995). For the full details on estimating thesetraje
tories, the reader is referred to Kvarnstr�om (2002). The reason fornot using the methods developed in Paper I and II for the traje
tories inthis paper, is that Paper III was written �rst.
8



Chapter 2
Data

There are two kinds of images 
onsidered in this thesis, sequen
e imagesand z-s
ans. Sequen
e images are the ones used for inferen
e on proper-ties of the 
olloidal parti
les. An example of su
h an image is given inFigure 1.1. Z-s
ans are images of parti
les at known relative depths fromthe fo
al plane and they are mainly used for 
onstru
ting the templatesused in the depth estimation. In this 
hapter, we will explain the variousaspe
ts of the images together with the general setup of how the imageswere 
onstru
ted.2.1 Instrument setupLatex parti
les made of polystyrene with a diameter of 494nm were pla
edbetween an obje
tive and a 
over glass and sealed. The illumination
onsisted of 
oherent light. The sample was studied in a Zeiss Axiovert135 TV mi
ros
ope equipped with a Newi
on video 
amera. The videosignal was then digitized and stored as TIF �les.Pixel values are stored as unsigned integers in 8 bits. The pixels assumesintegers between 0 and 255 whi
h are interpreted as gray s
ale intensity9

CHAPTER 2. DATAvalues. This means that zero means bla
k while 255 means white. Forpixel values in between, the larger the magnitude, the brighter the shadeof gray.An important e�e
t of this trun
ation to integer values is that we get 
en-soring of pixel values above 255. This is dealt with both in the estimationof parti
le 
enters in Paper I, and the template mat
hing pro
edure of�nding the depth in Paper II. In Figure 2.1 we illustrate 
ensoring byzooming in on two parti
les from Figure 1.1. Below ea
h image, the pixelvalues surrounding the estimated parti
le 
enter (using the method of�nding the position of maximal rotational symmetry from Paper I) areplotted versus their 
orresponding distan
es to the 
enter. We do not have
ensoring for pixel values below 0, however there seems to be a lower limitof pixel values around 30-35. If this is 
ensoring or not is not known.2.2 Sequen
e imagesThe image in Figure 1.1 is an example of what a sequen
e image lookslike. These are the kind of images that will be used to make inferen
e onthe properties of the 
olloidal system of parti
les. On the left in Figure 2.2we have zoomed in on the middle region of size 256 times 256 pixels ofthe sequen
e image in Figure 1.1. To the right of this, the same region inthe next 
onse
utive image in the sequen
e is shown. The movement inthe image plane of the parti
les between two 
onse
utive images are onthe s
ale of a few pixels. In Figure 2.3 we display the di�eren
e betweenthe two images and if it was not apparent from Figure 2.2, we see herethat most of the parti
les have moved.Ea
h image in the video sequen
e 
onsists of 512 times 512 pixels. Ea
hpixel has a side length of 180 nm. The fo
al plane is set at a depthapproximately between the 
over and the spe
imen glass of the samplespe
imen. The maximal di�eren
e in depth (relative to the fo
al plane)is believed to be 15�m. Therefore, the domain in whi
h the parti
lesare 
on�ned, and are available for our inspe
tion through the images,10
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Figure 2.1: Zooming in on two parti
les in Figure 1.1 to illustrate 
ensoring ofpixel values at 255. Below ea
h image the pixel values surrounding the estimatedparti
le 
enter are plotted versus the distan
es to the estimated 
enter. This�gure also demonstrates that the rotational symmetry assumption of pixel valuessurrounding a parti
le 
enter is reasonable.

is a box with equal length of the sides of about 90�m, and a depth of(approximately) 30�m. 11
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Figure 2.2: Magni�ed part of two 
onse
utive sequen
e images. The displa
e-ment in the image plane of the parti
les between two 
onse
utive images is onthe s
ale of a few pixels. In Figure 2.3 we display the di�eren
e between the twoimages.
Figure 2.3: The di�eren
e between the two images in Figure 2.2. Mid-grayrepresents zero. Noti
e that movement in depth is also apparent for some parti-
les.Even and odd framesThe images are re
orded at video rate, whi
h is 50 images (or frames) perse
ond. In pra
ti
e however, only half of the rows in ea
h image 
ontain12



CHAPTER 2. DATAnew information. The 
amera re
ords only half of the rows at ea
h s
an,alternating between the even and odd rows (also 
alled the even andthe odd �elds) and dupli
ates this information to the rows whi
h werenot s
anned. The images are 
alled even and odd frames, respe
tively,depending on whether the even or the odd rows were updated. Theimages of Figure 2.4 show the same region zoomed in, for two 
onse
utiveframes, one even and one odd. Note that the pixels look re
tangular,this is be
ause of the dupli
ation of pixel values from the rows that wasupdated to the ones that where not.There are three possibilities on how to deal with even and odd frames inthe image sequen
e; interla
ing, interpolating, or raw images. Interla
edmeans that two 
onse
utive frames (one even and one odd) are interla
edinto a single image, using the even rows from the even frame and theodd from the odd frame. However, sin
e there is an interval of a 1=50 ofa se
ond between the even and the odd frame, this will 
ause problemswhen we are observing moving parti
les, whi
h is the 
ase here. Figure 2.4illustrates this problem with interla
ing two 
onse
utive frames. Clearly,interla
ing is not a good idea when observing moving parti
les. An alter-native is to interpolate the pixel values. We use the updated rows (thatis, even rows for even frames) and interpolate these to the pixel values onthe non-updated rows (that is, odd rows, for even frames). In the bottomleft image of Figure 2.4 we have displayed the linearly interpolated versionof the even frame (lo
ated straight above in the �gure). However, whatinterpolating does, is just making the image look ni
er to the eye; we donot add information, rather, if anything, we distort the information.For sequen
e images we will therefore use the raw images, by whi
h wemean that we use ea
h frame separately. Pra
ti
ally ea
h frame is animage 
onsisting of 256 times 512 pixel values. The 
oordinates (pixello
ations) to these pixel values then alternates between the two pixel lo-
ations. See the upper images of Figure 2.4. The important thing istherefore to keep tra
k of the lo
ation to whi
h ea
h pixel value 
orre-sponds to; the upper pixel for the even images and the lower for the oddimages. This is important sin
e it is these lo
ations that 
orrespond tothe physi
al lo
ations whi
h we are interested in measuring.13
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(a) (b)

(
) (d)Figure 2.4: Illustration of even and odd frames (images) and the problem withinterla
ing two 
onse
utive frames. The two upper images are the same areazoomed in for two 
onse
utive frames, a) is an even image and b) is an oddimage. Note the dupli
ation of pixel values between rows, making the pixels tolook re
tangular. The interpolated version of a) is shown in 
) and the resultinginterla
ed version, using the even frame for even rows and the odd frame for theodd rows, is shown in d).
14
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Figure 2.5: Z-s
an of parti
les 3.0�m below the fo
al plane. The 22 labelledparti
les are the ones whi
h are adsorbed on one of the 
on�ning glasses of thespe
imen and present in all 73 z-s
ans. The other parti
les in the image iseither moving or not at the same depth relative to the fo
al plane as the labelledparti
les.2.3 Z-s
ansIn order to know what parti
les look like at various depths from the fo
alplane, z-s
ans were 
onstru
ted. In Figure 2.5 we display the z-s
an atdepth approximately 3.0�m below the fo
al plane. We have 73 z-s
ans atour disposal ranging from 7.2�m below to 7.2�m above the fo
al plane.The distan
e in depth between two 
onse
utive z-s
ans is 0.2�m.The z-s
ans have been 
onstru
ted by letting parti
les adsorb on the 
over15
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e of the spe
imen, and then the spe
imen was moved relativeto the opti
s of the mi
ros
ope. However, there are other parti
les thanthe adsorbed ones present in the z-s
ans. In Figure 2.5 the parti
les la-belled with numbers are adsorbed on the glass. These 22 parti
les are theones that were pra
ti
ally �xed in position through all z-s
ans. (We write"pra
ti
ally" sin
e they are moving slightly, about 2 pixels throughoutthe entire sequen
e of z-s
ans.) As seen, there are several other parti
lespresent, some of whi
h are moving but also some whi
h are �xed in po-sition but not adsorbed on the 
over glass. Sin
e the z-s
ans are used todepi
t �xed parti
les, they are presented in interla
ed format; we will seethat the interla
ing e�e
t is visible for moving parti
les.In Figure 2.6 we have zoomed in on the region 
ontaining the parti
leslabelled 6, 8, 10, 11, and 12 for the z-s
an in Figure 2.5 and for threeother z-s
ans. Note that parti
les below the fo
al plane are bright in themiddle and parti
les above the fo
al plane are dark in the middle.Here it is 
lear that other parti
les are present in the z-s
ans. We alsosee the same kind of interla
ing e�e
t for moving parti
les as we saw inFigure 2.4; look at the parti
le to the right above parti
le number 12 inimage a). Furthermore, there are parti
les that seem to be �xed, butat another depth; these are the more vague parti
les, for example to theright below parti
les 6 and 12. These are parti
les adsorbed somewhereelse in the spe
imen, possibly on the outer surfa
e of the glass. Notealso the bla
k dot to the left of parti
le number 11, whi
h looks the samethroughout all z-s
ans and is probably a stain or defe
t in the opti
s. In
) we also see that mobile parti
les in the spe
imen sometimes o

ludethe 22 �xed parti
les; see parti
les number 8 and 11 in 
).Most importantly however, the 22 labelled parti
les in Figure 2.5 seemto be at a slightly di�erent depth relative to ea
h other. In Figure 2.6this is 
learly visible in the z-s
an b), 
orresponding to parti
les at thefo
al plane, and in z-s
an d). Parti
les 8 and 12 seem to be slightly moreabove the fo
al plane (sin
e the are larger and dark in the middle thanthe others). The same is true for all z-s
ans and this also applies to theparti
les labelled 15, 17, 20 and 21 in Figure 2.5. This was also validated16
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(d)Figure 2.6: Zooming in on four z-s
ans. a) is the same z-s
an as in Figure 2.5and b) is the z-s
an 
orresponding to parti
les at the fo
al plane. 
) and d) arez-s
ans 
orresponding to 7.2�m below the fo
al plane and 3.0�m above the fo
alplane. Note that there are other parti
les present and that the labelled parti
lesare (partially) o

luded for some z-s
ans.
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CHAPTER 2. DATAwhen estimating the depth of the parti
les in the z-s
an in Paper II, seebelow.This observation is important when the z-s
ans are used for 
onstru
tingtemplates for depth estimation, and also when validating the performan
eof the depth estimation. The templates for depth estimation in Paper II,were 
onstru
ted using mainly the parti
le labelled number 6. In z-s
answhere parti
le 6 was o

luded by a moving parti
le, parti
le 14 was used.This way, we 
onstru
ted templates of the appearan
e of parti
les atdepth indexed by the z-s
ans, enabling us to estimate the depth of therest of the parti
les in the z-s
ans by 
omparing the appearan
e of theparti
les to the templates. Of 
ourse, sin
e we only had templates forparti
le appearan
e indexed by the z-s
ans, the pre
ision in the depthestimation will be limited by the distan
e in depth between the z-s
ans,at least if no other assumptions are made. Note that sin
e we only havea �nite number of templates, estimating the depth this way is a kind ofa 
lassi�
ation problem.When estimating the depths in the z-s
ans, we raised doubts about if alladsorbed parti
les in fa
t were at the same depth. The parti
les labelled8, 10, 15, 17, 20, and 21 were easily re
ognized as having an o�set indepth relative to the parti
les 6 and 14, whi
h were the ones used fortemplate 
onstru
tion. However, there were also some disturbing depthestimates for other parti
les. The grounds for these doubts were thatwhen the depth of supposedly adsorbed parti
les were estimated, thereseemed to be a systemati
 error in the their estimated depths in the orderof one z-s
an above or below the depth of the template. (See also the nextse
tion.) One should keep in mind that the parti
les are approximately0.5�m in diameter and the distan
e between z-s
ans are 0.2�m. Hen
e,the distan
e between two 
onse
utive z-s
ans is smaller than the radiusof the parti
les. Therefore, some 
u
tuations in estimated depth may bea

ounted to the un
ertainties in the true a
tual depth of the parti
les inthe z-s
ans. 18



CHAPTER 2. DATA2.4 Use of the z-s
ans in Paper I and IIIn Paper I we restri
ted the number of depths 
onsidered in the parti
leposition estimation. We used the z-s
an of parti
les at the fo
al planetogether with every third z-s
an below and above, up to a maximal dis-pla
ement in depth of 4.2�m. We indexed these from -7 to 7. Parti
lenumber 6 was used when 
onstru
ting the true intensity pro�les used inthe Simulation Study (it is also this parti
le that is displayed in Figure2 in Paper I) and in the Result se
tion, parti
les 6, 7, 13, 14, 19 and 19were used when estimating the standard errors for real data.In Paper II we 
onstru
ted the templates using the parti
les labelled 6and 14. We used 61 z-s
ans (of the total amount of 73), from 6�m below,to 6�m above the fo
al plane, and they were indexed from -30 to +30.In a pre-study, we estimated the depth for all non-o

luded parti
les inall z-s
ans and by looking at the median of the o�set in estimated depth,relative to the template parti
les and 
al
ulated over all depths, three
ategories of parti
les stood out; the six parti
le mentioned above, whi
hwere 2 z-indi
es, that is 0.4�m, above the template; parti
le 1, 3, 5 and9 whi
h were 0.2�m below the template; the remaining 12 parti
les hadmedian o�set equal to zero, relative to the template parti
le. It was thislatter 
ategory that was used in the Results se
tion of Paper II, however,parti
les 2 and 4 were not part of the study.
19
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Chapter 3
Position Estimation

3.1 Model of the appearan
e of pixels in the im-agesWe denote an image by I. This is e�e
tively a matrix of pixel values Iifor pixel lo
ations i = (i1; i2) 2 DI � Z2, where DI is the set of pixello
ations i for whi
h the image is de�ned. We will use the terms pixeland pixel lo
ation inter
hangeable to mean the same thing when no riskof ambiguity exists.A parti
le 
enter is denoted by x = (x1; x2) 2 R2 , and to ea
h parti
le, weasso
iate a set Nx � DI of pixels in the image I 
alled the neighborhoodof the parti
le at x. Typi
ally, we letNx = fi 2 DI : ri(x) � rmaxg; (3.1)where ri(x) is the Eu
lidean distan
e from the parti
le 
enter x to thepixel lo
ation i, and rmax is an appropriately 
hosen distan
e.The main assumption is that, for a parti
le 
enter at x 2 R2 and at depth21

CHAPTER 3. POSITION ESTIMATIONz 2 R, we have Ii = fz(ri(x)) + �+ �i for i 2 Nx; (3.2)where fz is 
alled the intensity pro�le for depth z. The image noise,�i for i 2 DI , is assumed to be normally distributed with isotropi
ally
orrelated pixel values. The intensity pro�le is furthermore assumed tobe a smooth fun
tion f : R 7! R with at least two 
ontinuous derivativesand symmetri
 in r. Furthermore, � 2 R 
orresponds to the ba
kgroundintensity in the image and this is generally di�erent for ea
h parti
le. Thisis an important fa
tor to take into a

ount when estimating the depth.In Figure 3.1 we display zoomed-in sub-images of what the parti
les looklike at di�erent depths. The true depth between to 
onse
utive indi
es is0.2�m and index 0 represents the fo
al plane. These sub-images are fromthe z-s
ans. The rotational symmetry assumption seems reasonable, atleast for parti
les not too 
lose to the fo
al plane.3.2 Estimating parti
le positions in 2-DThe idea for estimating the parti
le 
enter in 2-D goes as follows. For aparti
le lo
ated at x 2 R2 , we use the minimizer of equation (1.1) repeatedhere for 
onvenien
eS(y) = minf2C2 Xi2Nx�Ii � f(ri(y))	2 = Xi2Nx�Ii � ^f(ri(y))	2for y 2 R2 , as an estimate of x. The idea behind minimizing equa-tion (1.1), is to �nd the position of (lo
al) maximal rotational symmetry.This method of estimating the parti
le 
enter in the image plane to sub-pixel a

ura
y is dealt with in Paper I.In pra
ti
e, we 
al
ulate ^f using a lo
al quadrati
 kernel estimator with aGaussian kernel with (appropriately 
hosen) bandwidth h. Referen
es onnonparametri
 fun
tion estimation are, for example Hastie and Tibshirani(1990), Fan and Gijbels (1996), or or Gy�or� et al. (2002). In Paper I, we22
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Figure 3.1: The appearan
es of parti
les at di�erent depths relative to thefo
al plane. Sub-image 0 
orresponds to a parti
le at the fo
al plane, and sub-images with negative and positive labels are below and above the fo
al plane,respe
tively. The distan
e in depth between two 
onse
utive label numbers is0.2�m.introdu
ed a modi�
ation of the lo
al quadrati
 kernel estimates whenthe response variables are 
ensored above a 
ertain (known) value. We
all this 
ensored regression. If nothing else is said however, when talkingabout the lo
al quadrati
 kernel estimate, we mean the standard lo
alquadrati
 kernel estimates, without taking 
are of 
ensored pixel values.A simulation study, the results of whi
h are presented in Paper I, showedthat the di�eren
e in estimating the parti
le 
enter is very small betweenusing the 
ensored and standard lo
al quadrati
 method.The reason for 
hoosing the lo
al quadrati
 kernel estimate as nonpara-metri
 method, instead of for example a spline smoother, is that the23

CHAPTER 3. POSITION ESTIMATIONestimate of the derivative of f is pra
ti
ally given to us for free using alo
al quadrati
, and the derivative is needed when estimating the stan-dard errors (see Paper I for details). The Gaussian kernel was 
hosensin
e it is smooth and has unbounded support, whi
h makes the fun
tionS di�erentiable. Regarding the 
hoi
e of bandwidth, simulation studieshave shown that the 
hoi
e of bandwidth is not very important whenestimating the parti
le 
enters (see Chapter 5). This is good, sin
e oneof the main ideas with this method (that is, minimizing equation (1.1))of estimating parti
le 
enters, is that it should be appli
able to parti
leswith di�erent appearan
es, as long as they look rotational symmetri
 inthe image. The idea presented in Paper I was to use a pilot bandwidthhpilot of 0.7 to �nd a �rst, preliminary parti
le 
enter and then update thisbandwidth with a 
ross-validation study. Then the �nal 
enter estimateis 
al
ulated using the updated bandwidth.Regarding the neighborhoods, we will in Chapter 5 
ondu
t a study ofhow the standard errors in the 2-D estimation depends on rmax. Also,when two or more parti
les are 
lose together however, the assumptionin (3.2) these 
ir
ular neighborhoods with a �xed rmax does not apply,if the neighborhoods of the parti
les interse
t. In Chapter 4, we willpresent a way to 
ir
umvent this, by adaptively sele
ting the shape of theneighborhood a

ording to nearby parti
les. Another aspe
t 
on
erningthe 
hoi
e of neighborhoodNx by (3.1), is that it depends on the unknown
enter x. Nevertheless, if we are given an approximate parti
le 
entery0, we let Nx = Ny0 where Ny0 is de�ned by equation (3.1) for x =y0. Approximate parti
le 
enters 
an be given either manually, or bysome automati
 image analysis method. Below, we will present one su
hautomati
 method.Candidate parti
le 
entersBefore we 
an estimate the parti
le 
enter by minimizing the 
riterion (1.1),dealt with in Paper I, we need to have a �rst approximate position. We
all these approximate positions 
andidate parti
le 
enters. Candidateparti
le 
enter are usually integer valued positions if they are the results24



CHAPTER 3. POSITION ESTIMATIONfrom an image analysis stage using some �ltering te
hnique (with appro-priate post-pro
essing). For tra
king in sequen
e images however, we willuse the position estimates in the previous image as 
andidate parti
le
enters and this is dealt with in Chapter 4. Below, we will present oneidea to a �ltering te
hnique for getting 
andidate parti
le 
enters.Lo
al maximal rotational symmetryWe will here introdu
e a (non-linear) �lter that 
ould be used to �ndpositions of lo
al maximal rotational symmetry. It is also presented togive the 
avor of the diÆ
ulties one run into when trying to automati
ally�nd the obje
ts of interest in an image, parti
ularly when the sought-afterobje
ts are di�erent in appearan
e.The main 
omputational e�ort in the minimization of (1.1), is spent on
al
ulating the nonparametri
 estimate of the intensity pro�le f at ea
h
andidate position y. In parti
ular, mu
h of the e�ort is spent on 
al-
ulating the distan
es ri(y) and the inter-distan
es between these, whi
hare needed when 
al
ulating the weights in the equivalent kernels. Ea
hestimate ^f(ri(y)) in a lo
al quadrati
 kernel estimate 
an be written as alinear 
ombination of response values (pixel values):^f(ri(y)) = Xj2NyWijIjfor all i. The ith row of the matrix W is the equivalent kernel for theestimated value at point ri(y). The elements in the matrixW only dependon ri(y) and the bandwidth h. (This is however not true if we use themodi�ed version of the lo
al quadrati
 kernel estimate, that takes 
are of
ensored pixel values.)If y 2 DI , that is, if the 
andidate 
enter is an (integer valued) pixello
ation, and we use Ny as neighborhood, the set of distan
es ri(y) fori 2 Ny are the same for all y 2 DI (apart of 
ourse from pixels near theboundary of the image). Therefore, sin
e the matrix of equivalent kernelsdepend only on ri(y), the matrix W only has to be 
al
ulated on
e. This25

CHAPTER 3. POSITION ESTIMATIONspeeds up things 
onsiderable. Assuming there are n pixels in Ny, the
al
ulation of W takes O(n2) multipli
ations into a

ount, whi
h for theoriginal minimization of equation (1.1) has to be done for ea
h y sin
ethe distan
es ri(y) are di�erent for ea
h y 2 R2 . Given the matrix W ,the 
al
ulation of S(y) takes n2 multipli
ations.Note that this approa
h is di�erent from the method of minimizing (1.1),in the way that Ny here 
hanges with y. In (1.1) we �rst �x the neighbor-hood Nx and then sear
h for the minimizer of S(y). Therefore, in orderto separate the two sums, we denote by Spix, the pixel-wise 
al
ulation ofS introdu
ed aboveSpix(y) = Xi2Ny�Ii � ^f(ri(y))	2 = Xi2Ny�Ii � Xj2NyWijIj	2 (3.3)for y 2 DI . The matrix W does not depend on either y or the pixelvalues Ii whi
h is the important fa
t about Spix. It depends only on thebandwidth h and the radius of the neighborhood rmax.In Figure 3.2a we display a sub-region of a sequen
e image. In b) wedisplay Spix 
omputed for this image with rmax = 6 and bandwidth h =0:7. Sub-�gure 
) is the same as b) but displayed as a 
ontour plot. Theidea is to use the lo
al minima of Spix as 
andidate parti
le 
enters.Now we 
an use morphologi
al operations to �nd the lo
al minima. The
lassi
al referen
e of morphology in image analysis is Serra (1982). Toextra
t the minima, we will preform an operation 
alled bottom hat. Itis de�ned as follows. First we de�ne a stru
turing element B, whi
h wehere let be a ball in the image plane of radius r. For an image J , the
losing JB of J using stru
ture element B is de�ned asJB(i) = mink2Bifmaxm2Bk J(m)gwhere Bi is the stru
ture element 
entered at i. Finally, the bottom hatof J is de�ned as the di�eren
eJbothat = JB � J26
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(a) (b)

