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Position Estimation and Traking in Colloidal Partile MirosopyMats Kvarnstr�omDepartment of Mathematial StatistisChalmers University of Tehnology and G�oteborg UniversityAbstratThis thesis presents methods for estimating the loations (inluding depth) ofspherial olloidal partiles in images reorded in video mirosopy. Understand-ing the behavior of olloidal interations and di�usion is of ruial importane ina vast number of areas. However, sine the theory fails to predit the behavior ofseveral important olloidal suspensions, observations and measurements on themirosopi level are needed. Examples of ommon, everyday olloids are milk,paint and pharmaeutials. The positioning methods developed here an be usedfor traking of partiles in three dimensions observed in video mirosopy. Wemake several suggestions on how the positioning method should be modi�ed andimplemented to be used for this purpose.Paper I introdues a method based on rotational symmetry to estimate the enterof irular objets in images. Standard errors are also estimated. The aurayof the estimates goes well beyond sub-pixel auray, whih is validated in asimulation study. A modi�ation of the loal polynomial kernel estimator forensored data is also suggested. In Paper II we estimate the intensity pro�lesof partiles at di�erent known depths. These intensity pro�les are then usedfor depth estimation in a template mathing approah. The mathing riteriontakes into aount both di�erent bakground levels and ensoring of pixel values.Paper III deals with the estimation of the di�usion oeÆient from partiletrajetories observed with measurement noise. The model inludes two typesof partiles, �xed and di�using. This is appropriate sine this is the typialsituation for partiles in the images onsidered.Key words: ensored regression, olloidal hemistry, depth estimation, di�usionoeÆient, nonparametri funtion estimation, position estimation, rotationalsymmetry, traking, template mathing, video mirosopy
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Chapter 1
Introdution

The understanding of the behavior of olloidal suspensions is of ruialimportane in a vast number of di�erent areas. The standard theoryfor the interations of olloidal partiles, the DLVO-theory (see for ex-ample Evans and Wennerstr�om (1999)), is merely an approximation, andexperiments have shown that it fails to predit the behavior of several im-portant suspensions, see for example Croker and Grier (1994) and Grier(1998). Therefore, observations and measurements on the mirosopilevel are needed if we are to fully understand the behavior of olloidalsystems.Examples of ommon, everyday life olloidal systems are milk and paint.In milk, various interations between the small (100 nm to 1 �m in diame-ter) olloidal milk fat partiles and proteins suspended in the uid, deidewhether it oagulates into heese or yoghurt. These interations dependon how the milk was treated before the oagulation. For the seond ex-ample, the pigments in the paint must stay suspended in the liquid in aan for years, yet, as they are spread on a wall, be able to oagulate fast.Another example of important everyday olloids are pharmaeutials.This thesis presents tehniques developed for the quantitative study ofdi�using partiles in a olloidal system using video mirosopy. The prin-1

CHAPTER 1. INTRODUCTIONipal appliation is to pharmay, where properties suh as di�usion o-eÆients and interation between partiles are important fators whenformulating drugs. Here, possible modi�ations of for example the sur-fae harateristis of the olloids are believed to have a large impaton modern therapies suh as oral vaines. However, the e�ets of suhmodi�ations need to be quantitatively measured and veri�ed.The idea is to make inferene on properties of a olloidal partile system,suh as di�usion oeÆient of the partile, from a series of light miro-sope images of moving latex spheres. Figure 1.1 illustrates an exampleof what an image from suh a sequene may look like. The partiles inthese image are spherial, made of latex (polystyrene), and have all adiameter of 494 nm. Eah image onsists of 512 times 512 square pixelswith a side-length of 0.18�m. The reason for studying latex spheres, andin partiular, of a single size, are that suspension of these kind of poly-mer olloids an be used to simulate many features of a olloidal systemby varying the solvent and salt onentration. Therefore they are widelyused for studying the behavior of olloidal suspensions, see Evans andWennerstr�om (1999, hap. 9). For a reent review of di�erent kinds ofmirosopy used for olloids, see Elliot and Poon (2001).The apparent di�erenes in size and brightness variations of the partilesare due to di�erent depths relative to the foal plane. Partiles in the foalplane are depited as small, distint, blak spots, while partiles aboveor below the foal plane, are either light or dark in middle, respetively.Also, the further away from the foal plane a partile is, the larger andmore blurred it appears. This out-of-fous e�et will give us a methodto estimate the depth of a partile. It should be mentioned that thelight is pratially onsidered as oherent, whih is the reason for thisoptial e�et. If light would have been inoherent, partiles o�-fouswould simply be blurred.This thesis introdues preise methods for estimating the loations (in-luding depth) of partiles in images like the one in Figure 1.1. A highlypreise method for estimating partile enters in the image plane (that is,the horizontal and vertial oordinates) is presented in Paper I. The stan-2



CHAPTER 1. INTRODUCTION

Figure 1.1: A single mirosope image in a sequene of images. The partilesare all equal in size and the di�erene in the appearanes of the partiles in theimage is an optial e�et of partiles being at di�erent depths relative to thefoal plane.dard errors of the estimates are between 0.02 and 0.10 pixels, dependingon the appearane of the partile, with lower values for partiles loser tothe foal plane. The method makes use of the rotational symmetry of theappearanes of the partiles in the image and the auray is well less thanthe sub-pixel level, by whih we mean that the standard deviation of the3

CHAPTER 1. INTRODUCTIONpositioning error is less than one pixel. Standard errors for the positionestimates are also estimated for eah partile. Furthermore, we present amethod for nonparametri funtion estimation when the response valuesare ensored. This is needed sine pixel values in the images are ensoredabove a ertain level. The depth is estimated using a template mathingapproah, overed in Paper II. The templates are empirially onstrutedusing images of partiles at known relative depth to the foal plane. Eahtemplate represents the appearane of a partile at a ertain depth z andthe orresponding depth between the templates is 0.2�m. In Paper IIIwe onsider the estimation of the di�usion oeÆient given a set of par-tile trajetories observed with measurement noise. However, sine somepartiles seem to be �xed, a model with two kinds of partiles, �xed anddi�using, is introdued . This is the typial situation for trajetories ofpartiles in images like the one in Figure 1.1. Instead of manually dis-arding the partiles whih are �xed, the model permits them to be usedin the estimation, whih is the appropriate approah sine they ontaininformation on the measurement noise.The latex partiles in the sequene images like the one in Figure 1.1 havebeen treated in suh a way that the suspended partiles an be assumedto perform Brownian motion. This is the ase at least for partiles nottoo lose to the on�ning glasses of the speimen, sine the glass surfaesat attratively on the partiles. These sequene images were solely on-struted so that estimated properties an be easily veri�ed, sine the trueproperties of the suspension are known.Methods ommonly used for measurements on olloidal suspensions makeolletive measurements of properties for the entire sample, by whih wemean that they annot measure properties of eah single olloid parti-le. Rather, the properties related to the entire population of olloidsin the suspension is measured. Examples of suh methods are variouslight-sattering tehniques, for example dynami light sattering (DLS).Nulear magneti resonane (NMR) and neutron sattering, are also used,see Evans and Wennerstr�om (1999) and the referenes therein.Previous work using digital video mirosopy for quantitative olloidal4



CHAPTER 1. INTRODUCTIONstudies, have been made by Croker and Grier (1996, 1998). There how-ever, the depth of fous was �500 nm, whih makes the partiles similarin appearane and therefore easier to �nd in the images, sine the sought-after objets in eah image are similar. In their study, eah partile is abright spherial set of pixels and they ahieve sub-pixel auray by alu-lating the geometri enter of the brightness-weighted entroid, ahievingstandard errors of about 0.1 pixels (where eah pixel is 85 nm). The shal-low foal depth also restrits their methods to measurements in olloidson�ned to a rystallized struture. In our ase, the depth of fous is �15�m, resulting in a muh wider variety of appearanes of the partiles inthe image. The strength of the methods for partile position estimationdeveloped here, is that our method is not restrited to partiles similar inappearane. This opens up for position estimation for partiles in a muhwider range of depths. What we need however, is rotational symmetry ofthe appearane of partiles in the images.

1.1 Guide for the ThesisPreferred reading orderIn Chapter 2, various aspets of the images used in this thesis are ex-plained. Chapter 3 overs the main ideas as well as some extensions tothe methods of estimating the partile loations developed in Paper I andII. In Chapter 4 we propose how the positioning methods an be usedfor the traking of partiles in three dimensions. Problems are also high-lighted and possible modi�ations are disussed. Chapter 5 onsists oftwo supplementary simulation studies related to Paper I.If a quik start is preferred, Paper I and II should be read �rst and thenChapters 2 through 5. There is no preferred order of when to read PaperIII. 5

CHAPTER 1. INTRODUCTIONPaper I: Estimating enters and intensity pro�les of spherialpartiles in mirosopyThis paper deals with estimation of partile position in the image plane.The underlying assumption for the estimation is the rotational symmetryof the appearane of partiles. For a partile with true enter at x 2 R2 ,the main idea is to use the minimizer ofS(y) = minf2C2 Xi2Nx�Ii � f(ri(y))	2 = Xi2Nx�Ii � ^f(ri(y))	2 (1.1)for y 2 R2 , where Ii for i 2 Nx are the pixel values in a neighborhoodof pixel loations lose to x and ri(y) the distane between the andidateenter y and pixel loation i. Furthermore, C2 is the set of funtionsf : R 7! R with seond order ontinuous derivative and symmetri in r.We alulate ^f using a loal quadrati kernel estimator with (appropri-ately hosen) bandwidth h. The idea behind minimizing the equationabove is to �nd the position of (loal) maximum rotational symmetry.We also present a method for estimating the standard error of eah parti-le enter estimate, by using a sandwih estimator, see for example Owen(2001). A simulation study shows that these standard error estimatesare onsistent with the observed root-mean-square errors of the positionestimates. The standard errors of the partile position estimates dependon the depth of the partile, and are in the range of 0.02 to 0.10 pixels,with larger values for depths further away from the foal plane. Thisis omparable to the results of Croker and Grier (1996), however ourmethod is not on�ned to partiles of similar appearane.A method for nonparametri funtion estimation when the response valuesare ensored at a �xed level, is also introdued in this paper. We modifythe loal quadrati kernel estimate to take are of the ensored valuesunder the assumption of normally distributed observation errors. Wehave not found this anywhere else in the literature.Supplementary studies for this paper an be found in Chapter 5 wherewe investigate the bias and the mean squared error when estimating the6



CHAPTER 1. INTRODUCTIONintensity pro�les, in partiular when the bandwidth is varied. Further-more in Chapter 5, the way the standard errors depend on the size of theneighborhood Nx, for partiles at di�erent depths, is investigated.Paper II: Depth estimation of olloidal partiles in mirosopyHaving found the partile enter, the depth is estimated by omparingthe pixel values Ii and distanes ri(y), with templates (intensity pro�les)of the appearane of partiles at di�erent depths. The templates areonstruted by estimating the intensity pro�les of a partile at knowndistanes relative to the foal plane. The distane in depth between eahtemplate is 0.20�m. The mathing riterion we propose here takes areof di�erent bakground intensities and possible ensoring of pixel values,both of whih are important features of the images onsidered.This empirial approah to template onstrution was hosen sine the-oretial derivation of the appearane of the latex partiles at di�erentdepths seems diÆult. For example, a ray-traing methods suh as Fourieroptis, used by for example Young et al. (1998) for onstruting templatesin DIC mirosopy, does not work here sine the wavelength of light isin the same order of magnitude as the size of the partiles. An alterna-tive and more advaned approah to Fourier optis is to use Mie-theory,whih was used by Ovryn and Izen (2000) to predit the appearane ofa polystyrene sphere of diameter 7�m. However this is 14 times biggerthan the partiles onsidered here and it is unlear to what extent thisapproah an be applied to our partiles. In fat, the imaging of spherialobjets is still a topi of large theoretial interest in the optis researhsoiety.Other partiles at known depths were used to validate the estimationproedure. The root-mean-square error is onluded to be at least in theorder of the distane in depth between the templates, that is 0.2�m, atleast for partiles not too far away from the foal plane.7

CHAPTER 1. INTRODUCTIONPaper III: Estimation of the di�usion oeÆient in a mixturemodelIn Paper III we estimate the di�usion oeÆient given a set of partiletrajetories performing Brownian motion, observed under measurementnoise. However, sine some partiles seems to be �xed, a model is in-trodued with two kinds of partiles, �xed and di�using. We regard theproblem as an inomplete data problem sine we do not know a prioriwhih partiles are really di�using. The maximum likelihood estimatoris omputed via the EM algorithm, see Dempster et al. (1977), and it isshown to be strongly onsistent and asymptotially normal, as the num-ber of partiles approahes in�nity, under a reasonable restrition on theparameter spae. A simulation study shows that the method is robusteven for large measurement errors, and that the estimated parametersare approximately normally distributed even for small sample sizes.The position estimates of the partiles used in this paper are integer val-ued. They were estimated using a �ltering tehnique alled the rotationalHough Transform whih is a ommon tool in image proessing used forirle detetion in images. See for example Gonzales and Woods (2002)or Kerbyson and Atherton (1995). For the full details on estimating thesetrajetories, the reader is referred to Kvarnstr�om (2002). The reason fornot using the methods developed in Paper I and II for the trajetories inthis paper, is that Paper III was written �rst.
8



Chapter 2
Data

There are two kinds of images onsidered in this thesis, sequene imagesand z-sans. Sequene images are the ones used for inferene on proper-ties of the olloidal partiles. An example of suh an image is given inFigure 1.1. Z-sans are images of partiles at known relative depths fromthe foal plane and they are mainly used for onstruting the templatesused in the depth estimation. In this hapter, we will explain the variousaspets of the images together with the general setup of how the imageswere onstruted.2.1 Instrument setupLatex partiles made of polystyrene with a diameter of 494nm were plaedbetween an objetive and a over glass and sealed. The illuminationonsisted of oherent light. The sample was studied in a Zeiss Axiovert135 TV mirosope equipped with a Newion video amera. The videosignal was then digitized and stored as TIF �les.Pixel values are stored as unsigned integers in 8 bits. The pixels assumesintegers between 0 and 255 whih are interpreted as gray sale intensity9

CHAPTER 2. DATAvalues. This means that zero means blak while 255 means white. Forpixel values in between, the larger the magnitude, the brighter the shadeof gray.An important e�et of this trunation to integer values is that we get en-soring of pixel values above 255. This is dealt with both in the estimationof partile enters in Paper I, and the template mathing proedure of�nding the depth in Paper II. In Figure 2.1 we illustrate ensoring byzooming in on two partiles from Figure 1.1. Below eah image, the pixelvalues surrounding the estimated partile enter (using the method of�nding the position of maximal rotational symmetry from Paper I) areplotted versus their orresponding distanes to the enter. We do not haveensoring for pixel values below 0, however there seems to be a lower limitof pixel values around 30-35. If this is ensoring or not is not known.2.2 Sequene imagesThe image in Figure 1.1 is an example of what a sequene image lookslike. These are the kind of images that will be used to make inferene onthe properties of the olloidal system of partiles. On the left in Figure 2.2we have zoomed in on the middle region of size 256 times 256 pixels ofthe sequene image in Figure 1.1. To the right of this, the same region inthe next onseutive image in the sequene is shown. The movement inthe image plane of the partiles between two onseutive images are onthe sale of a few pixels. In Figure 2.3 we display the di�erene betweenthe two images and if it was not apparent from Figure 2.2, we see herethat most of the partiles have moved.Eah image in the video sequene onsists of 512 times 512 pixels. Eahpixel has a side length of 180 nm. The foal plane is set at a depthapproximately between the over and the speimen glass of the samplespeimen. The maximal di�erene in depth (relative to the foal plane)is believed to be 15�m. Therefore, the domain in whih the partilesare on�ned, and are available for our inspetion through the images,10
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Figure 2.1: Zooming in on two partiles in Figure 1.1 to illustrate ensoring ofpixel values at 255. Below eah image the pixel values surrounding the estimatedpartile enter are plotted versus the distanes to the estimated enter. This�gure also demonstrates that the rotational symmetry assumption of pixel valuessurrounding a partile enter is reasonable.

is a box with equal length of the sides of about 90�m, and a depth of(approximately) 30�m. 11

CHAPTER 2. DATA

Figure 2.2: Magni�ed part of two onseutive sequene images. The displae-ment in the image plane of the partiles between two onseutive images is onthe sale of a few pixels. In Figure 2.3 we display the di�erene between the twoimages.
Figure 2.3: The di�erene between the two images in Figure 2.2. Mid-grayrepresents zero. Notie that movement in depth is also apparent for some parti-les.Even and odd framesThe images are reorded at video rate, whih is 50 images (or frames) perseond. In pratie however, only half of the rows in eah image ontain12



CHAPTER 2. DATAnew information. The amera reords only half of the rows at eah san,alternating between the even and odd rows (also alled the even andthe odd �elds) and dupliates this information to the rows whih werenot sanned. The images are alled even and odd frames, respetively,depending on whether the even or the odd rows were updated. Theimages of Figure 2.4 show the same region zoomed in, for two onseutiveframes, one even and one odd. Note that the pixels look retangular,this is beause of the dupliation of pixel values from the rows that wasupdated to the ones that where not.There are three possibilities on how to deal with even and odd frames inthe image sequene; interlaing, interpolating, or raw images. Interlaedmeans that two onseutive frames (one even and one odd) are interlaedinto a single image, using the even rows from the even frame and theodd from the odd frame. However, sine there is an interval of a 1=50 ofa seond between the even and the odd frame, this will ause problemswhen we are observing moving partiles, whih is the ase here. Figure 2.4illustrates this problem with interlaing two onseutive frames. Clearly,interlaing is not a good idea when observing moving partiles. An alter-native is to interpolate the pixel values. We use the updated rows (thatis, even rows for even frames) and interpolate these to the pixel values onthe non-updated rows (that is, odd rows, for even frames). In the bottomleft image of Figure 2.4 we have displayed the linearly interpolated versionof the even frame (loated straight above in the �gure). However, whatinterpolating does, is just making the image look nier to the eye; we donot add information, rather, if anything, we distort the information.For sequene images we will therefore use the raw images, by whih wemean that we use eah frame separately. Pratially eah frame is animage onsisting of 256 times 512 pixel values. The oordinates (pixelloations) to these pixel values then alternates between the two pixel lo-ations. See the upper images of Figure 2.4. The important thing istherefore to keep trak of the loation to whih eah pixel value orre-sponds to; the upper pixel for the even images and the lower for the oddimages. This is important sine it is these loations that orrespond tothe physial loations whih we are interested in measuring.13
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(a) (b)

() (d)Figure 2.4: Illustration of even and odd frames (images) and the problem withinterlaing two onseutive frames. The two upper images are the same areazoomed in for two onseutive frames, a) is an even image and b) is an oddimage. Note the dupliation of pixel values between rows, making the pixels tolook retangular. The interpolated version of a) is shown in ) and the resultinginterlaed version, using the even frame for even rows and the odd frame for theodd rows, is shown in d).
14



CHAPTER 2. DATA

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

Figure 2.5: Z-san of partiles 3.0�m below the foal plane. The 22 labelledpartiles are the ones whih are adsorbed on one of the on�ning glasses of thespeimen and present in all 73 z-sans. The other partiles in the image iseither moving or not at the same depth relative to the foal plane as the labelledpartiles.2.3 Z-sansIn order to know what partiles look like at various depths from the foalplane, z-sans were onstruted. In Figure 2.5 we display the z-san atdepth approximately 3.0�m below the foal plane. We have 73 z-sans atour disposal ranging from 7.2�m below to 7.2�m above the foal plane.The distane in depth between two onseutive z-sans is 0.2�m.The z-sans have been onstruted by letting partiles adsorb on the over15

CHAPTER 2. DATAglass surfae of the speimen, and then the speimen was moved relativeto the optis of the mirosope. However, there are other partiles thanthe adsorbed ones present in the z-sans. In Figure 2.5 the partiles la-belled with numbers are adsorbed on the glass. These 22 partiles are theones that were pratially �xed in position through all z-sans. (We write"pratially" sine they are moving slightly, about 2 pixels throughoutthe entire sequene of z-sans.) As seen, there are several other partilespresent, some of whih are moving but also some whih are �xed in po-sition but not adsorbed on the over glass. Sine the z-sans are used todepit �xed partiles, they are presented in interlaed format; we will seethat the interlaing e�et is visible for moving partiles.In Figure 2.6 we have zoomed in on the region ontaining the partileslabelled 6, 8, 10, 11, and 12 for the z-san in Figure 2.5 and for threeother z-sans. Note that partiles below the foal plane are bright in themiddle and partiles above the foal plane are dark in the middle.Here it is lear that other partiles are present in the z-sans. We alsosee the same kind of interlaing e�et for moving partiles as we saw inFigure 2.4; look at the partile to the right above partile number 12 inimage a). Furthermore, there are partiles that seem to be �xed, butat another depth; these are the more vague partiles, for example to theright below partiles 6 and 12. These are partiles adsorbed somewhereelse in the speimen, possibly on the outer surfae of the glass. Notealso the blak dot to the left of partile number 11, whih looks the samethroughout all z-sans and is probably a stain or defet in the optis. In) we also see that mobile partiles in the speimen sometimes oludethe 22 �xed partiles; see partiles number 8 and 11 in ).Most importantly however, the 22 labelled partiles in Figure 2.5 seemto be at a slightly di�erent depth relative to eah other. In Figure 2.6this is learly visible in the z-san b), orresponding to partiles at thefoal plane, and in z-san d). Partiles 8 and 12 seem to be slightly moreabove the foal plane (sine the are larger and dark in the middle thanthe others). The same is true for all z-sans and this also applies to thepartiles labelled 15, 17, 20 and 21 in Figure 2.5. This was also validated16
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CHAPTER 2. DATAwhen estimating the depth of the partiles in the z-san in Paper II, seebelow.This observation is important when the z-sans are used for onstrutingtemplates for depth estimation, and also when validating the performaneof the depth estimation. The templates for depth estimation in Paper II,were onstruted using mainly the partile labelled number 6. In z-sanswhere partile 6 was oluded by a moving partile, partile 14 was used.This way, we onstruted templates of the appearane of partiles atdepth indexed by the z-sans, enabling us to estimate the depth of therest of the partiles in the z-sans by omparing the appearane of thepartiles to the templates. Of ourse, sine we only had templates forpartile appearane indexed by the z-sans, the preision in the depthestimation will be limited by the distane in depth between the z-sans,at least if no other assumptions are made. Note that sine we only havea �nite number of templates, estimating the depth this way is a kind ofa lassi�ation problem.When estimating the depths in the z-sans, we raised doubts about if alladsorbed partiles in fat were at the same depth. The partiles labelled8, 10, 15, 17, 20, and 21 were easily reognized as having an o�set indepth relative to the partiles 6 and 14, whih were the ones used fortemplate onstrution. However, there were also some disturbing depthestimates for other partiles. The grounds for these doubts were thatwhen the depth of supposedly adsorbed partiles were estimated, thereseemed to be a systemati error in the their estimated depths in the orderof one z-san above or below the depth of the template. (See also the nextsetion.) One should keep in mind that the partiles are approximately0.5�m in diameter and the distane between z-sans are 0.2�m. Hene,the distane between two onseutive z-sans is smaller than the radiusof the partiles. Therefore, some utuations in estimated depth may beaounted to the unertainties in the true atual depth of the partiles inthe z-sans. 18