(
) (d)Figure 3.2: A sub-region of an sequen
e image a), together with its Spix inb). In 
) we display the logarithm of Spix as a 
ontour plot instead, makingit somewhat easier to lo
alize the lo
al minima in Spix, whi
h are to used as
andidate parti
le 
enters. In d) we show the result of a morphologi
al operation
alled bottom hat to Spix. In Figure 3.3, the result after thresholding the imagein d) 
an be seen.
27
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losing JB and the original image J . In Figure 3.2d, thebottom hat of Spix in Figure 3.2b is shown, using a ball with radius 3 asstru
turing element (that is, all pixels within radius 3 from origo).All values in the bottom-hat �ltered Spix that are below a 
ertain thresh-old t are set to zero, and the largest element in ea
h 
onne
ted 
omponentin this thresholded image is denoted a 
andidate parti
le 
enter. In Fig-ure 3.3, we have plotted the original sub-image from Figure 3.2, togetherwith the 
andidate parti
le 
enters using threshold t = 10. As seen fromthe �gure, the operation with �nding the positions lo
al rotational sym-metry works fairly well, most of the true parti
les have been found andonly a few false parti
les were found. The true parti
les that were missed,were all parti
les 
lose to other parti
les. The reason for this is of 
oursethat parti
les 
lose together, disrupt the rotational symmetry.One problem with using a �ltering method like the one illustrated above,is the large number of parameters, whi
h were here 
hosen more of lessad ho
. The parameters here are four: the bandwidth h, the size of theneighborhood rmax, the radius r of the stru
turing element, and �nally,the threshold t.Even though a �ltering step like this is not good enough for �nding allparti
les present in an image, it 
ould be used as a "wat
h-dog" to look for"intruder parti
les" that 
omes into the image domain as we are tra
kingparti
les.3.3 Estimating the depthThe idea for estimating the depth, as presented in Paper II, goes as fol-lows. After a parti
le 
enter has been estimated in the image plane, weestimate the depth by 
omparing the pixel values Ii and their distan
esri(^x) from the estimated 
enter ^x with a set of templates intensity pro�lesof what parti
les look like at di�erent depths. The 
orresponding depthof the one that gives the best 
orresponden
e is the estimate of the depthof the parti
le. Consequently, what it 
omes down to, is to 
onstru
t28
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Figure 3.3: The resulting 
andidate parti
le 
enters after thresholding thebottom-hat �ltered Spix and taking the maxima in ea
h 
onne
ted 
omponent.The result is fairly good, the only true parti
les missed, are the ones that are
lose to other parti
les.templates and to �nd a suitable measure on what best 
orresponden
emeans.The templates were 
onstru
ted by estimating the intensity fun
tion ofthe adsorbed parti
les at di�erent depths in the z-s
ans, see Se
tion 2.3.Sin
e the exa
t true depth of the parti
les in the z-s
ans were hard toverify (see the dis
ussion in Se
tion 2.4), we fo
used on using as fewparti
les possible when 
onstru
ting the templates. We used mainly theparti
le labelled number 6 in Figure 2.5 but for the z-s
ans in whi
h thiswas o

luded, parti
le 14 was used instead.29

CHAPTER 3. POSITION ESTIMATIONIn Figure 3.1 we have displayed the appearan
e of parti
les at a subset ofdepths used for template 
onstru
tion. The template intensity fun
tionfor these depths are plotted in Figure 3.4. These pro�les were estimatedusing the modi�ed version of the lo
al quadrati
 kernel estimate, taking
are of 
ensored pixel values above 255. That this is the 
ase, is evidentfrom the observation in Figure 3.4 that the pro�les are assigned valuesgreater than the 
ensoring limit 255. The template pro�le for depth z isdenoted fz.To measure best 
orresponden
e between template and pixel values sur-rounding a parti
le that we want to estimate the depth of, we use the
riterion fun
tionM(z) = 1�2 Xi2AT�Ii�^�z�fz(ri(x))	2�Xi2A
T logn��fz(ri(x)) + ^�z � T� �o(3.4)where ^�z is the minimizer of the expression (3.4) viewed as a fun
tion ofboth z and �, but where we keep z �xed. As seen, this 
riterion fun
tiontakes 
are of both 
ensored pixel values for the parti
le that we wantto estimate the depth for, and, in fa
t more importantly, the di�erentba
kground intensities � (see the assumption regarding the appearan
esof parti
les in the images in equation (3.2)).The main problem with this approa
h to depth estimation is �rst that weonly have a �nite set of template pro�les, indexed from -30 to -30, thuslimiting the pre
ision by the 
orresponding depth between the indi
es of0.2�m. Also, sin
e it is the 
over glass that is moved relative to the opti
sof mi
ros
ope when 
onstru
ting the z-s
ans, it is important that theparti
les from whi
h we estimate the templates, are at the same relativedepth to the 
over glass in all z-s
ans. Otherwise the distan
e in depthbetween ea
h template will not be the same between the templates.In Paper II, a simulation study showed a good pre
ision in depth estima-tion, at least for parti
les within 3.0�m from the fo
al plane (
orrespond-ing to index -15 to 15 in Figures 3.1 and 3.4). For these depths, the depthwas only mis
lassi�ed for 14 simulations out of 25000. One obje
tion tothis highly optimisti
 result should be that the image noise seems to have30



CHAPTER 3. POSITION ESTIMATION

0 5 10 15

50

100

150

200

250

300

r

f

(a) indi
es -30 to -12 (in steps of 3) 0 5 10 15

50

100

150

200

250

300

r

f

(b) indi
es -10 to -4

0 5 10 15

50

100

150

200

250

300

r

f

(
) indi
es -3 to 3 0 5 10 15

50

100

150

200

250

300

r

f

(d) indi
es 4 to 10
0 5 10 15

50

100

150

200

250

300

r

f

(e) indi
es 12 to 30 (in steps of 3)Figure 3.4: A subset of the template pro�les used for template mat
hing in thedepth estimation. The distan
e between two 
onse
utive indi
es is 0.2�m. Thesub-�gures 
orrespond to the rows in Figure 3.1.31
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e for parti
les 
lose to the fo
al plane, as reported in PaperI. Even so, 
ompared with the result for the real images for these depths,the 
on
lusion is that the template mat
hing approa
h works well andthe pre
ision is at least within one z-index of the z-s
ans, 
orrespondingto �0.2�m. Compared with the standard errors for estimating the 
enterin the plane, whi
h were between 0.02 and 0.10 pixels (3.6nm - 18nm) isis of 
ourse mu
h worse.3.4 2-D template surfa
e for sub-index estima-tionWe will here present an idea on how to 
onstru
t a bivariate regressionsurfa
e fz(r), as a fun
tion of both depth z and distan
e from 
enter rsimultaneously. This will lead us in to a dis
ussion on how to measure thedistan
es between two intensity pro�les, whi
h obviously is also a 
ru
ialmatter in depth estimation. The mat
hing 
riterion (3.4) presented above,is basi
ally the L2-norm, but it is quite unsatisfa
tory from a theoreti
alpoint of view sin
e it does not take spe
ial 
onsideration of the fun
tionalfeatures of the intensity pro�les, su
h as for example the �rst stationarypoint of the intensity pro�le.We re
ord the pixel values Ii and 
orresponding distan
es ri(x) surround-ing an adsorbed parti
le in the z-s
ans for ea
h depth z we want to esti-mate the template for. To illustrate what a template surfa
e might looklike, we have in Figure 3.5 displayed the bivariate regression surfa
e 
al
u-lated via a lo
al bilinear kernel estimate. No spe
ial 
are have here beentaken to 
ensored pixel values. In Figure 3.6 we present the templatesurfa
e as an image instead.The bandwidths for the bivariate regression are two; the �rst, hr, is forthe r-dire
tion (in the same way as before), and the se
ond, hz is for thedepth z. For the template surfa
e in Figure 3.5, both bandwidths were afun
tion of z. For the bandwidth in the r-dire
tion, hr, this is the sameas we did in Paper I and II when estimating the intensity pro�les for ea
h32
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Figure 3.5: The two-dimensional template surfa
e of intensity pro�les 
on-stru
ted via a lo
al bilinear kernel estimate. The estimation, as well as thepresentation here, was split in two parts, one ea
h for parti
les below and abovethe fo
al plane, respe
tively. The reason for this is the apparent phase shift atthe fo
al plane. No 
onsideration to 
ensoring has been done here.33
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15 Figure 3.6: The same two-dimensional template surfa
e as in Figure 3.5 pre-sented as an image and re
e
ted around r = 0.depth; parti
les 
lose to the fo
al plane need a small bandwidth hr andvi
e versa for parti
les further away from the fo
al plane. The amount ofsmoothing in the z-dire
tion is 
hanged sin
e the resemblan
e in appear-an
e between parti
les at 
onse
utive z-s
ans varies (see Figure 3.1 andFigure 3.4) with depth. For parti
les further away from the fo
al plane,smoothing between the depths 
an be quite large, whereas for parti
les
lose to fo
al plane, one must be 
areful not to smooth to mu
h. This isan important point and has to do with how we measure distan
e in thefun
tional spa
e of intensity pro�les, whi
h we will get ba
k to below. Themost extreme o

urren
e of this, is obviously the di�eren
e in appearan
ebetween a parti
le at the fo
al plane 
ompared to a parti
le just below(see Figure 3.4). Be
ause of this, the estimation of the template surfa
ein two parts, one for parti
les below and one for parti
les above the fo
alplane. In e�e
t, this means that we do not allow for any smoothing inthe z-dire
tion at z = 0.The main bene�t of a template surfa
e instead of a set of template pro�lesfor a �xed number of depth, is that we 
an use the template surfa
e toestimate what a parti
le would look like at an arbitrary depth. Hen
e,at least in theory, we 
an use this surfa
e to estimate the depth for a34
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ontinuously varying z. Another bene�t is that we 
an get estimates ofthe standard error of a depth estimate, using the same approa
h as weused for the 2-D estimation. The reason for this, is that we 
an estimatethe derivative of fz(r) in the z dire
tion. Compare with the standarderror derivation in Se
tion 3 in Paper I.Possibly the main problem with using a 2-D template is the smoothing inthe z dire
tion. This problem is related to the notion of distan
e betweenthe intensity pro�le for di�erent depths. For two parti
les at di�erentdepths, it not really 
lear how to smooth (or interpolate for that matter)the 
orresponding pixel values from the two parti
les, if the obje
tive isto estimate the appearan
e (that is, the intensity pro�le) of a parti
le ata depth between. The way one usually does it, is to, for �xed r, smootha
ross the z dire
tion. Let us for arguments sake, say that the intensitypro�le of the �rst parti
le has a peak at this r, and the intensity pro�leof the se
ond parti
le "almost" has a dip at this r (this is almost the 
asefor parti
les 
lose to the fo
al plane). Then the resulting estimate for thedepth between the two parti
les be
omes something in-between. In these
ases, the smoothing in the z-dire
tion must be quite small, whi
h werethe 
ase in the 
omputation of the template surfa
e in Figure 3.5.
35
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Chapter 4
Tra
king

The methods from the previous 
hapter will here be 
ombined to illus-trate the possibilities the positioning methods in three dimensions give totra
king. Possibly more, however, various problems for tra
king 
olloidalparti
les in a dilute suspension using a large fo
al depth, as is the 
asefor the sequen
e images 
onsidered here, will be highlighted.In Figure 4.1 we demonstrate what o

lusions might look like. The parti-
les depi
ted in the two images are the two big parti
les in the upper partof Figure 3.2a. The image on the right, b), is re
orded 20 time steps (0.4se
) after the image on the left. As 
an be observed in the images, the twoparti
les (opti
ally) interfere with ea
h other, 
ausing a partial o

lusionof the bright parti
le on the left. In b), the bright parti
le is almost fullyo

luded by the dark one. Note however that the a
tual parti
le 
entersin 3-D are far apart.Remember that 50 sequen
e images are re
orded ea
h se
ond and thatthe video 
amera alternates between updating the even and the odd rowsin the image. See Se
tion 2.2 for further details. The sequen
e starts withan even frame and then alternates between even and odd.We will present a method that manages, to some extent, to handle dis-37
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(a) (b)Figure 4.1: The two images demonstrate o

lusion of parti
les. The imageregion is the same in both images, however the image b) is re
orded 20 timesteps (0.4 se
) after a).tortion and partial o

lusion. First we will however dis
uss two di�erentapproa
hes to linking position estimates of parti
les to traje
tories.4.1 Linking positions to traje
toriesAssume �rst that our sequen
e of images only 
onsists of two images.Now we want to tra
k the parti
les present in the two images. There arebasi
ally two methods to do this. Either we �rst �nd all the parti
lesin the two subsequent images and then �nd the 
orresponden
es betweenthe two sets of parti
le positions, or we �nd the parti
les in the �rst imageand then, for ea
h parti
le in the �rst image, sear
h in the vi
inity of thisparti
le in the se
ond image for the 
orresponding parti
le.There are pros and 
ons with both methods. For the �rst method, thedrawba
ks 
ompared to the se
ond are two: We do not use our knowledgeof the positions of the parti
les in the previous image, and also, we have38
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orresponden
es between the parti
les in the two images afterwe have estimated their positions. The drawba
k of the se
ond method,is, at least unmodi�ed, that it only allows for tra
king of parti
les foundin the �rst image.As we saw in Se
tion 3.2, it is very hard to �nd a method of �nding allthe parti
les in an image without a large amount of false parti
les, thatis, 
andidate parti
le positions that do not 
orrespond to true parti
les.Hen
e, we have to allow for a lot of false positives sin
e we do not wantto fail to hit the true parti
les, and 
onsequently, the linking pro
edureof �nding 
orresponden
es will involve a lot of 
andidate parti
les andinevitably be
omes tri
kier. Examples in the literature of �nding 
orre-sponden
es between sets of point patterns are Lund and Rudemo (2000),were 
orresponden
es between estimated tree positions from aerial pho-tographs and the true positions were linked, or Cross and Han
o
k (1998),where the two sets of points were assumed to be the same up to an aÆnetransformation plus a Gaussian error in the positions and where the falsepoints were modelled by a Poisson pro
ess.One simple approa
h to tra
king would be: Manually assign the 
andi-date parti
le positions in the �rst image, re�ne these positions, and thenupdate the positions for ea
h new image using the information 
ontainedin the previous parti
le 
on�guration.4.2 Handling partial o

lusionLet us start by 
onsidering the image on the left in Figure 4.1. Denotethe true 
enters of the two parti
les in this image by x1 and x2, wherex1 is the true 
enter of the brighter parti
le on the left. Assume we aregiven initial 
andidate 
enters y1 and y2, for example from the �lteringmethod in Chapter 3 of �nding the lo
al maximal rotational symmetry.Using all pixels within let us say rmax = 15 from a 
andidate 
enter asneighborhood, the two neighborhoods Nx1 and Nx2 would interse
t, withthe result that they would use the same pixels for estimating the parti
le39
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enters. This is illustrated in Figure 4.2a, where the 
andidate 
entersare indi
ated by plus signs and where the two neighborhoods are we haveplotted a 
ir
le of radius rmax = 15 around ea
h 
andidate 
enter.The 
orresponding results from the two optimizations of S in equation (1.1),using these neighborhoods for the two parti
les, would a�e
t the parti
le
enter estimation in the plane, most probably with a bias dire
ted awayfrom the other parti
le. The reasoning behind this, is that the positionof lo
al maximal rotational symmetry would be pushed away from theinterfering parti
le. In Figure 4.2b we have plotted the s
atter plot ofpixel values within 15 pixels away from the 
andidate 
enter y1 for thebright parti
le in Figure 4.2a. We 
learly see the interfering pixel valuesresulting from the fa
t that there is another parti
le nearby.An easy way to get around this, at least to some extent, is to allow pixello
ations to be part of Nxk to the kth parti
le, only if the 
orresponding
andidate 
enter yk is 
losest to the pixel among the other 
andidate
enters. Let K denote the set of 
andidate 
enters in the image. Thenwe let the neighborhood of the kth parti
le beNxk = �i 2 DI : ri(yk) � rmax and ri(yk) = minm2K ri(ym)	: (4.1)Compare this with equation (3.1). This de�nition of neighborhood thusrequires that we are given a set of 
andidate 
enters. In Figures 4.2
and 4.2d, we display what the two neighborhoods look like by letting thepixel values be bla
k for the pixel lo
ations that are in the neighborhoodof the other parti
le.In Figure 4.3 we plot all pixel values within distan
e 15 from the two
andidate parti
le 
enters. The pixel values in the two neighborhoodsillustrated in Figure 4.2
 and 4.2
, respe
tively, are however displayedwith dots and the others are displayed with plus signs. It is obvious thatthe pixels outside the 
orresponding neighborhoods are interfering.Furthermore, we will iteratively update the neighborhoods a

ording to(4.1) as we are minimizing the 
riterion for maximal rotational symme-try (1.1). After the parti
le 
enter in the plane has been found, the depth40
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(b)

(
) (d)Figure 4.2: In a), the two plus signs are the two 
andidate parti
le 
enters.The two big 
ir
les have radii 15 and are 
entered at the 
andidate 
enters,representing possible neighborhoods of the parti
les. In b) there is a s
atter plotof the pixel values up to distan
e 15 from the 
andidate 
enter on the left ina). In 
) and d) we demonstrate what the modi�ed neighborhoods, de�ned byequation (4.1), look like, where a bla
k pixel represents that the pixel is 
loserto the other parti
le.
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Figure 4.3: S
atter plots of the pixel values surrounding the estimated 
entersof the two parti
les in Figure 4.2a. The pixel values not in the 
orrespondingneighborhood but within distan
e 15 from the 
andidate 
enter are displayedwith plus signs.is estimated as in Paper II. Note that the pre
ision in the position esti-mates will usually be worse when using smaller neighborhoods (
omparewith the simulation study in Se
tion 5.1). Furthermore, the pre
ision ofthe parti
le 
enter estimate in the plane, will in general di�er for the two
oordinates.The proposed algorithm for tra
king in 3-D is as follows:1. Cal
ulate the distan
es between the 
andidate parti
le 
enters and
onstru
t the neighborhoods to ea
h parti
le a

ording to equa-tion (4.1).2. Minimize the lo
al rotational symmetry fun
tion S for ea
h parti
leusing the 
orresponding neighborhood from Step 1.3. Use the minimizers from Step 2 as 
andidate 
enter and go to Step1. Continue this until there are no 
hanges in the position estimates.4. Estimate the depth for ea
h parti
le using template mat
hing.5. Load a new image from the sequen
e and let the estimated positionfrom above be the 
andidate 
enters for the new image. Goto Step1. 42



CHAPTER 4. TRACKING4.3 Results for tra
king two parti
lesThe two parti
les in Figure 4.1 were tra
ked using the proposed algorithmabove. However, for the 16:th image the estimation broke down. Thiswas indi
ated by that the estimated positions of the parti
les pra
ti
ally
oin
ided.In Figure 4.4a we show the same region as before, but for the 15:th imagein the sequen
e together with the 
enter estimates of the two parti
lesin this image, after having tra
ked them for 14 images. A plus sign sur-rounded by a small 
ir
le will indi
ate a resulting parti
le 
enter estimate.We see that the two parti
les have moved slightly towards ea
h other,
ompared to the initial image in the sequen
e. Here, one 
ould possiblyargue that the estimated 
enter of the parti
le on the left is somewhatbiased downwards to the left.The estimated 
enters in Figure 4.4a are used as 
andidate 
enters forthe next image in the sequen
e, whi
h is shown in Figure 4.4b togetherwith the 
andidates. This next image 
omes from an odd frame, seeSe
tion 2.2. It seems as if both parti
les have moved upwards in the imageplane. However, it is easy to be de
eived by the eye sin
e a transitionfrom an even to an odd frame has the e�e
t that everything seems to havemoved upwards in the image.As shown in Figure 4.4
, the estimation of the 
enter of the parti
leon the left does not work. There are probably several reasons for thisbreakdown, but the main underlying 
ause is of 
ourse that one of theparti
les is heavily o

luded by the other. Probably a more restri
tive
hoi
e of neighborhood would be able to tra
k both parti
les past thisimage. A few modi�
ations in this dire
tion will be dis
ussed below.Nevertheless, it is hard to believe that it would be possible to tra
k bothparti
les past the image on the right in Figure 4.1, whi
h is the 21stimage in the sequen
e. There, the dark parti
le almost totally o

ludesthe bright one.When the position of a parti
le is wrongly estimated, we say that we43
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(a) Image 15 (b) Image 16
(
) Image 16Figure 4.4: The resulting estimates of the parti
le 
enters for the 15:th imageis shown in a). In b) the estimates from a) are plotted on the next image (whi
his an odd frame). The estimated positions for image b) is displayed in 
) and
learly the tra
king of the parti
le on the left has broke down.lose the parti
le and 
all it a lost parti
le. Dete
ting the loss of a parti
leshould not be hard. By looking at the in
rements of the parti
le traje
tory44



CHAPTER 4. TRACKINGand at the distan
e to its nearest parti
les, it should be easy to dete
t theloss of a parti
le. A lost parti
le should probably not be dis
arded. Themain bene�t of the approa
h presented above for tra
king, is that we getestimates of where the other parti
les in the image are lo
ated. One 
ouldsay that these estimates tell us when to be 
autious about whi
h pixelsto 
hoose when estimating the 
enter. A lost parti
le should therefore bekept sin
e it signals that there 
ould be another parti
le present in thispart of the image.4.4 Modi�
ationsThere are of 
ourse numerous ways to modify the presented tra
king al-gorithm above. We here present a few ideas. Mu
h of the issues have astrong algorithmi
 nature, by whi
h we mean that mu
h is asso
iated withvarious tri
ks used in the implementation of tra
king, however inspiredby statisti
al and probabilisti
 reasoning.First of all, the presented method of tra
king does not make use of thedepths of the parti
les in the previous image in the sequen
e. As is the
ase for the positions in the image plane, the depths of the parti
les 
annot
hange so mu
h in the time interval between two 
onse
utive sequen
eimages. A modi�
ation would be to in
orporate the information of theappearan
e of the parti
les in the previous image when 
onstru
ting theneighborhoods of the parti
les in the present image, sin
e this tells ushow big the domain of interfering pixels is.More generally, this brings up the subje
t of using di�erent shapes ofneighborhoods to parti
les in the image. The method we presented isbased on dividing the image plane into Voronoi 
ells. More elaboratemethods 
ould of 
ourse be used. One possibility would be to modifyequation (4.1) su
h that the distan
e ri(yk) must be smaller than a 
on-stant 
 < 1 times the minimum distan
e to the other 
andidate 
entersminm2Knfkg ri(ym). The reason why this is believed to perform better, isthat pixels in the region in-between parti
les are a�e
ted by both of the45
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les, and hen
e should not be used for positioning at all.One 
ould also in
orporate dete
tion of outliers in the s
atter plot ofpixels in the neighborhood 
ompared to the �tted intensity pro�le. It isimportant then to relate the possible outliers, to where in the image theyare lo
ated, in other words, we have to in
orporate the spatial nature ofthe data. Drawing 
on
lusions on outliers simply from pixel values plottedversus distan
e, is highly unsafe. Only if a possible group of outliers inthe one-dimensional s
atter plot 
an be spatially related in some way,
an we allow to dis
ard them. (By spatially related pixels, we meanpixels that are 
onne
ted in the image plane.) This is the main reasonwhy a robust method su
h as the LOWESS (lo
ally weighted s
atterplot smoother), Cleveland (1979), was not used for the nonparametri
estimation of f in the estimation of parti
le 
enters in the plane. Oneway to spatially relate outliers 
ould be to dis
ard them only if they aresuÆ
iently 
lose to the boundary of the neighborhood used. This way,we 
ould let the neighborhood shrink, as outliers near the boundary aredis
arded.
46



Chapter 5
Supplementary studies

We will present some supplementary studies based on simulations whi
hmight be of interest when reading Paper I and to some extent Paper II.Therefore it is advisable to have read at least Paper I before reading this
hapter.5.1 Dependen
e between the size of Nx and thestandard error in the 2-D estimationWe will investigate how the estimated standard error of the parti
le 
enterestimate varies as a fun
tion of rmax, when 
ir
ular neighborhoods Nx,as in equation (3.1), around the parti
le 
enter x, are used.As in Paper I, we let g denote the Rn valued fun
tion of x = (x1; x2) withkth element gk(x) = ^f(rik(x)). Also, J denotes the Ja
obian of g, then times 2 matrix with element �J(x)�k;m = �gk�xm (y) for k = 1; : : : ; n andm = 1; 2. The sandwi
h estimator of the varian
e matrix Varf^xg of theestimated position error at the true 
enter x isV = (JTJ)�1JT�J(JT J)�1: (5.1)47
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e matrix of the residuals between the pixel valuesand the 
orresponding estimates of f .In this simulation study, the intention is to fo
us on the dependen
e ofrmax on the diagonal elements of ^V . Therefore we will use the true (butrandom) value of the parti
le 
enter x. Furthermore, instead of estimatingthe image noise parameters as we did in the simulation study of Paper I,the true values of the image noise parameters �2 and 
, will be used. Theelements of J are approximated in the same way as in Paper I, that is,by the estimated derivatives of the intensity pro�le.For ea
h simulated image I with random parti
le 
enter x, we 
al
ulatedV for rmax between 3 and 15 from the true 
enter x. The parameters ofthe image noise were �2 = 25 and 
 = 0:6.Let �m(rmax) be the square-root of the maximal element of the two di-agonal elements of V for the mth simulated image with rmax as radiusof the neighborhood Nx. In Figure 5.1 the result after M = 100 simu-lations ea
h for parti
les 3�m below and above the fo
al plane is shown.These depths 
orrespond to indi
es �5 in Paper I. For ea
h rmax, themean ��(rmax) = M�1PMm=1 �m(rmax) over the M simulated images, isdisplayed. Below this, we have plotted the intensity 
urve fz used in thesimulation. See also Figures 5.2 and 5.3, where the same kind of depen-den
e is illustrated, this time for parti
les �1:8�m and �4.2�m from thefo
al plane, 
orresponding to depths indexed by �3 and �7 in Paper I.The observation made from the plots, is that the way �� varies with rmax,
learly seems to depend on fz. After ea
h point r where fz has zeroderivative (that is, after ea
h stationary value of fz), the standard errorseems to drop. Furthermore, the magnitude of this dip depends on thedistan
e from the parti
le 
enter, r. Then, for a suÆ
iently big rmax,the in
rease in rmax does not seem to a�e
t the standard error. Notealso the non-symmetry around the fo
al plane in ea
h �gure; the plots onthe left and right represent parti
les at the same distan
e from the fo
alplane, but the shapes of the standard error 
urves are di�erent. This is
onsistent with that the lo
ation of the �rst stationary value of fz forr > 0 is 
loser to r = 0 for a parti
le below the fo
al plane than for a48
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fFigure 5.1: The upper 
urves show how the estimated standard error from thesandwi
h estimator varies with rmax for a parti
le 3�m below (left) and above(right) the fo
al plane, respe
tively. Below the 
urve, the 
orresponding intensitypro�le for the parti
le is shown. The way the standard error varies with rmax
learly depends on the underlying intensity 
urve. These depths 
orrespond todepths -5 and 7 in Paper I.
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fFigure 5.2: The same as Figure 5.1 but here for parti
les 1.8�m below (left)and above (right) the fo
al plane. These depths 
orrespond to -3 and 3 in PaperI.parti
le at the same distan
e, but above the fo
al plane; 
ompare the twointensity pro�les to the left and right in ea
h �gure.The 
omputational e�ort of 
al
ulating the estimate of the intensity pro-�le at a 
andidate 
enter y from pixels in a neighborhood Nx with radius49
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fFigure 5.3: The same as Figure 5.1 but here for parti
les 4.2�m below (left)and above (right) the fo
al plane. These depths 
orrespond to -7 and 7 in PaperI.rmax, in
reases quadrati
ally in rmax. Therefore there is a trade-o� be-tween in
reased pre
ision in the estimated parti
le 
enter and the time ittakes to estimate the 
enter. As seen from Figure 5.1, 5.2, and 5.3, aftera 
ertain value of rmax, depending on depth of the parti
le, there is node
rease in standard error as we in
rease the neighborhood. Therefore,there is no need to use a larger neighborhood than ne
essary. On theother hand, sin
e the depth of the parti
le is unknown, we want to usethe same rmax for all parti
les. rmax = 15 seems to be a good 
hoi
esin
e this in
ludes the major 
u
tuations of the intensity pro�les for themajority of the depths 
onsidered.There are also times when a small rmax is preferable (when the shape ofNx is �xed). This is the 
ase when parti
les are 
lose together sin
e thenthe assumption of rotational symmetry might not be ful�lled if rmax istaken too large and 
onsequently we probably get a bias in the parti
le
enter estimation dire
ted from the interfering parti
le (be
ause the valueof (1.1) is probably smaller away from the interfering parti
le). However,in those 
ases, we have hopefully already dete
ted the interfering parti
leand adjusted the shape of the neighborhood a

ordingly, as dis
ussedin Chapter 4. However, for automati
ally �nding 
andidate 
enters asproposed in Se
tion 3.2, we use the same shape of the neighborhood forall pixel lo
ations and then a small rmax might perform better.50



CHAPTER 5. SUPPLEMENTARY STUDIESA note of warning should also be said about over-interpreting the depen-den
e of the standard error estimates on the size of the neighborhood.The sandwi
h estimator is sort of an estimate of the lo
al 
urvature ofS(y) at the true 
enter x. It does not say anything about how to get tothis true 
enter. In other words it says nothing about the 
onsisten
y ofthe parti
le 
enter estimator, only what the standard error will be if theestimated ^x gets suÆ
iently 
lose to x.5.2 Estimated intensity pro�les for di�erent band-widthsIn Paper I a 
ross-validation study was performed on the data 
orrespond-ing to the sub-images of a parti
le at 15 di�erent depths. The 
on
lusionwas �rst of all that the lo
al quadrati
 kernel estimate was relatively in-sensitive to the 
hoi
e of bandwidth and se
ondly, that bandwidth h = 0:7worked suÆ
iently well to be used as a pilot bandwidth when �nding theparti
le 
enters. Before the a
tual estimation of the intensity pro�leshowever, a 
ross-validation study was made for ea
h parti
le separately.Here we will �rst investigate the bias in the nonparametri
 estimation ofthe intensity pro�le at di�erent depths for di�erent bandwidths. Then,we will investigate the a

ura
y of 
ross-validation for the kind of data
onsidered here.By an estimate of an intensity pro�le f given pixel values Ii and 
orre-sponding distan
es ri(x), we will below mean the lo
al quadrati
 kernelestimate of f with (Ii; ri(x)) as data, with no 
ensoring.Here we will fo
us on the estimation of intensity pro�les, and insteadof using the data-driven method of 
ross-validation, we will 
ondu
t asimulation study to illustrate how the estimated intensity pro�les dependon the 
hoi
e of bandwidth. We simulate images of parti
les with addedimage noise (in the same way as in Paper I and II), and then the intensitypro�les will be estimated using the true 
enter as the parti
le 
enter. Thiswill be done for di�erent bandwidths for ea
h image.51

CHAPTER 5. SUPPLEMENTARY STUDIESThe mean of the estimated intensity pro�les from 100 simulated imagesof a parti
le at the fo
al plane, using bandwidths h = 0:5; 0:7, and 1.0,respe
tively, from left to right, is shown in solid in the three sub-�guresin the upper row of Figure 5.4. The true intensity pro�le used in thesimulations, is displayed in dashed and the dotted lines are the point-wise maximum and minimum of the estimated values of the intensitypro�les. The bias in the estimation is very high for the largest bandwidthand almost zero for the smallest bandwidth. Interestingly, the pointwisedistan
e between the minimum and maximum value of the intensity fun
-tions is not in
reased mu
h for the lowest bandwidth, 
ompared to thehighest.The story for the two other depths of Figure 5.4, 1.8�m and 4.2�m abovethe fo
al plane, is basi
ally the same as the story for the upper three sub-�gures. Furthermore, this is true for all other depths; the pointwise bias islower for smaller bandwidths. However, looking at fun
tional 
hara
teris-ti
s of the estimated fun
tions, su
h as the position of the �rst stationaryvalue of the estimated fun
tion, we get another story. Using a smallerbandwidth than ne
essary, makes the intensity pro�le estimates too un-regular with too mu
h 
u
tuation. Therefore, the plots in Figure 5.4 area bit misleading, as one might think that we should always 
hoose a smallbandwidth. Anyhow, it is of 
ourse 
lear that the bandwidth h = 1:0 istoo large for estimating the intensity pro�les in the two upper rows.In Figure 5.4 we 
al
ulated the estimate for uniformly spa
ed values ofr. The 
ovariates, the distan
es ri(x) from parti
le 
enter x to the pixello
ations i, are however not uniformly spa
ed. More pre
isely, they arerandomly distributed (sin
e the parti
le 
enter x is random), with linearlyin
reasing density of 
ovariates with distan
e, sin
e the number of pixelswithin distan
e r from a parti
le 
enter in
reases quadrati
ally. Sin
ethere are few pixels for small r values, the variation is fairly large forall bandwidths at small r values, as seen by the larger span between thepointwise minimum and maximum of estimated fun
tions in Figure 5.4.Remember also that the image noise in the simulations is 
orrelated.52
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Figure 5.4: Mean of the estimated intensity pro�les (solid) from 100 simulations
orresponding to a parti
le at the fo
al plane in the upper row, together withparti
les 1.8�m and 4.2�m above in the middle and lower row, respe
tively, whenusing three di�erent bandwidths. The bandwidths 0.5, 0.7, and 1.0, are shownfrom left to right, respe
tively. The true intensity pro�le is displayed in dashedand the dotted lines are the pointwise maximum and minimum values of the100 estimated intensity pro�les. Clearly the fun
tion estimates have a large biaswhen using too large a bandwidth; see for example the plot in the upper right
orner, where the mean of the estimated fun
tions (solid) is far from the truefun
tion (dashed).Validating Cross-validationLet us denote by ^f�ih the lo
al quadrati
 kernel estimate of f when leavingout the i:th data point, and using h as bandwidth. For ea
h h the 
ross-53

CHAPTER 5. SUPPLEMENTARY STUDIESvalidation s
ore is de�ned asCV (h) = 1n Xi2Nx�Ii � ^f�ih (ri(x))	2: (5.2)The 
ross-validation s
ore is 
al
ulated at a �nite number of bandwidths.The idea behind the 
ross-validation s
ore, is that it is an estimate of theexpe
ted value of the squared di�eren
e between the estimated and thetrue regression 
urve (intensity pro�le) under the bivariate distributionof 
ovariates and response values, (ri(x); Ii),EfZ ( ^f(r)� f(r))2d�(r)g (5.3)where � is the (marginal) distribution of 
ovariates. In a simulation study,we know the true intensity pro�le, and therefore we 
an estimate expres-sion (5.3) byE(h) = 1M MXm=1 1nm nmXk=1( ^fh(rik(xm))� f(rik(xm)))2 (5.4)where ^fh is the intensity pro�le estimate using the data from the mthsimulated image and i1; : : : ; in is an arbitrary enumeration of the nm pixelvalues within distan
e rmax of the (random) parti
le 
enter xm. Note thatfor ea
h simulation, both the pixel values Ii as well as the distan
es tothe pixels from the parti
le 
enter, rik(xm), are random. The pixel valuesare impli
itly present in the summation (5.4) above, in the estimate ofthe intensity pro�le ^fh.We 
ondu
ted a new simulation study of M = 100 images for ea
h ofthe 15 depths from -4.2�m to 4.2�m with 0.6�m in between. These arethe same depths 
onsidered in Paper I. For ea
h image, we estimatedthe intensity pro�le f up to distan
e rmax = 15 using 17 di�erent band-widths h = 0:4; 0:45; 0:5; : : : ; 1:2. Then E in equation (5.4) was 
al
ulatedfor ea
h depth. Also, for ea
h image, the 
ross-validation s
ore was 
al-
ulated, using the same set bandwidths. In Figure 5.5 we present theh minimizing E for ea
h depth in solid together with the mean of thebandwidths minimizing the 
orresponding 
ross-validation s
ore for ea
h54
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Figure 5.5: For ea
h depth, the minimizer of E(h) in equation (5.3) using 100simulated images of parti
les at this depth is shown in solid. The dashed plotis the mean over ea
h depth of the minimizers of the 
ross-validation s
ore forea
h image.image. The shape of the two plots is the same, but there is a dis
repan
yof roughly 0.06 between the two plots. It seems as if the 
ross-validationminimizer is biased. In pra
ti
e however, this dis
repan
y in bandwidthdoes not a�e
t the estimation of f severely.
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Chapter 6
Con
lusions and FutureResear
h

6.1 Depth estimation using templatesAs dis
ussed in Se
tion 3.4, there related to the estimation of a 2-D surfa
eof intensity pro�les, a measure of distan
e between the intensity pro�lesshould take spe
ial 
onsideration of the fun
tional features unique for ea
hpro�le. One example of su
h a feature is the �rst dip or peak of the inten-sity pro�le, depending on if the parti
le is below or above the fo
al plane.Looking at the intensity pro�les, it seems as if the pro�les are related toea
h other with a s
aling parameter depending on depth, that a
ts on theargument r and the amplitude of the variation, stret
hing out the pro-�le with in
reasing distan
e to the fo
al plane. An improved measure ofdistan
e between intensity pro�les should take this into 
onsideration. Inshort, it would be ni
e to have a measure of distan
e between shapes thatexploits the important fun
tional features like the �rst dip, in a more ex-pli
it manner than the L2-norm, whi
h what the mat
hing 
riterion (3.4)basi
ally is. 57

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCHTemplates that allow for 
ontinuous depth estimation are also desirable.In Se
tion 3.4 we presented one method for 
onstru
tion a two dimensionalregression surfa
e of intensity pro�les. From a theoreti
al point of view,mathemati
ally 
onstru
ted templates would of 
ourse be preferable, sin
ethis would also allow for 
onstru
tion of templates for parti
les of di�erentsizes and shape. However, as mentioned in the Introdu
tion, predi
tingthe appearan
e of spheri
al obje
ts in mi
ros
opy of this size still seemsto be an intriguing theoreti
al 
hallenge, see Ovryn and Izen (2000).The 2-D template approa
h des
ribed brie
y in Se
tion 3.4 
ould be de-veloped further. However, this requires better data of the appearan
es ofparti
les at di�erent depths. Several images at ea
h depth would probablyimprove the estimates of the intensity pro�les in general. It should alsobe possible to re
ord the z-s
ans without having 
ensored pixel values.Even so, this approa
h would still 
on�ne us to the study of parti
les ofonly the sizes and shapes we have estimated templates for.6.2 Measurements of di�usion 
oeÆ
ient and in-tera
tionAs illustrated in Chapter 4, it is hard to tra
k parti
les unsupervised fora longer sequen
e of images 
onsidered here. The main 
ause is that thefo
al depth of the mi
ros
ope is very large, 
ausing parti
les to o

ludeea
h other rather frequently, at least 
ompared to the ratio of the totalnumber of parti
les present in the spe
imen and the volume of the domainin whi
h they are 
on�ned.Loosing tra
k of parti
les is not very important if we are only 
on
ernedwith the estimation of the di�usion 
oeÆ
ient of the parti
les. Thenbroken traje
tories of parti
les do not a�e
t the estimation (more thanthat the sample size of observed in
rements de
reases); when a parti
leis lost, we do not have to bother were it goes and when we possibly starttra
king this parti
le again, we 
ould 
onsider it as a new parti
le (at leastif all parti
les are of the same size). If intera
tion between parti
les is58



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCHbelieved to be present, one 
ould furthermore restri
t tra
king to regionsin the image where there are no other parti
les present within a reasonablerange of parti
le intera
tion.
However, when estimating a possible intera
tion between the parti
les,it is 
ru
ial to estimate the positions of all parti
les. In parti
ular, itis important to estimate the positions of those parti
les whi
h are 
loseto ea
h other. But this is exa
tly when unsupervised tra
king is hard!Supervised estimation of parti
les 
enters is of 
ourse possible, but for alarger sequen
e of images, this is a very tedious job. The intera
tion be-tween parti
les 
an however in prin
iple be estimated from the estimatedparti
le positions in three dimensions in a single image using methodsof statisti
al inferen
e for spatial point pro
esses, see for example M�llerand Waagepetersen (2004).

Sin
e unsupervised tra
king is hard in dilute suspensions, one alternativeis to use an opti
al trapping devi
e 
alled an opti
al tweezer. An opti
altweezer is tightly fo
used laser beam that 
reates a lo
al minimum inthe opti
al energy strong enough to over
ome both radiation for
es andthermal for
es. Thereby it is possible to attra
t a parti
le and move itto a spe
i�ed lo
ation. A dual opti
al tweezer 
ould be used to attra
ttwo parti
les, bring them 
lose together, and then turn o� the laser. Theparti
les would then di�use freely and we 
an tra
k the two parti
les fora sequen
e of images. The whole thing 
an be repeated until enough datahas been 
olle
ted. Opti
al tweezers have been used in studies of theintera
tion potential in Cro
ker and Grier (1996) but also in for examplevideo mi
ros
opy studies of DNA, see Perkins et al. (1994). Given the higha

ura
y of position estimation of spheri
al latex parti
les developed here,the possibilities for high pre
ision estimation of the intera
tion betweenparti
les using this more advan
ed mi
ros
ope setup should be large.59

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH6.3 Automated depth 
alibrationAn interesting problem would be to automati
ally estimate the depth,simply by observing traje
tories of parti
les performing Brownian mo-tion (like the sequen
e images we have used). Sin
e Brownian motion isisotropi
, a parti
le performing Brownian motion has the same di�usion
oeÆ
ient in all three dimensions. Sin
e tra
king the position of a par-ti
le works fairly well in the image plane, we 
an estimate the di�usion
oeÆ
ient. Now the idea is as follows. As we tra
k the parti
le in twodimensions, we re
ord some kind of feature that relates to the depth ofthe parti
le. This 
ould be the estimated intensity pro�le, but it 
ouldalso be a simpler attribute, for example the distan
e form the parti
le
enter to the �rst stationary value of the estimated intensity pro�le, thatis, the distan
e to the �rst peak or dip in the pro�le. Then, if it is pos-sible to order these measured features of the depth, and assuming thatthere is a fun
tion that relates this feature with the depth of the parti-
le, we 
ould asso
iate the tra
k of this depth feature with the di�usion
oeÆ
ient already estimated from the measured di�usion in the plane.
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Estimating 
enters and intensity pro�les ofspheri
al parti
les in mi
ros
opyMats Kvarnstr�om and Chris GlasbeyJanuary 24, 2005Abstra
tWe present a method for estimation of parti
le 
enter in digitized mi-
ros
ope images, based on an assumption of rotational symmetry of pixelvalues surrounding a true parti
le 
enter. The fun
tional form of how thepixel values vary with distan
e from a parti
le 
enter is 
alled the intensitypro�le and depends on the depth of the parti
le. In addition to estimatingthe 
enter, the intensity pro�le is also estimated using a nonparametri
 es-timator. However, pixel values are 
ensored above a 
ertain known value.We propose a modi�
ation of the lo
al quadrati
 kernel estimate for non-parametri
 fun
tion estimation using 
ensored response values.Furthermore, for ea
h 
enter estimate, we also estimate the standarderror of the estimate using a sandwi
h estimator. A simulation study showsthat these standard errors are 
onsistent with the observed RMS errors.The standard errors depend on distan
e to the fo
al plane and are in therange of 0.02 to 0.10 pixels, depending on depth of the parti
les, with lowervalues for parti
les 
loser to the fo
al plane.1 Introdu
tionIn order to tra
k and subsequently estimate the di�usion 
oeÆ
ients of di�us-ing 
olloidal parti
les observed in video mi
ros
opy, a highly pre
ise, automati
method for estimating parti
le 
enters is needed. It is also of interest to havereliable estimates on the standard errors, sin
e errors in the position estimatesa�e
t the subsequent estimation of the di�usion 
oeÆ
ient. Furthermore, sub-pixel a

ura
y is needed sin
e the parti
les typi
ally only di�use distan
es in theorder of one or two pixels between two subsequent images.1

Figure 1: An image from a video sequen
e of di�using parti
les. The parti
les are allequal in size and the di�eren
e in the appearan
es of the parti
les in the image is dueto that the parti
les are at di�erent depth relative to the fo
al plane.Figure 1 shows one of the images in a typi
al sequen
e of images re
orded anddigitized by the video mi
ros
ope. The images are re
orded at a frame rate of50 images per se
ond. Ea
h image 
onsists of 512 times 512 square pixels with aside-length of 180 nm. The parti
les are all of the same size, 494 nm in diameter;the di�eren
e in appearan
e is due to di�erent depth relative to the fo
al plane.Our method of estimating the parti
le 
enters in the image relies on an assump-tion of rotational symmetry of the pixel values in the image in the vi
inity of atrue parti
le 
enter. We will estimate the parti
le 
enter by the position withlargest rotational symmetry, where the symmetry is measured as the sum of2



squares between nearby pixel values and a �tted nonparametri
 estimate of howpixel values vary with distan
e from a (
andidate) parti
le 
enter. The pixelvalues in the images 
onsidered are 
ensored (saturated) at an upper limit ofT = 255 and are instead set to T . We introdu
e a method for nonparametri
estimation of a regression fun
tion when the response variables (the pixel values)are 
ensored above an upper limit under the assumption of normally distributedhomos
edasti
 observation errors (the image noise).Censored (saturated) pixel values are 
ommon in mi
roarrays where the esti-mated expression of genes get biased when no adjustment is done due to the
ensoring, see Glasbey et al. (2005) and Ekstr�m et al. (2004). A nonparametri
approa
h was pursued by Glasbey et al. (2005) using a prin
ipal 
omponentsmodel. Ekstr�m et al. (2004) used a parametri
 approa
h where several para-metri
 forms were tested for the expression of genes in the mi
roarrays.Standard error on ea
h 
enter estimate will be based on the sandwi
h estimator,see for example Owen (2001). These standard errors are shown to be 
onsistentwith root-mean-square (RMS) errors in a simulation study in Se
tion 5. In thissimulation study, we also examine the pre
ision when only half of the rows inthe image is used in the estimation. This is done sin
e for image like the one inFigure 1, in fa
t only half of the rows are updated ea
h 1/50 se
ond, alternatingbetween the even and the odd rows. Sin
e only half as many pixels are used,one might have expe
ted p2 times larger RMS errors and furthermore, sin
e weare losing information in the verti
al dire
tion, the errors would be greater inthe verti
al than in the horizontal dire
tion. The study shows however, that theloss in pre
ision is not as high as expe
ted and espe
ially that the pre
ision isstill equal in both 
oordinates, ex
ept for the parti
les 
losest to the fo
al plane.In Figure 2, we have extra
ted and zoomed in on a parti
le like the ones inFigure 1 at di�erent distan
es from the fo
al plane. Ea
h sub-image 
onsists of27 times 27 pixels. Sub-images with negative and positive labels 
orrespond toparti
les below and above the fo
al plane, respe
tively. The distan
e in depthbetween two 
onse
utive sub-images is approximately 0.6�m and sub-image 0
orresponds to a parti
le at the fo
al plane. These images are 
alled z-s
ansand have been 
onstru
ted by letting parti
les adsorb on the glass surfa
e of thespe
imen, and then moving the spe
imen relative to the opti
s of the mi
ros
ope.This way, we were able to re
ord the appearan
es of parti
les at di�erent depthsof fo
us.Previous work using digital video mi
ros
opy for 
olloidal studies, have beenmade by Cro
ker and Grier (1996, 1998), but there, the depth of fo
us wasapproximately �0.5�m, whi
h makes the parti
les similar in appearan
e andtherefore easier to �nd in the images, sin
e the sought-after obje
ts in ea
h image3
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Figure 2: The appearan
e of a parti
le at 15 di�erent distan
es to the fo
al plane.Sub-image 0 
orresponds to a parti
le at the fo
al plane, and sub-images with negativeand positive labels are below and above the fo
al plane, respe
tively. The distan
e indepth between two 
onse
utive sub-images is approximately 0.6 �m.are similar. In their study, ea
h parti
le is a bright spheri
al set of pixels and theya
hieve sub-pixel a

ura
y by 
al
ulating the geometri
 
enter of the brightness-weighted 
entroid, obtaining standard errors of about 0.1 pixels (where ea
hpixel is 85 nm). Also, the parti
les in their 
olloidal suspensions are e�e
tively
on�ned to a 
rystallized stru
ture. In our 
ase, the depth of fo
us is �15 �m,resulting in a mu
h wider variety of appearan
es of the parti
les in the image.Assumptions and main ideaWe denote an image by I . This is e�e
tively a matrix of pixel values Ii for pixello
ations i = (i1; i2) 2 DI � Z2, where DI is the set of indi
es i for whi
h theimage is de�ned. We will use the terms pixel and pixel lo
ation inter
hangeableto mean the same thing when no risk of ambiguity exists.A parti
le 
enter is denoted by x = (x1; x2) 2 R2 , and to ea
h parti
le, weasso
iate a set Nx � DI of pixels in the image I 
alled the neighborhood ofthe parti
le at x. For the parti
les in Figure 2, we 
an take all pixels in the4




orresponding sub-image as the neighborhood for the parti
le, but typi
ally, welet Nx = fi 2 DI : ri(x) � rmaxg; (1)where ri(x) is the Eu
lidean distan
e from the parti
le 
enter x to pixel i, andrmax is an appropriately 
hosen distan
e. In this paper, we will let rmax be 15.The main assumption is that, for a parti
le 
enter at x 2 R2 we haveIi = f(ri(x)) + �i for i 2 Nx; (2)where f is 
alled the intensity pro�le. The image noise, �i for i 2 DI , is as-sumed to be normally distributed with isotropi
ally 
orrelated pixel values. Theintensity pro�le f : R 7! R is assumed to be a smooth fun
tion with at least two
ontinuous derivatives and symmetri
 in its argument r, here denoted by C2.The basi
 idea for estimating the parti
le 
enter is as follows. For a parti
lelo
ated at x, we use the minimizer ofS(y) = minf2C2 Xi2Nx�Ii � f(ri(y))	2 = Xi2Nx�Ii � ^f(ri(y))	2 (3)for y 2 R2 as estimate of x. We 
al
ulate ^f using a lo
al quadrati
 kernel es-timator with (appropriately 
hosen) bandwidth h. The idea behind minimizingthe equation above is to �nd the position of (lo
al) maximum rotational sym-metry. We denote the estimate of x by ^x. At ^x, the 
orresponding ^f will be theestimate of the intensity pro�le for this parti
le. The idea behind minimizingequation (3), is to �nd the position of (lo
al) maximal rotational symmetry.Pixel values are 
ensored above an upper limit T . Here, T equals 255. InFigure 2, we have 
ensoring for all parti
les ex
ept at the fo
al plane and atdepths 6 and 7. For parti
les below the fo
al plane, 
ensoring o