CHAPTER 2. DATA2.4 Use of the z-sans in Paper I and IIIn Paper I we restrited the number of depths onsidered in the partileposition estimation. We used the z-san of partiles at the foal planetogether with every third z-san below and above, up to a maximal dis-plaement in depth of 4.2�m. We indexed these from -7 to 7. Partilenumber 6 was used when onstruting the true intensity pro�les used inthe Simulation Study (it is also this partile that is displayed in Figure2 in Paper I) and in the Result setion, partiles 6, 7, 13, 14, 19 and 19were used when estimating the standard errors for real data.In Paper II we onstruted the templates using the partiles labelled 6and 14. We used 61 z-sans (of the total amount of 73), from 6�m below,to 6�m above the foal plane, and they were indexed from -30 to +30.In a pre-study, we estimated the depth for all non-oluded partiles inall z-sans and by looking at the median of the o�set in estimated depth,relative to the template partiles and alulated over all depths, threeategories of partiles stood out; the six partile mentioned above, whihwere 2 z-indies, that is 0.4�m, above the template; partile 1, 3, 5 and9 whih were 0.2�m below the template; the remaining 12 partiles hadmedian o�set equal to zero, relative to the template partile. It was thislatter ategory that was used in the Results setion of Paper II, however,partiles 2 and 4 were not part of the study.
19
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Chapter 3
Position Estimation

3.1 Model of the appearane of pixels in the im-agesWe denote an image by I. This is e�etively a matrix of pixel values Iifor pixel loations i = (i1; i2) 2 DI � Z2, where DI is the set of pixelloations i for whih the image is de�ned. We will use the terms pixeland pixel loation interhangeable to mean the same thing when no riskof ambiguity exists.A partile enter is denoted by x = (x1; x2) 2 R2 , and to eah partile, weassoiate a set Nx � DI of pixels in the image I alled the neighborhoodof the partile at x. Typially, we letNx = fi 2 DI : ri(x) � rmaxg; (3.1)where ri(x) is the Eulidean distane from the partile enter x to thepixel loation i, and rmax is an appropriately hosen distane.The main assumption is that, for a partile enter at x 2 R2 and at depth21

CHAPTER 3. POSITION ESTIMATIONz 2 R, we have Ii = fz(ri(x)) + �+ �i for i 2 Nx; (3.2)where fz is alled the intensity pro�le for depth z. The image noise,�i for i 2 DI , is assumed to be normally distributed with isotropiallyorrelated pixel values. The intensity pro�le is furthermore assumed tobe a smooth funtion f : R 7! R with at least two ontinuous derivativesand symmetri in r. Furthermore, � 2 R orresponds to the bakgroundintensity in the image and this is generally di�erent for eah partile. Thisis an important fator to take into aount when estimating the depth.In Figure 3.1 we display zoomed-in sub-images of what the partiles looklike at di�erent depths. The true depth between to onseutive indies is0.2�m and index 0 represents the foal plane. These sub-images are fromthe z-sans. The rotational symmetry assumption seems reasonable, atleast for partiles not too lose to the foal plane.3.2 Estimating partile positions in 2-DThe idea for estimating the partile enter in 2-D goes as follows. For apartile loated at x 2 R2 , we use the minimizer of equation (1.1) repeatedhere for onvenieneS(y) = minf2C2 Xi2Nx�Ii � f(ri(y))	2 = Xi2Nx�Ii � ^f(ri(y))	2for y 2 R2 , as an estimate of x. The idea behind minimizing equa-tion (1.1), is to �nd the position of (loal) maximal rotational symmetry.This method of estimating the partile enter in the image plane to sub-pixel auray is dealt with in Paper I.In pratie, we alulate ^f using a loal quadrati kernel estimator with aGaussian kernel with (appropriately hosen) bandwidth h. Referenes onnonparametri funtion estimation are, for example Hastie and Tibshirani(1990), Fan and Gijbels (1996), or or Gy�or� et al. (2002). In Paper I, we22
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Figure 3.1: The appearanes of partiles at di�erent depths relative to thefoal plane. Sub-image 0 orresponds to a partile at the foal plane, and sub-images with negative and positive labels are below and above the foal plane,respetively. The distane in depth between two onseutive label numbers is0.2�m.introdued a modi�ation of the loal quadrati kernel estimates whenthe response variables are ensored above a ertain (known) value. Weall this ensored regression. If nothing else is said however, when talkingabout the loal quadrati kernel estimate, we mean the standard loalquadrati kernel estimates, without taking are of ensored pixel values.A simulation study, the results of whih are presented in Paper I, showedthat the di�erene in estimating the partile enter is very small betweenusing the ensored and standard loal quadrati method.The reason for hoosing the loal quadrati kernel estimate as nonpara-metri method, instead of for example a spline smoother, is that the23

CHAPTER 3. POSITION ESTIMATIONestimate of the derivative of f is pratially given to us for free using aloal quadrati, and the derivative is needed when estimating the stan-dard errors (see Paper I for details). The Gaussian kernel was hosensine it is smooth and has unbounded support, whih makes the funtionS di�erentiable. Regarding the hoie of bandwidth, simulation studieshave shown that the hoie of bandwidth is not very important whenestimating the partile enters (see Chapter 5). This is good, sine oneof the main ideas with this method (that is, minimizing equation (1.1))of estimating partile enters, is that it should be appliable to partileswith di�erent appearanes, as long as they look rotational symmetri inthe image. The idea presented in Paper I was to use a pilot bandwidthhpilot of 0.7 to �nd a �rst, preliminary partile enter and then update thisbandwidth with a ross-validation study. Then the �nal enter estimateis alulated using the updated bandwidth.Regarding the neighborhoods, we will in Chapter 5 ondut a study ofhow the standard errors in the 2-D estimation depends on rmax. Also,when two or more partiles are lose together however, the assumptionin (3.2) these irular neighborhoods with a �xed rmax does not apply,if the neighborhoods of the partiles interset. In Chapter 4, we willpresent a way to irumvent this, by adaptively seleting the shape of theneighborhood aording to nearby partiles. Another aspet onerningthe hoie of neighborhoodNx by (3.1), is that it depends on the unknownenter x. Nevertheless, if we are given an approximate partile entery0, we let Nx = Ny0 where Ny0 is de�ned by equation (3.1) for x =y0. Approximate partile enters an be given either manually, or bysome automati image analysis method. Below, we will present one suhautomati method.Candidate partile entersBefore we an estimate the partile enter by minimizing the riterion (1.1),dealt with in Paper I, we need to have a �rst approximate position. Weall these approximate positions andidate partile enters. Candidatepartile enter are usually integer valued positions if they are the results24



CHAPTER 3. POSITION ESTIMATIONfrom an image analysis stage using some �ltering tehnique (with appro-priate post-proessing). For traking in sequene images however, we willuse the position estimates in the previous image as andidate partileenters and this is dealt with in Chapter 4. Below, we will present oneidea to a �ltering tehnique for getting andidate partile enters.Loal maximal rotational symmetryWe will here introdue a (non-linear) �lter that ould be used to �ndpositions of loal maximal rotational symmetry. It is also presented togive the avor of the diÆulties one run into when trying to automatially�nd the objets of interest in an image, partiularly when the sought-afterobjets are di�erent in appearane.The main omputational e�ort in the minimization of (1.1), is spent onalulating the nonparametri estimate of the intensity pro�le f at eahandidate position y. In partiular, muh of the e�ort is spent on al-ulating the distanes ri(y) and the inter-distanes between these, whihare needed when alulating the weights in the equivalent kernels. Eahestimate ^f(ri(y)) in a loal quadrati kernel estimate an be written as alinear ombination of response values (pixel values):^f(ri(y)) = Xj2NyWijIjfor all i. The ith row of the matrix W is the equivalent kernel for theestimated value at point ri(y). The elements in the matrixW only dependon ri(y) and the bandwidth h. (This is however not true if we use themodi�ed version of the loal quadrati kernel estimate, that takes are ofensored pixel values.)If y 2 DI , that is, if the andidate enter is an (integer valued) pixelloation, and we use Ny as neighborhood, the set of distanes ri(y) fori 2 Ny are the same for all y 2 DI (apart of ourse from pixels near theboundary of the image). Therefore, sine the matrix of equivalent kernelsdepend only on ri(y), the matrix W only has to be alulated one. This25

CHAPTER 3. POSITION ESTIMATIONspeeds up things onsiderable. Assuming there are n pixels in Ny, thealulation of W takes O(n2) multipliations into aount, whih for theoriginal minimization of equation (1.1) has to be done for eah y sinethe distanes ri(y) are di�erent for eah y 2 R2 . Given the matrix W ,the alulation of S(y) takes n2 multipliations.Note that this approah is di�erent from the method of minimizing (1.1),in the way that Ny here hanges with y. In (1.1) we �rst �x the neighbor-hood Nx and then searh for the minimizer of S(y). Therefore, in orderto separate the two sums, we denote by Spix, the pixel-wise alulation ofS introdued aboveSpix(y) = Xi2Ny�Ii � ^f(ri(y))	2 = Xi2Ny�Ii � Xj2NyWijIj	2 (3.3)for y 2 DI . The matrix W does not depend on either y or the pixelvalues Ii whih is the important fat about Spix. It depends only on thebandwidth h and the radius of the neighborhood rmax.In Figure 3.2a we display a sub-region of a sequene image. In b) wedisplay Spix omputed for this image with rmax = 6 and bandwidth h =0:7. Sub-�gure ) is the same as b) but displayed as a ontour plot. Theidea is to use the loal minima of Spix as andidate partile enters.Now we an use morphologial operations to �nd the loal minima. Thelassial referene of morphology in image analysis is Serra (1982). Toextrat the minima, we will preform an operation alled bottom hat. Itis de�ned as follows. First we de�ne a struturing element B, whih wehere let be a ball in the image plane of radius r. For an image J , thelosing JB of J using struture element B is de�ned asJB(i) = mink2Bifmaxm2Bk J(m)gwhere Bi is the struture element entered at i. Finally, the bottom hatof J is de�ned as the di�ereneJbothat = JB � J26
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(a) (b)

() (d)Figure 3.2: A sub-region of an sequene image a), together with its Spix inb). In ) we display the logarithm of Spix as a ontour plot instead, makingit somewhat easier to loalize the loal minima in Spix, whih are to used asandidate partile enters. In d) we show the result of a morphologial operationalled bottom hat to Spix. In Figure 3.3, the result after thresholding the imagein d) an be seen.
27

CHAPTER 3. POSITION ESTIMATIONbetween the losing JB and the original image J . In Figure 3.2d, thebottom hat of Spix in Figure 3.2b is shown, using a ball with radius 3 asstruturing element (that is, all pixels within radius 3 from origo).All values in the bottom-hat �ltered Spix that are below a ertain thresh-old t are set to zero, and the largest element in eah onneted omponentin this thresholded image is denoted a andidate partile enter. In Fig-ure 3.3, we have plotted the original sub-image from Figure 3.2, togetherwith the andidate partile enters using threshold t = 10. As seen fromthe �gure, the operation with �nding the positions loal rotational sym-metry works fairly well, most of the true partiles have been found andonly a few false partiles were found. The true partiles that were missed,were all partiles lose to other partiles. The reason for this is of oursethat partiles lose together, disrupt the rotational symmetry.One problem with using a �ltering method like the one illustrated above,is the large number of parameters, whih were here hosen more of lessad ho. The parameters here are four: the bandwidth h, the size of theneighborhood rmax, the radius r of the struturing element, and �nally,the threshold t.Even though a �ltering step like this is not good enough for �nding allpartiles present in an image, it ould be used as a "wath-dog" to look for"intruder partiles" that omes into the image domain as we are trakingpartiles.3.3 Estimating the depthThe idea for estimating the depth, as presented in Paper II, goes as fol-lows. After a partile enter has been estimated in the image plane, weestimate the depth by omparing the pixel values Ii and their distanesri(^x) from the estimated enter ^x with a set of templates intensity pro�lesof what partiles look like at di�erent depths. The orresponding depthof the one that gives the best orrespondene is the estimate of the depthof the partile. Consequently, what it omes down to, is to onstrut28
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Figure 3.3: The resulting andidate partile enters after thresholding thebottom-hat �ltered Spix and taking the maxima in eah onneted omponent.The result is fairly good, the only true partiles missed, are the ones that arelose to other partiles.templates and to �nd a suitable measure on what best orrespondenemeans.The templates were onstruted by estimating the intensity funtion ofthe adsorbed partiles at di�erent depths in the z-sans, see Setion 2.3.Sine the exat true depth of the partiles in the z-sans were hard toverify (see the disussion in Setion 2.4), we foused on using as fewpartiles possible when onstruting the templates. We used mainly thepartile labelled number 6 in Figure 2.5 but for the z-sans in whih thiswas oluded, partile 14 was used instead.29

CHAPTER 3. POSITION ESTIMATIONIn Figure 3.1 we have displayed the appearane of partiles at a subset ofdepths used for template onstrution. The template intensity funtionfor these depths are plotted in Figure 3.4. These pro�les were estimatedusing the modi�ed version of the loal quadrati kernel estimate, takingare of ensored pixel values above 255. That this is the ase, is evidentfrom the observation in Figure 3.4 that the pro�les are assigned valuesgreater than the ensoring limit 255. The template pro�le for depth z isdenoted fz.To measure best orrespondene between template and pixel values sur-rounding a partile that we want to estimate the depth of, we use theriterion funtionM(z) = 1�2 Xi2AT�Ii�^�z�fz(ri(x))	2�Xi2AT logn��fz(ri(x)) + ^�z � T� �o(3.4)where ^�z is the minimizer of the expression (3.4) viewed as a funtion ofboth z and �, but where we keep z �xed. As seen, this riterion funtiontakes are of both ensored pixel values for the partile that we wantto estimate the depth for, and, in fat more importantly, the di�erentbakground intensities � (see the assumption regarding the appearanesof partiles in the images in equation (3.2)).The main problem with this approah to depth estimation is �rst that weonly have a �nite set of template pro�les, indexed from -30 to -30, thuslimiting the preision by the orresponding depth between the indies of0.2�m. Also, sine it is the over glass that is moved relative to the optisof mirosope when onstruting the z-sans, it is important that thepartiles from whih we estimate the templates, are at the same relativedepth to the over glass in all z-sans. Otherwise the distane in depthbetween eah template will not be the same between the templates.In Paper II, a simulation study showed a good preision in depth estima-tion, at least for partiles within 3.0�m from the foal plane (orrespond-ing to index -15 to 15 in Figures 3.1 and 3.4). For these depths, the depthwas only mislassi�ed for 14 simulations out of 25000. One objetion tothis highly optimisti result should be that the image noise seems to have30
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(e) indies 12 to 30 (in steps of 3)Figure 3.4: A subset of the template pro�les used for template mathing in thedepth estimation. The distane between two onseutive indies is 0.2�m. Thesub-�gures orrespond to the rows in Figure 3.1.31

CHAPTER 3. POSITION ESTIMATIONlarger variane for partiles lose to the foal plane, as reported in PaperI. Even so, ompared with the result for the real images for these depths,the onlusion is that the template mathing approah works well andthe preision is at least within one z-index of the z-sans, orrespondingto �0.2�m. Compared with the standard errors for estimating the enterin the plane, whih were between 0.02 and 0.10 pixels (3.6nm - 18nm) isis of ourse muh worse.3.4 2-D template surfae for sub-index estima-tionWe will here present an idea on how to onstrut a bivariate regressionsurfae fz(r), as a funtion of both depth z and distane from enter rsimultaneously. This will lead us in to a disussion on how to measure thedistanes between two intensity pro�les, whih obviously is also a ruialmatter in depth estimation. The mathing riterion (3.4) presented above,is basially the L2-norm, but it is quite unsatisfatory from a theoretialpoint of view sine it does not take speial onsideration of the funtionalfeatures of the intensity pro�les, suh as for example the �rst stationarypoint of the intensity pro�le.We reord the pixel values Ii and orresponding distanes ri(x) surround-ing an adsorbed partile in the z-sans for eah depth z we want to esti-mate the template for. To illustrate what a template surfae might looklike, we have in Figure 3.5 displayed the bivariate regression surfae alu-lated via a loal bilinear kernel estimate. No speial are have here beentaken to ensored pixel values. In Figure 3.6 we present the templatesurfae as an image instead.The bandwidths for the bivariate regression are two; the �rst, hr, is forthe r-diretion (in the same way as before), and the seond, hz is for thedepth z. For the template surfae in Figure 3.5, both bandwidths were afuntion of z. For the bandwidth in the r-diretion, hr, this is the sameas we did in Paper I and II when estimating the intensity pro�les for eah32
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Figure 3.5: The two-dimensional template surfae of intensity pro�les on-struted via a loal bilinear kernel estimate. The estimation, as well as thepresentation here, was split in two parts, one eah for partiles below and abovethe foal plane, respetively. The reason for this is the apparent phase shift atthe foal plane. No onsideration to ensoring has been done here.33
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15 Figure 3.6: The same two-dimensional template surfae as in Figure 3.5 pre-sented as an image and reeted around r = 0.depth; partiles lose to the foal plane need a small bandwidth hr andvie versa for partiles further away from the foal plane. The amount ofsmoothing in the z-diretion is hanged sine the resemblane in appear-ane between partiles at onseutive z-sans varies (see Figure 3.1 andFigure 3.4) with depth. For partiles further away from the foal plane,smoothing between the depths an be quite large, whereas for partileslose to foal plane, one must be areful not to smooth to muh. This isan important point and has to do with how we measure distane in thefuntional spae of intensity pro�les, whih we will get bak to below. Themost extreme ourrene of this, is obviously the di�erene in appearanebetween a partile at the foal plane ompared to a partile just below(see Figure 3.4). Beause of this, the estimation of the template surfaein two parts, one for partiles below and one for partiles above the foalplane. In e�et, this means that we do not allow for any smoothing inthe z-diretion at z = 0.The main bene�t of a template surfae instead of a set of template pro�lesfor a �xed number of depth, is that we an use the template surfae toestimate what a partile would look like at an arbitrary depth. Hene,at least in theory, we an use this surfae to estimate the depth for a34



CHAPTER 3. POSITION ESTIMATIONontinuously varying z. Another bene�t is that we an get estimates ofthe standard error of a depth estimate, using the same approah as weused for the 2-D estimation. The reason for this, is that we an estimatethe derivative of fz(r) in the z diretion. Compare with the standarderror derivation in Setion 3 in Paper I.Possibly the main problem with using a 2-D template is the smoothing inthe z diretion. This problem is related to the notion of distane betweenthe intensity pro�le for di�erent depths. For two partiles at di�erentdepths, it not really lear how to smooth (or interpolate for that matter)the orresponding pixel values from the two partiles, if the objetive isto estimate the appearane (that is, the intensity pro�le) of a partile ata depth between. The way one usually does it, is to, for �xed r, smoothaross the z diretion. Let us for arguments sake, say that the intensitypro�le of the �rst partile has a peak at this r, and the intensity pro�leof the seond partile "almost" has a dip at this r (this is almost the asefor partiles lose to the foal plane). Then the resulting estimate for thedepth between the two partiles beomes something in-between. In theseases, the smoothing in the z-diretion must be quite small, whih werethe ase in the omputation of the template surfae in Figure 3.5.
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Chapter 4
Traking

The methods from the previous hapter will here be ombined to illus-trate the possibilities the positioning methods in three dimensions give totraking. Possibly more, however, various problems for traking olloidalpartiles in a dilute suspension using a large foal depth, as is the asefor the sequene images onsidered here, will be highlighted.In Figure 4.1 we demonstrate what olusions might look like. The parti-les depited in the two images are the two big partiles in the upper partof Figure 3.2a. The image on the right, b), is reorded 20 time steps (0.4se) after the image on the left. As an be observed in the images, the twopartiles (optially) interfere with eah other, ausing a partial olusionof the bright partile on the left. In b), the bright partile is almost fullyoluded by the dark one. Note however that the atual partile entersin 3-D are far apart.Remember that 50 sequene images are reorded eah seond and thatthe video amera alternates between updating the even and the odd rowsin the image. See Setion 2.2 for further details. The sequene starts withan even frame and then alternates between even and odd.We will present a method that manages, to some extent, to handle dis-37
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(a) (b)Figure 4.1: The two images demonstrate olusion of partiles. The imageregion is the same in both images, however the image b) is reorded 20 timesteps (0.4 se) after a).tortion and partial olusion. First we will however disuss two di�erentapproahes to linking position estimates of partiles to trajetories.4.1 Linking positions to trajetoriesAssume �rst that our sequene of images only onsists of two images.Now we want to trak the partiles present in the two images. There arebasially two methods to do this. Either we �rst �nd all the partilesin the two subsequent images and then �nd the orrespondenes betweenthe two sets of partile positions, or we �nd the partiles in the �rst imageand then, for eah partile in the �rst image, searh in the viinity of thispartile in the seond image for the orresponding partile.There are pros and ons with both methods. For the �rst method, thedrawbaks ompared to the seond are two: We do not use our knowledgeof the positions of the partiles in the previous image, and also, we have38