urs for pixels
lose to the 
enter of the parti
le, and for parti
les above the fo
al plane, on the�rst fringe. The relative amount of 
ensoring is however not very large; between0.5 and 4.5 per
ent of the 27 � 27 = 729 pixels are 
ensored, with the largestamount for the parti
les just above the fo
al plane (depth 1, 2, and 3). Forestimating the parti
le 
enter, that is, �nding the position of maximal rotationalsymmetry, 
ensoring does not a�e
t mu
h, sin
e 
ensoring o

urs at an annulusaround the true parti
le 
enter. Nevertheless, for estimating the intensity pro�le,it is important.In Figure 3 and 4 we illustrate some of the assumptions and methods presentedso far. In Figure 3 we have zoomed in on the parti
le at depth -5 and madea surfa
e plot of S for a few values surrounding the minimizer. In Figure 4,we see that it is reasonable to assume rotational symmetry of the pixel values5
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2Figure 3: The parti
le at depth -5 together with a surfa
e plot of S on the right. The
enter pixel in the image is (x1; x2) = (14; 14). The estimated 
enter is at (14:21; 13:67).The estimated standard error of this position estimate is 0.035 (see Se
tion 3). InFigure 4 a 
omparison is made between the s
atter plots of pixel values surrounding(14; 14) and the estimated 
enter.surrounding a true 
enter. Furthermore, the two plots indi
ate that it should bepossible to estimate the parti
le 
enter at sub-pixel a

ura
y; in the s
atter ploton the left, there is a 
lear \shift" in the s
atter plot, whi
h is not present in thes
atter plot on the right, 
orresponding to the estimated 
enter. The �gure alsodemonstrates 
ensoring of pixel values at the upper limit of T = 255.2 Intensity pro�le estimationFor the 
ase when there are no 
ensored pixel values in Nx, we will use thelo
al quadrati
 kernel estimator with a Gaussian kernel fun
tion. Common ref-eren
es for nonparametri
 lo
al polynomial kernel estimation are Hastie andTibshirani (1990) and Fan and Gijbels (1996). The reason for 
hoosing the lo
alquadrati
 kernel estimate as nonparametri
 method, instead of for example aspline smoother, is that the estimate of the derivative of f is pra
ti
ally given tous for free using a lo
al quadrati
, and the derivative is needed when estimatingthe standard errors. Compared to a lo
al linear kernel estimate, the quadrati
 ismu
h less sensitive to the 
hoi
e of bandwidth. The Gaussian kernel was 
hosensin
e it is smooth and has unbounded support, whi
h makes the fun
tion S dif-ferentiable. Regarding the 
hoi
e of bandwidth, simulation studies have shownthat the bandwidth is not very important when estimating the parti
le 
enters.6
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−5)Figure 4: Two s
atter plots for the parti
le at depth -5 in Figure 2. On the left,the s
atter plot of pixel values surrounding the 
enter pixel of the sub-image (14; 14),and on the right, the same for the estimated parti
le 
enter at (14:21; 13:67). Note the
ensoring of pixel values above T = 255. See Figure 3 for an image of the parti
le andthe plot of S.We will however use 
ross-validation to automati
ally 
hoose bandwidth.Lo
al polynomial kernel estimateWe will explain brie
y how a lo
al polynomial kernel estimate is 
al
ulated. Thevalue of ^f at ea
h point of evaluation r0 is a solution to a lo
al weighted least-squares problem, where ea
h observation Ii is given a weight from the Gaussiankernel fun
tion a

ording to distan
e between r0 and ri(y). For estimation whenthere is 
ensoring, however, we will modify this weighted least-squares problem.For easier notation, we will hen
eforth write ri instead of ri(y) for i 2 Nx whenthere is no possibility of misunderstanding.Let K denote the Gaussian kernel, that is K(x) = exp(�x2=2). The lo
al poly-nomial kernel estimate is based on the assumption that the unknown regressionfun
tion f 
an be approximated lo
ally by a polynomial of degree p,f(r) ' pXk=0 f (k)(r0)k! (r � r0)kfor r 
lose to r0. To 
al
ulate the value of the estimate at an arbitrary pointr0, we lo
ally �t a polynomial of degree p by solving the weighted least-square7

problem of �nding the minimizer toXi2NxnIi � pXk=0�k(ri � r0)ko2Kh(ri � r0) (4)with respe
t to � = (�0; : : : ; �p) and denote the minimizer by ^�. Here, Kh(x) =h�1K(x=h) is the kernel with bandwidth h > 0. The estimates of f (k) at r0, fork = 0; 1; : : : ; p, are ^f (k)(r0) = k! ^�k:Noti
e that sin
e ^f(r0) is the solution to a weighted least-squares, ^f(r0) is alinear 
ombination of the pixel values Ij for j 2 Nx.Lo
al regression with 
ensored response valuesDenote the set of un
ensored pixels by AT = fi 2 Nx : Ii < Tg, where T = 255.Then the 
omplement, A
T , is the set of 
ensored pixels. With pixel values in Nx
ensored, we minimize12 log�2 Xi2AT Kh(ri � r0) + 12�2 Xi2ATnIi � pXk=0�k(ri � r0)ko2Kh(ri � r0)� Xi2A
T logn��Ppk=0 �k(ri � r0)k � T� �oKh(ri � r0) (5)instead of the sum of squares (4), where � is the distribution fun
tion of N(0,1),that is, a zero mean, normally distributed random variable with unit varian
e.The reason behind minimizing (5) is that it 
orresponds to maximizing the lo
allikelihoodYi2ATn 1���Ii �Ppk=0 �k(ri � r0)k� �owi Yi2A
Tn��Ppk=0 �k(ri � r0)k � T� �owiof observations Ii, that are possibly 
ensored above T . The weights wi = Kh(ri�r0), 
ould be interpreted as the proportions of observations from a larger samplebeing at ri. We here impli
itly assume the image noise �i to be i.i.d. and normal.Noti
e however that we generally, in the main assumption (2), assume the imagenoise to be 
orrelated.When referring to the two kinds of lo
al quadrati
 kernel estimates dealt withabove, we will sometimes 
all the two versions "the standard" and "the 
ensored"version, respe
tively. We will also use "
ensored regression" for the latter.8



Remark 1: In order to have the estimated intensity pro�le symmetri
, asassumed in the model, we use the re
e
ted data f�ri(y); Iig together withfri(y); Iig as data when 
al
ulating the regression. However, we only evaluate ^fat the points ri(y).Remark 2: Note that the original lo
al quadrati
 kernel estimate, de�ned bythe minimizer of (4), is linear in the pixel values. This means that we 
an write^f(ri) = Xj2NxWijIj (6)for ea
h i 2 Nx for some matrix W . This matrix is 
alled the equivalent kernelmatrix. The tra
e of W , is a 
ommon estimate of the degrees of freedom for�tting of f to the data fri; Iig, see Hastie and Tibshirani (1990, 
hap. 3). Wewill use this below when estimating the varian
e �2. Note that W only dependson the bandwidth and the distan
es ri = ri(y).In 
ontrast to the lo
al quadrati
 kernel estimate, the 
ensored version, de�nedby (5), is not linear in the pixel values sin
e it 
ontains the non-linear terminvolving �. It should also be noted that ^f is never linear in 
andidate parti
le
enter y.Algorithm for 
ensored regressionThe problem with equation (5), is that the parameter �2, the varian
e of theimage noise �i, is unknown. Hen
e, this needs to be estimated as well. However,instead of minimizing (5) with respe
t to both � and �2 lo
ally for ea
h r0,we will use an iterative s
heme, alternating between estimation �2 globally andupdating the regression estimates.Let f0i denote the estimate from a standard lo
al quadrati
 kernel estimate atpoint ri. The �rst, pilot, estimate of �2, is based on the residuals between f0and the pixel values: ^�20 = 1jAT j � trfWg Xi2AT�Ii � f0i 	2 (7)where jAT j is the number of elements in AT , andW the equivalent kernel matrixde�ned in equation (6) above for the standard lo
al quadrati
 estimate.Next, minimize equation (5) at ea
h point ri using the pilot estimate �20 anddenote this intensity pro�le estimate f1i for i 2 Nx. Then, estimate �2 by (7)again (using the same W as before), however this time using f1 instead of f0.9
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−5)Figure 5: The resulting estimate of the intensity pro�le for the parti
le at depth -5 from Figure 2. For parti
les with 
ensoring for small r-values it is essential to usere
e
ted data when 
al
ulating the estimate (see Remark 1 after equation 5). Otherwisethe estimated pro�le would have had a large negative derivative.This above is repeated until the relative di�eren
e j�2k � �2k+1j=�2k between thetwo 
onse
utive estimates of �2 is smaller than a 
ertain limit Æ, 
hosen su
hthat an update gives a negligible e�e
t on the minimization of (5). Here, welet Æ = 0:01 and the iterative s
heme typi
ally 
onverges after two or threeiterations.In Figure 5 we have plotted the resulting intensity pro�le to the parti
le at depth-5 in Figure 2. Without re
e
ting the data around r = 0 (see Remark 1 above),the estimated f would have been quite di�erent, with a large negative derivativeof the estimated pro�le at zero.Bandwidth sele
tion: 
ross-validationDenote by ^f�ih the (standard) lo
al quadrati
 kernel estimate of f when leavingout the i:th data point, and using h as bandwidth. For ea
h h we 
onstru
t the
ross-validation s
ore CV (h) = 1n Xi2Nx�Ii � ^f�ih (ri(x))	2: (8)In pra
ti
e, CV is 
omputed for a �nite number of suitably 
hosen bandwidths.For the data 
onsidered in this paper, bandwidth between 0.4 and 1.2 haveturned out to be suitable 
hoi
es. The bandwidth minimizing the 
ross-validation10



is denoted by hopt. When pixel values are 
ensored, the summation in (8) isrestri
ted to AT , the un
ensored pixels.When estimating the 
enters, a pilot bandwidth hpilot will �rst be used to �ndthe minimizer of S. Then, a 
ross-validation study will be performed and the re-sulting hopt will be used to re-estimate the 
enter, if needed. As pilot bandwidthh = 0:7 has turned out to work well for estimating the 
enter for all appear-an
es of parti
les 
onsidered. In fa
t, the 
enter estimation pro
edure is highlyinsensitive to the 
hoi
e of bandwidth. Simulation studies have also shown thatthe di�eren
e between updating and not updating the bandwidth for a se
ondre-estimation of the 
enter is pra
ti
ally negligible. For the estimation of f , itis more important however. Choosing a too large bandwidth 
auses a large biasin the estimation and pi
king a too small bandwidth in
reases the varian
e.3 Parti
le Center EstimationGiven a neighborhood Nx to a parti
le with 
enter in x, we estimate the 
enterby the minimizer ^x of S(y) = Xi2AT�Ii � ^f(ri(y))	2 (9)for y 2 Nx, where ^f is the lo
al quadrati
 kernel estimate using fri(y); Iig fori 2 Nx as data, as dis
ussed in the previous se
tion. Furthermore, AT is the setof un
ensored pixels, that is, pixels below the 
ensoring limit T .Note that in (9), it is the 
ovariates ri(y) that 
hange with y. The responsevariables, the pixel values Ii for i 2 Nx, are the same for ea
h y.Choi
e of NxBefore the minimization of (9), we need a neighborhood Nx of pixel lo
ationsto x. However, when x is unknown, so is Nx. Nevertheless, if we are given anapproximate parti
le 
enter y0, manually or by some automati
 image analysismethod, we 
an let Nx = Ny0 where Ny0 is de�ned by equation (1) for x = y0for a suitable 
hoi
e of rmax.The 
hoi
e of rmax is a balan
e between wanted pre
ision of the estimated 
enteron one hand, and 
omputational e�ort and distan
e to nearby parti
les on theother hand. Pi
king a large rmax in
reases the number of pixels in the sum (9)and we therefore expe
t the estimate to get better. This vague argument is of
ourse only true to a 
ertain extent, sin
e assumption (2) is in pra
ti
e only11

valid up to a 
ertain size of the neighborhood, sin
e there are other interferingparti
les present in the image. This is realized after looking at the sequen
eimage of Figure 1. In the simulation study, we will use rmax = 15 and for theparti
les in the sub-images of Figure 2, we will take the entire sub-image asneighborhood.Algorithm for estimating the 
enterWe assume that a �rst, 
andidate position y0 is given to us. We also assume thata suitable neighborhood Nx is pi
ked a

ording to the dis
ussion in the previousse
tion. Furthermore, a pilot bandwidth hpilot should also be 
hosen. For thedata 
onsidered here, we use hpilot = 0:7.To 
al
ulate S(y) at a 
andidate 
enter y, do as follows:1. Cal
ulate the distan
es ri(y) for the 
andidate 
enter y to all pixel lo
ationsi 2 Nx.2. Compute ^f(ri(y)) for ea
h point of evaluation ri(y) using bandwidth hpilot.3. Cal
ulate S(y) a

ording to equation (9).The minimizer ^x of S using hpilot as bandwidth is a preliminary estimate ofthe parti
le 
enter x. A 
ross-validation study is then 
ondu
ted using the datafri(^x); Iig for i 2 Nx and the minimizing bandwidth is 
alled hopt. After this,the 
enter is re-estimated as above using hopt as bandwidth.The a
tual optimization s
heme 
an be 
hosen a

ording to personal taste. Weused a greedy sear
h: 
ompute the value of S(y) for values y in a 5 times 5uniform mesh with distan
e dy to nearest horizontal and verti
al neighbour.Find the minimizer y1 among these, and re-
al
ulate S(y) for a similar mesh,but this time 
entered above y1 and with inter-distan
e dy=2.Remark: In Step 2, ^f(ri(y)) is 
al
ulated either using the algorithm for 
ensoredregression in Se
tion 2, or using the standard lo
al quadrati
 kernel estimation.However, note that �nding the minimizer of equation (5) is mu
h more 
ompu-tationally 
ostly than �nding the minimizer to equation (4). Therefore, one wayof redu
ing the 
omputational 
ost when estimating the 
enter, would be to �rstuse the standard version to �nd a preliminary estimate as above. After the pre-liminary estimate has been found, an update in position is done, this time usingthe 
ensored version of the lo
al quadrati
 kernel estimate. For the degrees of
ensoring present in the data 
onsidered here, simulation studies has shown that12



the di�eren
e in pre
ision of the parti
le 
enter estimate is pra
ti
ally negligiblebetween the two methods of lo
al quadrati
 kernel estimates.Standard Error EstimatesEstimates on the standard error on parti
le 
enter estimation will be derivedusing a sandwi
h estimator, whi
h allows for the residuals to be 
orrelated. Seefor example Owen (2001).Re
all that the estimate of the parti
le 
enter x was the y minimizingS(y) = Xi2ATnIi � ^f(ri(y))o2This expression is di�erentiable with respe
t to y sin
e the Gaussian kernel is anin�nitely di�erentiable kernel with unbounded support. If we had used a kernelwith bounded support, a small perturbation in y 
an 
hange the 
ovariates ri(y)within the supported region 
entered at the point of evaluation r0 in equation (4),and hen
e 
hange the estimated valued.Assume that there are n pixels in Nx and enumerate the pixels (arbitrarily) asi1; i2; : : : ; in. (We use super-indi
es sin
e sub-indi
es denotes the two 
oordinatesof a pixel lo
ation.) We will now let g denote the Rn valued fun
tion of x =(x1; x2) with kth element gk(x) = ^f(rik (x)). The reason is that we want toemphasize that we here 
onsider the estimated intensity pro�le ^f as a fun
tionof x.Let J denote the Ja
obian of g, that is the n times 2 matrix with element�J(x)�k;m = �gk�xm (y) for k = 1; : : : ; n and m = 1; 2. Furthermore, we let R bethe ve
tor of residuals at x:R = R(x) = 0BBB�I1 � g1(x)I2 � g2(x)...In � gn(x)1CCCA ;where we have used the less awkward notation Ik instead of Iik , for k = 1; : : : ; n.Moreover, let � = �(x) = VarfR(x)g denote the varian
e matrix of the residu-als.The sandwi
h estimator of the varian
e matrix Varf^xg isV = (JT J)�1JT�J(JT J)�1: (10)13

Sin
e we do not know J = J(x) and � = �(x), we have to estimate or approxi-mate them.The standard way to approximate J(x) would be by J(^x), but this involvesdi�erentiating ea
h gk with respe
t to x, whi
h is very 
umbersome. Instead, weapproximate the derivatives of gk in the following way. First we use the 
hainrule to get �gk�x1 = � ^f(rik (x))�x1 = � ^f�r �rik (x)�x1 :Then we approximate the derivative of ^f with respe
t to r with the estimateof the derivative of the intensity pro�le, namely ^�1 at the point of evaluationrik (x), that is, the estimate of the derivative of the intensity pro�le. Thereforewe get: �gk�x1 ' �1(rik (x))x1 � ik1rik (x)sin
e the derivative of the distan
e rik (x) with respe
t to x1 is (x1 � ik1)=rik (x).The analogous is done for the derivative of gk with respe
t to x2. Finally, sin
ex is unknown, we approximate x by ^x. We denote the approximate J at point ^xby ^J .Image noise modelHere, we assume that the image noise, and therefore the residuals, are spatially
orrelated with 
ovarian
e fun
tion Covf�i; �jg = �2 exp(�
 jji � jjj) betweenpixels i; j 2 Nx � DI , for some 
onstants �2 and 
 > 0, see Se
tion 4. This hasbeen observed to be a reasonable model when the noise stru
ture of ba
kgroundimages (that is, images where no parti
le in present) has been examined. Conse-quently, the varian
e matrix �(x) is repla
ed by the estimate ^�, with elements^�k;` = ^�2 exp(�^
 jjik � iljj)where jji�jjj is the Eu
lidean distan
e between the two pixel lo
ations i and j 2Nx, and ^�2 and ^
 are the estimated parameters to the model 
(�) = �2 exp(�
 �),using the observed residuals. See Se
tion 4 for how to estimate �2 and 
.For a given estimate of a parti
le 
enter, we let ^V denote the estimated 
ovarian
ematrix ^V = ( ^JT ^J)�1 ^JT ^� ^J( ^JT ^J)�1when the estimated model parameters of the noise, ^�2 and ^
 from the residualsare used in the expression for �.The square-root of the diagonal elements of the estimated varian
e matrix ^V ,are 
alled the estimated standard errors.14



4 ResultsIn Figure 6 we display the re
onstru
ted versions of the sub-images of Figure 2after the 
enters and the intensity fun
tions had been estimated. Below there
onstru
ted sub-images, we have displayed the spatial residuals between theoriginal image and the re
onstru
ted version.The �t is 
learly better for parti
les with more smoothly varying intensity pro�le,that is, for parti
les further away from the fo
al plane. This 
ould be interpretedas the assumption of rotational symmetry does not �t very well for parti
les nearthe fo
al plane. However, small perturbations in the 
enter estimate make largedi�eren
e in the residuals when the underlying intensity pro�le is varying qui
kly.See Figure 7, where the pixel values surrounding the parti
le at the fo
al planare plotted together with the 
orresponding estimate of the intensity pro�le.The residuals are in general larger for parti
les 
loser to the fo
al plane thanfor parti
les further away. This is probably due to that the model of rotationalsymmetry is not entirely 
orre
t for these depths, due to some unknown opti
ale�e
t. Also, it may be so that the image noise is multipli
ative rather thanadditive. This would partly explain why the noise seems to have larger varian
eand for parti
les with large 
u
tuations in the intensity pro�le.Spatially 
orrelated residualsA 
lose-up view of the residuals reveals that there seems to be some 
orrelationbetween the residuals. On the left in Figure 8 we have displayed the sample auto-
ovarian
e s
ores from the residuals between the original and the re
onstru
tedversion of the parti
le at depth -5. The sample auto
ovarian
e Ckm for lags kand m, in the verti
al and the horizontal dire
tion, respe
tively, is de�ned asCkm = N�1km Xf(R(i1;i2) � �R)(R(i1+k;i2+m) � �R)gwhere the summation is made over all pixel lo
ations i = (i1; i2) 2 AT at un
en-sored pixels, su
h that both i and the shifted version (i1 + k; i2 +m) is in AT .Moreover, Nkm is the number of elements in the summation, and �R is the samplemean of the residuals. Note that pixels that are 
ensored are not in
luded in thesample 
ovarian
e. In Figure 8, the largest value is represented as white and thesmallest as bla
k. It is immediate that the residual are 
orrelated.On the right of Figure 8, we have plotted Ckm as a fun
tion of � = pk2 +m2instead. We have also plotted the �tted exponential 
orrelation fun
tion 
(�) =�2 exp(�
 �) in solid and in dashed, the nonparametri
 smooth of Ckm using a15

Figure 6: Above: The re
onstru
ted versions of the sub-images in Figure 2. Below, wedisplay the di�eren
es (magni�ed 5 times) between the original and the re
onstru
tedversions. Clearly the �t is better for parti
les with less rapid 
hanges in the intensityfun
tion. 16
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Figure 8: Sample auto
ovarian
e for the spatial residuals to �t of the parti
le at depth-5 in Figure 2. On the left they are displayed as as image for horizontal m and verti
alk lags separately, and on the right as a fun
tion of � = pk2 +m2, where we alsohave plotted the �tted exponential 
orrelation fun
tion �2 exp(�
 �) with �2 = 14:9and 
 = 0:51 in solid. The dashed line is the nonparametri
 smooth of Ckm using alo
al linear kernel estimator with bandwidth 0.5. As seen, the exponential 
orrelationfun
tion is a bit pessimisti
 regarding the de
ay of the 
orrelations.lo
al linear kernel estimator with bandwidth 0.5. The exponential 
orrelation17

fun
tion was �tted by estimating �2 and 
 by^�2 = C00and ^
 = � log� �C1=C00�;where �C1 is the mean of C01 and C10, that is, the mean of the two sampleauto
ovarian
e s
ores for lags of length 1.Standard errors and estimated noise parametersWe estimated the parti
le 
enter for another 5 parti
les present in the same kindof images (z-s
ans) as the parti
le in Figure 2, were we know the depth of theparti
les. For ea
h parti
le, the noise parameters �2 and 
 were estimated asabove, and the standard error for the 
enter estimate, was estimated as des
ribedin Se
tion 3.In Figure 9 we have plotted the mean of the resulting standard errors for the 15depths (the o�-diagonal terms were negligible for all parti
les). Not surprisingly,the pre
ision in the estimation depends on the appearan
e of the parti
le, andhen
e, on the depth of the parti
le. On the right in Figure 9, the mean ofthe 
orresponding estimates of �2 and 
 are displayed for ea
h depth. Thenoise parameters also depend on the depth of the parti
les, probably due to theworse �t of the rotational symmetry model near the fo
al plane, as observed inFigure 6. As mentioned above in 
onne
tion with Figure 7, multipli
ative imagenoise 
ould also be a 
ontributing fa
tor to the larger residuals near the fo
alplane.5 Simulation StudyWe 
ondu
ted a simulation study using arti�
ially produ
ed images of parti
lesto examine if the root-mean-square (RMS) error of the estimated parti
le 
entersvary with depth in the same way as the estimated standard errors of the real datadisplayed in Figure 9. Furthermore, we wanted to see if the estimated standarderrors from the simulated images were 
onsistent with the RMS errors. The thirdobje
tive was to examine how mu
h the RMS errors were a�e
ted when pixelvalues were 
ensored but if we used the standard lo
al quadrati
 kernel estimatein the 
al
ulation of S, instead of the 
ensored version, see Se
tion 3.We 
reated an arti�
ial image of size 33 times 33 for a parti
le at depth z asfollows. The true 
enter for the parti
le was 
hosen as the middle pixel of the18
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le 
enter for 6 parti
les at ea
h of the depths inFigure 2. On the left, the mean of the estimated standard errors of the parti
le 
enterestimation is displayed and on the right the estimated noise parameters �2 and 
 tothe exponentially de
aying 
orrelation fun
tion.image (17,17) but with an o�set 
hosen uniformly from [-0.5,0.5℄ independentlyfor both 
oordinates. We 
hoose the parti
le 
enter at random in order to getrandomness in the distan
es ri(x). Then the pixel values for all pixel lo
ations aregiven the value predi
ted by the 
orresponding intensity pro�le f to depth z. Astrue intensity pro�les, we used the ones estimated for the parti
le in 2. To this weadd zero mean Gaussian image noise with 
ovarian
e fun
tion �2 exp(�
 jji�jjj)between pixels i and j in the image. The realization of this noise is done via aCholesky fa
torization of the 
ovarian
e matrix with the elements �2 exp(�
 jji�jjj). We used noise parameters �2 = 25 and 
 = 0:6, whi
h was 
onsidered asuitable 
hoi
e of parameters, both from looking at the estimated parametersin Figure 9 but also after an examination of the noise stru
ture in ba
kgroundimages (that is images with no parti
les present) where the noise varian
e weregenerally lower, around 13-15, and the 
orrelation fa
tor 
 around 0.6. Finally,the pixel values are rounded to the nearest integer. Regarding 
ensoring, thiswas only done in one of the studies, see below.The middle pixel in the arti�
ial image was used as approximate starting 
enterand the pixels within distan
e rmax = 15 from this 
enter pixel was used asneighborhood Nx. Bandwidth hpilot = 0:7 was used as pilot bandwidth for alldepths, see Se
tion 3 for details on estimating the 
enter.We 
ondu
ted three di�erent simulation studies, ea
h of whi
h 
onsisted of 500simulated images with subsequent parti
le 
enter estimation for ea
h depth. InFigure 10 we have displayed the resulting errors in the 
enter estimation as aboxplot. The results in the horizontal and verti
al 
oordinates are presented19
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le 
enter estimation errors for 500 simulatedimages at ea
h depth. The errors in both 
oordinates are presented simultaneously soea
h boxplot 
onsists of 1000 values. The solid line is the 
al
ulated RMS error fromthe same simulation study for ea
h depth. See Figure 11 for the 
onsisten
y 
he
k ofthe estimated standard errors in this simulation.together sin
e there was no 
orrelation between the 
oordinate position errors.The box has lines at the lower quartile, median, and upper quartile values andthe length of the whiskers are 1.5 times the interquartile range, whi
h is de�nedas the di�eren
e between the 75th per
entile and the 25th per
entile of the data.Outliers are displayed using the symbol '+'. The solid lines are the RMS errorsplotted symmetri
ally on both sides of the x-axis.Regarding the 
onsisten
y of the estimated standard errors with the RMS er-rors, we have in Figure 11 plotted the RMS errors (boxes), and the mean ofthe 500 estimated standard errors for ea
h depth (stars). It seems as if theestimated standard errors slightly over-estimates the standard errors. The qual-itative shape of the two 
urves is however the same. In Figure 11, we have also20
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Figure 11: Left: Comparison between the RMS errors (boxes) of the parti
le 
enterestimation errors (in both 
oordinates simultaneously) and the mean of the estimatedstandard errors (stars) for the simulation study of 500 simulated images presented inFigure 10. The standard errors slightly over-estimates the RMS errors, whi
h 
ould bedue to the rather pessimisti
 noise 
orrelation model, see Figure 8. Right: Comparisonbetween the RMS errors (boxes), also plotted in the left plot, and the mean of thestandard errors estimated from the real data (stars), whi
h are also plotted in Figure 9.plotted the estimated standard errors from the real data 
ompared with the RMSerrors from the simulation study. The most probable reason why the standarderrors from the real data, is due to larger estimates of the varian
e of the noisefor parti
le in the real data 
lose to the fo
al plane, and vi
e versa for parti
lesfurther away.Two more simulation studies were 
ondu
ted. In the �rst of these we wanted to
ompare the RMS errors if we 
ensored pixel values in the images at 255 but didnot take this into 
onsideration when estimating the 
enter, that is, we used thestandard lo
al quadrati
 kernel estimator when 
al
ulating S. The numbers ofsimulations were again 500 images per depth. The di�eren
e between the result-ing RMS errors here and in the previous study, were not statisti
ally signi�
anton a 95 per
ent 
on�den
e level (based on a normal distribution assumption onthe errors, whi
h by a 
hi-square plot was seen to be highly plausible).In the last simulation study the obje
tive was to investigate how the pre
ision inestimating the 
enter was a�e
ted if only the even rows in the images were usedfor the estimation. The reason for this investigation is that for sequen
e imageslike the one in Figure 1, only half of the rows 
ontain information. These kindof images are re
orded in video format and only half of the rows are updated forea
h image. Therefore, we would perhaps expe
t a lower pre
ision in the verti
al
oordinate. 21
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Figure 12: In the plot on the left, we have plotted the RMS errors for the horizontal(boxes) and the verti
al 
oordinates (stars) separately for the simulation study wherewe only use the pixels on the even rows. The plot on the right is a 
omparison betweenthe magnitude of the absolute values of the RMS errors in the two simulation studies,using only even rows (boxes) and using all rows (stars).In Figure 12, the resulting RMS errors for the two 
oordinates separately arepresented and quite surprisingly, the di�eren
e between the errors in the two
oordinates is small. The depths for whi
h the di�eren
e between the RMSerrors are statisti
ally signi�
ant on a 95 per
ent 
on�den
e level, are for depths-1, 0, and 1. Furthermore, 
onsidering both 
oordinates simultaneously, in theplot on the right, the RMS errors are hardly a�e
ted even though only half asmany pixels are used in the estimation.The reason for the �rst observation that the errors are almost the same in both
oordinates, is probably that the rotational symmetry imposes su
h a strong
ondition on the estimation pro
edure so that all pixels 
ontribute equally, dis-regarded of the fa
t that we a
tually have half as many pixels in one dire
tion.For the parti
les 
losest to the fo
al plane, the parti
les are smaller, and hen
ethere are fewer pixels involved. Possibly more surprising is that the magnitudeof the errors hardly in
reases. This is probably due to that the image noiseis 
orrelated; the relative in
rease in e�e
tive sample size is not 1/2 but mu
hsmaller sin
e the observations are 
orrelated.6 Con
lusions and Dis
ussionOur method of estimating the 
enters of spheri
al parti
les in images is possi-ble up to pre
ision well beyond sub-pixel a

ura
y. Sin
e it only relies on the22



assumption of rotational symmetry of the appearan
e of the parti
les in theimages, it 
an be used for tra
king even when the appearan
e of the parti
les
hanges (just as long as the rotational symmetry assumption still holds). Wetherefore believe it to be a highly versatile tool for automati
 measurements invideo mi
ros
opy of for example 
olloidal suspensions.The simulation study showed that the estimated standard errors are 
onsistentwith the RMS errors. It is however ne
essary that the assumptions on rotationalsymmetry and the isotropy of the image noise are 
orre
t. For the real data inFigure 2, the spatial residuals showed an in
reasingly worse �t for parti
les nearthe fo
al plane (see Figure 6). One reason 
ould be that the image model inequation (2) with additive image noise is not 
orre
t. In Figure 9, the estimatednoise parameters from the real images show signs of some kind of dependen
eof depth, and hen
e of the appearan
e of the parti
les. It 
ould be so that theimage noise is multipli
ative, sin
e we seem to have larger varian
e and shorter
orrelation length (larger 
) for parti
les near the fo
al plane.The estimator for the noise parameters is 
learly biased. An improvement inthis estimation might give better results in the estimation of the standard error.However, the standard error estimator, predi
ts the magnitude of the errorsfairly well, see Figure 11, and it is only here that the noise estimates are needed.An alternative measure of the lo
al rotational symmetry to use when pixels are
ensored, isSalt(y) = 1�2 Xi2AT�Ii � ^f(ri(y))	2 � Xi2A
T logn�� ^f(ri(y))� T� �owhere, as usual, AT is the set of un
ensored pixels in Nx and ^f the 
ensoredversion of the lo
al quadrati
 kernel estimate using the data fri(y); Iig. Here,�2 is the estimated varian
e from equation (7). This measure of rotationalsymmetry takes 
are of the 
ensored pixels in an appropriate manner. Note thatthe equation above equals (3) when there is no 
ensoring. However, sin
e theproportion of 
ensored pixels is so small here, it would probably not 
hange theresult.The result of the simulation study where we only used the even rows in theimages, is interesting; see Figure 12. First sin
e the di�eren
e between theparti
le estimation errors in the verti
al and the horizontal 
oordinates werevery small. Se
ond be
ause the magnitude of the RMS error did not de
reasewith a fa
tor p2 as one might have expe
ted 
onsidering that we used half asmany pixels in the parti
le 
enter estimation. Both these observations are goodnews for estimating parti
le 
enters in images re
orded in video rate, where onlyhalf of the rows in the images are updated at ea
h re
ording instant.23

There is no known parametri
 form for the intensity pro�les. In fa
t, imagingof spheri
al obje
ts is still a topi
 of large theoreti
al interest in opti
s resear
h,see for example Ovryn and Izen (2000). Ray-tra
ing using Fourier opti
s (see forexample a standard textbook on opti
s as He
ht (1998)) does not work here sin
ethe size of parti
les is in the s
ale of the wavelength of light used. An alternativeand more advan
ed approa
h to Fourier opti
s is to use Mie-theory, whi
h wasused by Ovryn and Izen (2000) to predi
t the appearan
e of a polystyrene sphereof diameter 7�m. However, no 
losed fun
tional form of the intensity pro�les isknown. For a review of 
olloidal suspensions in mi
ros
opy see Elliot and Poon(2001).Referen
esJ. Cro
ker and D. Grier. Methods of digital video mi
ros
opy for 
olloidal studies.Journal of Colloid and Interfa
e S
ien
e, 179:298{310, 1996.J. Cro
ker and D. Grier. Intera
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s in 
harge-stabilized 
olloid.MRS Bulletin, 23:24{31, 1998.C. Ekstr�m, S. Bak, C. Kristensen, and M. Rudemo. Spot shape modelling anddata transformations for mi
roarrays. Bioinformati
s, 20:2270{2278, 2004.M. S. Elliot and W. Poon. Conventional opti
al mi
ros
opy of 
olloidal suspen-sions. Advan
es in Colloid and Interfa
e S
ien
e, 92:133{194, 2001.J. Fan and I. Gijbels. Lo
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ope. Journal of the Opti
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iety of Ameri
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ien
e and Vision, 17:1202{1213, 2000.A. Owen. Empiri
al Likelihood. Chapman and Hall/CRC, London, �rst edition,2001. 24



Depth estimation of 
olloidal parti
les inmi
ros
opyMats Kvarnstr�omJanuary 24, 2005Abstra
tEstimates of the lo
ations of parti
les are 
ru
ial for subsequent esti-mation of intera
tion of parti
les. It is also of interest for tra
king parti
lesin three dimensions. Here we fo
us on the estimation of depth of 
olloidallatex parti
les observed in bright-�eld video mi
ros
opy. Pre
ise estima-tion of the parti
le 
enters in 2-D of spheri
al parti
les in mi
ros
opy is
overed in Kvarnstr�om and Glasbey (2005). Here, we introdu
e a methodfor estimating the depth of spheri
al 
olloidal parti
les, using empiri
allyderived templates. The 
riterion fun
tion used for �nding the best 
or-responden
e between the template and the image takes 
are of possible
ensoring of pixel values in the image and di�erent levels of ba
kgroundintensity. From both real data and a simulation study, the 
on
lusion isthat the depth estimation has a standard error below at least 0.2�m, whi
his the 
orresponding distan
e in depth between the templates used.1 Introdu
tionIn 
olloidal 
hemistry, it is 
ru
ial to quantitatively be able to measure the sta-bility of the 
olloidal system of parti
les. Digital mi
ros
opy o�ers vast oppor-tunities for automated measurements of intera
tion and di�usivity of parti
lesystems, both of whi
h are important fa
tors when determining the stability.However, estimating intera
tion of parti
les in a three dimensional domain de-mands position estimates of all three 
oordinates. In Figure 1 we give an exampleof an image that 
ould be used for measurements of the properties of a 
olloidalsuspension. The parti
les in the images are di�using in a dilute solution and theimage is taken from a larger sequen
e of images, re
orded at a frame rate of 50images per se
ond. The parti
les are made of latex and are all of the same size,1

Figure 1: An image of latex parti
les di�using in a dilute solution. The di�eren
e inappearan
e is due to an out-of-fo
us e�e
t.494 nm in diameter. Di�eren
e in appearan
e of parti
les in a given image isdue to an out-of-fo
us e�e
t 
aused by di�eren
e in depth relative to the fo
alplane. It is this di�eren
e in appearan
e that will be used when estimating thedepth of the parti
les.The image in Figure 1 
onsists of 512 times 512 square pixels of side-length 180nm, so the distan
e is roughly 90 �m a
ross the horizontal and verti
al domainof the image. The exa
t maximum deviation of the parti
les from the fo
al planein this experimental setup is unknown but it is believed to be at least �10 �m.In Figure 2, the sub-images show the appearan
e of parti
les at known depthsrelative to the fo
al plane. Images like these will be used to 
onstru
t templates2



of what the parti
les look like, at a set of di�erent depths. The templates 
ouldthen be used for depth estimation of parti
les in images like the sequen
e imagesof Figure 1. Previous studies of measurements of 
olloidal parti
les using digitalmi
ros
opy in
lude Cro
ker and Grier (1996, 1998), however their studies 
on-
erned systems of parti
les eÆ
iently 
on�ned at a single depth. For an overviewof 
olloidal 
hemistry in general, see Evans and Wennerstr�om (1999) and for anoverview of mi
ros
opy used for observing 
olloidal suspensions, see Elliot andPoon (2001).Examples of depth estimation in vision and image pro
essing are several. Theproblem formulation is however usually rather di�erent, as is the solution. Oneappli
ation is re
onstru
tion of 3-D s
enery from video sequen
es. For example,in Chowdhury and Chellappa (2001), this is done by tra
king 
orresponden
esof various landmarks of geometri
al obje
ts (su
h as 
orners of a building) andrelate these to the known movements of the 
amera. Another appli
ation is todetermine the distan
e from the 
amera to various obje
ts in an image s
enery,see for example Gil et al. (2004) and Ahn et al. (1997). The underlying assump-tion is that the images of obje
ts not in fo
us, are 
onvolutions of the original,true image, and a linear (known) low-pass �lter. The depths of the obje
ts inthe image are then estimated by means of estimating the amount of smoothingin the observed image, either by a de
onvolution or a measure of the fra
tion ofhigh-pass versus low-pass 
omponents. None of these te
hniques are appli
ablehere sin
e there are obviously no suitable landmarks on the latex parti
les, andthe di�erent appearan
es of the de-fo
used parti
les 
annot be represented by alinear operation.Pre
ise estimation of the 
enters in the image plane (2-D position estimation),is 
overed in Kvarnstr�om and Glasbey (2005). This estimation was based onthe assumption of rotational symmetry of the pixel values surrounding a parti
le
enter. The standard errors of the estimates were both estimated and veri�ed ina simulation study to be between 0.02 and 0.10 pixels, depending on the distan
ein depth from the fo
al plane, with larger deviation for parti
les further awayfrom the fo
al plane. This 
orresponds to standard errors between 3.6 and 18nm. Furthermore, a method was developed to estimate the fun
tional form ofhow pixel values 
hange with distan
e (in the image domain) from the parti
le
enter. In the present paper, the intensity pro�les, for parti
les at di�erent(known) depths will �rst be estimated and then used as template pro�les todetermine the depths of parti
les for whi
h we do not know the true depth.This kind of approa
h is 
alled template mat
hing. The intensity pro�les (ortemplates) will be estimated nonparametri
ally using a lo
al quadrati
 kernelestimate. From now on, we will by parti
le 
enter mean the 2-D 
enter, that thelo
ation of the parti
le 
enter in the image plane. The third 
oordinate will be3
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Figure 2: The appearan
es of the parti
les at 35 di�erent depths relative to the fo
alplane. Sub-image 0 
orresponds to a parti
le at the fo
al plane, and sub-images withnegative and positive labels are below and above the fo
al plane, respe
tively. Thedistan
e in depth between two 
onse
utive label numbers is 0.2 �m.
alled depth and denoted by z.Template mat
hing is a fairly 
ommon method in image pro
essing where thebest 
orresponden
e between an image and a set of templates is sought. Exam-ples where the method has been used su

essfully, is in Young et al. (1998) toautomati
ally identify and measure yeast 
ells in DIC mi
ros
opy, and Dralle andRudemo (1997), where positions of trees are estimated from areal photographs.Here, our set of templates should mimi
 the appearan
e of parti
les at di�erentdepth of fo
us. Given an image of a parti
le at an unknown depth, the 
orre-sponding depth of the template that gives the best 
orresponden
e, would thenbe the estimate of the depth of the parti
le in the image. We therefore needboth to 
onstru
t the set of template pro�les and to de�ne a suitable 
riterionfun
tion to �nd the \best 
orresponden
e".The templates will be 
onstru
ted by estimating the intensity pro�les in images of4



parti
les at known depths, like the sub-images of Figure 2. Images like these werere
orded by �rst letting parti
les adsorb on one of the 
on�ning glasses of thespe
imen, and then move the spe
imen relative to the opti
s of the mi
ros
ope.We have 61 z-s
an images like these to our disposal, with distan
e to the fo
alplane ranging from -6 �m to +6 �m with 0.2 �m between ea
h. In Figure 2,we display a subset of the total number of depths. For ea
h z-s
an, there are10 parti
les present and believed to be totally adsorbed on the glass, and hen
e,at the same relative depth. In ea
h sub-image in Figure 2 we have extra
tedthe neighborhood around a parti
le in the z-s
an for the depth spe
i�ed by the
orresponding label. We have used the same parti
le in all sub-images ex
eptfor depths -2, -1, 8, and 12. In the z-s
ans for these depths, the original parti
lewas o

luded by other, mobile parti
les in the spe
imen. Therefore, for sub-images -2, -1, 8, and 12, another parti
le was used. We are not able to presentthe appearan
e of the same parti
le at ea
h depth sin
e all of the 10 adsorbedparti
les are o

luded in at least one of the 61 z-s
ans.The 
riterion fun
tion used here is based on least squared distan
e between thetemplate pro�le and the pixel values surrounding the parti
le 
enter. Care musthowever be taken sin
e 
ensoring in the images o

urs for pixel values largerthan an upper limit T . Also, parti
les in the images are generally at di�erentba
kground pixel levels. This a�e
ts the relative level of 
ensoring for parti
lesat di�erent ba
kground levels; a parti
le at a lo
ation with large ba
kgroundintensity has more pixels 
ensored than a parti
le with low ba
kground inten-sity. Hen
e, the 
riterion fun
tion should also take this into a

ount. We will
ompare the performan
e between �ve di�erent 
riterion fun
tions and �nd outthat taking 
are of di�erent ba
kground levels is far more important than taking
are of 
ensored pixel values.2 AssumptionsThe underlying assumption of the appearan
es of the parti
les in the images weare 
onsidering here, is the rotational symmetry of the pixel values 
lose to thetrue parti
le 
enter. More pre
isely, for a parti
le lo
ated at x = (x1; x2) 2 R2 ,we assume that there exists a neighborhood Nx of (integer valued) pixel 
entersi = (i1; i2) su
h that Ii = fz(ri(x)) + �+ �i (1)for i 2 Nx, where Ii is the pixel value at i and ri(x) is the Eu
lidean distan
efrom the parti
le 
enter x to the pixel 
enter i. We denote the domain for whi
hthe image I is de�ned by DI . The fun
tion fz is 
alled the intensity pro�le atdepth z of a parti
le. It is assumed to be a smooth fun
tion with at least se
ond5

order 
ontinuous derivative. Also, we assume that fz is an even fun
tion of r(even though r is never negative), so that the derivative of fz at r = 0 is equalto zero, that is f 0z(0) = 0. The image noise, �i for i 2 DI , is assumed to benormally distributed, with (isotropi
ally) 
orrelated pixel values, whi
h is whathave been observed in the images 
onsidered here. The ba
kground level � isgenerally di�erent for ea
h parti
le.Regarding the neighborhood Nx, there are several 
hoi
es. For the parti
les inFigure 2, we 
an take all pixels in the 
orresponding sub-image as the neighbor-hood Nx. More typi
ally however, we letNx = fi 2 DI : ri(x) � rmaxg (2)for an appropriately 
hosen maximum distan
e rmax. For images like Figure 1,when the distan
e between two parti
les is 
loser than 2 rmax, we might howeverneed to ex
lude some pixels from the two neighborhoods. This will however notbe dealt with in this paper. Throughout this paper, we will use a neighborhoodlike the one given in (2), with rmax equal to 15.As mentioned earlier, the pixel values in the images are 
ensored above an upperlimit T . Here, T equals 255. Censoring has to be dealt with properly, both whenestimating the template pro�les and in the subsequent mat
hing. In Figure 3,the s
atter plots illustrate what 
ensoring typi
ally looks like. Ea
h s
atter plot
onsists of the pixel values Ii and the distan
es ri(y) from a 
andidate parti
le
enter y of the parti
le. The s
atter plots on the right are for distan
es ri(^x)from the 
orresponding estimates of the parti
le 
enters. Hen
eforth, when werefer to a s
atter plot for a parti
le, we mean the plot of pixel values Ii to thedistan
es ri(y) for a 
andidate or estimated parti
le 
enter y.We assume the noise in the images to be zero-mean additive Gaussian noise withisotropi
 
ovarian
e �2 exp(�
 jji� jjj) between pixel 
enters i and j 2 DI . The
onstants �2 and 
, are the varian
e and the inverse 
orrelation length, respe
-tively and jj � jj denotes the Eu
lidean distan
e. This was found in Kvarnstr�omand Glasbey (2005) to be a reasonable approximation of the 
orrelation stru
tureof the noise in the 
onsidered images. Even though the noise assumed to be 
or-related, when estimating the intensity pro�les, we pro
eed in a quasi-likelihoodapproa
h, impli
itly assuming independent errors �i. In fa
t, the 
orrelationstru
ture will in this paper only be used when simulating image noise in thesimulation study. The noise parameters �2 = 25 and 
 = 0:6 are thought to besuÆ
iently 
onservative estimates. 6
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Figure 3: Here we have zoomed in on depth -15 (top row) and 8 (bottom row) ofthe parti
le in Figure 2. The middle 
olumn show the s
atter plots of pixel values anddistan
es from the 
enter pixel in the sub-images, and the right 
olumns the s
atterplots after re�ning the 
enter (separately for ea
h). Noti
e the 
ensoring of pixel valuesabove 255.3 Template 
onstru
tionFigure 2 shows what a parti
le looks like at 35 di�erent depths. In sub-image 0,the parti
le is at the fo
al plane. Negative labels 
orrespond to parti
les below,and positive labels to parti
les above the fo
al plane. The distan
e in depthbetween two 
onse
utive labels is 0.2 �m.The s
atter plots in the middle and the right 
olumns of Figure 3 for the twoparti
les, illustrate the need to re�ne the 
enters of the parti
les at greatera

ura
y than to the (integer-valued) pixel 
enters.For a parti
le at known depth z, the template pro�le is 
onstru
ted as follows:1. Re�ne the position estimate by �nding the position with maximal rota-tional symmetry by minimizing equation (3) below.2. Find the bandwidth hopt that minimizes the 
ross-validation s
ore for thelo
al quadrati
 kernel estimate used on the pixel values Ii and the distan
esto the estimated 
enter. 7

3. Estimate the intensity pro�le with the bandwidth hopt. If there are 
en-sored pixels, use 
ensored regression as des
ribed below..The resulting intensity pro�le estimate for this depth z is denoted by fz.Mu
h of the material found in this se
tion 
an be found in greater detail in Kvarn-str�om and Glasbey (2005).3.1 Estimating 
enters in 2-DWe estimate the parti
le 
enter by minimizingS(y) = Xi2Nx�Ii � g(y; ri(y))	2 (3)for the parti
le lo
ated at x (see Kvarnstr�om and Glasbey (2005)). Here, g(y; �)is a s
atter smooth of the data points fri(y); Iig 
al
ulated by means of a lo
alquadrati
 kernel estimate with a Gaussian kernel fun
tion (see below). We let^x denote the minimizer of S and 
all it the estimate of x. The idea behindminimizing equation (3), is to �nd the position of (lo
al) maximal rotationalsymmetry.For easier notation, we will hen
eforth write ri instead of ri(y) when there isno possibility of misunderstanding. We will now explain brie
y how the lo
alquadrati
 kernel estimate is 
al
ulated. Standard referen
es for nonparametri
lo
al polynomial kernel estimation are Hastie and Tibshirani (1990) and Fan andGijbels (1996). Let K denote the Gaussian kernel, that is K(x) = exp(�x2=2).The lo
al quadrati
 kernel estimate is based on the assumption that the unknownregression fun
tion f 
an be approximated lo
ally by a polynomial of degree two,f(r) ' 2Xk=0 f (k)(r0)k! (r � r0)kfor r 
lose to r0. To 
al
ulate the value of the estimate at an arbitrary point r0,we lo
ally �t a quadrati
 polynomial using weighted least-squares by minimizingXi2NxnIi � 2Xk=0�k(ri � r0)ko2Kh(ri � r0) (4)with respe
t to � = (�0; �1; �2) and denote the minimizer by ^�. Here, Kh(x) =h�1K(x=h) is the kernel with bandwidth h > 0. The estimates of f (k) at r0, fork = 0; 1, and 2 are ^f (k)(r0) = k! ^�k8