CHAPTER 4. TRACKINGto �nd the orrespondenes between the partiles in the two images afterwe have estimated their positions. The drawbak of the seond method,is, at least unmodi�ed, that it only allows for traking of partiles foundin the �rst image.As we saw in Setion 3.2, it is very hard to �nd a method of �nding allthe partiles in an image without a large amount of false partiles, thatis, andidate partile positions that do not orrespond to true partiles.Hene, we have to allow for a lot of false positives sine we do not wantto fail to hit the true partiles, and onsequently, the linking proedureof �nding orrespondenes will involve a lot of andidate partiles andinevitably beomes trikier. Examples in the literature of �nding orre-spondenes between sets of point patterns are Lund and Rudemo (2000),were orrespondenes between estimated tree positions from aerial pho-tographs and the true positions were linked, or Cross and Hanok (1998),where the two sets of points were assumed to be the same up to an aÆnetransformation plus a Gaussian error in the positions and where the falsepoints were modelled by a Poisson proess.One simple approah to traking would be: Manually assign the andi-date partile positions in the �rst image, re�ne these positions, and thenupdate the positions for eah new image using the information ontainedin the previous partile on�guration.4.2 Handling partial olusionLet us start by onsidering the image on the left in Figure 4.1. Denotethe true enters of the two partiles in this image by x1 and x2, wherex1 is the true enter of the brighter partile on the left. Assume we aregiven initial andidate enters y1 and y2, for example from the �lteringmethod in Chapter 3 of �nding the loal maximal rotational symmetry.Using all pixels within let us say rmax = 15 from a andidate enter asneighborhood, the two neighborhoods Nx1 and Nx2 would interset, withthe result that they would use the same pixels for estimating the partile39

CHAPTER 4. TRACKINGenters. This is illustrated in Figure 4.2a, where the andidate entersare indiated by plus signs and where the two neighborhoods are we haveplotted a irle of radius rmax = 15 around eah andidate enter.The orresponding results from the two optimizations of S in equation (1.1),using these neighborhoods for the two partiles, would a�et the partileenter estimation in the plane, most probably with a bias direted awayfrom the other partile. The reasoning behind this, is that the positionof loal maximal rotational symmetry would be pushed away from theinterfering partile. In Figure 4.2b we have plotted the satter plot ofpixel values within 15 pixels away from the andidate enter y1 for thebright partile in Figure 4.2a. We learly see the interfering pixel valuesresulting from the fat that there is another partile nearby.An easy way to get around this, at least to some extent, is to allow pixelloations to be part of Nxk to the kth partile, only if the orrespondingandidate enter yk is losest to the pixel among the other andidateenters. Let K denote the set of andidate enters in the image. Thenwe let the neighborhood of the kth partile beNxk = �i 2 DI : ri(yk) � rmax and ri(yk) = minm2K ri(ym)	: (4.1)Compare this with equation (3.1). This de�nition of neighborhood thusrequires that we are given a set of andidate enters. In Figures 4.2and 4.2d, we display what the two neighborhoods look like by letting thepixel values be blak for the pixel loations that are in the neighborhoodof the other partile.In Figure 4.3 we plot all pixel values within distane 15 from the twoandidate partile enters. The pixel values in the two neighborhoodsillustrated in Figure 4.2 and 4.2, respetively, are however displayedwith dots and the others are displayed with plus signs. It is obvious thatthe pixels outside the orresponding neighborhoods are interfering.Furthermore, we will iteratively update the neighborhoods aording to(4.1) as we are minimizing the riterion for maximal rotational symme-try (1.1). After the partile enter in the plane has been found, the depth40
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() (d)Figure 4.2: In a), the two plus signs are the two andidate partile enters.The two big irles have radii 15 and are entered at the andidate enters,representing possible neighborhoods of the partiles. In b) there is a satter plotof the pixel values up to distane 15 from the andidate enter on the left ina). In ) and d) we demonstrate what the modi�ed neighborhoods, de�ned byequation (4.1), look like, where a blak pixel represents that the pixel is loserto the other partile.
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Figure 4.3: Satter plots of the pixel values surrounding the estimated entersof the two partiles in Figure 4.2a. The pixel values not in the orrespondingneighborhood but within distane 15 from the andidate enter are displayedwith plus signs.is estimated as in Paper II. Note that the preision in the position esti-mates will usually be worse when using smaller neighborhoods (omparewith the simulation study in Setion 5.1). Furthermore, the preision ofthe partile enter estimate in the plane, will in general di�er for the twooordinates.The proposed algorithm for traking in 3-D is as follows:1. Calulate the distanes between the andidate partile enters andonstrut the neighborhoods to eah partile aording to equa-tion (4.1).2. Minimize the loal rotational symmetry funtion S for eah partileusing the orresponding neighborhood from Step 1.3. Use the minimizers from Step 2 as andidate enter and go to Step1. Continue this until there are no hanges in the position estimates.4. Estimate the depth for eah partile using template mathing.5. Load a new image from the sequene and let the estimated positionfrom above be the andidate enters for the new image. Goto Step1. 42



CHAPTER 4. TRACKING4.3 Results for traking two partilesThe two partiles in Figure 4.1 were traked using the proposed algorithmabove. However, for the 16:th image the estimation broke down. Thiswas indiated by that the estimated positions of the partiles pratiallyoinided.In Figure 4.4a we show the same region as before, but for the 15:th imagein the sequene together with the enter estimates of the two partilesin this image, after having traked them for 14 images. A plus sign sur-rounded by a small irle will indiate a resulting partile enter estimate.We see that the two partiles have moved slightly towards eah other,ompared to the initial image in the sequene. Here, one ould possiblyargue that the estimated enter of the partile on the left is somewhatbiased downwards to the left.The estimated enters in Figure 4.4a are used as andidate enters forthe next image in the sequene, whih is shown in Figure 4.4b togetherwith the andidates. This next image omes from an odd frame, seeSetion 2.2. It seems as if both partiles have moved upwards in the imageplane. However, it is easy to be deeived by the eye sine a transitionfrom an even to an odd frame has the e�et that everything seems to havemoved upwards in the image.As shown in Figure 4.4, the estimation of the enter of the partileon the left does not work. There are probably several reasons for thisbreakdown, but the main underlying ause is of ourse that one of thepartiles is heavily oluded by the other. Probably a more restritivehoie of neighborhood would be able to trak both partiles past thisimage. A few modi�ations in this diretion will be disussed below.Nevertheless, it is hard to believe that it would be possible to trak bothpartiles past the image on the right in Figure 4.1, whih is the 21stimage in the sequene. There, the dark partile almost totally oludesthe bright one.When the position of a partile is wrongly estimated, we say that we43
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(a) Image 15 (b) Image 16
() Image 16Figure 4.4: The resulting estimates of the partile enters for the 15:th imageis shown in a). In b) the estimates from a) are plotted on the next image (whihis an odd frame). The estimated positions for image b) is displayed in ) andlearly the traking of the partile on the left has broke down.lose the partile and all it a lost partile. Deteting the loss of a partileshould not be hard. By looking at the inrements of the partile trajetory44



CHAPTER 4. TRACKINGand at the distane to its nearest partiles, it should be easy to detet theloss of a partile. A lost partile should probably not be disarded. Themain bene�t of the approah presented above for traking, is that we getestimates of where the other partiles in the image are loated. One ouldsay that these estimates tell us when to be autious about whih pixelsto hoose when estimating the enter. A lost partile should therefore bekept sine it signals that there ould be another partile present in thispart of the image.4.4 Modi�ationsThere are of ourse numerous ways to modify the presented traking al-gorithm above. We here present a few ideas. Muh of the issues have astrong algorithmi nature, by whih we mean that muh is assoiated withvarious triks used in the implementation of traking, however inspiredby statistial and probabilisti reasoning.First of all, the presented method of traking does not make use of thedepths of the partiles in the previous image in the sequene. As is thease for the positions in the image plane, the depths of the partiles annothange so muh in the time interval between two onseutive sequeneimages. A modi�ation would be to inorporate the information of theappearane of the partiles in the previous image when onstruting theneighborhoods of the partiles in the present image, sine this tells ushow big the domain of interfering pixels is.More generally, this brings up the subjet of using di�erent shapes ofneighborhoods to partiles in the image. The method we presented isbased on dividing the image plane into Voronoi ells. More elaboratemethods ould of ourse be used. One possibility would be to modifyequation (4.1) suh that the distane ri(yk) must be smaller than a on-stant  < 1 times the minimum distane to the other andidate entersminm2Knfkg ri(ym). The reason why this is believed to perform better, isthat pixels in the region in-between partiles are a�eted by both of the45

CHAPTER 4. TRACKINGnearby partiles, and hene should not be used for positioning at all.One ould also inorporate detetion of outliers in the satter plot ofpixels in the neighborhood ompared to the �tted intensity pro�le. It isimportant then to relate the possible outliers, to where in the image theyare loated, in other words, we have to inorporate the spatial nature ofthe data. Drawing onlusions on outliers simply from pixel values plottedversus distane, is highly unsafe. Only if a possible group of outliers inthe one-dimensional satter plot an be spatially related in some way,an we allow to disard them. (By spatially related pixels, we meanpixels that are onneted in the image plane.) This is the main reasonwhy a robust method suh as the LOWESS (loally weighted satterplot smoother), Cleveland (1979), was not used for the nonparametriestimation of f in the estimation of partile enters in the plane. Oneway to spatially relate outliers ould be to disard them only if they aresuÆiently lose to the boundary of the neighborhood used. This way,we ould let the neighborhood shrink, as outliers near the boundary aredisarded.
46



Chapter 5
Supplementary studies

We will present some supplementary studies based on simulations whihmight be of interest when reading Paper I and to some extent Paper II.Therefore it is advisable to have read at least Paper I before reading thishapter.5.1 Dependene between the size of Nx and thestandard error in the 2-D estimationWe will investigate how the estimated standard error of the partile enterestimate varies as a funtion of rmax, when irular neighborhoods Nx,as in equation (3.1), around the partile enter x, are used.As in Paper I, we let g denote the Rn valued funtion of x = (x1; x2) withkth element gk(x) = ^f(rik(x)). Also, J denotes the Jaobian of g, then times 2 matrix with element �J(x)�k;m = �gk�xm (y) for k = 1; : : : ; n andm = 1; 2. The sandwih estimator of the variane matrix Varf^xg of theestimated position error at the true enter x isV = (JTJ)�1JT�J(JT J)�1: (5.1)47

CHAPTER 5. SUPPLEMENTARY STUDIESwhere � is the variane matrix of the residuals between the pixel valuesand the orresponding estimates of f .In this simulation study, the intention is to fous on the dependene ofrmax on the diagonal elements of ^V . Therefore we will use the true (butrandom) value of the partile enter x. Furthermore, instead of estimatingthe image noise parameters as we did in the simulation study of Paper I,the true values of the image noise parameters �2 and , will be used. Theelements of J are approximated in the same way as in Paper I, that is,by the estimated derivatives of the intensity pro�le.For eah simulated image I with random partile enter x, we alulatedV for rmax between 3 and 15 from the true enter x. The parameters ofthe image noise were �2 = 25 and  = 0:6.Let �m(rmax) be the square-root of the maximal element of the two di-agonal elements of V for the mth simulated image with rmax as radiusof the neighborhood Nx. In Figure 5.1 the result after M = 100 simu-lations eah for partiles 3�m below and above the foal plane is shown.These depths orrespond to indies �5 in Paper I. For eah rmax, themean ��(rmax) = M�1PMm=1 �m(rmax) over the M simulated images, isdisplayed. Below this, we have plotted the intensity urve fz used in thesimulation. See also Figures 5.2 and 5.3, where the same kind of depen-dene is illustrated, this time for partiles �1:8�m and �4.2�m from thefoal plane, orresponding to depths indexed by �3 and �7 in Paper I.The observation made from the plots, is that the way �� varies with rmax,learly seems to depend on fz. After eah point r where fz has zeroderivative (that is, after eah stationary value of fz), the standard errorseems to drop. Furthermore, the magnitude of this dip depends on thedistane from the partile enter, r. Then, for a suÆiently big rmax,the inrease in rmax does not seem to a�et the standard error. Notealso the non-symmetry around the foal plane in eah �gure; the plots onthe left and right represent partiles at the same distane from the foalplane, but the shapes of the standard error urves are di�erent. This isonsistent with that the loation of the �rst stationary value of fz forr > 0 is loser to r = 0 for a partile below the foal plane than for a48
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CHAPTER 5. SUPPLEMENTARY STUDIESA note of warning should also be said about over-interpreting the depen-dene of the standard error estimates on the size of the neighborhood.The sandwih estimator is sort of an estimate of the loal urvature ofS(y) at the true enter x. It does not say anything about how to get tothis true enter. In other words it says nothing about the onsisteny ofthe partile enter estimator, only what the standard error will be if theestimated ^x gets suÆiently lose to x.5.2 Estimated intensity pro�les for di�erent band-widthsIn Paper I a ross-validation study was performed on the data orrespond-ing to the sub-images of a partile at 15 di�erent depths. The onlusionwas �rst of all that the loal quadrati kernel estimate was relatively in-sensitive to the hoie of bandwidth and seondly, that bandwidth h = 0:7worked suÆiently well to be used as a pilot bandwidth when �nding thepartile enters. Before the atual estimation of the intensity pro�leshowever, a ross-validation study was made for eah partile separately.Here we will �rst investigate the bias in the nonparametri estimation ofthe intensity pro�le at di�erent depths for di�erent bandwidths. Then,we will investigate the auray of ross-validation for the kind of dataonsidered here.By an estimate of an intensity pro�le f given pixel values Ii and orre-sponding distanes ri(x), we will below mean the loal quadrati kernelestimate of f with (Ii; ri(x)) as data, with no ensoring.Here we will fous on the estimation of intensity pro�les, and insteadof using the data-driven method of ross-validation, we will ondut asimulation study to illustrate how the estimated intensity pro�les dependon the hoie of bandwidth. We simulate images of partiles with addedimage noise (in the same way as in Paper I and II), and then the intensitypro�les will be estimated using the true enter as the partile enter. Thiswill be done for di�erent bandwidths for eah image.51

CHAPTER 5. SUPPLEMENTARY STUDIESThe mean of the estimated intensity pro�les from 100 simulated imagesof a partile at the foal plane, using bandwidths h = 0:5; 0:7, and 1.0,respetively, from left to right, is shown in solid in the three sub-�guresin the upper row of Figure 5.4. The true intensity pro�le used in thesimulations, is displayed in dashed and the dotted lines are the point-wise maximum and minimum of the estimated values of the intensitypro�les. The bias in the estimation is very high for the largest bandwidthand almost zero for the smallest bandwidth. Interestingly, the pointwisedistane between the minimum and maximum value of the intensity fun-tions is not inreased muh for the lowest bandwidth, ompared to thehighest.The story for the two other depths of Figure 5.4, 1.8�m and 4.2�m abovethe foal plane, is basially the same as the story for the upper three sub-�gures. Furthermore, this is true for all other depths; the pointwise bias islower for smaller bandwidths. However, looking at funtional harateris-tis of the estimated funtions, suh as the position of the �rst stationaryvalue of the estimated funtion, we get another story. Using a smallerbandwidth than neessary, makes the intensity pro�le estimates too un-regular with too muh utuation. Therefore, the plots in Figure 5.4 area bit misleading, as one might think that we should always hoose a smallbandwidth. Anyhow, it is of ourse lear that the bandwidth h = 1:0 istoo large for estimating the intensity pro�les in the two upper rows.In Figure 5.4 we alulated the estimate for uniformly spaed values ofr. The ovariates, the distanes ri(x) from partile enter x to the pixelloations i, are however not uniformly spaed. More preisely, they arerandomly distributed (sine the partile enter x is random), with linearlyinreasing density of ovariates with distane, sine the number of pixelswithin distane r from a partile enter inreases quadratially. Sinethere are few pixels for small r values, the variation is fairly large forall bandwidths at small r values, as seen by the larger span between thepointwise minimum and maximum of estimated funtions in Figure 5.4.Remember also that the image noise in the simulations is orrelated.52
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Figure 5.4: Mean of the estimated intensity pro�les (solid) from 100 simulationsorresponding to a partile at the foal plane in the upper row, together withpartiles 1.8�m and 4.2�m above in the middle and lower row, respetively, whenusing three di�erent bandwidths. The bandwidths 0.5, 0.7, and 1.0, are shownfrom left to right, respetively. The true intensity pro�le is displayed in dashedand the dotted lines are the pointwise maximum and minimum values of the100 estimated intensity pro�les. Clearly the funtion estimates have a large biaswhen using too large a bandwidth; see for example the plot in the upper rightorner, where the mean of the estimated funtions (solid) is far from the truefuntion (dashed).Validating Cross-validationLet us denote by ^f�ih the loal quadrati kernel estimate of f when leavingout the i:th data point, and using h as bandwidth. For eah h the ross-53

CHAPTER 5. SUPPLEMENTARY STUDIESvalidation sore is de�ned asCV (h) = 1n Xi2Nx�Ii � ^f�ih (ri(x))	2: (5.2)The ross-validation sore is alulated at a �nite number of bandwidths.The idea behind the ross-validation sore, is that it is an estimate of theexpeted value of the squared di�erene between the estimated and thetrue regression urve (intensity pro�le) under the bivariate distributionof ovariates and response values, (ri(x); Ii),EfZ ( ^f(r)� f(r))2d�(r)g (5.3)where � is the (marginal) distribution of ovariates. In a simulation study,we know the true intensity pro�le, and therefore we an estimate expres-sion (5.3) byE(h) = 1M MXm=1 1nm nmXk=1( ^fh(rik(xm))� f(rik(xm)))2 (5.4)where ^fh is the intensity pro�le estimate using the data from the mthsimulated image and i1; : : : ; in is an arbitrary enumeration of the nm pixelvalues within distane rmax of the (random) partile enter xm. Note thatfor eah simulation, both the pixel values Ii as well as the distanes tothe pixels from the partile enter, rik(xm), are random. The pixel valuesare impliitly present in the summation (5.4) above, in the estimate ofthe intensity pro�le ^fh.We onduted a new simulation study of M = 100 images for eah ofthe 15 depths from -4.2�m to 4.2�m with 0.6�m in between. These arethe same depths onsidered in Paper I. For eah image, we estimatedthe intensity pro�le f up to distane rmax = 15 using 17 di�erent band-widths h = 0:4; 0:45; 0:5; : : : ; 1:2. Then E in equation (5.4) was alulatedfor eah depth. Also, for eah image, the ross-validation sore was al-ulated, using the same set bandwidths. In Figure 5.5 we present theh minimizing E for eah depth in solid together with the mean of thebandwidths minimizing the orresponding ross-validation sore for eah54
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Figure 5.5: For eah depth, the minimizer of E(h) in equation (5.3) using 100simulated images of partiles at this depth is shown in solid. The dashed plotis the mean over eah depth of the minimizers of the ross-validation sore foreah image.image. The shape of the two plots is the same, but there is a disrepanyof roughly 0.06 between the two plots. It seems as if the ross-validationminimizer is biased. In pratie however, this disrepany in bandwidthdoes not a�et the estimation of f severely.
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Chapter 6
Conlusions and FutureResearh

6.1 Depth estimation using templatesAs disussed in Setion 3.4, there related to the estimation of a 2-D surfaeof intensity pro�les, a measure of distane between the intensity pro�lesshould take speial onsideration of the funtional features unique for eahpro�le. One example of suh a feature is the �rst dip or peak of the inten-sity pro�le, depending on if the partile is below or above the foal plane.Looking at the intensity pro�les, it seems as if the pro�les are related toeah other with a saling parameter depending on depth, that ats on theargument r and the amplitude of the variation, strething out the pro-�le with inreasing distane to the foal plane. An improved measure ofdistane between intensity pro�les should take this into onsideration. Inshort, it would be nie to have a measure of distane between shapes thatexploits the important funtional features like the �rst dip, in a more ex-pliit manner than the L2-norm, whih what the mathing riterion (3.4)basially is. 57

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCHTemplates that allow for ontinuous depth estimation are also desirable.In Setion 3.4 we presented one method for onstrution a two dimensionalregression surfae of intensity pro�les. From a theoretial point of view,mathematially onstruted templates would of ourse be preferable, sinethis would also allow for onstrution of templates for partiles of di�erentsizes and shape. However, as mentioned in the Introdution, preditingthe appearane of spherial objets in mirosopy of this size still seemsto be an intriguing theoretial hallenge, see Ovryn and Izen (2000).The 2-D template approah desribed briey in Setion 3.4 ould be de-veloped further. However, this requires better data of the appearanes ofpartiles at di�erent depths. Several images at eah depth would probablyimprove the estimates of the intensity pro�les in general. It should alsobe possible to reord the z-sans without having ensored pixel values.Even so, this approah would still on�ne us to the study of partiles ofonly the sizes and shapes we have estimated templates for.6.2 Measurements of di�usion oeÆient and in-terationAs illustrated in Chapter 4, it is hard to trak partiles unsupervised fora longer sequene of images onsidered here. The main ause is that thefoal depth of the mirosope is very large, ausing partiles to oludeeah other rather frequently, at least ompared to the ratio of the totalnumber of partiles present in the speimen and the volume of the domainin whih they are on�ned.Loosing trak of partiles is not very important if we are only onernedwith the estimation of the di�usion oeÆient of the partiles. Thenbroken trajetories of partiles do not a�et the estimation (more thanthat the sample size of observed inrements dereases); when a partileis lost, we do not have to bother were it goes and when we possibly starttraking this partile again, we ould onsider it as a new partile (at leastif all partiles are of the same size). If interation between partiles is58



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCHbelieved to be present, one ould furthermore restrit traking to regionsin the image where there are no other partiles present within a reasonablerange of partile interation.
However, when estimating a possible interation between the partiles,it is ruial to estimate the positions of all partiles. In partiular, itis important to estimate the positions of those partiles whih are loseto eah other. But this is exatly when unsupervised traking is hard!Supervised estimation of partiles enters is of ourse possible, but for alarger sequene of images, this is a very tedious job. The interation be-tween partiles an however in priniple be estimated from the estimatedpartile positions in three dimensions in a single image using methodsof statistial inferene for spatial point proesses, see for example M�llerand Waagepetersen (2004).

Sine unsupervised traking is hard in dilute suspensions, one alternativeis to use an optial trapping devie alled an optial tweezer. An optialtweezer is tightly foused laser beam that reates a loal minimum inthe optial energy strong enough to overome both radiation fores andthermal fores. Thereby it is possible to attrat a partile and move itto a spei�ed loation. A dual optial tweezer ould be used to attrattwo partiles, bring them lose together, and then turn o� the laser. Thepartiles would then di�use freely and we an trak the two partiles fora sequene of images. The whole thing an be repeated until enough datahas been olleted. Optial tweezers have been used in studies of theinteration potential in Croker and Grier (1996) but also in for examplevideo mirosopy studies of DNA, see Perkins et al. (1994). Given the highauray of position estimation of spherial latex partiles developed here,the possibilities for high preision estimation of the interation betweenpartiles using this more advaned mirosope setup should be large.59

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH6.3 Automated depth alibrationAn interesting problem would be to automatially estimate the depth,simply by observing trajetories of partiles performing Brownian mo-tion (like the sequene images we have used). Sine Brownian motion isisotropi, a partile performing Brownian motion has the same di�usionoeÆient in all three dimensions. Sine traking the position of a par-tile works fairly well in the image plane, we an estimate the di�usionoeÆient. Now the idea is as follows. As we trak the partile in twodimensions, we reord some kind of feature that relates to the depth ofthe partile. This ould be the estimated intensity pro�le, but it ouldalso be a simpler attribute, for example the distane form the partileenter to the �rst stationary value of the estimated intensity pro�le, thatis, the distane to the �rst peak or dip in the pro�le. Then, if it is pos-sible to order these measured features of the depth, and assuming thatthere is a funtion that relates this feature with the depth of the parti-le, we ould assoiate the trak of this depth feature with the di�usionoeÆient already estimated from the measured di�usion in the plane.
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Estimating enters and intensity pro�les ofspherial partiles in mirosopyMats Kvarnstr�om and Chris GlasbeyJanuary 24, 2005AbstratWe present a method for estimation of partile enter in digitized mi-rosope images, based on an assumption of rotational symmetry of pixelvalues surrounding a true partile enter. The funtional form of how thepixel values vary with distane from a partile enter is alled the intensitypro�le and depends on the depth of the partile. In addition to estimatingthe enter, the intensity pro�le is also estimated using a nonparametri es-timator. However, pixel values are ensored above a ertain known value.We propose a modi�ation of the loal quadrati kernel estimate for non-parametri funtion estimation using ensored response values.Furthermore, for eah enter estimate, we also estimate the standarderror of the estimate using a sandwih estimator. A simulation study showsthat these standard errors are onsistent with the observed RMS errors.The standard errors depend on distane to the foal plane and are in therange of 0.02 to 0.10 pixels, depending on depth of the partiles, with lowervalues for partiles loser to the foal plane.1 IntrodutionIn order to trak and subsequently estimate the di�usion oeÆients of di�us-ing olloidal partiles observed in video mirosopy, a highly preise, automatimethod for estimating partile enters is needed. It is also of interest to havereliable estimates on the standard errors, sine errors in the position estimatesa�et the subsequent estimation of the di�usion oeÆient. Furthermore, sub-pixel auray is needed sine the partiles typially only di�use distanes in theorder of one or two pixels between two subsequent images.1

Figure 1: An image from a video sequene of di�using partiles. The partiles are allequal in size and the di�erene in the appearanes of the partiles in the image is dueto that the partiles are at di�erent depth relative to the foal plane.Figure 1 shows one of the images in a typial sequene of images reorded anddigitized by the video mirosope. The images are reorded at a frame rate of50 images per seond. Eah image onsists of 512 times 512 square pixels with aside-length of 180 nm. The partiles are all of the same size, 494 nm in diameter;the di�erene in appearane is due to di�erent depth relative to the foal plane.Our method of estimating the partile enters in the image relies on an assump-tion of rotational symmetry of the pixel values in the image in the viinity of atrue partile enter. We will estimate the partile enter by the position withlargest rotational symmetry, where the symmetry is measured as the sum of2



squares between nearby pixel values and a �tted nonparametri estimate of howpixel values vary with distane from a (andidate) partile enter. The pixelvalues in the images onsidered are ensored (saturated) at an upper limit ofT = 255 and are instead set to T . We introdue a method for nonparametriestimation of a regression funtion when the response variables (the pixel values)are ensored above an upper limit under the assumption of normally distributedhomosedasti observation errors (the image noise).Censored (saturated) pixel values are ommon in miroarrays where the esti-mated expression of genes get biased when no adjustment is done due to theensoring, see Glasbey et al. (2005) and Ekstr�m et al. (2004). A nonparametriapproah was pursued by Glasbey et al. (2005) using a prinipal omponentsmodel. Ekstr�m et al. (2004) used a parametri approah where several para-metri forms were tested for the expression of genes in the miroarrays.Standard error on eah enter estimate will be based on the sandwih estimator,see for example Owen (2001). These standard errors are shown to be onsistentwith root-mean-square (RMS) errors in a simulation study in Setion 5. In thissimulation study, we also examine the preision when only half of the rows inthe image is used in the estimation. This is done sine for image like the one inFigure 1, in fat only half of the rows are updated eah 1/50 seond, alternatingbetween the even and the odd rows. Sine only half as many pixels are used,one might have expeted p2 times larger RMS errors and furthermore, sine weare losing information in the vertial diretion, the errors would be greater inthe vertial than in the horizontal diretion. The study shows however, that theloss in preision is not as high as expeted and espeially that the preision isstill equal in both oordinates, exept for the partiles losest to the foal plane.In Figure 2, we have extrated and zoomed in on a partile like the ones inFigure 1 at di�erent distanes from the foal plane. Eah sub-image onsists of27 times 27 pixels. Sub-images with negative and positive labels orrespond topartiles below and above the foal plane, respetively. The distane in depthbetween two onseutive sub-images is approximately 0.6�m and sub-image 0orresponds to a partile at the foal plane. These images are alled z-sansand have been onstruted by letting partiles adsorb on the glass surfae of thespeimen, and then moving the speimen relative to the optis of the mirosope.This way, we were able to reord the appearanes of partiles at di�erent depthsof fous.Previous work using digital video mirosopy for olloidal studies, have beenmade by Croker and Grier (1996, 1998), but there, the depth of fous wasapproximately �0.5�m, whih makes the partiles similar in appearane andtherefore easier to �nd in the images, sine the sought-after objets in eah image3
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Figure 2: The appearane of a partile at 15 di�erent distanes to the foal plane.Sub-image 0 orresponds to a partile at the foal plane, and sub-images with negativeand positive labels are below and above the foal plane, respetively. The distane indepth between two onseutive sub-images is approximately 0.6 �m.are similar. In their study, eah partile is a bright spherial set of pixels and theyahieve sub-pixel auray by alulating the geometri enter of the brightness-weighted entroid, obtaining standard errors of about 0.1 pixels (where eahpixel is 85 nm). Also, the partiles in their olloidal suspensions are e�etivelyon�ned to a rystallized struture. In our ase, the depth of fous is �15 �m,resulting in a muh wider variety of appearanes of the partiles in the image.Assumptions and main ideaWe denote an image by I . This is e�etively a matrix of pixel values Ii for pixelloations i = (i1; i2) 2 DI � Z2, where DI is the set of indies i for whih theimage is de�ned. We will use the terms pixel and pixel loation interhangeableto mean the same thing when no risk of ambiguity exists.A partile enter is denoted by x = (x1; x2) 2 R2 , and to eah partile, weassoiate a set Nx � DI of pixels in the image I alled the neighborhood ofthe partile at x. For the partiles in Figure 2, we an take all pixels in the4



orresponding sub-image as the neighborhood for the partile, but typially, welet Nx = fi 2 DI : ri(x) � rmaxg; (1)where ri(x) is the Eulidean distane from the partile enter x to pixel i, andrmax is an appropriately hosen distane. In this paper, we will let rmax be 15.The main assumption is that, for a partile enter at x 2 R2 we haveIi = f(ri(x)) + �i for i 2 Nx; (2)where f is alled the intensity pro�le. The image noise, �i for i 2 DI , is as-sumed to be normally distributed with isotropially orrelated pixel values. Theintensity pro�le f : R 7! R is assumed to be a smooth funtion with at least twoontinuous derivatives and symmetri in its argument r, here denoted by C2.The basi idea for estimating the partile enter is as follows. For a partileloated at x, we use the minimizer ofS(y) = minf2C2 Xi2Nx�Ii � f(ri(y))	2 = Xi2Nx�Ii � ^f(ri(y))	2 (3)for y 2 R2 as estimate of x. We alulate ^f using a loal quadrati kernel es-timator with (appropriately hosen) bandwidth h. The idea behind minimizingthe equation above is to �nd the position of (loal) maximum rotational sym-metry. We denote the estimate of x by ^x. At ^x, the orresponding ^f will be theestimate of the intensity pro�le for this partile. The idea behind minimizingequation (3), is to �nd the position of (loal) maximal rotational symmetry.Pixel values are ensored above an upper limit T . Here, T equals 255. InFigure 2, we have ensoring for all partiles exept at the foal plane and atdepths 6 and 7. For partiles below the foal plane, ensoring ours for pixelslose to the enter of the partile, and for partiles above the foal plane, on the�rst fringe. The relative amount of ensoring is however not very large; between0.5 and 4.5 perent of the 27 � 27 = 729 pixels are ensored, with the largestamount for the partiles just above the foal plane (depth 1, 2, and 3). Forestimating the partile enter, that is, �nding the position of maximal rotationalsymmetry, ensoring does not a�et muh, sine ensoring ours at an annulusaround the true partile enter. Nevertheless, for estimating the intensity pro�le,it is important.In Figure 3 and 4 we illustrate some of the assumptions and methods presentedso far. In Figure 3 we have zoomed in on the partile at depth -5 and madea surfae plot of S for a few values surrounding the minimizer. In Figure 4,we see that it is reasonable to assume rotational symmetry of the pixel values5
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−5)Figure 4: Two satter plots for the partile at depth -5 in Figure 2. On the left,the satter plot of pixel values surrounding the enter pixel of the sub-image (14; 14),and on the right, the same for the estimated partile enter at (14:21; 13:67). Note theensoring of pixel values above T = 255. See Figure 3 for an image of the partile andthe plot of S.We will however use ross-validation to automatially hoose bandwidth.Loal polynomial kernel estimateWe will explain briey how a loal polynomial kernel estimate is alulated. Thevalue of ^f at eah point of evaluation r0 is a solution to a loal weighted least-squares problem, where eah observation Ii is given a weight from the Gaussiankernel funtion aording to distane between r0 and ri(y). For estimation whenthere is ensoring, however, we will modify this weighted least-squares problem.For easier notation, we will heneforth write ri instead of ri(y) for i 2 Nx whenthere is no possibility of misunderstanding.Let K denote the Gaussian kernel, that is K(x) = exp(�x2=2). The loal poly-nomial kernel estimate is based on the assumption that the unknown regressionfuntion f an be approximated loally by a polynomial of degree p,f(r) ' pXk=0 f (k)(r0)k! (r � r0)kfor r lose to r0. To alulate the value of the estimate at an arbitrary pointr0, we loally �t a polynomial of degree p by solving the weighted least-square7

problem of �nding the minimizer toXi2NxnIi � pXk=0�k(ri � r0)ko2Kh(ri � r0) (4)with respet to � = (�0; : : : ; �p) and denote the minimizer by ^�. Here, Kh(x) =h�1K(x=h) is the kernel with bandwidth h > 0. The estimates of f (k) at r0, fork = 0; 1; : : : ; p, are ^f (k)(r0) = k! ^�k:Notie that sine ^f(r0) is the solution to a weighted least-squares, ^f(r0) is alinear ombination of the pixel values Ij for j 2 Nx.Loal regression with ensored response valuesDenote the set of unensored pixels by AT = fi 2 Nx : Ii < Tg, where T = 255.Then the omplement, AT , is the set of ensored pixels. With pixel values in Nxensored, we minimize12 log�2 Xi2AT Kh(ri � r0) + 12�2 Xi2ATnIi � pXk=0�k(ri � r0)ko2Kh(ri � r0)� Xi2AT logn��Ppk=0 �k(ri � r0)k � T� �oKh(ri � r0) (5)instead of the sum of squares (4), where � is the distribution funtion of N(0,1),that is, a zero mean, normally distributed random variable with unit variane.The reason behind minimizing (5) is that it orresponds to maximizing the loallikelihoodYi2ATn 1���Ii �Ppk=0 �k(ri � r0)k� �owi Yi2ATn��Ppk=0 �k(ri � r0)k � T� �owiof observations Ii, that are possibly ensored above T . The weights wi = Kh(ri�r0), ould be interpreted as the proportions of observations from a larger samplebeing at ri. We here impliitly assume the image noise �i to be i.i.d. and normal.Notie however that we generally, in the main assumption (2), assume the imagenoise to be orrelated.When referring to the two kinds of loal quadrati kernel estimates dealt withabove, we will sometimes all the two versions "the standard" and "the ensored"version, respetively. We will also use "ensored regression" for the latter.8



Remark 1: In order to have the estimated intensity pro�le symmetri, asassumed in the model, we use the reeted data f�ri(y); Iig together withfri(y); Iig as data when alulating the regression. However, we only evaluate ^fat the points ri(y).Remark 2: Note that the original loal quadrati kernel estimate, de�ned bythe minimizer of (4), is linear in the pixel values. This means that we an write^f(ri) = Xj2NxWijIj (6)for eah i 2 Nx for some matrix W . This matrix is alled the equivalent kernelmatrix. The trae of W , is a ommon estimate of the degrees of freedom for�tting of f to the data fri; Iig, see Hastie and Tibshirani (1990, hap. 3). Wewill use this below when estimating the variane �2. Note that W only dependson the bandwidth and the distanes ri = ri(y).In ontrast to the loal quadrati kernel estimate, the ensored version, de�nedby (5), is not linear in the pixel values sine it ontains the non-linear terminvolving �. It should also be noted that ^f is never linear in andidate partileenter y.Algorithm for ensored regressionThe problem with equation (5), is that the parameter �2, the variane of theimage noise �i, is unknown. Hene, this needs to be estimated as well. However,instead of minimizing (5) with respet to both � and �2 loally for eah r0,we will use an iterative sheme, alternating between estimation �2 globally andupdating the regression estimates.Let f0i denote the estimate from a standard loal quadrati kernel estimate atpoint ri. The �rst, pilot, estimate of �2, is based on the residuals between f0and the pixel values: ^�20 = 1jAT j � trfWg Xi2AT�Ii � f0i 	2 (7)where jAT j is the number of elements in AT , andW the equivalent kernel matrixde�ned in equation (6) above for the standard loal quadrati estimate.Next, minimize equation (5) at eah point ri using the pilot estimate �20 anddenote this intensity pro�le estimate f1i for i 2 Nx. Then, estimate �2 by (7)again (using the same W as before), however this time using f1 instead of f0.9
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−5)Figure 5: The resulting estimate of the intensity pro�le for the partile at depth -5 from Figure 2. For partiles with ensoring for small r-values it is essential to usereeted data when alulating the estimate (see Remark 1 after equation 5). Otherwisethe estimated pro�le would have had a large negative derivative.This above is repeated until the relative di�erene j�2k � �2k+1j=�2k between thetwo onseutive estimates of �2 is smaller than a ertain limit Æ, hosen suhthat an update gives a negligible e�et on the minimization of (5). Here, welet Æ = 0:01 and the iterative sheme typially onverges after two or threeiterations.In Figure 5 we have plotted the resulting intensity pro�le to the partile at depth-5 in Figure 2. Without reeting the data around r = 0 (see Remark 1 above),the estimated f would have been quite di�erent, with a large negative derivativeof the estimated pro�le at zero.Bandwidth seletion: ross-validationDenote by ^f�ih the (standard) loal quadrati kernel estimate of f when leavingout the i:th data point, and using h as bandwidth. For eah h we onstrut theross-validation sore CV (h) = 1n Xi2Nx�Ii � ^f�ih (ri(x))	2: (8)In pratie, CV is omputed for a �nite number of suitably hosen bandwidths.For the data onsidered in this paper, bandwidth between 0.4 and 1.2 haveturned out to be suitable hoies. The bandwidth minimizing the ross-validation10



is denoted by hopt. When pixel values are ensored, the summation in (8) isrestrited to AT , the unensored pixels.When estimating the enters, a pilot bandwidth hpilot will �rst be used to �ndthe minimizer of S. Then, a ross-validation study will be performed and the re-sulting hopt will be used to re-estimate the enter, if needed. As pilot bandwidthh = 0:7 has turned out to work well for estimating the enter for all appear-anes of partiles onsidered. In fat, the enter estimation proedure is highlyinsensitive to the hoie of bandwidth. Simulation studies have also shown thatthe di�erene between updating and not updating the bandwidth for a seondre-estimation of the enter is pratially negligible. For the estimation of f , itis more important however. Choosing a too large bandwidth auses a large biasin the estimation and piking a too small bandwidth inreases the variane.3 Partile Center EstimationGiven a neighborhood Nx to a partile with enter in x, we estimate the enterby the minimizer ^x of S(y) = Xi2AT�Ii � ^f(ri(y))	2 (9)for y 2 Nx, where ^f is the loal quadrati kernel estimate using fri(y); Iig fori 2 Nx as data, as disussed in the previous setion. Furthermore, AT is the setof unensored pixels, that is, pixels below the ensoring limit T .Note that in (9), it is the ovariates ri(y) that hange with y. The responsevariables, the pixel values Ii for i 2 Nx, are the same for eah y.Choie of NxBefore the minimization of (9), we need a neighborhood Nx of pixel loationsto x. However, when x is unknown, so is Nx. Nevertheless, if we are given anapproximate partile enter y0, manually or by some automati image analysismethod, we an let Nx = Ny0 where Ny0 is de�ned by equation (1) for x = y0for a suitable hoie of rmax.The hoie of rmax is a balane between wanted preision of the estimated enteron one hand, and omputational e�ort and distane to nearby partiles on theother hand. Piking a large rmax inreases the number of pixels in the sum (9)and we therefore expet the estimate to get better. This vague argument is ofourse only true to a ertain extent, sine assumption (2) is in pratie only11

valid up to a ertain size of the neighborhood, sine there are other interferingpartiles present in the image. This is realized after looking at the sequeneimage of Figure 1. In the simulation study, we will use rmax = 15 and for thepartiles in the sub-images of Figure 2, we will take the entire sub-image asneighborhood.Algorithm for estimating the enterWe assume that a �rst, andidate position y0 is given to us. We also assume thata suitable neighborhood Nx is piked aording to the disussion in the previoussetion. Furthermore, a pilot bandwidth hpilot should also be hosen. For thedata onsidered here, we use hpilot = 0:7.To alulate S(y) at a andidate enter y, do as follows:1. Calulate the distanes ri(y) for the andidate enter y to all pixel loationsi 2 Nx.2. Compute ^f(ri(y)) for eah point of evaluation ri(y) using bandwidth hpilot.3. Calulate S(y) aording to equation (9).The minimizer ^x of S using hpilot as bandwidth is a preliminary estimate ofthe partile enter x. A ross-validation study is then onduted using the datafri(^x); Iig for i 2 Nx and the minimizing bandwidth is alled hopt. After this,the enter is re-estimated as above using hopt as bandwidth.The atual optimization sheme an be hosen aording to personal taste. Weused a greedy searh: ompute the value of S(y) for values y in a 5 times 5uniform mesh with distane dy to nearest horizontal and vertial neighbour.Find the minimizer y1 among these, and re-alulate S(y) for a similar mesh,but this time entered above y1 and with inter-distane dy=2.Remark: In Step 2, ^f(ri(y)) is alulated either using the algorithm for ensoredregression in Setion 2, or using the standard loal quadrati kernel estimation.However, note that �nding the minimizer of equation (5) is muh more ompu-tationally ostly than �nding the minimizer to equation (4). Therefore, one wayof reduing the omputational ost when estimating the enter, would be to �rstuse the standard version to �nd a preliminary estimate as above. After the pre-liminary estimate has been found, an update in position is done, this time usingthe ensored version of the loal quadrati kernel estimate. For the degrees ofensoring present in the data onsidered here, simulation studies has shown that12



the di�erene in preision of the partile enter estimate is pratially negligiblebetween the two methods of loal quadrati kernel estimates.Standard Error EstimatesEstimates on the standard error on partile enter estimation will be derivedusing a sandwih estimator, whih allows for the residuals to be orrelated. Seefor example Owen (2001).Reall that the estimate of the partile enter x was the y minimizingS(y) = Xi2ATnIi � ^f(ri(y))o2This expression is di�erentiable with respet to y sine the Gaussian kernel is anin�nitely di�erentiable kernel with unbounded support. If we had used a kernelwith bounded support, a small perturbation in y an hange the ovariates ri(y)within the supported region entered at the point of evaluation r0 in equation (4),and hene hange the estimated valued.Assume that there are n pixels in Nx and enumerate the pixels (arbitrarily) asi1; i2; : : : ; in. (We use super-indies sine sub-indies denotes the two oordinatesof a pixel loation.) We will now let g denote the Rn valued funtion of x =(x1; x2) with kth element gk(x) = ^f(rik (x)). The reason is that we want toemphasize that we here onsider the estimated intensity pro�le ^f as a funtionof x.Let J denote the Jaobian of g, that is the n times 2 matrix with element�J(x)�k;m = �gk�xm (y) for k = 1; : : : ; n and m = 1; 2. Furthermore, we let R bethe vetor of residuals at x:R = R(x) = 0BBB�I1 � g1(x)I2 � g2(x)...In � gn(x)1CCCA ;where we have used the less awkward notation Ik instead of Iik , for k = 1; : : : ; n.Moreover, let � = �(x) = VarfR(x)g denote the variane matrix of the residu-als.The sandwih estimator of the variane matrix Varf^xg isV = (JT J)�1JT�J(JT J)�1: (10)13