The value of g at the point r0 = ri(y) for the 
andidate 
enter y, is theng(y; ri(y)) = ^f (0)(ri(y)). For ea
h 
andidate 
enter y in the evaluation of S(y)in expression (3), this is done for all distan
es ri(y) to the pixel 
enter i 2 Nx.Noti
e also that sin
e g is the solution to a weighted least-squares, g(y; ri(y)) isa linear 
ombination of the pixel values Ij for j 2 Nx.For the data 
onsidered here, the lo
al quadrati
 model is not very sensitive to
hoi
e of bandwidth. This was shown in a 
ross-validation study in Kvarnstr�omand Glasbey (2005), where h = 0:7 turned out to be a good 
hoi
e of a pilotbandwidth when estimating the parti
le 
enter, for the depths 
onsidered here.The bandwidth is then updated, via a 
ross-validation study, as we get 
loser tothe minimizer of S. How to 
ondu
t a 
ross-validation is explained below.3.2 Estimating the intensity pro�lesWhen the parti
le 
enter has been found, we estimate the intensity fun
tion fz.First of all, the bandwidth has to be updated from the pilot bandwidth h = 0:7in the 
enter estimation. The bandwidth minimizing the 
ross-validation s
oreCV , de�ned as CV (h) = Xi2Nx�Ii � ^f�ih (ri(^x))	2;is denoted by hopt, where ^f�ih is the lo
al quadrati
 kernel estimate using allpixels ex
ept the ith. In pra
ti
e, the set over whi
h CV is 
al
ulated, is �nite.Here, we 
al
ulate CV for h = 0:5; 0:6; : : : ; 1:5.When none of the pixel values Ii are 
ensored, fz is re-estimated with the lo
alquadrati
 kernel estimate, this time with hopt as bandwidth. If there is 
ensoringhowever, we will use a slightly modi�ed estimation s
heme.Censored regressionLet AT denote the set of un
ensored pixels, that is AT = fi 2 Nx : Ii < Tg.Hen
e, the 
omplement A
T is the set of 
ensored pixels. For an arbitrary pointr0, denote the minimizer of12 log�2 Xi2AT Kh(ri � r0) + 12�2 Xi2ATnIi � 2Xk=0�k(ri � r0)ko2Kh(ri � r0)� Xi2A
T logn��P2k=0 �k(ri � r0)k � T� �oKh(ri � r0) (5)

9

by ^�. Here, � is the distribution fun
tion of a standard normal random variable.The problem with equation (5), is that the parameter �2, the varian
e of theimage noise �i, is unknown. Hen
e, this needs to be estimated as well. However,instead of minimizing (5) with respe
t to both � and �2 lo
ally for ea
h r0,we will use an iterative s
heme, alternating between estimation �2 globally andupdating the regression estimates.Let ^f0i denote the estimate from a standard lo
al quadrati
 kernel estimate atpoint ri. The �rst, pilot, estimate of �2, is based on the residuals between ^f0and the pixel values: ^�20 = 1jAT j Xi2AT�Ii � ^f0i 	2 (6)where jAT j is the number of elements in AT . Next, minimize equation (5) at ea
hpoint ri using the pilot estimate �20 and denote this intensity pro�le estimate ^f1ifor i 2 Nx. Then, estimate �2 by (6) again, this time using ^f1. Repeat thisuntil the relative 
hange j�2k��2k+1j=�2k between two 
onse
utive estimates of �2is smaller than a 
ertain limit Æ, 
hosen su
h that an update gives a negligiblee�e
t on the minimization of (5). Here, we let Æ = 0:01 and the iterative s
hemetypi
ally 
onverges after two or three iterations.Remark: The estimator of �2 in equation (6) is biased. In Kvarnstr�om andGlasbey (2005) it was proposed to use jAT j � trfWg in the denominator in-stead of jAT j. Here, W is the equivalent kernel matrix, for whi
h ^f(ri(y)) =Pj2Nx WijIj , where ^f is the standard lo
al quadrati
 kernel estimate. (Re-member that this was linear in the pixel values sin
e it is the solution to aweighted least-squares problem.) Thus, jAT j � trfWg is an estimate of the de-grees of freedom in the lo
al quadrati
 kernel estimate. An better alternative istherefore to use this in the denominator.Resulting intensity pro�lesThe set of �nal estimates of the pro�les are 
alled template pro�les and denotedby ffzg, thus dropping the hat-sign for easier notation. They are 
al
ulated andstored for 200 equally spa
ed points between 0 and 15. In Figure 4, the resultingpro�les for the 35 depths 
orresponding to the sub-images of Figure 2 are shown.Intensity pro�les of parti
les 
loser to the fo
al plane have larger 
u
tuationsthan the 
orresponding intensity pro�les for parti
les further away. Further-more, for parti
les below the fo
al plane, the intensity pro�le assumes largevalues 
lose to r = 0, whereas the opposite is valid for parti
les above the fo
alplane (
ompare with Figure 2). Noti
e that the estimated intensity pro�les 
an10
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Figure 4: The resulting template pro�les for the sub-images of Figure 2. The intensitypro�les 
orresponding to sub-images with negative labels are plotted on the left andthe ones with positive labels, in
luding the parti
le at the fo
al plane, on the right.assume larger values than the 
ensoring level T = 255. For parti
les below thefo
al plane, where 
ensoring o

urs for small r-values, this was possible sin
e weassume the true pro�le to be an even fun
tion of r, whi
h is natural 
onsider-ing the assumptions of rotational symmetry and the smoothness of the intensitypro�le.4 Template mat
hingLet us assume that the 
enter x of a parti
le is given. Then our data 
onsist offri; Iig = fri(x); Iig, of pixel values and distan
es to x. Having 
onstru
ted thetemplate pro�les in Se
tion 3, we are to sear
h for the template pro�le fz thatgives the best 
orresponden
e to the data fri; Iig. This 
orresponden
e 
an bemeasured in a number of ways.Arguably the most popular 
riterion is the square di�eren
e between the tem-plate and the data, whi
h in our 
ase would be to let the minimizer ofXi2Nx�Ii � fz(ri(x))	2with respe
t to the pro�les fz, be the estimate of the depth. This 
riterionfun
tion does not however take into a

ount either 
ensored pixels or di�erentba
kground levels �. Sin
e both these issues are typi
al for our data, a modi�-
ation is 
alled for. 11

Assume �rst that the image noise varian
e �2 and ba
kground level � are bothknown. Then the minimizer of1�2 Xi2AT�Ii � �� fz(ri(x))	2 � Xi2A
T logn��fz(ri(x)) + �� T� �o (7)would be an estimate of the depth z taking into a

ount both 
ensoring anddi�erent ba
kground levels. As before, T is the 
ensoring level, and � the 
u-mulative distribution fun
tion of a standard normal random variable. In fa
t,this estimate of z is the maximum likelihood estimate of z under the assumptionthat the pixel values Ii are Ii = fz(ri(x)) + �+ �ifor some fz in our set of templates, the true 2-D 
enter is at x, and that theimage noise variables �i are i.i.d. and N(0,�2)-distributed. Sin
e the templatesfz are stored only for 200 equally spa
ed values over the interval [0,15℄, the valuesof fz at the points ri(x) are evaluated by linear interpolation from these storedvalues of the template pro�les.Regarding �2, we will use the residuals between the pixel values Ii and the lo
alregression smooth gi = g(x; ri(x)) from the parti
le 
enter estimation pro
edureof minimizing (3) using only the un
ensored pixel values, in exa
tly the samethat we did in equation (6).For �, we will use a pro�le likelihood approa
h, estimating � separately for ea
h
andidate template pro�le fz. Thus, the minimizer ofM(z) = 1�2 Xi2AT�Ii� ^�z�fz(ri(x))	2� Xi2A
T logn��fz(ri(x)) + ^�z � T� �o (8)will be used as an estimate of z, where ^�z is the minimizer of equation (7) withrespe
t to �, given fz.For 
omparison, we will use four other 
riterion fun
tions, namely:M1(z) = Xi2Nx�Ii � fz(ri(x))	2M2(z) = Xi2Nx�Ii � �I � �fz(ri(x))� �fz�	2M3(z) = Xi2Nx�Ii � ~�z � fz(ri(x))	2M4(z) = Xi2AT�Ii � ~�z � fz(ri(x))	212



where ~�z is 
omputed for ea
h z separately as the minimizer ofXi2AT�Ii � �� fz(ri(x))	2while keeping z �xed, and where �I is the mean of the pixel values in Nx and �fzthe mean of fz(ri(x)) for i 2 Nx.The 
riterion fun
tion M1 is not believed to perform very well if we have either
ensoring or di�erent ba
kground levels. The last three 
riteria all take intoa

ount the ba
kground level. The di�eren
e between them is subtle. M2 simplysubtra
ts the 
orresponding mean from ea
h term, without bothering about thepossibility of 
ensoring; one 
ould say that M2 estimates � by �I � �fz. Onthe other hand M3 and M4 estimate � from the un
ensored pixel values only.Also, whereas M1, M2, and M3 all sum over all pixels in Nx, M4 only sumsover the un
ensored pixels. Furthermore, note that when there is no 
ensoring,M =M2 =M3 =M4.For parti
les for whi
h we want to estimate the depth, we �rst estimate theparti
le 
enter by minimizing equation (3). The pixel values and distan
es fromthe estimated parti
le 
enter, fri; Iig = fri(^x); Iig, are then used in templatemat
hing.Mat
hing exampleIn Figure 5 we have displayed the s
atter plot from a parti
le from the samez-s
an as sub-image -15 in Figure 2 after the 
enter has been re�ned. We havealso plotted the template pro�le fz that gave the best �t, the template for depthz = �15. The logarithm of the mat
hing 
riteriaM ,M1,M3, andM4 are plottedin the right panel of Figure 5. To be 
omparable, we divided the mat
hing 
riteriaMk, k = 1; 3; 4, by �2. M is the solid line, M1 the dotted, M3 the dashed, andM4 the solid-dotted. We see that all four have a dip towards z = �15. M2 isnot displayed sin
e it was indistinguishable from M3. The di�eren
e betweenthe 
riteria is 
learly visible for templates 
orresponding to parti
les above thefo
al plane (the positive labels), sin
e they all have low pixel values for d 
loseto zero, and this is where 
ensoring o

urs for this parti
le. Compare also thisresult with the template pro�les in Figure 4.13
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Figure 5: The s
atter plot in the left panel is from a parti
le, presumed to be atdepth -15. The mat
hing 
riteria M (solid), M1 (dotted), M3 (dashed), andM4 (solid-dotted) are plotted on the right and they all have a dip towards -15. M1 is pra
ti
allyindistinguishable fromM3; the di�eren
e is only visible around the dip and for z smallerthan -20.5 ResultsWe 
ondu
ted a small performan
e study of the depth estimation pro
eduredeveloped in Se
tions 3 and 4 using real data 
onsisting of the z-s
ans. Inthe 61 z-s
ans used in the 
onstru
tion of the templates, we have in total 10parti
les believed to be at the same relative depth as the 
orresponding parti
lesin the sub-images of Figure 2. All 10 parti
les are however not present in everyz-s
an, sin
e even though our parti
les are adsorbed on one of the glasses ofthe spe
imen, not all other parti
les in the spe
imen are. As a 
onsequen
e,the adsorbed parti
les are sometimes o

luded by the mobile ones. For ea
hparti
le, we do not use the z-s
ans where it is o

luded. Therefore, the numberof parti
les for ea
h depth used varies between 8 and 10. (There are 10 parti
lesin 43 z-s
ans, 9 in 14 z-s
ans, and 8 in 4 of the z-s
ans.)The only 
riterion fun
tion used here, was M . Also, we used the neighborhoodsNx of equation (2) with rmax = 15, that is, all pixels within distan
e 15 fromthe 
orresponding estimate of the parti
le 
enter are taken into a

ount.In the left panel of Figure 6, we have plotted the di�eren
e between the estimateddepth using our 
onstru
ted templates, and the (believed) true depth for thedepths between -30 and 30. A dot indi
ates that at least one of the parti
leshad this error for that depth, therefore multiple errors at a spe
i�
 depth arenot visible in this plot. We also 
al
ulated the sample mean error (bias) andsample standard deviation of the errors for ea
h z. The solid line in Figure 614
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Figure 6: On the left, the dots represents the errors in depth versus the (believed)true depth for all ten parti
les. The solid line is the smoothed sample bias. Thedashed-dotted lines are the smoothed bias plus and minus three times the smoothedsample standard deviation for ea
h depth. The dots on the right are the pointwiseroot-mean-square errors for ea
h depth and the solid line is the smoothed RMS.is the smoothed mean of the error (bias) and the two dashed-dotted lines arethe smoothed sample bias plus and minus three times the smoothed samplestandard deviation, respe
tively. The pointwise root-mean-square (RMS) errorsare plotted in the right panel of Figure 6, together with its smoothed version. Allsmoothing was 
ondu
ted using a lo
al linear kernel estimate with bandwidth 5.The two �gures tell us that the a

ura
y in depth estimation is better for depths
loser to the fo
al plane.The RMS error 
al
ulated over all depths and parti
les is 0.60 z-units and themean bias is -0.23 z-units. Even though the number of repli
ates are few, theinvestigation indi
ates that depth estimation is possible at least with a level ofa

ura
y 
orresponding to a standard deviation of one z-unit, whi
h 
orrespondsto 0.2 �m. This should be 
ompared with the a

ura
y of the position estimationin 2-D reported in Kvarnstr�om and Glasbey (2005), namely the a

ura
y varyingfrom 0.02 to 0.10 pixels in RMS error, whi
h 
orresponds to 3.6 nm and 20 nm,respe
tively.The major 
ontributing fa
tor to the RMS errors for this study however, seemsto be the systemati
 o�set in depth relative to the depth of the two parti
les usedin the template 
onstru
tion. Furthermore, for some parti
les this o�set seemsto vary for the z-s
ans. For example, in Figure 7 we have plotted the errors indepth estimation as a fun
tion of depth (that is, for di�erent z-s
ans) for twoparti
les. There 
learly seem to be a negative and positive trend, respe
tively,15
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Figure 7: The errors in the depth estimates versus the (believed) true depth, for twodi�erent parti
les. There seems to be a trend upwards and downwards, respe
tively forthe two parti
les, as the depth goes from negative to positive.as the depth goes from negative to positive. The reason for this behavior is notknown. Naturally, systemati
 o�sets from the believed true depth makes it hardto draw 
on
lusions on the a

ura
y of the depth estimation.6 Simulation studySin
e the number of parti
les in the z-s
ans is so small, and sin
e the true depthof them did not seem to be same as the 
orresponding depths for the parti
lesused in the template 
onstru
tion, a simulation study was 
ondu
ted.We 
reate an arti�
ial image of size 33 times 33 for a parti
le at depth z asfollows. First the 
enter for the parti
le is 
hosen at the middle pixel of theimage (17,17) but with an o�set 
hosen uniformly from [-0.5,0.5℄ independentlyfor ea
h 
oordinate. We 
hoose the parti
le 
enter at random in order to getrandomness in the distan
es ri(x). Then the pixel values for all pixel 
enters aregiven the value predi
ted by the template pro�le fz for depth z plus a randomba
kground level �, 
hosen uniformly among the real values between -40 and10. This variability is typi
ally what is observed in images like the ones inFigure 1. To this we add zero mean Gaussian image noise with 
ovarian
efun
tion �2 exp(�
 jji� jjj) between pixels i and j in the image. The realizationof this noise is done via a Cholesky fa
torization of the 
ovarian
e matrix withthe elements �2 exp(�
 jji � jjj). Finally, the pixel values are rounded to thenearest integer between 0 and 255. 16
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Figure 8: Example of a simulated image (left) of a parti
le at depth 10. The mid-dle panel shows the s
atter plot together with the template pro�le 
orresponding tothe 
orre
tly estimated depth. The 
riterion fun
tions M (solid), M1 (dotted), M3(dashed), and M4 (solid-dotted) are plotted in the right panel.In Figure 8, we have, from left to right, an example of a simulated image atdepth z = 10, its s
atter plot, and the resulting mat
hing 
riteria. With thes
atter plot, we have also plotted the �tted template pro�le 
orresponding tothe (
orre
tly) estimated depth. The ba
kground level � used here is 15 whi
hexplains the fairly large amount of 
ensoring. The image noise parameters �2and 
, were 25 and 0.6, respe
tively.For ea
h of the 35 depths in Figure 2, we simulated 1000 independent imagesand estimated the depth for ea
h using the four template mat
hing 
riteria ofSe
tion 4. The mat
hing for ea
h image was done using all 61 template pro�les,that is, we use all templates from depths -30 to 30, not just the 35 depths forwhi
h we simulate images for. We did not estimate the parti
le 
enters x for thedistan
es ri(x), but used instead the known (but random) 
enters. We used thesame neighborhoods Nx as in the previous se
tion, that is pixels up to distan
ermax = 15 from the parti
le 
enter.The overall RMS in the simulation study for all 35 depths was 0.24 z-units or49 nm. However, the errors were pra
ti
ally zero for depths between 15 z-unitsfrom the fo
al plane. For these depths there were only 14 mis
lassi�
ations.Considering that the total number of simulations for these depths were 25 000,we 
an 
on
lude that the pre
ision is very high for depths 
lose to the fo
al plane.Therefore, the main 
ontribution to the overall RMS of 0.24 z-units 
omes fromthe depths further away from 15 z-units from the fo
al plane. The RMS goesup almost linearly from zero at depth �15, to 0.6 and 0.8, for depths -30 and+30, respe
tively. Looking at the estimated intensity pro�les in Figure 4 orthe appearan
e of the parti
les in Figure 2, the general tenden
y of pre
ision ismaybe not surprising. The parti
les are more similar looking for depths furtheraway from the fo
al plane. 17

Compared to the other mat
hing 
riteria, all but M1 were almost identi
al inperforman
e. The overall RMS errors for M4, M3, and M2 where 0.24, 0.25 and0.25 z-units, respe
tively. M1 however, the mat
hing 
riterion that did not takeinto a

ount either 
ensoring or di�erent ba
kground levels, had an overall RMSerror of 5.0 z-units. The 
on
lusion is therefore that taking into a

ount di�erentba
kground levels is far more important than taking 
are of the 
ensored pixels.7 Con
lusions and dis
ussionAs dis
ussed in Se
tion 5, it is hard to draw 
on
lusions on the a

ura
y of thedepth estimation presented here by using real data as the z-s
ans. We simply
annot infer whether the errors are due to our depth estimation or an e�e
tof devian
es in depth among our ten parti
les. The simulation study howevershows that the depth estimation is highly a

urate with an overall RMS of 0.25 zunits, or 50 nm. However the RMS varies heavily with the true depth, with RMSerrors up to 0.8 z-units for parti
les 6 �m from the fo
al plane, and pra
ti
allyzero for parti
les within 2 �m from the fo
al plane. This should be 
omparedwith the simulation study for the 2-D estimation in Kvarnstr�om and Glasbey(2005), where the RMS errors varied from 0.020 to 0.10 pixels (3.6 nm to 18 nm)depending on depth.In the simulation study, we did not estimate the parti
le 
enter in the imageplane, but used the known true 
enters. One might think that this may 
on-tribute to the optimisti
 result of Se
tion 6, sin
e errors in parti
le 
enters a�e
tthe distan
es ri(x) used in the template mat
hing. However, a simulation study(not reported here) indi
ated that this is not the 
ase at all. Probably a moreimportant obje
tion to the highly optimisti
 result of the simulation study, isthat the image noise in real images seems to have larger varian
e for parti
les
lose to the fo
al plane, as reported in Kvarnstr�om and Glasbey (2005). Evenso, 
ompared with the result for the real images for these depths, the 
on
lusionis that the template mat
hing approa
h works well and the pre
ision (measuredas standard error) is at least within one z-index of the z-s
ans, 
orresponding to�0.2�m.Regarding the 
hoi
e of mat
hing 
riterion, even though M s
ored best amongthe �ve in the simulation study, the three others that at least took 
are of thedi�erent ba
kground levels (M4, M3, and M2), were only slightly worse than M .Therefore, the 
on
lusion is that taking into a

ount di�erent ba
kground levelsis far more important than taking 
are of the 
ensored pixels.additive 18



Our template 
onstru
tion was based on parti
les adsorbed on the spe
imenglass. If the appearan
e of parti
les is a�e
ted by this adsorption, our estimatedpro�les might di�er from what parti
les look like in when they are di�usingfreely in a solution, as is the 
ase for the parti
les in Figure 1. Consequently,the depth estimation of free parti
les might be a�e
ted. In relation to this, itshould also be mentioned that the templates 
an most likely only be used fordepth estimation of parti
les of the same size. If there are parti
les of di�erentsizes in the solution the template mat
hing might be of limited use, unless we
onstru
t a set of templates for parti
les for a number of di�erent sizes.Regarding the 
onstru
tion of templates, an alternative method to using empiri-
al data, would be to 
onstru
t the templates mathemati
ally, using theory fromopti
s for the tra
ing of rays in the image formation. This was done by Larsenand Rudemo (1998) for 
reating templates for the appearan
es of tree 
anopiesobserved from the air under di�erent lighting 
onditions. However, sin
e thewavelength of light is in the same order of magnitude as the diameter of the par-ti
les, the two standard approximations of opti
s, geometri
 and Fourier opti
s(ray-tra
ing), 
annot be used. Therefore, this approa
h has not been pursued.An alternative and more advan
ed approa
h to Fourier opti
s 
ould be to useMie-theory, whi
h was used by Ovryn and Izen (2000) to predi
t the appear-an
e of a polystyrene sphere of diameter 7 �m, that is 14 times bigger than theparti
les 
onsidered here.Referen
esS. Ahn, S. Lee, A. Meyyappan, and P. S
henker. Experiments on depth frommagni�
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eedings of the 1997 IEEE/RSJ InternationalConferen
e on Intelligent Robots and Systems, pages 733 { 739, 7-11 Sept1997.A. Chowdhury and R. Chellappa. Robust estimation of depth and motion usingsto
hasti
 approximation. 2001 International Conferen
e on Image Pro
essing,pages 642{645, 7-10 O
t 2001.J. Cro
ker and D. Grier. Methods of digital video mi
ros
opy for 
olloidal studies.Journal of Colloid and Interfa
e S
ien
e, 179:298{310, 1996.J. Cro
ker and D. Grier. Intera
tions and dynami
s in 
harge-stabilized 
olloid.MRS Bulletin, 23:24{31, 1998.K. Dralle and M. Rudemo. Automati
 estimation of individual tree positionsfrom aerial photos. Canadian Journal of Forest Resear
h, 27:1728{1736, 1997.19

M. S. Elliot and W. Poon. Conventional opti
al mi
ros
opy of 
olloidal suspen-sions. Advan
es in Colloid and Interfa
e S
ien
e, 92:133{194, 2001.D. F. Evans and H. Wennerstr�om. The Colloidal Domain. Where Physi
s, Chem-istry, Biology, and Te
hnology meet. Wiley-VCH, New York, se
ond edition,1999.J. Fan and I. Gijbels. Lo
al Polynomial Modelling and Its Appli
ations. Chapmanand Hall, London, �rst edition, 1996.P. Gil, S. Lafuente, S. Maldonado, and F. A
evedo. Distan
e estimation fromimage defo
us for video surveillan
e systems. Ele
troni
s Letters, 40:1047 {1049, 2004.T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall,London, �rst edition, 1990.M. Kvarnstr�om and C. Glasbey. Estimating parti
le 
entres and intensity pro�lesin mi
ros
ope images. Submitted, 2005.M. Larsen and M. Rudemo. Optimizing templates for �nding trees in aerialphotographs. Pattern Re
ognition Letters, 19:1153{1162, 1998.B. Ovryn and S. Izen. Imaging of transparent spheres through a planar interfa
eusing a high-numeri
al-aperature opti
al mi
ros
ope. Journal of the Opti
alSo
iety of Ameri
a A. Opti
s, Image S
ien
e and Vision, 17:1202{1213, 2000.D. Young, C. Glasbey, A. Gray, and M. N.J. Towards automati
 
ell identi�
ationin di
 mi
ros
opy. J. Mi
ros
., 192:186{193, 1998.
20



Kwantitatieve Methoden 72, 2005, 1-23 http://www.vvs-or.nl/kwanmeth/km72/kvarnstrom.pdf

Estimation of the diffusion 
oef�
ient in a mixturemodelMats Kvarnstr¨omMathemati
al Statisti
sChalmers University of Te
hnology412 96 G¨oteborg, Swedenmatskv�math.
halmers.seAbstra
tThe positions of parti
les assumed to perform Brownian motion have been observed in aseries of images. Sin
e some of them seem to be �xed, a model with two kinds of parti
les,diffusing and �xed, is introdu
ed. For ea
h parti
le position observation we also assume anadditive normal measurement error. We regard the problem as an in
omplete data problemsin
e we do not know a priori whi
h parti
les are really diffusing. The 
omplete data isof 
urved exponential type and the observed data is a mixture of two normal 
omponents.The maximum likelihood estimator is 
omputed via the EM algorithm and it is shown tobe strongly 
onsistent and asymptoti
ally normal, as the number of parti
les approa
hesin�nity, under a reasonable restri
tion on the parameter spa
e. A simulation study showsthat the method is robust even for large measurement errors, and that the estimates are 
loseto normal even for small sample sizes.Key Words and Phrases: dis
retely observed diffusion, measurement error, mixture distribution,EM algorithm, asymptoti
 normality, strong 
onsisten
y, 
urved exponential family1 Introdu
tionWe investigate the estimation of the diffusion varian
e (or equivalently, the diffusion 
oef�
ient)of 
olloidal parti
les whi
h have been observed in a series of images re
orded with a video mi-
ros
ope. The positions of the parti
les have been estimated using image pro
essing algorithmsand tools. The moving parti
les are assumed to perform Brownian motion in three dimensions.Furthermore, we assume the observed positions to be imperfe
t, i.e. we assume some measure-ment error. A further 
ompli
ating fa
t is that some of the observed parti
les are not movingbut are instead parti
les adsorbed on the obje
tive or 
over glass of the spe
imen. Also, someobserved parti
le positions are 
onsidered to be from �false� parti
les, whi
h do not 
orrespond
2 Mats Kvarnstr¨om

18

5

3

Figure 1: The 26 traje
tories estimated in a sequen
e of 12 images together with the �rst imageof the sequen
e. The three numbered parti
les seem to be �xed.to real parti
les, but instead, defe
ts in the opti
s of the mi
ros
ope. These �xed parti
les 
ouldbe removed manually but we de
ided not to do that, �rst, be
ause this should be possible to doautomati
ally using statisti
al methods, and se
ond, be
ause the observed positions of the �xedparti
les a
tually give us information on the measurement error. Instead, we introdu
e a modelwhi
h is a mixture of diffusing and �xed parti
les, and for both types, the positions are observedunder additive Gaussian measurement noise. The parameters of the model are the diffusion vari-an
e, �2, the measurement error varian
e, �2e , and the proportion of diffusing parti
les, p. Theproblem 
an be 
onsidered an in
omplete data problem sin
e we do not know a priori whi
hparti
les are diffusing.An example of what the situation may look like, 
an be seen in Figure 1. The �gure showsthe initial image in a sequen
e of 12 images, together with the positions of the parti
les in thesubsequent 11 images, together forming the estimated traje
tories of the parti
les. Here, thepositions of the parti
les have only been estimated in two dimensions. For details regardingthe estimation of the parti
le positions, see KVARNSTR ¨OM (2002). By manual inspe
tion, wemade sure that no 
hange of identities of the parti
les o

urred in the pro
ess of 
onverting theobserved positions in the images into traje
tories. The time interval between two images is 40millise
onds. The parti
les are spheri
al, made of polystyrene and are all equal in size, 494 nmin diameter. The apparent differen
es in size and brightness are due to an out-of-fo
us effe
tand depend on pla
ement in depth of the parti
les relative to the fo
al plane. Parti
les aboveKwantitatieve Methoden



Estimation of the diffusion 
oef�
ient in a mixture model 3the fo
al plane are bright in the middle and dark on the 
ir
umferen
e and vi
e versa for theparti
les below the fo
al plane. Also, the depi
ted size of a parti
le in
reases with its distan
eto the fo
al plane. In the sequen
e displayed Figure 1, three parti
les seem to be �xed. Theseare the parti
les with numbers next to them; parti
les 5 and 18 are adsorbed on the 
over and theobje
tive glass, respe
tively, and parti
le 3 probably 
orresponds to a defe
t in the opti
s.Several papers in the mathemati
al statisti
s literature deal with the estimation of the diffu-sion 
oef�
ient of a diffusion. Usually however, only the 
ase where data 
onsist of a singleobserved traje
tory, is 
onsidered. Furthermore, the diffusion 
oef�
ient is usually a spa
e-dependent fun
tion whi
h is either estimated non-parametri
ally or parametri
ally. The asymp-toti
 properties are then studied either as the sampling interval goes to zero with a �xed totalobservation length (see DOHNAL (1987) and FLORENS-ZMIROU (1993) for parametri
, andHOFFMANN (1999), JACOD (2000), and HOFFMANN (2001) for non-parametri
 estimation),or as the total observation time goes to in�nity while the sampling interval is kept 
onstant (seeBIBBY and SØRENSEN (1995) and KESSLER and SØRENSEN (1999)). GENON-CATALOTand JACOD (1994) also pursues the latter approa
h, but with a random sampling s
heme.In the situation 
overed here, we have several observed parti
le traje
tories, ea
h with a�xed number of samples. Furthermore, the observed positions of the traje
tories are subje
t tomeasurement error and not all observed parti
les are diffusing. Our data be
omes a �nite mixtureof diffusing and non-diffusing parti
les. The asymptoti
 properties of the maximum likelihoodestimator of the model parameters, of whi
h the (
onstant) diffusion 
oef�
ient is one, is thenanalysed. We show that the estimator is strongly 
onsistent and asymptoti
ally normal, as thenumber of parti
les approa
hes in�nity, under a reasonable restri
tion on the parameter spa
e.To the author's knowledge, this is not 
overed elsewhere in the literature.As an appli
ation, we use the traje
tories from the video sequen
e in Figure 1 as data. Themaximum likelihood estimator of the parameter is 
omputed via the EM algorithm, whi
h givesus, in addition to the parameter estimate, the posteriori estimates of whether a parti
le is mov-ing or �xed, 
alled the 
lassi�
ation variables. The estimated diffusion 
oef�
ient is in goodagreement with that predi
ted by Stoke-Einstein's relation. Moreover, the 
lassi�
ation variableestimates 
orrespond very well to our manual 
lassi�
ation.The paper is organized as follows. In Se
tion 2 we introdu
e the model with two kinds ofparti
les, diffusing and �xed, both observed with additive measurement error on the position esti-mates. Various properties of the likelihood and the maximum likelihood estimator are dis
ussedin Se
tion 3. We introdu
e a simple and reasonable restri
tion on the parameter spa
e and provethat there always exists a maximum likelihood estimator under this restri
tion. Furthermore, weshow how to implement the EM algorithm in this parti
ular setup.In Se
tion 4 we study the asymptoti
 properties of the estimator when we keep the obser-vation length �xed and let the number of parti
les go to in�nity. The estimator of the triple� = (�2; �2e ; p) using the observed data, i.e. the observed in
rements, is veri�ed to be strongly
onsistent and asymptoti
ally normally distributed under the previously mentioned restri
tion onthe parameter spa
e. The same asymptoti
 result is also shown to be true if instead the 
ompletedata is used.In Se
tion 5 we use the model assumption and estimate the diffusion varian
e for the data 
or-responding to the traje
tories in Figure 1. In a simulation study, the EM algorithm is shown to bevol. 72, 2005
4 Mats Kvarnstr¨oma pra
ti
al alternative when 
omputing the maximum likelihood estimate, at least for signal-to-noise ratios �2=�2e above 1/2, and as long as the observation length,N , is larger than 10. Anothersimulation study shows that normal approximation of the distribution of � seems reasonable foras small population sizes n as 10. Finally, in Se
tion 6, we dis
uss the results and possible futuredevelopments.2 Model assumptions and notationLet us start by regarding one-dimensional observations of a parti
le and denote the true andobserved position of a generi
 parti
le at time k = 0; : : : ; N , by Rk and Sk, respe
tively.For a diffusing parti
le we assume the following state-spa
e model:Rk = Rk�1 + wkSk = Rk + ek (1)for k = 1; : : : ; N . The initial positionR0 is assumed to be a non-random 
onstant. Furthermore,S0 = R0 + e0. Sin
e ea
h moving parti
le is assumed to perform a Brownian motion, thein
rements fwkgNk=1 are zero mean i.i.d. normally distributed random variables with varian
e�2 = 2D� , where � is the time interval between images and D the diffusion 
oef�
ient. Themeasurement errors, fekgNk=0 are assumed to be i.i.d. zero mean normal variables with varian
e�2e , independent of the in
rements fwkg. For a �xed parti
le, we use the same state-spa
e model,but with wk = 0 for all k.Let n be the number of observed parti
les and let ea
h parti
le i = 1; : : : ; n be diffusing withprobability p independently of ea
h other. De�ne the 
lassi�
ation variables Zi asZi = (1 if the i:th parti
le is diffusing0 if the i:th parti
le is �xedfor i = 1; : : : ; n. We assume that a parti
le is either diffusing or �xed for the entire sequen
e ofN + 1 observations.The model 
an now easily be extended to noisy observations of a Brownian motion in ddimensions if we assume the measurement error in ea
h dimension to be distributed as fekgabove and independent of ea
h other. Then, the observations of a parti
le follow the state-spa
emodel (1) in ea
h dimension independently of ea
h other, and ea
h parti
le will be assigned dindependent 
oordinate pro
esses. Hen
eforth, we will however for ease of notation, write as ifd = 1 unless otherwise stated.The index i = 1; : : : ; n, is used to distinguish between the n parti
les. By a subindex i to anentity, as in Zi, we mean that the entity belongs to the i:th parti
le. If the subindex i is negle
ted,we mean a generi
 parti
le. The index k = 0; : : : ; N , is used for a generi
 parti
le only, and
orresponds to the dis
rete time k in the state-spa
e model.We denote the observed in
rements for a parti
le by Yk = Sk � Sk�1, k = 1; : : : ; N . The
ovarian
e matrix of the in
rement ve
tor, Y = [Y1; : : : ; YN ℄T , be
omes�1 = �2I + �2eT (2)Kwantitatieve Methoden



Estimation of the diffusion 
oef�
ient in a mixture model 5for a diffusing parti
le and �0 = �2eTfor a �xed parti
le, where I is the N �N identity matrix and T is the tri-diagonal matrixT = 2666664 2 �1 0 � � � 0�1 2 �1 � � � 00 �1 2 � � � 0... ... ... . . . ...0 0 0 � � � 2
3777775 :We see from the 
ovarian
e matrix above that the measurement error on the observed positionsindu
es a dependen
e between the observed in
rements, whi
h originally, by de�nition of Brow-nian motion, were independent.2.1 Transformation of the in
rement ve
torTo make our formulas look ni
er in the subsequent se
tions, we use some basi
 linear algebra totransform the in
rement ve
tor so that the elements of the transformed ve
tors be
ome un
orre-lated.In (2), �1 has the same eigenve
tors as T sin
e every ve
tor is an eigenve
tor to I . If wedenote the eigenvalues of T by �k; k = 1; : : : ; N , then the eigenvalues of �1 are
k = �2 + �2e�k; k = 1; : : : ; N:Let U be the matrix with the eigenve
tors of T as 
olumns. Then we 
an write, by the spe
tralde
omposition theorem, T = U�UT , where � = diagf�1; : : : ; �Ng. If~Y = UTY (3)is the transformed in
rement ve
tor, its 
ovarian
e matrix will be diagonal:Varf ~Y g = UTVarfY gU = UT (�2I + �2eU�UT )U == �2I + �2e� = diagf
1; : : : ; 
Ng (4)The analogous is valid for a �xed parti
le, but with �2 = 0. The dependen
e between thein
rements is now �hidden� in U and �, whi
h do not depend on �2 or �2e , but only on the lengthof the in
rement ve
tor N , whi
h of 
ourse is known.2.2 Observed and 
omplete dataWe 
lassify data into two 
ategories, observed and unobserved. The observed data 
onsist ofthe noise-
orrupted in
rement ve
tors Yi, i = 1; : : : ; n, while the 
lassi�
ation variables Zi areunobserved. Together, they 
onstitute the 
omplete data, denoted byXi = (Yi; Zi), i = 1; : : : ; n.vol. 72, 2005

6 Mats Kvarnstr¨omThe probability density fun
tion of the 
omplete data X isgC(x ; �2; �2e ; p) = [pf1(y ; �2; �2e)℄z [(1� p)f0(y ; �2e)℄1�z (5)for a single generi
 parti
le, where f1 and f0 are the pdf:s of a zero mean N -variate normallydistributed random ve
tor with 
ovarian
e matri
es �1 = �1(�2; �2e) and �0 = �0(�2e), respe
-tively.In the d dimensional 
ase, fi will be a dN -variate normal density with d independent parts,one for ea
h dimension, sin
e, by assumption, the 
oordinate pro
esses of a parti
le are indepen-dent.The 
omplete data belongs to an exponential family of distributions (see for example LIND-SEY (1996)). However, if N > 1, whi
h typi
ally is the 
ase, the distribution is non-regular, or
urved, sin
e the parameter spa
e is 3-dimensional and the dimension of the minimal suf�
ientstatisti
 is N+2 (see the Appendix for a derivation of this). This holds irrespe
tively of howmany dimensions we observe. The 
ase N = 1 is non-typi
al sin
e we think of our problem asstudying a video sequen
e of images of parti
les and as su
h we usually observe more than onein
rement.The probability density of the observed data for a generi
 parti
le, Y , is obtained by integrat-ing (5) over the distribution of Zg(y ; �2; �2e ; p) = pf1(y ; �2; �2e) + (1�p)f0(y ; �2e); (6)and we see that our observed data is a �nite mixture of two normal 
omponents. Note howeverthat one of the parameters, �2e , is present in both 
omponents, whi
h is typi
ally not the 
ase for�nite mixtures. For a thorough a

ount on �nite mixture models and their appli
ations, we referto MCLACHLAN and PEEL (2000).3 Likelihood EstimationWe denote the parameter ve
tor by � = (�2; �2e ; p). Let 
 be the parameter spa
e 
onsisting ofthose � de�ning valid �nite mixture densities (6). In other words, 
 = f� = ( �2; �2e ; p ) 2 R3 :p 2 [0; 1℄; �2>0; �2e>0g. The true parameter point �0 is always assumed to lie in the interior of
, i.e. �0 2 int(
).The 
omplete likelihood LC indu
ed by the 
omplete data (observed in
rements and 
lassi�-
ation variables) from n observed parti
les isLC(�) = nYi=1 [ pf1(yi ; �2; �2e) ℄zi[ (1�p)f0(yi ; �2e) ℄1�zi (7)However, sin
e our observed data 
onsist of the in
rements only, the observed likelihood be-
omes L(�) = nYi=1�pf1(yi ; �2; �2e) + (1�p)f0(yi ; �2e)	 (8)Kwantitatieve Methoden



Estimation of the diffusion 
oef�
ient in a mixture model 7Often with �nite mixtures, there is a problem of identi�ability, i.e. that a permutation of theparameters in the model yields the same distribution, see DAY (1969), SUNDBERG (1974),and REDNER and WALKER (1984). In our model, as long as the true parameter �0 lies in theinterior of 
, we do not have this problem sin
e the two distributions in the mixture are notinter
hangeable due to the presen
e of �2e in both mixture 
omponents.3.1 Existen
e of a maximum likelihood estimatorFirst, we should address the important question of the existen
e of a global maximizer of L fora given set of observations fY1; : : : ; Yng. DAY (1969) pointed out that for univariate normalmixtures, the likelihood is not bounded if both the expe
ted values and the varian
es of themixture 
omponents are 
onsidered as unknown parameters. Hen
e, with no extra 
onditions,a global maximizer does not generally need to exist for normal mixtures. Even though ourpresent setup of the model does not involve the estimation of a drift term in the diffusion, orsystemati
 position measurement errors, we will propose a restri
tion on the parameter spa
e thatwill guarantee the existen
e of a maximum likelihood estimator even under the natural extensionof the model to non-zero drift 
omponents of the diffusions.For 
 2 (0; 1), the restri
ted parameter spa
e 

 is de�ned to be a subset of 
 su
h that0 < 
 � �2�2e � 
�1 <1 (9)holds. We will assume that this holds for some 
 2 (0; 1), i.e. �0 2 

 for some 
 2 (0; 1). Therestri
tion is reasonable in the sense that we do not allow the signal-to-noise ratio to be too small,neither too big.This kind of restri
tion on the parameter spa
e, was originally proposed by HATHAWAY(1985). Here, it will guarantee, that for any 
 2 (0; 1), the likelihood fun
tion will have a globalmaximizer for ea
h n. In Se
tion 4, the restri
tion will be used in a suf�
ient 
ondition for strong
onsisten
y as n approa
hes in�nity (see Theorem 1), where the 
ondition is su
h that we assumethat �0 2 

 holds for some 
 2 (0; 1).Lemma 1. Let fY1; : : : ; Yng be a set of observations from the �nite mixture spe
i�ed by thedensity (6) and let 
 2 (0; 1). Then, with probability one, there exists a global 
onstrainedmaximizer for L(�) in 

.Proof. The idea is to show that sup�2

 L(�) = sup�2K L(�)for some appropriate, 
ompa
tK � 
.With probability one, the in
rement ve
tors will all be different from the zero ve
tor. There-fore all the terms in the likelihood will stay bounded. Also, it will go to zero if both �2 and �2eeither go to zero or to in�nity. By 
ondition (9) above however, it is enough to show that one ofthe two varian
es goes to zero or in�nity; the other varian
e will also be for
ed to go to zero orin�nity, respe
tively. vol. 72, 2005
8 Mats Kvarnstr¨omSo, there exist 
onstants ai and bi su
h that K = f� 2 

 : a1 � �2e � a2; b1 � �2 � b2g,whi
h gives the desired result.Remark 1: A maximum hen
e exists, but it does not ne
essarily have to be unique for �xed n:For p = 0, �2 be
omes a free variable. Also, if p = 1 and N = 1, all values of �2 and �2esatisfying �2 +2�2e = 
 for some 
onstant 
, are maximum likelihood estimators. Note however,that the restri
tion is not a ne
essary 
ondition for a maximizer to exist, neither is it a suf�
ient
ondition for a unique global maximizer to exist. It is a suf�
ient 
ondition for the likelihood tobe bounded for all � 2 

, and hen
e for a maximum likelihood estimator to exist.Remark 2: If the number of observations n is larger than three (one more than the number ofmixture 
omponents), the restri
tion (9) of the parameter spa
e also gives us the 
on
lusion ofLemma 1 even under an expanded model with a drift term in the diffusion together with sys-temati
 position measurement errors, that is, if the mixture 
omponents have non-zero expe
tedvalues, �1 and �2, and we need to estimate these as well; just let K be as before 
on
erningthe parameters �2 and �2e , and with j�1j; j�2j � maxifjjYijjg < 1 (see HATHAWAY (1985)),where jj � jj is the L2-norm of a ve
tor. As mentioned previously, this might turn out to be usefulif it is ne
essary to determine whether systemati
 effe
ts are present or not.3.2 The EM algorithmWhen 
omputing maximum likelihood estimates for �nite mixtures, the EM algorithm is anappealing method to use. In fa
t, although the algorithm got its name and was generalized inDEMPSTER et al. (1977), it was a
tually introdu
ed and used, for the spe
ial 
ase of �nite mix-tures of exponential distributions as early as in HASSELBLAD (1969). For mixture distributions,the method takes full advantage of the simple stru
ture of the 
omplete likelihood together witheasily 
al
ulated estimates of the unobserved data, the 
lassi�
ation variables. For an overviewof the theory and 
ontemporary appli
ations of the EM algorithm, we refer to MCLACHLANand KRISHNAN (1997).The algorithm is an iterative s
heme 
onsisting of two steps; the expe
tation and the maxi-mization step, a

ordingly 
alled the E-step and the M-step. The E-step 
onsists of estimatingthe unobserved data, whi
h in the 
ase of a mixture are the 
lassi�
ation variables. In the M-stepwe maximize the 
omplete likelihood (7) using the estimated 
lassi�
ation variables, ^Zi, fromthe E-step together with our data Yi. The algorithm hen
e be
omes:Assume that �(m) is the estimate from them:th iteration of the EM algorithm.� E-step: For ea
h i = 1; : : : ; n, 
ompute^Zi = E�(m)fZijYig = p(m)f1(Yi; �(m)1 )p(m)f1(Yi; �(m)1 ) + (1�p(m))f0(Yi; �(m)0 )� M-step: MaximizeE�(m)flogLC(�)jY g = nXi=1n ^Zi logfpf1(Yi ; �2; �2e)g+ (1� ^Zi) logf(1�p)f0(Yi ; �2e)goKwantitatieve Methoden



Estimation of the diffusion 
oef�
ient in a mixture model 9with respe
t to � = (�2; �2e ; p), denote the result by �(m+1) and go to the E-step.In this appli
ation of the EM algorithm, ea
h of the two steps has a probabilisti
 meaning;in the E-step we 
lassify ea
h parti
le using a quadrati
 dis
riminant rule, and in the M-step wemaximize the 
omplete likelihood using the 
lassi�
ations from the E-step as if 
lassi�
ationsfrom the previous E-step in fa
t were the observed data. Note, however, that the estimated
lassi�
ation variables are not 
on�ned to zero or one, but 
ould be any real number in-between.As is the 
ase for most numeri
al algorithms for maximizing a fun
tion, there is no way ofguaranteeing that we a
tually end up in the global maximum. The EM algorithm 
an guaranteehowever, that L(�(m+1)) � L(�(m))and sin
e in our 
ase the likelihood is bounded and 
ontinuous, every sequen
e of iterates f�(m)gof the EM algorithm will have a stationary value of L(�) as a limit point (Theorem 2 of WU(1983)). This stationary value does of 
ourse not have to be the global maximum. Nothing morethan this, 
an in general be said about the �(m)-sequen
e. For a thorough dis
ussion regardingthe 
onvergen
e of the EM algorithm, we refer to the already mentioned work by WU (1983),whi
h is 
overed also in the review arti
le by REDNER and WALKER (1984), and in the generalreferen
e on the EM algorithm, MCLACHLAN and KRISHNAN (1997).For the typi
al appli
ation of the mixture model dis
ussed in this arti
le, with N usuallylarger than 10 and a ratio �2=�2e larger than 1=2, simulations show that the EM algorithm workssuf�
iently well, both 
on
erning the number of steps of the iteration until 
onvergen
e to astationary point of the likelihood fun
tion, and with respe
t to its ability to 
onverge to the sameestimate ^� regardless of starting value �0; see the simulation study in Se
tion 5.4 Asymptoti
sIs this se
tion we study the asymptoti
 properties of the maximum likelihood estimator as thenumber of parti
les n grows large. It turns out that the estimator is both strongly 
onsistentand asymptoti
ally normal. This 
ase is not 
overed in the literature probably sin
e one of theparameters is present in both mixture 
omponents. In addition, many authors 
ompa
tify theparameter spa
e in order to get asymptoti
 results, see e.g. CHENG and LIU (2001) We do notwant to do this, be
ause we feel that it imposes an unnatural restri
tion on the parameter spa
e.For N = 1, SUNDBERG (1974) gives the 
onsisten
y and asymptoti
 normality of themaximum likelihood estimator ^�n, under the single 
ondition that the information matrix I(�) ispositive de�nite at the true parameter point �0. Sin
e Lemma 2 below says that this is true for all�0 2 int(
), we are a
tually done for N = 1, both with 
onsisten
y and asymptoti
 normality.Hen
e, what is left to prove is 
onsisten
y and asymptoti
 normality for N > 1. REDNERand WALKER (1984) dis
uss this issue for mixtures of distributions but only for regular ex-ponential distributions and when the parameters of separate mixture 
omponents are mutuallyindependent. Some modi�
ations are thus needed. vol. 72, 2005
10 Mats Kvarnstr¨om4.1 Consisten
yTo prove 
onsisten
y of the maximum likelihood estimator for general N , we verify that the
lassi
al 
onditions for 
onsisten
y of WALD (1949) are satis�ed for the mixture density in (6)when the true parameter is in 