Sine we do not know J = J(x) and � = �(x), we have to estimate or approxi-mate them.The standard way to approximate J(x) would be by J(^x), but this involvesdi�erentiating eah gk with respet to x, whih is very umbersome. Instead, weapproximate the derivatives of gk in the following way. First we use the hainrule to get �gk�x1 = � ^f(rik (x))�x1 = � ^f�r �rik (x)�x1 :Then we approximate the derivative of ^f with respet to r with the estimateof the derivative of the intensity pro�le, namely ^�1 at the point of evaluationrik (x), that is, the estimate of the derivative of the intensity pro�le. Thereforewe get: �gk�x1 ' �1(rik (x))x1 � ik1rik (x)sine the derivative of the distane rik (x) with respet to x1 is (x1 � ik1)=rik (x).The analogous is done for the derivative of gk with respet to x2. Finally, sinex is unknown, we approximate x by ^x. We denote the approximate J at point ^xby ^J .Image noise modelHere, we assume that the image noise, and therefore the residuals, are spatiallyorrelated with ovariane funtion Covf�i; �jg = �2 exp(� jji � jjj) betweenpixels i; j 2 Nx � DI , for some onstants �2 and  > 0, see Setion 4. This hasbeen observed to be a reasonable model when the noise struture of bakgroundimages (that is, images where no partile in present) has been examined. Conse-quently, the variane matrix �(x) is replaed by the estimate ^�, with elements^�k;` = ^�2 exp(�^ jjik � iljj)where jji�jjj is the Eulidean distane between the two pixel loations i and j 2Nx, and ^�2 and ^ are the estimated parameters to the model (�) = �2 exp(� �),using the observed residuals. See Setion 4 for how to estimate �2 and .For a given estimate of a partile enter, we let ^V denote the estimated ovarianematrix ^V = ( ^JT ^J)�1 ^JT ^� ^J( ^JT ^J)�1when the estimated model parameters of the noise, ^�2 and ^ from the residualsare used in the expression for �.The square-root of the diagonal elements of the estimated variane matrix ^V ,are alled the estimated standard errors.14



4 ResultsIn Figure 6 we display the reonstruted versions of the sub-images of Figure 2after the enters and the intensity funtions had been estimated. Below thereonstruted sub-images, we have displayed the spatial residuals between theoriginal image and the reonstruted version.The �t is learly better for partiles with more smoothly varying intensity pro�le,that is, for partiles further away from the foal plane. This ould be interpretedas the assumption of rotational symmetry does not �t very well for partiles nearthe foal plane. However, small perturbations in the enter estimate make largedi�erene in the residuals when the underlying intensity pro�le is varying quikly.See Figure 7, where the pixel values surrounding the partile at the foal planare plotted together with the orresponding estimate of the intensity pro�le.The residuals are in general larger for partiles loser to the foal plane thanfor partiles further away. This is probably due to that the model of rotationalsymmetry is not entirely orret for these depths, due to some unknown optiale�et. Also, it may be so that the image noise is multipliative rather thanadditive. This would partly explain why the noise seems to have larger varianeand for partiles with large utuations in the intensity pro�le.Spatially orrelated residualsA lose-up view of the residuals reveals that there seems to be some orrelationbetween the residuals. On the left in Figure 8 we have displayed the sample auto-ovariane sores from the residuals between the original and the reonstrutedversion of the partile at depth -5. The sample autoovariane Ckm for lags kand m, in the vertial and the horizontal diretion, respetively, is de�ned asCkm = N�1km Xf(R(i1;i2) � �R)(R(i1+k;i2+m) � �R)gwhere the summation is made over all pixel loations i = (i1; i2) 2 AT at unen-sored pixels, suh that both i and the shifted version (i1 + k; i2 +m) is in AT .Moreover, Nkm is the number of elements in the summation, and �R is the samplemean of the residuals. Note that pixels that are ensored are not inluded in thesample ovariane. In Figure 8, the largest value is represented as white and thesmallest as blak. It is immediate that the residual are orrelated.On the right of Figure 8, we have plotted Ckm as a funtion of � = pk2 +m2instead. We have also plotted the �tted exponential orrelation funtion (�) =�2 exp(� �) in solid and in dashed, the nonparametri smooth of Ckm using a15

Figure 6: Above: The reonstruted versions of the sub-images in Figure 2. Below, wedisplay the di�erenes (magni�ed 5 times) between the original and the reonstrutedversions. Clearly the �t is better for partiles with less rapid hanges in the intensityfuntion. 16
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funtion was �tted by estimating �2 and  by^�2 = C00and ^ = � log� �C1=C00�;where �C1 is the mean of C01 and C10, that is, the mean of the two sampleautoovariane sores for lags of length 1.Standard errors and estimated noise parametersWe estimated the partile enter for another 5 partiles present in the same kindof images (z-sans) as the partile in Figure 2, were we know the depth of thepartiles. For eah partile, the noise parameters �2 and  were estimated asabove, and the standard error for the enter estimate, was estimated as desribedin Setion 3.In Figure 9 we have plotted the mean of the resulting standard errors for the 15depths (the o�-diagonal terms were negligible for all partiles). Not surprisingly,the preision in the estimation depends on the appearane of the partile, andhene, on the depth of the partile. On the right in Figure 9, the mean ofthe orresponding estimates of �2 and  are displayed for eah depth. Thenoise parameters also depend on the depth of the partiles, probably due to theworse �t of the rotational symmetry model near the foal plane, as observed inFigure 6. As mentioned above in onnetion with Figure 7, multipliative imagenoise ould also be a ontributing fator to the larger residuals near the foalplane.5 Simulation StudyWe onduted a simulation study using arti�ially produed images of partilesto examine if the root-mean-square (RMS) error of the estimated partile entersvary with depth in the same way as the estimated standard errors of the real datadisplayed in Figure 9. Furthermore, we wanted to see if the estimated standarderrors from the simulated images were onsistent with the RMS errors. The thirdobjetive was to examine how muh the RMS errors were a�eted when pixelvalues were ensored but if we used the standard loal quadrati kernel estimatein the alulation of S, instead of the ensored version, see Setion 3.We reated an arti�ial image of size 33 times 33 for a partile at depth z asfollows. The true enter for the partile was hosen as the middle pixel of the18
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Figure 11: Left: Comparison between the RMS errors (boxes) of the partile enterestimation errors (in both oordinates simultaneously) and the mean of the estimatedstandard errors (stars) for the simulation study of 500 simulated images presented inFigure 10. The standard errors slightly over-estimates the RMS errors, whih ould bedue to the rather pessimisti noise orrelation model, see Figure 8. Right: Comparisonbetween the RMS errors (boxes), also plotted in the left plot, and the mean of thestandard errors estimated from the real data (stars), whih are also plotted in Figure 9.plotted the estimated standard errors from the real data ompared with the RMSerrors from the simulation study. The most probable reason why the standarderrors from the real data, is due to larger estimates of the variane of the noisefor partile in the real data lose to the foal plane, and vie versa for partilesfurther away.Two more simulation studies were onduted. In the �rst of these we wanted toompare the RMS errors if we ensored pixel values in the images at 255 but didnot take this into onsideration when estimating the enter, that is, we used thestandard loal quadrati kernel estimator when alulating S. The numbers ofsimulations were again 500 images per depth. The di�erene between the result-ing RMS errors here and in the previous study, were not statistially signi�anton a 95 perent on�dene level (based on a normal distribution assumption onthe errors, whih by a hi-square plot was seen to be highly plausible).In the last simulation study the objetive was to investigate how the preision inestimating the enter was a�eted if only the even rows in the images were usedfor the estimation. The reason for this investigation is that for sequene imageslike the one in Figure 1, only half of the rows ontain information. These kindof images are reorded in video format and only half of the rows are updated foreah image. Therefore, we would perhaps expet a lower preision in the vertialoordinate. 21
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Figure 12: In the plot on the left, we have plotted the RMS errors for the horizontal(boxes) and the vertial oordinates (stars) separately for the simulation study wherewe only use the pixels on the even rows. The plot on the right is a omparison betweenthe magnitude of the absolute values of the RMS errors in the two simulation studies,using only even rows (boxes) and using all rows (stars).In Figure 12, the resulting RMS errors for the two oordinates separately arepresented and quite surprisingly, the di�erene between the errors in the twooordinates is small. The depths for whih the di�erene between the RMSerrors are statistially signi�ant on a 95 perent on�dene level, are for depths-1, 0, and 1. Furthermore, onsidering both oordinates simultaneously, in theplot on the right, the RMS errors are hardly a�eted even though only half asmany pixels are used in the estimation.The reason for the �rst observation that the errors are almost the same in bothoordinates, is probably that the rotational symmetry imposes suh a strongondition on the estimation proedure so that all pixels ontribute equally, dis-regarded of the fat that we atually have half as many pixels in one diretion.For the partiles losest to the foal plane, the partiles are smaller, and henethere are fewer pixels involved. Possibly more surprising is that the magnitudeof the errors hardly inreases. This is probably due to that the image noiseis orrelated; the relative inrease in e�etive sample size is not 1/2 but muhsmaller sine the observations are orrelated.6 Conlusions and DisussionOur method of estimating the enters of spherial partiles in images is possi-ble up to preision well beyond sub-pixel auray. Sine it only relies on the22



assumption of rotational symmetry of the appearane of the partiles in theimages, it an be used for traking even when the appearane of the partileshanges (just as long as the rotational symmetry assumption still holds). Wetherefore believe it to be a highly versatile tool for automati measurements invideo mirosopy of for example olloidal suspensions.The simulation study showed that the estimated standard errors are onsistentwith the RMS errors. It is however neessary that the assumptions on rotationalsymmetry and the isotropy of the image noise are orret. For the real data inFigure 2, the spatial residuals showed an inreasingly worse �t for partiles nearthe foal plane (see Figure 6). One reason ould be that the image model inequation (2) with additive image noise is not orret. In Figure 9, the estimatednoise parameters from the real images show signs of some kind of dependeneof depth, and hene of the appearane of the partiles. It ould be so that theimage noise is multipliative, sine we seem to have larger variane and shorterorrelation length (larger ) for partiles near the foal plane.The estimator for the noise parameters is learly biased. An improvement inthis estimation might give better results in the estimation of the standard error.However, the standard error estimator, predits the magnitude of the errorsfairly well, see Figure 11, and it is only here that the noise estimates are needed.An alternative measure of the loal rotational symmetry to use when pixels areensored, isSalt(y) = 1�2 Xi2AT�Ii � ^f(ri(y))	2 � Xi2AT logn�� ^f(ri(y))� T� �owhere, as usual, AT is the set of unensored pixels in Nx and ^f the ensoredversion of the loal quadrati kernel estimate using the data fri(y); Iig. Here,�2 is the estimated variane from equation (7). This measure of rotationalsymmetry takes are of the ensored pixels in an appropriate manner. Note thatthe equation above equals (3) when there is no ensoring. However, sine theproportion of ensored pixels is so small here, it would probably not hange theresult.The result of the simulation study where we only used the even rows in theimages, is interesting; see Figure 12. First sine the di�erene between thepartile estimation errors in the vertial and the horizontal oordinates werevery small. Seond beause the magnitude of the RMS error did not dereasewith a fator p2 as one might have expeted onsidering that we used half asmany pixels in the partile enter estimation. Both these observations are goodnews for estimating partile enters in images reorded in video rate, where onlyhalf of the rows in the images are updated at eah reording instant.23

There is no known parametri form for the intensity pro�les. In fat, imagingof spherial objets is still a topi of large theoretial interest in optis researh,see for example Ovryn and Izen (2000). Ray-traing using Fourier optis (see forexample a standard textbook on optis as Heht (1998)) does not work here sinethe size of partiles is in the sale of the wavelength of light used. An alternativeand more advaned approah to Fourier optis is to use Mie-theory, whih wasused by Ovryn and Izen (2000) to predit the appearane of a polystyrene sphereof diameter 7�m. However, no losed funtional form of the intensity pro�les isknown. For a review of olloidal suspensions in mirosopy see Elliot and Poon(2001).ReferenesJ. Croker and D. Grier. Methods of digital video mirosopy for olloidal studies.Journal of Colloid and Interfae Siene, 179:298{310, 1996.J. Croker and D. Grier. Interations and dynamis in harge-stabilized olloid.MRS Bulletin, 23:24{31, 1998.C. Ekstr�m, S. Bak, C. Kristensen, and M. Rudemo. Spot shape modelling anddata transformations for miroarrays. Bioinformatis, 20:2270{2278, 2004.M. S. Elliot and W. Poon. Conventional optial mirosopy of olloidal suspen-sions. Advanes in Colloid and Interfae Siene, 92:133{194, 2001.J. Fan and I. Gijbels. Loal Polynomial Modelling and Its Appliations. Chapmanand Hall, London, �rst edition, 1996.C. Glasbey, T. Forster, and P. Ghazal. Estimation of expression levels in spottedmiroarrays with saturated pixels. submitted, 2005.T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall,London, �rst edition, 1990.E. Heht. Optis. Addison-Wesley, Reading, Massahusetts, third edition, 1998.B. Ovryn and S. Izen. Imaging of transparent spheres through a planar interfaeusing a high-numerial-aperature optial mirosope. Journal of the OptialSoiety of Ameria A. Optis, Image Siene and Vision, 17:1202{1213, 2000.A. Owen. Empirial Likelihood. Chapman and Hall/CRC, London, �rst edition,2001. 24



Depth estimation of olloidal partiles inmirosopyMats Kvarnstr�omJanuary 24, 2005AbstratEstimates of the loations of partiles are ruial for subsequent esti-mation of interation of partiles. It is also of interest for traking partilesin three dimensions. Here we fous on the estimation of depth of olloidallatex partiles observed in bright-�eld video mirosopy. Preise estima-tion of the partile enters in 2-D of spherial partiles in mirosopy isovered in Kvarnstr�om and Glasbey (2005). Here, we introdue a methodfor estimating the depth of spherial olloidal partiles, using empiriallyderived templates. The riterion funtion used for �nding the best or-respondene between the template and the image takes are of possibleensoring of pixel values in the image and di�erent levels of bakgroundintensity. From both real data and a simulation study, the onlusion isthat the depth estimation has a standard error below at least 0.2�m, whihis the orresponding distane in depth between the templates used.1 IntrodutionIn olloidal hemistry, it is ruial to quantitatively be able to measure the sta-bility of the olloidal system of partiles. Digital mirosopy o�ers vast oppor-tunities for automated measurements of interation and di�usivity of partilesystems, both of whih are important fators when determining the stability.However, estimating interation of partiles in a three dimensional domain de-mands position estimates of all three oordinates. In Figure 1 we give an exampleof an image that ould be used for measurements of the properties of a olloidalsuspension. The partiles in the images are di�using in a dilute solution and theimage is taken from a larger sequene of images, reorded at a frame rate of 50images per seond. The partiles are made of latex and are all of the same size,1

Figure 1: An image of latex partiles di�using in a dilute solution. The di�erene inappearane is due to an out-of-fous e�et.494 nm in diameter. Di�erene in appearane of partiles in a given image isdue to an out-of-fous e�et aused by di�erene in depth relative to the foalplane. It is this di�erene in appearane that will be used when estimating thedepth of the partiles.The image in Figure 1 onsists of 512 times 512 square pixels of side-length 180nm, so the distane is roughly 90 �m aross the horizontal and vertial domainof the image. The exat maximum deviation of the partiles from the foal planein this experimental setup is unknown but it is believed to be at least �10 �m.In Figure 2, the sub-images show the appearane of partiles at known depthsrelative to the foal plane. Images like these will be used to onstrut templates2



of what the partiles look like, at a set of di�erent depths. The templates ouldthen be used for depth estimation of partiles in images like the sequene imagesof Figure 1. Previous studies of measurements of olloidal partiles using digitalmirosopy inlude Croker and Grier (1996, 1998), however their studies on-erned systems of partiles eÆiently on�ned at a single depth. For an overviewof olloidal hemistry in general, see Evans and Wennerstr�om (1999) and for anoverview of mirosopy used for observing olloidal suspensions, see Elliot andPoon (2001).Examples of depth estimation in vision and image proessing are several. Theproblem formulation is however usually rather di�erent, as is the solution. Oneappliation is reonstrution of 3-D senery from video sequenes. For example,in Chowdhury and Chellappa (2001), this is done by traking orrespondenesof various landmarks of geometrial objets (suh as orners of a building) andrelate these to the known movements of the amera. Another appliation is todetermine the distane from the amera to various objets in an image senery,see for example Gil et al. (2004) and Ahn et al. (1997). The underlying assump-tion is that the images of objets not in fous, are onvolutions of the original,true image, and a linear (known) low-pass �lter. The depths of the objets inthe image are then estimated by means of estimating the amount of smoothingin the observed image, either by a deonvolution or a measure of the fration ofhigh-pass versus low-pass omponents. None of these tehniques are appliablehere sine there are obviously no suitable landmarks on the latex partiles, andthe di�erent appearanes of the de-foused partiles annot be represented by alinear operation.Preise estimation of the enters in the image plane (2-D position estimation),is overed in Kvarnstr�om and Glasbey (2005). This estimation was based onthe assumption of rotational symmetry of the pixel values surrounding a partileenter. The standard errors of the estimates were both estimated and veri�ed ina simulation study to be between 0.02 and 0.10 pixels, depending on the distanein depth from the foal plane, with larger deviation for partiles further awayfrom the foal plane. This orresponds to standard errors between 3.6 and 18nm. Furthermore, a method was developed to estimate the funtional form ofhow pixel values hange with distane (in the image domain) from the partileenter. In the present paper, the intensity pro�les, for partiles at di�erent(known) depths will �rst be estimated and then used as template pro�les todetermine the depths of partiles for whih we do not know the true depth.This kind of approah is alled template mathing. The intensity pro�les (ortemplates) will be estimated nonparametrially using a loal quadrati kernelestimate. From now on, we will by partile enter mean the 2-D enter, that theloation of the partile enter in the image plane. The third oordinate will be3
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Figure 2: The appearanes of the partiles at 35 di�erent depths relative to the foalplane. Sub-image 0 orresponds to a partile at the foal plane, and sub-images withnegative and positive labels are below and above the foal plane, respetively. Thedistane in depth between two onseutive label numbers is 0.2 �m.alled depth and denoted by z.Template mathing is a fairly ommon method in image proessing where thebest orrespondene between an image and a set of templates is sought. Exam-ples where the method has been used suessfully, is in Young et al. (1998) toautomatially identify and measure yeast ells in DIC mirosopy, and Dralle andRudemo (1997), where positions of trees are estimated from areal photographs.Here, our set of templates should mimi the appearane of partiles at di�erentdepth of fous. Given an image of a partile at an unknown depth, the orre-sponding depth of the template that gives the best orrespondene, would thenbe the estimate of the depth of the partile in the image. We therefore needboth to onstrut the set of template pro�les and to de�ne a suitable riterionfuntion to �nd the \best orrespondene".The templates will be onstruted by estimating the intensity pro�les in images of4



partiles at known depths, like the sub-images of Figure 2. Images like these werereorded by �rst letting partiles adsorb on one of the on�ning glasses of thespeimen, and then move the speimen relative to the optis of the mirosope.We have 61 z-san images like these to our disposal, with distane to the foalplane ranging from -6 �m to +6 �m with 0.2 �m between eah. In Figure 2,we display a subset of the total number of depths. For eah z-san, there are10 partiles present and believed to be totally adsorbed on the glass, and hene,at the same relative depth. In eah sub-image in Figure 2 we have extratedthe neighborhood around a partile in the z-san for the depth spei�ed by theorresponding label. We have used the same partile in all sub-images exeptfor depths -2, -1, 8, and 12. In the z-sans for these depths, the original partilewas oluded by other, mobile partiles in the speimen. Therefore, for sub-images -2, -1, 8, and 12, another partile was used. We are not able to presentthe appearane of the same partile at eah depth sine all of the 10 adsorbedpartiles are oluded in at least one of the 61 z-sans.The riterion funtion used here is based on least squared distane between thetemplate pro�le and the pixel values surrounding the partile enter. Care musthowever be taken sine ensoring in the images ours for pixel values largerthan an upper limit T . Also, partiles in the images are generally at di�erentbakground pixel levels. This a�ets the relative level of ensoring for partilesat di�erent bakground levels; a partile at a loation with large bakgroundintensity has more pixels ensored than a partile with low bakground inten-sity. Hene, the riterion funtion should also take this into aount. We willompare the performane between �ve di�erent riterion funtions and �nd outthat taking are of di�erent bakground levels is far more important than takingare of ensored pixel values.2 AssumptionsThe underlying assumption of the appearanes of the partiles in the images weare onsidering here, is the rotational symmetry of the pixel values lose to thetrue partile enter. More preisely, for a partile loated at x = (x1; x2) 2 R2 ,we assume that there exists a neighborhood Nx of (integer valued) pixel entersi = (i1; i2) suh that Ii = fz(ri(x)) + �+ �i (1)for i 2 Nx, where Ii is the pixel value at i and ri(x) is the Eulidean distanefrom the partile enter x to the pixel enter i. We denote the domain for whihthe image I is de�ned by DI . The funtion fz is alled the intensity pro�le atdepth z of a partile. It is assumed to be a smooth funtion with at least seond5

order ontinuous derivative. Also, we assume that fz is an even funtion of r(even though r is never negative), so that the derivative of fz at r = 0 is equalto zero, that is f 0z(0) = 0. The image noise, �i for i 2 DI , is assumed to benormally distributed, with (isotropially) orrelated pixel values, whih is whathave been observed in the images onsidered here. The bakground level � isgenerally di�erent for eah partile.Regarding the neighborhood Nx, there are several hoies. For the partiles inFigure 2, we an take all pixels in the orresponding sub-image as the neighbor-hood Nx. More typially however, we letNx = fi 2 DI : ri(x) � rmaxg (2)for an appropriately hosen maximum distane rmax. For images like Figure 1,when the distane between two partiles is loser than 2 rmax, we might howeverneed to exlude some pixels from the two neighborhoods. This will however notbe dealt with in this paper. Throughout this paper, we will use a neighborhoodlike the one given in (2), with rmax equal to 15.As mentioned earlier, the pixel values in the images are ensored above an upperlimit T . Here, T equals 255. Censoring has to be dealt with properly, both whenestimating the template pro�les and in the subsequent mathing. In Figure 3,the satter plots illustrate what ensoring typially looks like. Eah satter plotonsists of the pixel values Ii and the distanes ri(y) from a andidate partileenter y of the partile. The satter plots on the right are for distanes ri(^x)from the orresponding estimates of the partile enters. Heneforth, when werefer to a satter plot for a partile, we mean the plot of pixel values Ii to thedistanes ri(y) for a andidate or estimated partile enter y.We assume the noise in the images to be zero-mean additive Gaussian noise withisotropi ovariane �2 exp(� jji� jjj) between pixel enters i and j 2 DI . Theonstants �2 and , are the variane and the inverse orrelation length, respe-tively and jj � jj denotes the Eulidean distane. This was found in Kvarnstr�omand Glasbey (2005) to be a reasonable approximation of the orrelation strutureof the noise in the onsidered images. Even though the noise assumed to be or-related, when estimating the intensity pro�les, we proeed in a quasi-likelihoodapproah, impliitly assuming independent errors �i. In fat, the orrelationstruture will in this paper only be used when simulating image noise in thesimulation study. The noise parameters �2 = 25 and  = 0:6 are thought to besuÆiently onservative estimates. 6
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Figure 3: Here we have zoomed in on depth -15 (top row) and 8 (bottom row) ofthe partile in Figure 2. The middle olumn show the satter plots of pixel values anddistanes from the enter pixel in the sub-images, and the right olumns the satterplots after re�ning the enter (separately for eah). Notie the ensoring of pixel valuesabove 255.3 Template onstrutionFigure 2 shows what a partile looks like at 35 di�erent depths. In sub-image 0,the partile is at the foal plane. Negative labels orrespond to partiles below,and positive labels to partiles above the foal plane. The distane in depthbetween two onseutive labels is 0.2 �m.The satter plots in the middle and the right olumns of Figure 3 for the twopartiles, illustrate the need to re�ne the enters of the partiles at greaterauray than to the (integer-valued) pixel enters.For a partile at known depth z, the template pro�le is onstruted as follows:1. Re�ne the position estimate by �nding the position with maximal rota-tional symmetry by minimizing equation (3) below.2. Find the bandwidth hopt that minimizes the ross-validation sore for theloal quadrati kernel estimate used on the pixel values Ii and the distanesto the estimated enter. 7

3. Estimate the intensity pro�le with the bandwidth hopt. If there are en-sored pixels, use ensored regression as desribed below..The resulting intensity pro�le estimate for this depth z is denoted by fz.Muh of the material found in this setion an be found in greater detail in Kvarn-str�om and Glasbey (2005).3.1 Estimating enters in 2-DWe estimate the partile enter by minimizingS(y) = Xi2Nx�Ii � g(y; ri(y))	2 (3)for the partile loated at x (see Kvarnstr�om and Glasbey (2005)). Here, g(y; �)is a satter smooth of the data points fri(y); Iig alulated by means of a loalquadrati kernel estimate with a Gaussian kernel funtion (see below). We let^x denote the minimizer of S and all it the estimate of x. The idea behindminimizing equation (3), is to �nd the position of (loal) maximal rotationalsymmetry.For easier notation, we will heneforth write ri instead of ri(y) when there isno possibility of misunderstanding. We will now explain briey how the loalquadrati kernel estimate is alulated. Standard referenes for nonparametriloal polynomial kernel estimation are Hastie and Tibshirani (1990) and Fan andGijbels (1996). Let K denote the Gaussian kernel, that is K(x) = exp(�x2=2).The loal quadrati kernel estimate is based on the assumption that the unknownregression funtion f an be approximated loally by a polynomial of degree two,f(r) ' 2Xk=0 f (k)(r0)k! (r � r0)kfor r lose to r0. To alulate the value of the estimate at an arbitrary point r0,we loally �t a quadrati polynomial using weighted least-squares by minimizingXi2NxnIi � 2Xk=0�k(ri � r0)ko2Kh(ri � r0) (4)with respet to � = (�0; �1; �2) and denote the minimizer by ^�. Here, Kh(x) =h�1K(x=h) is the kernel with bandwidth h > 0. The estimates of f (k) at r0, fork = 0; 1, and 2 are ^f (k)(r0) = k! ^�k8



The value of g at the point r0 = ri(y) for the andidate enter y, is theng(y; ri(y)) = ^f (0)(ri(y)). For eah andidate enter y in the evaluation of S(y)in expression (3), this is done for all distanes ri(y) to the pixel enter i 2 Nx.Notie also that sine g is the solution to a weighted least-squares, g(y; ri(y)) isa linear ombination of the pixel values Ij for j 2 Nx.For the data onsidered here, the loal quadrati model is not very sensitive tohoie of bandwidth. This was shown in a ross-validation study in Kvarnstr�omand Glasbey (2005), where h = 0:7 turned out to be a good hoie of a pilotbandwidth when estimating the partile enter, for the depths onsidered here.The bandwidth is then updated, via a ross-validation study, as we get loser tothe minimizer of S. How to ondut a ross-validation is explained below.3.2 Estimating the intensity pro�lesWhen the partile enter has been found, we estimate the intensity funtion fz.First of all, the bandwidth has to be updated from the pilot bandwidth h = 0:7in the enter estimation. The bandwidth minimizing the ross-validation soreCV , de�ned as CV (h) = Xi2Nx�Ii � ^f�ih (ri(^x))	2;is denoted by hopt, where ^f�ih is the loal quadrati kernel estimate using allpixels exept the ith. In pratie, the set over whih CV is alulated, is �nite.Here, we alulate CV for h = 0:5; 0:6; : : : ; 1:5.When none of the pixel values Ii are ensored, fz is re-estimated with the loalquadrati kernel estimate, this time with hopt as bandwidth. If there is ensoringhowever, we will use a slightly modi�ed estimation sheme.Censored regressionLet AT denote the set of unensored pixels, that is AT = fi 2 Nx : Ii < Tg.Hene, the omplement AT is the set of ensored pixels. For an arbitrary pointr0, denote the minimizer of12 log�2 Xi2AT Kh(ri � r0) + 12�2 Xi2ATnIi � 2Xk=0�k(ri � r0)ko2Kh(ri � r0)� Xi2AT logn��P2k=0 �k(ri � r0)k � T� �oKh(ri � r0) (5)

9

by ^�. Here, � is the distribution funtion of a standard normal random variable.The problem with equation (5), is that the parameter �2, the variane of theimage noise �i, is unknown. Hene, this needs to be estimated as well. However,instead of minimizing (5) with respet to both � and �2 loally for eah r0,we will use an iterative sheme, alternating between estimation �2 globally andupdating the regression estimates.Let ^f0i denote the estimate from a standard loal quadrati kernel estimate atpoint ri. The �rst, pilot, estimate of �2, is based on the residuals between ^f0and the pixel values: ^�20 = 1jAT j Xi2AT�Ii � ^f0i 	2 (6)where jAT j is the number of elements in AT . Next, minimize equation (5) at eahpoint ri using the pilot estimate �20 and denote this intensity pro�le estimate ^f1ifor i 2 Nx. Then, estimate �2 by (6) again, this time using ^f1. Repeat thisuntil the relative hange j�2k��2k+1j=�2k between two onseutive estimates of �2is smaller than a ertain limit Æ, hosen suh that an update gives a negligiblee�et on the minimization of (5). Here, we let Æ = 0:01 and the iterative shemetypially onverges after two or three iterations.Remark: The estimator of �2 in equation (6) is biased. In Kvarnstr�om andGlasbey (2005) it was proposed to use jAT j � trfWg in the denominator in-stead of jAT j. Here, W is the equivalent kernel matrix, for whih ^f(ri(y)) =Pj2Nx WijIj , where ^f is the standard loal quadrati kernel estimate. (Re-member that this was linear in the pixel values sine it is the solution to aweighted least-squares problem.) Thus, jAT j � trfWg is an estimate of the de-grees of freedom in the loal quadrati kernel estimate. An better alternative istherefore to use this in the denominator.Resulting intensity pro�lesThe set of �nal estimates of the pro�les are alled template pro�les and denotedby ffzg, thus dropping the hat-sign for easier notation. They are alulated andstored for 200 equally spaed points between 0 and 15. In Figure 4, the resultingpro�les for the 35 depths orresponding to the sub-images of Figure 2 are shown.Intensity pro�les of partiles loser to the foal plane have larger utuationsthan the orresponding intensity pro�les for partiles further away. Further-more, for partiles below the foal plane, the intensity pro�le assumes largevalues lose to r = 0, whereas the opposite is valid for partiles above the foalplane (ompare with Figure 2). Notie that the estimated intensity pro�les an10



0 5 10 15

50

100

150

200

250

300

r

f

0 5 10 15

50

100

150

200

250

300

r

f

Figure 4: The resulting template pro�les for the sub-images of Figure 2. The intensitypro�les orresponding to sub-images with negative labels are plotted on the left andthe ones with positive labels, inluding the partile at the foal plane, on the right.assume larger values than the ensoring level T = 255. For partiles below thefoal plane, where ensoring ours for small r-values, this was possible sine weassume the true pro�le to be an even funtion of r, whih is natural onsider-ing the assumptions of rotational symmetry and the smoothness of the intensitypro�le.4 Template mathingLet us assume that the enter x of a partile is given. Then our data onsist offri; Iig = fri(x); Iig, of pixel values and distanes to x. Having onstruted thetemplate pro�les in Setion 3, we are to searh for the template pro�le fz thatgives the best orrespondene to the data fri; Iig. This orrespondene an bemeasured in a number of ways.Arguably the most popular riterion is the square di�erene between the tem-plate and the data, whih in our ase would be to let the minimizer ofXi2Nx�Ii � fz(ri(x))	2with respet to the pro�les fz, be the estimate of the depth. This riterionfuntion does not however take into aount either ensored pixels or di�erentbakground levels �. Sine both these issues are typial for our data, a modi�-ation is alled for. 11

Assume �rst that the image noise variane �2 and bakground level � are bothknown. Then the minimizer of1�2 Xi2AT�Ii � �� fz(ri(x))	2 � Xi2AT logn��fz(ri(x)) + �� T� �o (7)would be an estimate of the depth z taking into aount both ensoring anddi�erent bakground levels. As before, T is the ensoring level, and � the u-mulative distribution funtion of a standard normal random variable. In fat,this estimate of z is the maximum likelihood estimate of z under the assumptionthat the pixel values Ii are Ii = fz(ri(x)) + �+ �ifor some fz in our set of templates, the true 2-D enter is at x, and that theimage noise variables �i are i.i.d. and N(0,�2)-distributed. Sine the templatesfz are stored only for 200 equally spaed values over the interval [0,15℄, the valuesof fz at the points ri(x) are evaluated by linear interpolation from these storedvalues of the template pro�les.Regarding �2, we will use the residuals between the pixel values Ii and the loalregression smooth gi = g(x; ri(x)) from the partile enter estimation proedureof minimizing (3) using only the unensored pixel values, in exatly the samethat we did in equation (6).For �, we will use a pro�le likelihood approah, estimating � separately for eahandidate template pro�le fz. Thus, the minimizer ofM(z) = 1�2 Xi2AT�Ii� ^�z�fz(ri(x))	2� Xi2AT logn��fz(ri(x)) + ^�z � T� �o (8)will be used as an estimate of z, where ^�z is the minimizer of equation (7) withrespet to �, given fz.For omparison, we will use four other riterion funtions, namely:M1(z) = Xi2Nx�Ii � fz(ri(x))	2M2(z) = Xi2Nx�Ii � �I � �fz(ri(x))� �fz�	2M3(z) = Xi2Nx�Ii � ~�z � fz(ri(x))	2M4(z) = Xi2AT�Ii � ~�z � fz(ri(x))	212



where ~�z is omputed for eah z separately as the minimizer ofXi2AT�Ii � �� fz(ri(x))	2while keeping z �xed, and where �I is the mean of the pixel values in Nx and �fzthe mean of fz(ri(x)) for i 2 Nx.The riterion funtion M1 is not believed to perform very well if we have eitherensoring or di�erent bakground levels. The last three riteria all take intoaount the bakground level. The di�erene between them is subtle. M2 simplysubtrats the orresponding mean from eah term, without bothering about thepossibility of ensoring; one ould say that M2 estimates � by �I � �fz. Onthe other hand M3 and M4 estimate � from the unensored pixel values only.Also, whereas M1, M2, and M3 all sum over all pixels in Nx, M4 only sumsover the unensored pixels. Furthermore, note that when there is no ensoring,M =M2 =M3 =M4.For partiles for whih we want to estimate the depth, we �rst estimate thepartile enter by minimizing equation (3). The pixel values and distanes fromthe estimated partile enter, fri; Iig = fri(^x); Iig, are then used in templatemathing.Mathing exampleIn Figure 5 we have displayed the satter plot from a partile from the samez-san as sub-image -15 in Figure 2 after the enter has been re�ned. We havealso plotted the template pro�le fz that gave the best �t, the template for depthz = �15. The logarithm of the mathing riteriaM ,M1,M3, andM4 are plottedin the right panel of Figure 5. To be omparable, we divided the mathing riteriaMk, k = 1; 3; 4, by �2. M is the solid line, M1 the dotted, M3 the dashed, andM4 the solid-dotted. We see that all four have a dip towards z = �15. M2 isnot displayed sine it was indistinguishable from M3. The di�erene betweenthe riteria is learly visible for templates orresponding to partiles above thefoal plane (the positive labels), sine they all have low pixel values for d loseto zero, and this is where ensoring ours for this partile. Compare also thisresult with the template pro�les in Figure 4.13
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Figure 5: The satter plot in the left panel is from a partile, presumed to be atdepth -15. The mathing riteria M (solid), M1 (dotted), M3 (dashed), andM4 (solid-dotted) are plotted on the right and they all have a dip towards -15. M1 is pratiallyindistinguishable fromM3; the di�erene is only visible around the dip and for z smallerthan -20.5 ResultsWe onduted a small performane study of the depth estimation proeduredeveloped in Setions 3 and 4 using real data onsisting of the z-sans. Inthe 61 z-sans used in the onstrution of the templates, we have in total 10partiles believed to be at the same relative depth as the orresponding partilesin the sub-images of Figure 2. All 10 partiles are however not present in everyz-san, sine even though our partiles are adsorbed on one of the glasses ofthe speimen, not all other partiles in the speimen are. As a onsequene,the adsorbed partiles are sometimes oluded by the mobile ones. For eahpartile, we do not use the z-sans where it is oluded. Therefore, the numberof partiles for eah depth used varies between 8 and 10. (There are 10 partilesin 43 z-sans, 9 in 14 z-sans, and 8 in 4 of the z-sans.)The only riterion funtion used here, was M . Also, we used the neighborhoodsNx of equation (2) with rmax = 15, that is, all pixels within distane 15 fromthe orresponding estimate of the partile enter are taken into aount.In the left panel of Figure 6, we have plotted the di�erene between the estimateddepth using our onstruted templates, and the (believed) true depth for thedepths between -30 and 30. A dot indiates that at least one of the partileshad this error for that depth, therefore multiple errors at a spei� depth arenot visible in this plot. We also alulated the sample mean error (bias) andsample standard deviation of the errors for eah z. The solid line in Figure 614
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Figure 6: On the left, the dots represents the errors in depth versus the (believed)true depth for all ten partiles. The solid line is the smoothed sample bias. Thedashed-dotted lines are the smoothed bias plus and minus three times the smoothedsample standard deviation for eah depth. The dots on the right are the pointwiseroot-mean-square errors for eah depth and the solid line is the smoothed RMS.is the smoothed mean of the error (bias) and the two dashed-dotted lines arethe smoothed sample bias plus and minus three times the smoothed samplestandard deviation, respetively. The pointwise root-mean-square (RMS) errorsare plotted in the right panel of Figure 6, together with its smoothed version. Allsmoothing was onduted using a loal linear kernel estimate with bandwidth 5.The two �gures tell us that the auray in depth estimation is better for depthsloser to the foal plane.The RMS error alulated over all depths and partiles is 0.60 z-units and themean bias is -0.23 z-units. Even though the number of repliates are few, theinvestigation indiates that depth estimation is possible at least with a level ofauray orresponding to a standard deviation of one z-unit, whih orrespondsto 0.2 �m. This should be ompared with the auray of the position estimationin 2-D reported in Kvarnstr�om and Glasbey (2005), namely the auray varyingfrom 0.02 to 0.10 pixels in RMS error, whih orresponds to 3.6 nm and 20 nm,respetively.The major ontributing fator to the RMS errors for this study however, seemsto be the systemati o�set in depth relative to the depth of the two partiles usedin the template onstrution. Furthermore, for some partiles this o�set seemsto vary for the z-sans. For example, in Figure 7 we have plotted the errors indepth estimation as a funtion of depth (that is, for di�erent z-sans) for twopartiles. There learly seem to be a negative and positive trend, respetively,15
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Figure 7: The errors in the depth estimates versus the (believed) true depth, for twodi�erent partiles. There seems to be a trend upwards and downwards, respetively forthe two partiles, as the depth goes from negative to positive.as the depth goes from negative to positive. The reason for this behavior is notknown. Naturally, systemati o�sets from the believed true depth makes it hardto draw onlusions on the auray of the depth estimation.6 Simulation studySine the number of partiles in the z-sans is so small, and sine the true depthof them did not seem to be same as the orresponding depths for the partilesused in the template onstrution, a simulation study was onduted.We reate an arti�ial image of size 33 times 33 for a partile at depth z asfollows. First the enter for the partile is hosen at the middle pixel of theimage (17,17) but with an o�set hosen uniformly from [-0.5,0.5℄ independentlyfor eah oordinate. We hoose the partile enter at random in order to getrandomness in the distanes ri(x). Then the pixel values for all pixel enters aregiven the value predited by the template pro�le fz for depth z plus a randombakground level �, hosen uniformly among the real values between -40 and10. This variability is typially what is observed in images like the ones inFigure 1. To this we add zero mean Gaussian image noise with ovarianefuntion �2 exp(� jji� jjj) between pixels i and j in the image. The realizationof this noise is done via a Cholesky fatorization of the ovariane matrix withthe elements �2 exp(� jji � jjj). Finally, the pixel values are rounded to thenearest integer between 0 and 255. 16
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Figure 8: Example of a simulated image (left) of a partile at depth 10. The mid-dle panel shows the satter plot together with the template pro�le orresponding tothe orretly estimated depth. The riterion funtions M (solid), M1 (dotted), M3(dashed), and M4 (solid-dotted) are plotted in the right panel.In Figure 8, we have, from left to right, an example of a simulated image atdepth z = 10, its satter plot, and the resulting mathing riteria. With thesatter plot, we have also plotted the �tted template pro�le orresponding tothe (orretly) estimated depth. The bakground level � used here is 15 whihexplains the fairly large amount of ensoring. The image noise parameters �2and , were 25 and 0.6, respetively.For eah of the 35 depths in Figure 2, we simulated 1000 independent imagesand estimated the depth for eah using the four template mathing riteria ofSetion 4. The mathing for eah image was done using all 61 template pro�les,that is, we use all templates from depths -30 to 30, not just the 35 depths forwhih we simulate images for. We did not estimate the partile enters x for thedistanes ri(x), but used instead the known (but random) enters. We used thesame neighborhoods Nx as in the previous setion, that is pixels up to distanermax = 15 from the partile enter.The overall RMS in the simulation study for all 35 depths was 0.24 z-units or49 nm. However, the errors were pratially zero for depths between 15 z-unitsfrom the foal plane. For these depths there were only 14 mislassi�ations.Considering that the total number of simulations for these depths were 25 000,we an onlude that the preision is very high for depths lose to the foal plane.Therefore, the main ontribution to the overall RMS of 0.24 z-units omes fromthe depths further away from 15 z-units from the foal plane. The RMS goesup almost linearly from zero at depth �15, to 0.6 and 0.8, for depths -30 and+30, respetively. Looking at the estimated intensity pro�les in Figure 4 orthe appearane of the partiles in Figure 2, the general tendeny of preision ismaybe not surprising. The partiles are more similar looking for depths furtheraway from the foal plane. 17