. In the pro
ess, we use results from REDNER (1981).Theorem 1 (Strong 
onsisten
y). Let the true parameter point �0 be in 

 for some 
 2 (0; 1)and let ^�n be the global maximizer of L(�) over 

, for ea
h n. ThenPf^�n ! �0 as n!1g = 1Proof. Wald's 
onditions are enumerated as in REDNER (1981) to 1 through 6. For the spe
i�-
ation of these 
onditions, we refer the reader to that arti
le.Conditions 1,2,4' and 5 are satis�ed for 
 and the mixture 
omponent densities f1 and f0.Inspe
tion of the proof of Redner's Theorem 5 shows that Conditions 2 and 4 also are satis�edfor the mixture density (6). If we restri
t 
 to 

 as de�ned in (9), then also Conditions 3 and 6are satis�ed, giving us the result by applying Theorems 1 and 2 from WALD (1949).Remark 1: The extra 
ondition (9) is used, �rst to prove that a maximum likelihood estimatorexists for all n, and se
ond, to prove that Condition 3 of REDNER (1981) is satis�ed, i.e. thatL(�i)! 0 when d(�0; �i)!1, where d means Eu
lidean distan
e.Remark 2: Under the restri
ted parameter spa
e, 

, Wald's 
onditions 1-6 are satis�ed evenunder the previously mentioned expanded model with a drift term in the diffusion and systemati
position measurement errors, that is, if the mixture 
omponents have non-zero expe
ted valuesand we need to estimate them as well.4.2 Asymptoti
 normalitySuf�
ient 
onditions for the asymptoti
 normality of the maximum likelihood estimator ^�n 
anbe found in for example Theorem 5.23 of VAN DER VAART (1999). Sin
e we have 
onsisten
yand log g(y; �) is smooth, what remains to be proved is that the mapping � 7! E�0 log g(Y ; �)admits a se
ond order Taylor expansion around �0 2 int(
) with non-singular se
ond derivativematrix. In other words, we have to prove that the information matrix I(�0) is positive de�nite.This is the result of Lemma 2 below, so Theorem 2 is a 
onsequen
e of that.Theorem 2 (Asymptoti
 normality). Assume the true parameter �0 2 int(

) for some 
 2(0; 1). Then the maximum likelihood estimator ^�n is asymptoti
ally normal, i.e.n1=2(^�n � �0) D�! N(0; I(�0)�1) (10)as n!1.The restri
tion to 

 is needed only to guarantee 
onsisten
y; the positive de�niteness ofI(�) is in fa
t valid for all � 2 int(
) as 
an be seen from the next lemma.Below, we denote the gradient of a fun
tion f with respe
t to � by ��f . We also refrain fromwriting down the arguments of the fun
tions when no risk of ambiguity exists.Kwantitatieve Methoden
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ient in a mixture model 11Lemma 2. The information matrix I(�) is positive de�nite for all � 2 int(
).Proof. Positive de�niteness of I(�) means that aTI(�)a > 0, for all a 2 R3 nf0g. Sin
e I(�)is the varian
e of the s
ore fun
tion �� log g(Y ; �), we interpret aTI(�)a as the varian
e of thelinear 
ombination aT�� log g(Y ; �). Hen
e, what we have to prove is thatVarfaT�� log g(Y ; �)g > 0for all a 2 R3nf0g.Assume the opposite. Then we have, with probability one, thataT�� log g(Y ; �) = 0 (11)for some a 2 R3 nf0g sin
e the mean of the s
ore is zero. Writing out the 
omponents of thes
ore fun
tion �� log g(Y ; �), we have��2 log g = p ��2f1pf1 + (1� p)f0��2e log g =p ��2ef1 + (1� p) ��2ef0pf1 + (1� p)f0�p log g = f1 � f0pf1 + (1� p)f0where ��2f1 = 12 NXk=1� ~y2k(�2 + �k�2e)2 � 1�2 + �k�2e�f1(y ; �2; �2e) = k1(y)f1(y ; �2; �2e)��2ef1 = 12 NXk=1� �k~y2k(�2 + �k�2e)2 � �k�2 + �k�2e�f1(y ; �2; �2e) = k2(y)f1(y ; �2; �2e)��2ef0 = � 12(�2e)2 NXk=1 ~y2k�k � N2 1�2e�f0(y ; �2e) = k3(y)f0(y ; �2e)Equation (11) 
an be written asa1p ��2f1 + a2hp ��2ef1 + (1�p) ��2ef0i+ a3hf1 � f0i = 0:After re-arranging in terms of f1 and f0 and noti
ing that f1(Y ) 6= f0(Y ) > 0 with probabilityone for all � 2 int(
), we see that this is equivalent to( a1p k1(Y ) + a2p k2(Y ) + a3 = 0a2(1�p)k3(Y )� a3 = 0 (12)For N > 1, sin
e k1(Y ), k2(Y ), and k3(Y ) are linearly independent and non-zero with probabil-ity one for all � 2 int(
), equation (12), and hen
e equation (11), is satis�ed only if a is zero,and we have a 
ontradi
tion. For N = 1, even though k2 = �1k1, we still have that k1(Y ) andk3(Y ) are linearly independent, whi
h suf�
es to arrive at the same 
on
lusion. vol. 72, 2005
12 Mats Kvarnstr¨omRemark: Noti
e that (12) is satis�ed for non-zero a if p = 0. This is also what we would expe
tsin
e then we have no information on �2. Also, if N = 1, then k2(Y ) = �1k1(Y ), so if p = 1,(12) is satis�ed as long as a1 + �1a2 = 0 and a3 = 0.4.3 Complete data asymptoti
sIn appli
ations the parti
les may have already been labelled manually as diffusing or �xed, i.e.we have been given the 
omplete data. If this is the 
ase, the asymptoti
 properties of the esti-mator be
ome easier to verify, mainly be
ause the likelihood is a produ
t of probability densityfun
tions.After some elementary, but fairly 
umbersome, 
al
ulations we obtainIC(�) = 264 dp2 PNk=1 1(�2+�k�2e )2 dp2 PNk=1 �k(�2+�k�2e)2 0dp2 PNk=1 �k(�2+�k�2e )2 dp2 PNk=1 �2k(�2+�k�2e)2 + Nd(1�p)2(�2e )2 00 0 1p(1�p) 375 (13)for the expe
ted information matrix to the 
omplete data. It 
an be seen, by applying the Cau
hy-S
hwarz inequality on the upper-left 2 by 2 matrix, to be positive de�nite for all � 2 int(
).For �0 2 int(

) we get strong 
onsisten
y dire
tly from WALD (1949) even without therestri
tion on the parameter spa
e. Furthermore, sin
e IC(�0) is positive de�nite, all 
onditionsfor asymptoti
 normality are satis�ed.4.4 Note on a further generalizationAn interesting arti
le with relevan
e to our problem, is KIEFER and WOLFOWITZ (1956). Itdeals with the 
onsisten
y of a maximum likelihood estimator when there are in�nitely manyin
idental parameters present. These in
idental parameters 
ould be, in a generalization of ourproblem, the varian
e of the Brownian motion �2 if all diffusing parti
les have different diffusion
oef�
ients. This 
orresponds to a so-
alled poly-disperse solution in 
ontrast to our presentproblem, whi
h is mono-disperse (every parti
le has the same diffusion 
oef�
ient).Assume that for ea
h i = 1; : : : ; n, we have that Yi is N -variate normally distributed randomvariable with mean zero and 
ovarian
e matrix �i = I�2i + T�2e . Then, following the languageof KIEFER and WOLFOWITZ (1956), the �2i :s are the in
idental parameters and �2e the param-eter (even though, in our 
ontext, these names are misleading sin
e we 
onsider it to be the otherway round). Noti
e that if the �2i :s are 
onstants and different for ea
h i we only observe onein
rement ve
tor Yi for ea
h �2i . Obviously the estimates of the �2i :s 
an not be 
onsistent. Itturns out, however, that if we 
onsider �2i , i = 1; : : : ; n, to be independent random variables with
ommon (but unknown) distribution fun
tion F , then, under 
ertain assumptions on F , the max-imum likelihood estimator of F 
onverges to F at every point of 
ontinuity. Also, the maximumlikelihood estimator of �2e is strongly 
onsistent.The model dis
ussed in this arti
le is of 
ourse a spe
ial 
ase of these �2i 
oming from anunknown distribution fun
tion F . This distribution has only two values; zero, for the �xedKwantitatieve Methoden
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les, and �2, for the diffusing parti
les. In other words, F 
an be written asF (x) = 8<: 0 when x < 01� p when 0 � x < �21 when �2 � x5 Appli
ationAs an appli
ation of the model, we estimated the diffusion 
oef�
ient of the diffusing parti
les inFigure 1. Here, the positions of the 26 parti
les were estimated in two dimensions in ea
h imageusing a simple 
ir
le dete
tion algorithm and the resulting traje
tories are displayed in Figure 1.The total number of frames were 12, so N = 11. By manual inspe
tion, we 
on
luded that thethree parti
les in Figure 1 numbered 3, 5, and 18, were �xed. The remaining 23 were 
lassi�edas diffusing parti
les.5.1 ResultsWe applied the EM algorithm to the observed data with initial value �0=(1 ; 1 ; 0:5). We stoppedwhen the 
hange of the Zi:s between two 
onse
utive E-steps was smaller than 10�6. This 
rite-rion was satis�ed after 3 steps with the resulting maximum likelihood estimates ^� with elements^�2 = 2:2058^�2e = 0:3172^p = 0:8847 (14)where the unit for the �rst two is the square of the side length of a pixel.The estimated 
lassi-�
ation variables ^Zi, de�ned as the 
onditional expe
tation of Zi given Yi at parameter point ^�,were ^Z3 = 2:473 � 10�3^Z5 = 1:528 � 10�5^Z18 = 1:049 � 10�5^Zi = 1:000 otherwise (15)in good 
orresponden
e with our manual 
lassi�
ation.5.2 Observed information matrixThe observed information at the maximum likelihood estimate ^�, 
an be written asI(^�; y) = IC(^�; y)� [E�fSC(X; �)STC (X; �)jy)g℄�=^� (16)by using a result from LOUIS (1982), where IC(�; y) = E�fIC(�; x)jY = yg, the 
onditionalexpe
tation of the 
omplete data given Y = y, and SC(x; �) = �� logLC(�), the s
ore of thevol. 72, 2005
14 Mats Kvarnstr¨om
omplete likelihood. Intuitively, the �rst term in (16) 
orresponds to the observed informationfrom the 
omplete data given the estimated values of the unobserved data Zi, and the se
ondterm 
orresponds to the missing information due to the fa
t that Zi was in fa
t not observed.Using this, the observed information matrix at the estimate be
omesI( ^�2; ^�2e ; ^p ;Y ) = 24 33:75 52:75 052:75 476:6 00 0 254:9 35� 24 0:034 0:153 �0:0900:153 0:691 �0:405�0:090 �0:405 0:240 35= 24 33:72 52:59 0:09052:59 475:9 0:4050:090 0:405 254:7 35 (17)

with inverse I�1( ^�2; ^�2e ; ^p ;Y ) = 24 0:0358 �0:0040 0:0000�0:0040 0:0025 0:00000:0000 0:0000 0:0039 35 : (18)This gives us an approximate varian
e of the estimate of ^�2 equal toVarf^�2g ' 0:0358: (19)Note that some elements in the matrix in (17) are 
lose to zero. The reason for this is thatthe estimated 
lassi�
ation variables in (15) are very 
lose to their true values of zero or one;in other words, we are very 
lose to our manual 
lassi�
ation, whi
h 
orresponds to having
omplete data. Compare this with the zero elements of the 
omplete information matrix in (13).5.3 Comparing the estimate with the theoreti
al diffusion 
oef�
ientThe estimated ^�2 above 
orresponds to an estimated diffusion 
oef�
ient of^D = 0:893 �m2=s;where we used the relationship between diffusion varian
e and diffusion 
oef�
ient, �2 = 2D�and s
aling to �m. Here, �=0.040 s is the time interval between observations, and ea
h pixel
orresponds to a square with sideM=180 nm.If we assume normality, motivated by the asymptoti
 normality result of Se
tion 4.2 when nis suf�
iently large, we get an approximate 95% 
on�den
e interval of D ofD = ^D � 1:96 � M22� p:0358 = :893� :150 �m2=s: (20)The theoreti
al diffusion 
oef�
ient is given by Stoke-Einstein's relation (see for exampleEVANS and WENNERSTR ¨OM (1999) pages 370-372)D = kBT6��RH (21)Kwantitatieve Methoden
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eFigure 2: The histograms of the estimates of �2 and �2e using the EM algorithm from 1000simulations using 2.2058 and 0.3172 as true values.where kB is Bolzmann's 
onstant, � the vis
osity of the solution, T the temperature and RH thehydrologi
al radius of the parti
le. The appropriate values for the vis
osity and temperature are�=0.9 mPa and T=298 K. The geometri
 radius of the parti
les are 247 nm and this is used asthe hydrologi
al radius, even if the latter is often a bit larger than the former. Plugging all thisinto (21), we get D = 0:982 �m2=s;whi
h is within the 95% 
on�den
e interval of (20).5.4 Simulation of the approximate distribution of the estimatesWe simulated 1000 realizations with 26 parti
les, of whi
h 3 were �xed, over 12 frames in twodimensions, with the estimated values of �2 = 2:2058 and �2e = 0:3172 from (14) as the truediffusion varian
e and error varian
e. For ea
h time series, we estimated �2, �2e and p using theEM algorithm. However, sin
e the number of �xed parti
les is 3 in ea
h sequen
e, the estimateof p is not very interesting and will therefore not be displayed.The histograms of the estimated values are displayed in Figure 2. The sample mean and
ovarian
e matrix of the 1000 estimates of �2 and �2e were�^�2 = 2:2054�^�2e = 0:3185and � :0348 �:0040�:0040 :0027 �in good agreement with the true values of �2 = 2:2058 and �2e = 0:3172 and the upper-left blo
kof the inverse of the observed information matrix in (18). vol. 72, 2005
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Figure 3: Simulated sequen
e of 50 parti
les of whi
h 10 are �xed (the numbered ones) andwhere �2 = �2e = 1 and N = 20, with the start positions taken uniformly on the square.Compare with the 
orresponding 
lassi�
ation variables in Figure 4.5.5 More simulationsIn the example of Figure 1, it is easy to manually 
lassify parti
les as either diffusing of �xedsin
e the measurement error is small 
ompared to the diffusion varian
e. To see what the situ-ation looks like when the signal-to-noise ratio is signi�
antly lower, we simulated 40 diffusingparti
les with �2 = 1 together with 10 �xed parti
les, all observed under measurement error with�2e = 1. The number of observed in
rements, N , was 20.The resulting observed traje
tories are displayed in Figure 3, where the starting positions havebeen 
hosen uniformly on the square. Clearly, here it is mu
h harder to determine by eye, whi
hparti
les are a
tually �xed, 
ompared to the situation in Figure 1. However, using the analysisdeveloped here, we are able to 
lassify all the parti
les 
orre
tly, by whi
h we mean that theestimated 
lassi�
ation variables are within 0.5 of their true value. The estimated 
lassi�
ationvariables for this sequen
e are displayed in Figure 4 where the �rst 40 
orrespond to diffusingparti
les and the last 10 to �xed. The EM algorithm 
onverged in 7 or 8 iterations. Also, it
onverged to the same estimate of � as we varied the initial parameter �0 over 20 different values.To 
ondu
t a more thorough analysis of the behaviour of the EM algorithm for this model, wesimulated 100 independent data sets, ea
h 
onsisting of 100 parti
les of whi
h 20 where �xed,for different values of �2, �2e , and N . Table 1 shows the result. As 
an be seen, the methodmanages to estimate the varian
es �2 and �2e appropriately, and that it is robust for all signal-to-noise ratios when the observation length is large. However, for small observation lengths, boththe number of mis
lassi�
ations and the number of EM iterations, be
ome large if the signal-to-Kwantitatieve Methoden
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Figure 4: The estimated 
lassi�
ation variables for the sequen
e in Figure 3. The �rst 40 
orre-spond to diffusing parti
les and the last 10 to �xed parti
les.noise ratio is not suf�
iently high. Although not presented in Table 1, it should be mentionedthat the only effe
t different starting values �0 had on the 
onvergen
e of the EM algorithm, wasto in
rease or de
rease the number of iterations needed until 
onvergen
e, by one or two steps.Taking all of this into 
onsideration, the EM algorithm is 
learly an appli
able method forthese kind of data sets, failing only to 
onverge within 100 iterations when N = 10 and thesignal-to-noise ratio is 1/3.In Se
tion 4 we proved that the estimator ^�n is asymptoti
ally normal as n goes to in�nity. Inappli
ations, one might wonder for how small n it is reasonable to approximate the distributionof ^�n by the normal distribution. Looking at the histograms of Figure 2, it seems that, at least forthe estimated parameter values from the example traje
tories of Figure 1, this is the 
ase for therelatively small population size of n = 26.To investigate this further, we simulated 1000 independent sequen
es where N = 10, ea
hwith n = 10 parti
les, of whi
h 2 were �xed, and where the true parameters were �2 = 2 and�2e = 1. For ea
h sequen
e, we estimated �2, �2e , and p but, as before, sin
e the number of �xedparti
les was non-random, we do not in
lude the estimate of p in the analysis. We 
al
ulated thegeneralized distan
e d2m = (�m � ��)S�1(�m � ��)T ; m = 1; : : : ; 1000where �m is the ve
tor 
onsisting of the �nal estimates of �2 and �2e from the m:th simulatedsequen
e, and where �� and S are the sample mean and the sample 
ovarian
e matrix, respe
tively,of the 1000 estimates of �2 and �2e . If the estimates �m are normally distributed, ea
h d2m is �2-distributed with 2 degrees of freedom. In Figure 5, we have plotted both the empiri
al 
umulativedistribution together with the distribution fun
tion of a �22-distribution. The �gure suggests thateven for population sizes as small as n = 10, the estimates seem to be 
lose to the normaldistribution. The results were similar for other 
ombinations of true parameters �2 and �2e .vol. 72, 2005
18 Mats Kvarnstr¨om^�2 ^�2e # of EM # of mis
lassi-n=100 N mean std mean std iterations �
ations�2 = 3, �2e = 1 10 3.01 .188 0.99 .061 11 0.920 3.02 .121 1.00 .047 3.2 0.040 2.99 .088 1.00 .031 1.0 0�2 = 2, �2e = 1 10 1.98 .141 1.01 .068 13 2.520 2.01 .091 1.01 .046 5.6 0.140 2.00 .061 1.00 .028 1.3 0�2 = 1, �2e = 1 10 1.01 .088 1.00 .054 19 6.420 1.00 .054 0.99 .036 8.0 0.840 1.00 .037 1.00 .027 2.9 0�2 = 1, �2e = 2 10 1.00 .114 2.00 .094 33 1320 1.00 .068 2.00 .058 12 3.040 1.00 .044 2.00 .044 5.0 0.1�2 = 1, �2e = 3 10 1.00 .131 3.00 .128 501 1720 1.00 .071 3.01 .082 14 5.440 1.00 .058 2.99 .059 7.8 0.41Here, for 7 of the simulated sequen
es, the EM algorithm failed to 
onverge within 100 iterations.Table 1: Comparison of the estimates of �2 and �2e , with the 
orresponding standard deviations,the average number of EM iterations, and the average number of mis
lassi�
ations, for 100realizations of simulations with n = 100 parti
les, of whi
h 20 were �xed, for different valuesof �2, �2e , and N .6 Dis
ussionWhen 
omparing the estimated 
lassi�
ation variables to the plotted traje
tories, we see thatour method indeed manages to 
lassify the parti
les 
orre
tly for this data set. In addition,the theoreti
al diffusion 
oef�
ient derived from Stoke-Einstein's relation is within the 95%
on�den
e interval of the estimated diffusion 
oef�
ient. These two results, in 
ombination withthe simulation study in Se
tion 5, demonstrate the ef�
ien
y of the method and are en
ouragingfor the future analysis of larger data sets of this kind.We should, however, keep in mind the dis
rete nature of the observed traje
tories; the imagepro
essing used for this image sequen
e only positioned parti
les up to pixel level. Hen
e, theobserved likelihood, here based on 
ontinuous spatial data, 
ould be modi�ed to take this into
onsideration. Alternatively, the image pro
essing 
ould be re�ned to obtain sub-pixel a

ura
y.Kwantitatieve Methoden
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Figure 5: The �22 distribution fun
tion (dashed), together with the empiri
al 
umulative distribu-tion of the generalized distan
es of the estimates of �2 and �2e from 1000 simulated sequen
esof n = 10 parti
les, of whi
h 2 were �xed, when N = 10 and the true parameter values were�2 = 2 and �2e = 1.Nevertheless, the main result in this paper is the theoreti
al analysis and the data should primarilybe 
onsidered as an illustrative example of an appli
ation of the method.A natural question arises on the possibility for the parti
les to 
hange states during the ob-servation period of N + 1 images; that is, from diffusing to �xed or from �xed to diffusing. For
olloidal parti
les like those in Figure 1, at least the latter possibility is believed to be highlyunlikely; on
e a parti
le has be
ome adsorbed on one of the spe
imen glasses, it 
ontinues to beso for the duration of the experiment. To 
hange from diffusing to �xed is of 
ourse possible, butfor the observation lengths we have studied so far, this has also been ruled out; remember thatN equal to 11 
orresponds to a total observation length of 440 ms. After future re�nements ofthe image pro
essing part however, we plan to look at far larger observation lengths and then thes
enario of a parti
le getting stu
k be
omes more likely. The model must then be modi�ed andone alternative might be a hidden Markov model.Another way to generalize the model, would be to allow for the parti
les to have differentsizes and hen
e different diffusion 
oef�
ients, as dis
ussed in Se
tion 4.4. If we regard thediffusion 
oef�
ients as random variables from a 
ommon (but unknown) distribution the taskwould then be to estimate the distribution of the diffusion 
oef�
ients rather than the a
tualdiffusion 
oef�
ients. Another, simpler and more dire
t, alternative is to allow for two or three
lasses of parti
les, ea
h with a �xed (but unknown) diffusion varian
e. vol. 72, 2005
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22 Mats Kvarnstr¨omAppendix: Suf�
ient statisti
sConsider the 
omplete data density (5) with observed traje
tories in d dimension. Take thelogarithm and let ~Ylk denote the k:th element of the transformed in
rement ve
tor (see se
-tion 2.1) of the l:th dimension traje
tory. We getlog gC = z log p� zd2 NXk=1 log(�2 + �k�2e)� z2 NXk=1 Pl ~y2lk�2 + �k�2e++ (1� z) log(1� p)� (1� z)d2 NXk=1 log(�k�2e)� 1� z2 NXk=1 Pl ~y2lk�k�2e= NXk=1 z� dXl=1 ~y2lk���12 1�2 + �k�2e�� 12�2e NXk=1 1� z�k � dXl=1 ~y2lk�+ z�log� p1�p�� d2 NXk=1 log��2 + �k�2e�k�2e ��� �d2 NXk=1 log(�k�2e)� log(1�p)�and we see that a minimal suf�
ient statisti
 
an be 
hosen to bet1 = z dXl=1 ~y2l1...tN = z dXl=1 ~y2lNtN+1 = NXk=1 1� z�k � dXl=1 ~y2lk�tN+2 = zwith the 
orresponding 
anoni
al parameter ��1 = �12 1�2 + �1�2e...�N = �12 1�2 + �N�2e�N+1 = � 12�2e�N+2 = log� p1� p�� d2 NXk=1 log��2 + �k�2e�k�2e �Kwantitatieve Methoden
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h is a fun
tion of our parameter �. Sin
e this is 3-dimensional and the suf�
ient statisti
sis (N + 2)-dimensional, we say that the 
omplete data belongs to a 
urved exponential familyor, with the terminology of BARNDORFF-NIELSEN and COX (1994), a (N+2; 3)-exponentialmodel.Solving for p in the expression for �N+2 above, we getp = e�N+2QNk=1��2+�k�2e�k�2e �d=21 + e�N+2QNk=1��2+�k�2e�k�2e �d=2 = e�N+2QNk=1��N+1�k�k �d=21 + e�N+2QNk=1��N+1�k�k �d=2and we 
an write the logarithm of the 
omplete data density aslog gC = �T t� k(�) (22)where � = �(�) and k be
omesk(�) = d2 log(N + 1)� dN2 log(�2�N+1) + log�1 + e�N+2 NYk=1��N+1�k�k �d=2� (23)From standard theory of exponential families, we get the 
umulants of the suf�
ient statisti
s bydifferentiating k(�). In parti
ular, we have ET = �k�� andVarfTg = �2k����T , whi
h we denote �and V , respe
tively.The expe
tation of the suf�
ient statisti
s 
an be writtenET = 2666664 dp(�2 + �1�2e)...dp(�2 + �N�2e)d(1� p)N�2ep
3777775
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