Compared to the other mathing riteria, all but M1 were almost idential inperformane. The overall RMS errors for M4, M3, and M2 where 0.24, 0.25 and0.25 z-units, respetively. M1 however, the mathing riterion that did not takeinto aount either ensoring or di�erent bakground levels, had an overall RMSerror of 5.0 z-units. The onlusion is therefore that taking into aount di�erentbakground levels is far more important than taking are of the ensored pixels.7 Conlusions and disussionAs disussed in Setion 5, it is hard to draw onlusions on the auray of thedepth estimation presented here by using real data as the z-sans. We simplyannot infer whether the errors are due to our depth estimation or an e�etof devianes in depth among our ten partiles. The simulation study howevershows that the depth estimation is highly aurate with an overall RMS of 0.25 zunits, or 50 nm. However the RMS varies heavily with the true depth, with RMSerrors up to 0.8 z-units for partiles 6 �m from the foal plane, and pratiallyzero for partiles within 2 �m from the foal plane. This should be omparedwith the simulation study for the 2-D estimation in Kvarnstr�om and Glasbey(2005), where the RMS errors varied from 0.020 to 0.10 pixels (3.6 nm to 18 nm)depending on depth.In the simulation study, we did not estimate the partile enter in the imageplane, but used the known true enters. One might think that this may on-tribute to the optimisti result of Setion 6, sine errors in partile enters a�etthe distanes ri(x) used in the template mathing. However, a simulation study(not reported here) indiated that this is not the ase at all. Probably a moreimportant objetion to the highly optimisti result of the simulation study, isthat the image noise in real images seems to have larger variane for partileslose to the foal plane, as reported in Kvarnstr�om and Glasbey (2005). Evenso, ompared with the result for the real images for these depths, the onlusionis that the template mathing approah works well and the preision (measuredas standard error) is at least within one z-index of the z-sans, orresponding to�0.2�m.Regarding the hoie of mathing riterion, even though M sored best amongthe �ve in the simulation study, the three others that at least took are of thedi�erent bakground levels (M4, M3, and M2), were only slightly worse than M .Therefore, the onlusion is that taking into aount di�erent bakground levelsis far more important than taking are of the ensored pixels.additive 18



Our template onstrution was based on partiles adsorbed on the speimenglass. If the appearane of partiles is a�eted by this adsorption, our estimatedpro�les might di�er from what partiles look like in when they are di�usingfreely in a solution, as is the ase for the partiles in Figure 1. Consequently,the depth estimation of free partiles might be a�eted. In relation to this, itshould also be mentioned that the templates an most likely only be used fordepth estimation of partiles of the same size. If there are partiles of di�erentsizes in the solution the template mathing might be of limited use, unless weonstrut a set of templates for partiles for a number of di�erent sizes.Regarding the onstrution of templates, an alternative method to using empiri-al data, would be to onstrut the templates mathematially, using theory fromoptis for the traing of rays in the image formation. This was done by Larsenand Rudemo (1998) for reating templates for the appearanes of tree anopiesobserved from the air under di�erent lighting onditions. However, sine thewavelength of light is in the same order of magnitude as the diameter of the par-tiles, the two standard approximations of optis, geometri and Fourier optis(ray-traing), annot be used. Therefore, this approah has not been pursued.An alternative and more advaned approah to Fourier optis ould be to useMie-theory, whih was used by Ovryn and Izen (2000) to predit the appear-ane of a polystyrene sphere of diameter 7 �m, that is 14 times bigger than thepartiles onsidered here.ReferenesS. Ahn, S. Lee, A. Meyyappan, and P. Shenker. Experiments on depth frommagni�ation and blurring. Proeedings of the 1997 IEEE/RSJ InternationalConferene on Intelligent Robots and Systems, pages 733 { 739, 7-11 Sept1997.A. Chowdhury and R. Chellappa. Robust estimation of depth and motion usingstohasti approximation. 2001 International Conferene on Image Proessing,pages 642{645, 7-10 Ot 2001.J. Croker and D. Grier. Methods of digital video mirosopy for olloidal studies.Journal of Colloid and Interfae Siene, 179:298{310, 1996.J. Croker and D. Grier. Interations and dynamis in harge-stabilized olloid.MRS Bulletin, 23:24{31, 1998.K. Dralle and M. Rudemo. Automati estimation of individual tree positionsfrom aerial photos. Canadian Journal of Forest Researh, 27:1728{1736, 1997.19
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Estimation of the diffusion oef�ient in a mixturemodelMats Kvarnstr¨omMathematial StatistisChalmers University of Tehnology412 96 G¨oteborg, Swedenmatskv�math.halmers.seAbstratThe positions of partiles assumed to perform Brownian motion have been observed in aseries of images. Sine some of them seem to be �xed, a model with two kinds of partiles,diffusing and �xed, is introdued. For eah partile position observation we also assume anadditive normal measurement error. We regard the problem as an inomplete data problemsine we do not know a priori whih partiles are really diffusing. The omplete data isof urved exponential type and the observed data is a mixture of two normal omponents.The maximum likelihood estimator is omputed via the EM algorithm and it is shown tobe strongly onsistent and asymptotially normal, as the number of partiles approahesin�nity, under a reasonable restrition on the parameter spae. A simulation study showsthat the method is robust even for large measurement errors, and that the estimates are loseto normal even for small sample sizes.Key Words and Phrases: disretely observed diffusion, measurement error, mixture distribution,EM algorithm, asymptoti normality, strong onsisteny, urved exponential family1 IntrodutionWe investigate the estimation of the diffusion variane (or equivalently, the diffusion oef�ient)of olloidal partiles whih have been observed in a series of images reorded with a video mi-rosope. The positions of the partiles have been estimated using image proessing algorithmsand tools. The moving partiles are assumed to perform Brownian motion in three dimensions.Furthermore, we assume the observed positions to be imperfet, i.e. we assume some measure-ment error. A further ompliating fat is that some of the observed partiles are not movingbut are instead partiles adsorbed on the objetive or over glass of the speimen. Also, someobserved partile positions are onsidered to be from �false� partiles, whih do not orrespond
2 Mats Kvarnstr¨om

18
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3

Figure 1: The 26 trajetories estimated in a sequene of 12 images together with the �rst imageof the sequene. The three numbered partiles seem to be �xed.to real partiles, but instead, defets in the optis of the mirosope. These �xed partiles ouldbe removed manually but we deided not to do that, �rst, beause this should be possible to doautomatially using statistial methods, and seond, beause the observed positions of the �xedpartiles atually give us information on the measurement error. Instead, we introdue a modelwhih is a mixture of diffusing and �xed partiles, and for both types, the positions are observedunder additive Gaussian measurement noise. The parameters of the model are the diffusion vari-ane, �2, the measurement error variane, �2e , and the proportion of diffusing partiles, p. Theproblem an be onsidered an inomplete data problem sine we do not know a priori whihpartiles are diffusing.An example of what the situation may look like, an be seen in Figure 1. The �gure showsthe initial image in a sequene of 12 images, together with the positions of the partiles in thesubsequent 11 images, together forming the estimated trajetories of the partiles. Here, thepositions of the partiles have only been estimated in two dimensions. For details regardingthe estimation of the partile positions, see KVARNSTR ¨OM (2002). By manual inspetion, wemade sure that no hange of identities of the partiles ourred in the proess of onverting theobserved positions in the images into trajetories. The time interval between two images is 40milliseonds. The partiles are spherial, made of polystyrene and are all equal in size, 494 nmin diameter. The apparent differenes in size and brightness are due to an out-of-fous effetand depend on plaement in depth of the partiles relative to the foal plane. Partiles aboveKwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 3the foal plane are bright in the middle and dark on the irumferene and vie versa for thepartiles below the foal plane. Also, the depited size of a partile inreases with its distaneto the foal plane. In the sequene displayed Figure 1, three partiles seem to be �xed. Theseare the partiles with numbers next to them; partiles 5 and 18 are adsorbed on the over and theobjetive glass, respetively, and partile 3 probably orresponds to a defet in the optis.Several papers in the mathematial statistis literature deal with the estimation of the diffu-sion oef�ient of a diffusion. Usually however, only the ase where data onsist of a singleobserved trajetory, is onsidered. Furthermore, the diffusion oef�ient is usually a spae-dependent funtion whih is either estimated non-parametrially or parametrially. The asymp-toti properties are then studied either as the sampling interval goes to zero with a �xed totalobservation length (see DOHNAL (1987) and FLORENS-ZMIROU (1993) for parametri, andHOFFMANN (1999), JACOD (2000), and HOFFMANN (2001) for non-parametri estimation),or as the total observation time goes to in�nity while the sampling interval is kept onstant (seeBIBBY and SØRENSEN (1995) and KESSLER and SØRENSEN (1999)). GENON-CATALOTand JACOD (1994) also pursues the latter approah, but with a random sampling sheme.In the situation overed here, we have several observed partile trajetories, eah with a�xed number of samples. Furthermore, the observed positions of the trajetories are subjet tomeasurement error and not all observed partiles are diffusing. Our data beomes a �nite mixtureof diffusing and non-diffusing partiles. The asymptoti properties of the maximum likelihoodestimator of the model parameters, of whih the (onstant) diffusion oef�ient is one, is thenanalysed. We show that the estimator is strongly onsistent and asymptotially normal, as thenumber of partiles approahes in�nity, under a reasonable restrition on the parameter spae.To the author's knowledge, this is not overed elsewhere in the literature.As an appliation, we use the trajetories from the video sequene in Figure 1 as data. Themaximum likelihood estimator of the parameter is omputed via the EM algorithm, whih givesus, in addition to the parameter estimate, the posteriori estimates of whether a partile is mov-ing or �xed, alled the lassi�ation variables. The estimated diffusion oef�ient is in goodagreement with that predited by Stoke-Einstein's relation. Moreover, the lassi�ation variableestimates orrespond very well to our manual lassi�ation.The paper is organized as follows. In Setion 2 we introdue the model with two kinds ofpartiles, diffusing and �xed, both observed with additive measurement error on the position esti-mates. Various properties of the likelihood and the maximum likelihood estimator are disussedin Setion 3. We introdue a simple and reasonable restrition on the parameter spae and provethat there always exists a maximum likelihood estimator under this restrition. Furthermore, weshow how to implement the EM algorithm in this partiular setup.In Setion 4 we study the asymptoti properties of the estimator when we keep the obser-vation length �xed and let the number of partiles go to in�nity. The estimator of the triple� = (�2; �2e ; p) using the observed data, i.e. the observed inrements, is veri�ed to be stronglyonsistent and asymptotially normally distributed under the previously mentioned restrition onthe parameter spae. The same asymptoti result is also shown to be true if instead the ompletedata is used.In Setion 5 we use the model assumption and estimate the diffusion variane for the data or-responding to the trajetories in Figure 1. In a simulation study, the EM algorithm is shown to bevol. 72, 2005
4 Mats Kvarnstr¨oma pratial alternative when omputing the maximum likelihood estimate, at least for signal-to-noise ratios �2=�2e above 1/2, and as long as the observation length,N , is larger than 10. Anothersimulation study shows that normal approximation of the distribution of � seems reasonable foras small population sizes n as 10. Finally, in Setion 6, we disuss the results and possible futuredevelopments.2 Model assumptions and notationLet us start by regarding one-dimensional observations of a partile and denote the true andobserved position of a generi partile at time k = 0; : : : ; N , by Rk and Sk, respetively.For a diffusing partile we assume the following state-spae model:Rk = Rk�1 + wkSk = Rk + ek (1)for k = 1; : : : ; N . The initial positionR0 is assumed to be a non-random onstant. Furthermore,S0 = R0 + e0. Sine eah moving partile is assumed to perform a Brownian motion, theinrements fwkgNk=1 are zero mean i.i.d. normally distributed random variables with variane�2 = 2D� , where � is the time interval between images and D the diffusion oef�ient. Themeasurement errors, fekgNk=0 are assumed to be i.i.d. zero mean normal variables with variane�2e , independent of the inrements fwkg. For a �xed partile, we use the same state-spae model,but with wk = 0 for all k.Let n be the number of observed partiles and let eah partile i = 1; : : : ; n be diffusing withprobability p independently of eah other. De�ne the lassi�ation variables Zi asZi = (1 if the i:th partile is diffusing0 if the i:th partile is �xedfor i = 1; : : : ; n. We assume that a partile is either diffusing or �xed for the entire sequene ofN + 1 observations.The model an now easily be extended to noisy observations of a Brownian motion in ddimensions if we assume the measurement error in eah dimension to be distributed as fekgabove and independent of eah other. Then, the observations of a partile follow the state-spaemodel (1) in eah dimension independently of eah other, and eah partile will be assigned dindependent oordinate proesses. Heneforth, we will however for ease of notation, write as ifd = 1 unless otherwise stated.The index i = 1; : : : ; n, is used to distinguish between the n partiles. By a subindex i to anentity, as in Zi, we mean that the entity belongs to the i:th partile. If the subindex i is negleted,we mean a generi partile. The index k = 0; : : : ; N , is used for a generi partile only, andorresponds to the disrete time k in the state-spae model.We denote the observed inrements for a partile by Yk = Sk � Sk�1, k = 1; : : : ; N . Theovariane matrix of the inrement vetor, Y = [Y1; : : : ; YN ℄T , beomes�1 = �2I + �2eT (2)Kwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 5for a diffusing partile and �0 = �2eTfor a �xed partile, where I is the N �N identity matrix and T is the tri-diagonal matrixT = 2666664 2 �1 0 � � � 0�1 2 �1 � � � 00 �1 2 � � � 0... ... ... . . . ...0 0 0 � � � 2
3777775 :We see from the ovariane matrix above that the measurement error on the observed positionsindues a dependene between the observed inrements, whih originally, by de�nition of Brow-nian motion, were independent.2.1 Transformation of the inrement vetorTo make our formulas look nier in the subsequent setions, we use some basi linear algebra totransform the inrement vetor so that the elements of the transformed vetors beome unorre-lated.In (2), �1 has the same eigenvetors as T sine every vetor is an eigenvetor to I . If wedenote the eigenvalues of T by �k; k = 1; : : : ; N , then the eigenvalues of �1 arek = �2 + �2e�k; k = 1; : : : ; N:Let U be the matrix with the eigenvetors of T as olumns. Then we an write, by the spetraldeomposition theorem, T = U�UT , where � = diagf�1; : : : ; �Ng. If~Y = UTY (3)is the transformed inrement vetor, its ovariane matrix will be diagonal:Varf ~Y g = UTVarfY gU = UT (�2I + �2eU�UT )U == �2I + �2e� = diagf1; : : : ; Ng (4)The analogous is valid for a �xed partile, but with �2 = 0. The dependene between theinrements is now �hidden� in U and �, whih do not depend on �2 or �2e , but only on the lengthof the inrement vetor N , whih of ourse is known.2.2 Observed and omplete dataWe lassify data into two ategories, observed and unobserved. The observed data onsist ofthe noise-orrupted inrement vetors Yi, i = 1; : : : ; n, while the lassi�ation variables Zi areunobserved. Together, they onstitute the omplete data, denoted byXi = (Yi; Zi), i = 1; : : : ; n.vol. 72, 2005

6 Mats Kvarnstr¨omThe probability density funtion of the omplete data X isgC(x ; �2; �2e ; p) = [pf1(y ; �2; �2e)℄z [(1� p)f0(y ; �2e)℄1�z (5)for a single generi partile, where f1 and f0 are the pdf:s of a zero mean N -variate normallydistributed random vetor with ovariane matries �1 = �1(�2; �2e) and �0 = �0(�2e), respe-tively.In the d dimensional ase, fi will be a dN -variate normal density with d independent parts,one for eah dimension, sine, by assumption, the oordinate proesses of a partile are indepen-dent.The omplete data belongs to an exponential family of distributions (see for example LIND-SEY (1996)). However, if N > 1, whih typially is the ase, the distribution is non-regular, orurved, sine the parameter spae is 3-dimensional and the dimension of the minimal suf�ientstatisti is N+2 (see the Appendix for a derivation of this). This holds irrespetively of howmany dimensions we observe. The ase N = 1 is non-typial sine we think of our problem asstudying a video sequene of images of partiles and as suh we usually observe more than oneinrement.The probability density of the observed data for a generi partile, Y , is obtained by integrat-ing (5) over the distribution of Zg(y ; �2; �2e ; p) = pf1(y ; �2; �2e) + (1�p)f0(y ; �2e); (6)and we see that our observed data is a �nite mixture of two normal omponents. Note howeverthat one of the parameters, �2e , is present in both omponents, whih is typially not the ase for�nite mixtures. For a thorough aount on �nite mixture models and their appliations, we referto MCLACHLAN and PEEL (2000).3 Likelihood EstimationWe denote the parameter vetor by � = (�2; �2e ; p). Let 
 be the parameter spae onsisting ofthose � de�ning valid �nite mixture densities (6). In other words, 
 = f� = ( �2; �2e ; p ) 2 R3 :p 2 [0; 1℄; �2>0; �2e>0g. The true parameter point �0 is always assumed to lie in the interior of
, i.e. �0 2 int(
).The omplete likelihood LC indued by the omplete data (observed inrements and lassi�-ation variables) from n observed partiles isLC(�) = nYi=1 [ pf1(yi ; �2; �2e) ℄zi[ (1�p)f0(yi ; �2e) ℄1�zi (7)However, sine our observed data onsist of the inrements only, the observed likelihood be-omes L(�) = nYi=1�pf1(yi ; �2; �2e) + (1�p)f0(yi ; �2e)	 (8)Kwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 7Often with �nite mixtures, there is a problem of identi�ability, i.e. that a permutation of theparameters in the model yields the same distribution, see DAY (1969), SUNDBERG (1974),and REDNER and WALKER (1984). In our model, as long as the true parameter �0 lies in theinterior of 
, we do not have this problem sine the two distributions in the mixture are notinterhangeable due to the presene of �2e in both mixture omponents.3.1 Existene of a maximum likelihood estimatorFirst, we should address the important question of the existene of a global maximizer of L fora given set of observations fY1; : : : ; Yng. DAY (1969) pointed out that for univariate normalmixtures, the likelihood is not bounded if both the expeted values and the varianes of themixture omponents are onsidered as unknown parameters. Hene, with no extra onditions,a global maximizer does not generally need to exist for normal mixtures. Even though ourpresent setup of the model does not involve the estimation of a drift term in the diffusion, orsystemati position measurement errors, we will propose a restrition on the parameter spae thatwill guarantee the existene of a maximum likelihood estimator even under the natural extensionof the model to non-zero drift omponents of the diffusions.For  2 (0; 1), the restrited parameter spae 
 is de�ned to be a subset of 
 suh that0 <  � �2�2e � �1 <1 (9)holds. We will assume that this holds for some  2 (0; 1), i.e. �0 2 
 for some  2 (0; 1). Therestrition is reasonable in the sense that we do not allow the signal-to-noise ratio to be too small,neither too big.This kind of restrition on the parameter spae, was originally proposed by HATHAWAY(1985). Here, it will guarantee, that for any  2 (0; 1), the likelihood funtion will have a globalmaximizer for eah n. In Setion 4, the restrition will be used in a suf�ient ondition for strongonsisteny as n approahes in�nity (see Theorem 1), where the ondition is suh that we assumethat �0 2 
 holds for some  2 (0; 1).Lemma 1. Let fY1; : : : ; Yng be a set of observations from the �nite mixture spei�ed by thedensity (6) and let  2 (0; 1). Then, with probability one, there exists a global onstrainedmaximizer for L(�) in 
.Proof. The idea is to show that sup�2
 L(�) = sup�2K L(�)for some appropriate, ompatK � 
.With probability one, the inrement vetors will all be different from the zero vetor. There-fore all the terms in the likelihood will stay bounded. Also, it will go to zero if both �2 and �2eeither go to zero or to in�nity. By ondition (9) above however, it is enough to show that one ofthe two varianes goes to zero or in�nity; the other variane will also be fored to go to zero orin�nity, respetively. vol. 72, 2005
8 Mats Kvarnstr¨omSo, there exist onstants ai and bi suh that K = f� 2 
 : a1 � �2e � a2; b1 � �2 � b2g,whih gives the desired result.Remark 1: A maximum hene exists, but it does not neessarily have to be unique for �xed n:For p = 0, �2 beomes a free variable. Also, if p = 1 and N = 1, all values of �2 and �2esatisfying �2 +2�2e =  for some onstant , are maximum likelihood estimators. Note however,that the restrition is not a neessary ondition for a maximizer to exist, neither is it a suf�ientondition for a unique global maximizer to exist. It is a suf�ient ondition for the likelihood tobe bounded for all � 2 
, and hene for a maximum likelihood estimator to exist.Remark 2: If the number of observations n is larger than three (one more than the number ofmixture omponents), the restrition (9) of the parameter spae also gives us the onlusion ofLemma 1 even under an expanded model with a drift term in the diffusion together with sys-temati position measurement errors, that is, if the mixture omponents have non-zero expetedvalues, �1 and �2, and we need to estimate these as well; just let K be as before onerningthe parameters �2 and �2e , and with j�1j; j�2j � maxifjjYijjg < 1 (see HATHAWAY (1985)),where jj � jj is the L2-norm of a vetor. As mentioned previously, this might turn out to be usefulif it is neessary to determine whether systemati effets are present or not.3.2 The EM algorithmWhen omputing maximum likelihood estimates for �nite mixtures, the EM algorithm is anappealing method to use. In fat, although the algorithm got its name and was generalized inDEMPSTER et al. (1977), it was atually introdued and used, for the speial ase of �nite mix-tures of exponential distributions as early as in HASSELBLAD (1969). For mixture distributions,the method takes full advantage of the simple struture of the omplete likelihood together witheasily alulated estimates of the unobserved data, the lassi�ation variables. For an overviewof the theory and ontemporary appliations of the EM algorithm, we refer to MCLACHLANand KRISHNAN (1997).The algorithm is an iterative sheme onsisting of two steps; the expetation and the maxi-mization step, aordingly alled the E-step and the M-step. The E-step onsists of estimatingthe unobserved data, whih in the ase of a mixture are the lassi�ation variables. In the M-stepwe maximize the omplete likelihood (7) using the estimated lassi�ation variables, ^Zi, fromthe E-step together with our data Yi. The algorithm hene beomes:Assume that �(m) is the estimate from them:th iteration of the EM algorithm.� E-step: For eah i = 1; : : : ; n, ompute^Zi = E�(m)fZijYig = p(m)f1(Yi; �(m)1 )p(m)f1(Yi; �(m)1 ) + (1�p(m))f0(Yi; �(m)0 )� M-step: MaximizeE�(m)flogLC(�)jY g = nXi=1n ^Zi logfpf1(Yi ; �2; �2e)g+ (1� ^Zi) logf(1�p)f0(Yi ; �2e)goKwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 9with respet to � = (�2; �2e ; p), denote the result by �(m+1) and go to the E-step.In this appliation of the EM algorithm, eah of the two steps has a probabilisti meaning;in the E-step we lassify eah partile using a quadrati disriminant rule, and in the M-step wemaximize the omplete likelihood using the lassi�ations from the E-step as if lassi�ationsfrom the previous E-step in fat were the observed data. Note, however, that the estimatedlassi�ation variables are not on�ned to zero or one, but ould be any real number in-between.As is the ase for most numerial algorithms for maximizing a funtion, there is no way ofguaranteeing that we atually end up in the global maximum. The EM algorithm an guaranteehowever, that L(�(m+1)) � L(�(m))and sine in our ase the likelihood is bounded and ontinuous, every sequene of iterates f�(m)gof the EM algorithm will have a stationary value of L(�) as a limit point (Theorem 2 of WU(1983)). This stationary value does of ourse not have to be the global maximum. Nothing morethan this, an in general be said about the �(m)-sequene. For a thorough disussion regardingthe onvergene of the EM algorithm, we refer to the already mentioned work by WU (1983),whih is overed also in the review artile by REDNER and WALKER (1984), and in the generalreferene on the EM algorithm, MCLACHLAN and KRISHNAN (1997).For the typial appliation of the mixture model disussed in this artile, with N usuallylarger than 10 and a ratio �2=�2e larger than 1=2, simulations show that the EM algorithm workssuf�iently well, both onerning the number of steps of the iteration until onvergene to astationary point of the likelihood funtion, and with respet to its ability to onverge to the sameestimate ^� regardless of starting value �0; see the simulation study in Setion 5.4 AsymptotisIs this setion we study the asymptoti properties of the maximum likelihood estimator as thenumber of partiles n grows large. It turns out that the estimator is both strongly onsistentand asymptotially normal. This ase is not overed in the literature probably sine one of theparameters is present in both mixture omponents. In addition, many authors ompatify theparameter spae in order to get asymptoti results, see e.g. CHENG and LIU (2001) We do notwant to do this, beause we feel that it imposes an unnatural restrition on the parameter spae.For N = 1, SUNDBERG (1974) gives the onsisteny and asymptoti normality of themaximum likelihood estimator ^�n, under the single ondition that the information matrix I(�) ispositive de�nite at the true parameter point �0. Sine Lemma 2 below says that this is true for all�0 2 int(
), we are atually done for N = 1, both with onsisteny and asymptoti normality.Hene, what is left to prove is onsisteny and asymptoti normality for N > 1. REDNERand WALKER (1984) disuss this issue for mixtures of distributions but only for regular ex-ponential distributions and when the parameters of separate mixture omponents are mutuallyindependent. Some modi�ations are thus needed. vol. 72, 2005
10 Mats Kvarnstr¨om4.1 ConsistenyTo prove onsisteny of the maximum likelihood estimator for general N , we verify that thelassial onditions for onsisteny of WALD (1949) are satis�ed for the mixture density in (6)when the true parameter is in 
. In the proess, we use results from REDNER (1981).Theorem 1 (Strong onsisteny). Let the true parameter point �0 be in 
 for some  2 (0; 1)and let ^�n be the global maximizer of L(�) over 
, for eah n. ThenPf^�n ! �0 as n!1g = 1Proof. Wald's onditions are enumerated as in REDNER (1981) to 1 through 6. For the spei�-ation of these onditions, we refer the reader to that artile.Conditions 1,2,4' and 5 are satis�ed for 
 and the mixture omponent densities f1 and f0.Inspetion of the proof of Redner's Theorem 5 shows that Conditions 2 and 4 also are satis�edfor the mixture density (6). If we restrit 
 to 
 as de�ned in (9), then also Conditions 3 and 6are satis�ed, giving us the result by applying Theorems 1 and 2 from WALD (1949).Remark 1: The extra ondition (9) is used, �rst to prove that a maximum likelihood estimatorexists for all n, and seond, to prove that Condition 3 of REDNER (1981) is satis�ed, i.e. thatL(�i)! 0 when d(�0; �i)!1, where d means Eulidean distane.Remark 2: Under the restrited parameter spae, 
, Wald's onditions 1-6 are satis�ed evenunder the previously mentioned expanded model with a drift term in the diffusion and systematiposition measurement errors, that is, if the mixture omponents have non-zero expeted valuesand we need to estimate them as well.4.2 Asymptoti normalitySuf�ient onditions for the asymptoti normality of the maximum likelihood estimator ^�n anbe found in for example Theorem 5.23 of VAN DER VAART (1999). Sine we have onsistenyand log g(y; �) is smooth, what remains to be proved is that the mapping � 7! E�0 log g(Y ; �)admits a seond order Taylor expansion around �0 2 int(
) with non-singular seond derivativematrix. In other words, we have to prove that the information matrix I(�0) is positive de�nite.This is the result of Lemma 2 below, so Theorem 2 is a onsequene of that.Theorem 2 (Asymptoti normality). Assume the true parameter �0 2 int(
) for some  2(0; 1). Then the maximum likelihood estimator ^�n is asymptotially normal, i.e.n1=2(^�n � �0) D�! N(0; I(�0)�1) (10)as n!1.The restrition to 
 is needed only to guarantee onsisteny; the positive de�niteness ofI(�) is in fat valid for all � 2 int(
) as an be seen from the next lemma.Below, we denote the gradient of a funtion f with respet to � by ��f . We also refrain fromwriting down the arguments of the funtions when no risk of ambiguity exists.Kwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 11Lemma 2. The information matrix I(�) is positive de�nite for all � 2 int(
).Proof. Positive de�niteness of I(�) means that aTI(�)a > 0, for all a 2 R3 nf0g. Sine I(�)is the variane of the sore funtion �� log g(Y ; �), we interpret aTI(�)a as the variane of thelinear ombination aT�� log g(Y ; �). Hene, what we have to prove is thatVarfaT�� log g(Y ; �)g > 0for all a 2 R3nf0g.Assume the opposite. Then we have, with probability one, thataT�� log g(Y ; �) = 0 (11)for some a 2 R3 nf0g sine the mean of the sore is zero. Writing out the omponents of thesore funtion �� log g(Y ; �), we have��2 log g = p ��2f1pf1 + (1� p)f0��2e log g =p ��2ef1 + (1� p) ��2ef0pf1 + (1� p)f0�p log g = f1 � f0pf1 + (1� p)f0where ��2f1 = 12 NXk=1� ~y2k(�2 + �k�2e)2 � 1�2 + �k�2e�f1(y ; �2; �2e) = k1(y)f1(y ; �2; �2e)��2ef1 = 12 NXk=1� �k~y2k(�2 + �k�2e)2 � �k�2 + �k�2e�f1(y ; �2; �2e) = k2(y)f1(y ; �2; �2e)��2ef0 = � 12(�2e)2 NXk=1 ~y2k�k � N2 1�2e�f0(y ; �2e) = k3(y)f0(y ; �2e)Equation (11) an be written asa1p ��2f1 + a2hp ��2ef1 + (1�p) ��2ef0i+ a3hf1 � f0i = 0:After re-arranging in terms of f1 and f0 and notiing that f1(Y ) 6= f0(Y ) > 0 with probabilityone for all � 2 int(
), we see that this is equivalent to( a1p k1(Y ) + a2p k2(Y ) + a3 = 0a2(1�p)k3(Y )� a3 = 0 (12)For N > 1, sine k1(Y ), k2(Y ), and k3(Y ) are linearly independent and non-zero with probabil-ity one for all � 2 int(
), equation (12), and hene equation (11), is satis�ed only if a is zero,and we have a ontradition. For N = 1, even though k2 = �1k1, we still have that k1(Y ) andk3(Y ) are linearly independent, whih suf�es to arrive at the same onlusion. vol. 72, 2005
12 Mats Kvarnstr¨omRemark: Notie that (12) is satis�ed for non-zero a if p = 0. This is also what we would expetsine then we have no information on �2. Also, if N = 1, then k2(Y ) = �1k1(Y ), so if p = 1,(12) is satis�ed as long as a1 + �1a2 = 0 and a3 = 0.4.3 Complete data asymptotisIn appliations the partiles may have already been labelled manually as diffusing or �xed, i.e.we have been given the omplete data. If this is the ase, the asymptoti properties of the esti-mator beome easier to verify, mainly beause the likelihood is a produt of probability densityfuntions.After some elementary, but fairly umbersome, alulations we obtainIC(�) = 264 dp2 PNk=1 1(�2+�k�2e )2 dp2 PNk=1 �k(�2+�k�2e)2 0dp2 PNk=1 �k(�2+�k�2e )2 dp2 PNk=1 �2k(�2+�k�2e)2 + Nd(1�p)2(�2e )2 00 0 1p(1�p) 375 (13)for the expeted information matrix to the omplete data. It an be seen, by applying the Cauhy-Shwarz inequality on the upper-left 2 by 2 matrix, to be positive de�nite for all � 2 int(
).For �0 2 int(
) we get strong onsisteny diretly from WALD (1949) even without therestrition on the parameter spae. Furthermore, sine IC(�0) is positive de�nite, all onditionsfor asymptoti normality are satis�ed.4.4 Note on a further generalizationAn interesting artile with relevane to our problem, is KIEFER and WOLFOWITZ (1956). Itdeals with the onsisteny of a maximum likelihood estimator when there are in�nitely manyinidental parameters present. These inidental parameters ould be, in a generalization of ourproblem, the variane of the Brownian motion �2 if all diffusing partiles have different diffusionoef�ients. This orresponds to a so-alled poly-disperse solution in ontrast to our presentproblem, whih is mono-disperse (every partile has the same diffusion oef�ient).Assume that for eah i = 1; : : : ; n, we have that Yi is N -variate normally distributed randomvariable with mean zero and ovariane matrix �i = I�2i + T�2e . Then, following the languageof KIEFER and WOLFOWITZ (1956), the �2i :s are the inidental parameters and �2e the param-eter (even though, in our ontext, these names are misleading sine we onsider it to be the otherway round). Notie that if the �2i :s are onstants and different for eah i we only observe oneinrement vetor Yi for eah �2i . Obviously the estimates of the �2i :s an not be onsistent. Itturns out, however, that if we onsider �2i , i = 1; : : : ; n, to be independent random variables withommon (but unknown) distribution funtion F , then, under ertain assumptions on F , the max-imum likelihood estimator of F onverges to F at every point of ontinuity. Also, the maximumlikelihood estimator of �2e is strongly onsistent.The model disussed in this artile is of ourse a speial ase of these �2i oming from anunknown distribution funtion F . This distribution has only two values; zero, for the �xedKwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 13partiles, and �2, for the diffusing partiles. In other words, F an be written asF (x) = 8<: 0 when x < 01� p when 0 � x < �21 when �2 � x5 AppliationAs an appliation of the model, we estimated the diffusion oef�ient of the diffusing partiles inFigure 1. Here, the positions of the 26 partiles were estimated in two dimensions in eah imageusing a simple irle detetion algorithm and the resulting trajetories are displayed in Figure 1.The total number of frames were 12, so N = 11. By manual inspetion, we onluded that thethree partiles in Figure 1 numbered 3, 5, and 18, were �xed. The remaining 23 were lassi�edas diffusing partiles.5.1 ResultsWe applied the EM algorithm to the observed data with initial value �0=(1 ; 1 ; 0:5). We stoppedwhen the hange of the Zi:s between two onseutive E-steps was smaller than 10�6. This rite-rion was satis�ed after 3 steps with the resulting maximum likelihood estimates ^� with elements^�2 = 2:2058^�2e = 0:3172^p = 0:8847 (14)where the unit for the �rst two is the square of the side length of a pixel.The estimated lassi-�ation variables ^Zi, de�ned as the onditional expetation of Zi given Yi at parameter point ^�,were ^Z3 = 2:473 � 10�3^Z5 = 1:528 � 10�5^Z18 = 1:049 � 10�5^Zi = 1:000 otherwise (15)in good orrespondene with our manual lassi�ation.5.2 Observed information matrixThe observed information at the maximum likelihood estimate ^�, an be written asI(^�; y) = IC(^�; y)� [E�fSC(X; �)STC (X; �)jy)g℄�=^� (16)by using a result from LOUIS (1982), where IC(�; y) = E�fIC(�; x)jY = yg, the onditionalexpetation of the omplete data given Y = y, and SC(x; �) = �� logLC(�), the sore of thevol. 72, 2005
14 Mats Kvarnstr¨omomplete likelihood. Intuitively, the �rst term in (16) orresponds to the observed informationfrom the omplete data given the estimated values of the unobserved data Zi, and the seondterm orresponds to the missing information due to the fat that Zi was in fat not observed.Using this, the observed information matrix at the estimate beomesI( ^�2; ^�2e ; ^p ;Y ) = 24 33:75 52:75 052:75 476:6 00 0 254:9 35� 24 0:034 0:153 �0:0900:153 0:691 �0:405�0:090 �0:405 0:240 35= 24 33:72 52:59 0:09052:59 475:9 0:4050:090 0:405 254:7 35 (17)

with inverse I�1( ^�2; ^�2e ; ^p ;Y ) = 24 0:0358 �0:0040 0:0000�0:0040 0:0025 0:00000:0000 0:0000 0:0039 35 : (18)This gives us an approximate variane of the estimate of ^�2 equal toVarf^�2g ' 0:0358: (19)Note that some elements in the matrix in (17) are lose to zero. The reason for this is thatthe estimated lassi�ation variables in (15) are very lose to their true values of zero or one;in other words, we are very lose to our manual lassi�ation, whih orresponds to havingomplete data. Compare this with the zero elements of the omplete information matrix in (13).5.3 Comparing the estimate with the theoretial diffusion oef�ientThe estimated ^�2 above orresponds to an estimated diffusion oef�ient of^D = 0:893 �m2=s;where we used the relationship between diffusion variane and diffusion oef�ient, �2 = 2D�and saling to �m. Here, �=0.040 s is the time interval between observations, and eah pixelorresponds to a square with sideM=180 nm.If we assume normality, motivated by the asymptoti normality result of Setion 4.2 when nis suf�iently large, we get an approximate 95% on�dene interval of D ofD = ^D � 1:96 � M22� p:0358 = :893� :150 �m2=s: (20)The theoretial diffusion oef�ient is given by Stoke-Einstein's relation (see for exampleEVANS and WENNERSTR ¨OM (1999) pages 370-372)D = kBT6��RH (21)Kwantitatieve Methoden
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eFigure 2: The histograms of the estimates of �2 and �2e using the EM algorithm from 1000simulations using 2.2058 and 0.3172 as true values.where kB is Bolzmann's onstant, � the visosity of the solution, T the temperature and RH thehydrologial radius of the partile. The appropriate values for the visosity and temperature are�=0.9 mPa and T=298 K. The geometri radius of the partiles are 247 nm and this is used asthe hydrologial radius, even if the latter is often a bit larger than the former. Plugging all thisinto (21), we get D = 0:982 �m2=s;whih is within the 95% on�dene interval of (20).5.4 Simulation of the approximate distribution of the estimatesWe simulated 1000 realizations with 26 partiles, of whih 3 were �xed, over 12 frames in twodimensions, with the estimated values of �2 = 2:2058 and �2e = 0:3172 from (14) as the truediffusion variane and error variane. For eah time series, we estimated �2, �2e and p using theEM algorithm. However, sine the number of �xed partiles is 3 in eah sequene, the estimateof p is not very interesting and will therefore not be displayed.The histograms of the estimated values are displayed in Figure 2. The sample mean andovariane matrix of the 1000 estimates of �2 and �2e were�^�2 = 2:2054�^�2e = 0:3185and � :0348 �:0040�:0040 :0027 �in good agreement with the true values of �2 = 2:2058 and �2e = 0:3172 and the upper-left blokof the inverse of the observed information matrix in (18). vol. 72, 2005
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Figure 3: Simulated sequene of 50 partiles of whih 10 are �xed (the numbered ones) andwhere �2 = �2e = 1 and N = 20, with the start positions taken uniformly on the square.Compare with the orresponding lassi�ation variables in Figure 4.5.5 More simulationsIn the example of Figure 1, it is easy to manually lassify partiles as either diffusing of �xedsine the measurement error is small ompared to the diffusion variane. To see what the situ-ation looks like when the signal-to-noise ratio is signi�antly lower, we simulated 40 diffusingpartiles with �2 = 1 together with 10 �xed partiles, all observed under measurement error with�2e = 1. The number of observed inrements, N , was 20.The resulting observed trajetories are displayed in Figure 3, where the starting positions havebeen hosen uniformly on the square. Clearly, here it is muh harder to determine by eye, whihpartiles are atually �xed, ompared to the situation in Figure 1. However, using the analysisdeveloped here, we are able to lassify all the partiles orretly, by whih we mean that theestimated lassi�ation variables are within 0.5 of their true value. The estimated lassi�ationvariables for this sequene are displayed in Figure 4 where the �rst 40 orrespond to diffusingpartiles and the last 10 to �xed. The EM algorithm onverged in 7 or 8 iterations. Also, itonverged to the same estimate of � as we varied the initial parameter �0 over 20 different values.To ondut a more thorough analysis of the behaviour of the EM algorithm for this model, wesimulated 100 independent data sets, eah onsisting of 100 partiles of whih 20 where �xed,for different values of �2, �2e , and N . Table 1 shows the result. As an be seen, the methodmanages to estimate the varianes �2 and �2e appropriately, and that it is robust for all signal-to-noise ratios when the observation length is large. However, for small observation lengths, boththe number of mislassi�ations and the number of EM iterations, beome large if the signal-to-Kwantitatieve Methoden
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Figure 4: The estimated lassi�ation variables for the sequene in Figure 3. The �rst 40 orre-spond to diffusing partiles and the last 10 to �xed partiles.noise ratio is not suf�iently high. Although not presented in Table 1, it should be mentionedthat the only effet different starting values �0 had on the onvergene of the EM algorithm, wasto inrease or derease the number of iterations needed until onvergene, by one or two steps.Taking all of this into onsideration, the EM algorithm is learly an appliable method forthese kind of data sets, failing only to onverge within 100 iterations when N = 10 and thesignal-to-noise ratio is 1/3.In Setion 4 we proved that the estimator ^�n is asymptotially normal as n goes to in�nity. Inappliations, one might wonder for how small n it is reasonable to approximate the distributionof ^�n by the normal distribution. Looking at the histograms of Figure 2, it seems that, at least forthe estimated parameter values from the example trajetories of Figure 1, this is the ase for therelatively small population size of n = 26.To investigate this further, we simulated 1000 independent sequenes where N = 10, eahwith n = 10 partiles, of whih 2 were �xed, and where the true parameters were �2 = 2 and�2e = 1. For eah sequene, we estimated �2, �2e , and p but, as before, sine the number of �xedpartiles was non-random, we do not inlude the estimate of p in the analysis. We alulated thegeneralized distane d2m = (�m � ��)S�1(�m � ��)T ; m = 1; : : : ; 1000where �m is the vetor onsisting of the �nal estimates of �2 and �2e from the m:th simulatedsequene, and where �� and S are the sample mean and the sample ovariane matrix, respetively,of the 1000 estimates of �2 and �2e . If the estimates �m are normally distributed, eah d2m is �2-distributed with 2 degrees of freedom. In Figure 5, we have plotted both the empirial umulativedistribution together with the distribution funtion of a �22-distribution. The �gure suggests thateven for population sizes as small as n = 10, the estimates seem to be lose to the normaldistribution. The results were similar for other ombinations of true parameters �2 and �2e .vol. 72, 2005
18 Mats Kvarnstr¨om^�2 ^�2e # of EM # of mislassi-n=100 N mean std mean std iterations �ations�2 = 3, �2e = 1 10 3.01 .188 0.99 .061 11 0.920 3.02 .121 1.00 .047 3.2 0.040 2.99 .088 1.00 .031 1.0 0�2 = 2, �2e = 1 10 1.98 .141 1.01 .068 13 2.520 2.01 .091 1.01 .046 5.6 0.140 2.00 .061 1.00 .028 1.3 0�2 = 1, �2e = 1 10 1.01 .088 1.00 .054 19 6.420 1.00 .054 0.99 .036 8.0 0.840 1.00 .037 1.00 .027 2.9 0�2 = 1, �2e = 2 10 1.00 .114 2.00 .094 33 1320 1.00 .068 2.00 .058 12 3.040 1.00 .044 2.00 .044 5.0 0.1�2 = 1, �2e = 3 10 1.00 .131 3.00 .128 501 1720 1.00 .071 3.01 .082 14 5.440 1.00 .058 2.99 .059 7.8 0.41Here, for 7 of the simulated sequenes, the EM algorithm failed to onverge within 100 iterations.Table 1: Comparison of the estimates of �2 and �2e , with the orresponding standard deviations,the average number of EM iterations, and the average number of mislassi�ations, for 100realizations of simulations with n = 100 partiles, of whih 20 were �xed, for different valuesof �2, �2e , and N .6 DisussionWhen omparing the estimated lassi�ation variables to the plotted trajetories, we see thatour method indeed manages to lassify the partiles orretly for this data set. In addition,the theoretial diffusion oef�ient derived from Stoke-Einstein's relation is within the 95%on�dene interval of the estimated diffusion oef�ient. These two results, in ombination withthe simulation study in Setion 5, demonstrate the ef�ieny of the method and are enouragingfor the future analysis of larger data sets of this kind.We should, however, keep in mind the disrete nature of the observed trajetories; the imageproessing used for this image sequene only positioned partiles up to pixel level. Hene, theobserved likelihood, here based on ontinuous spatial data, ould be modi�ed to take this intoonsideration. Alternatively, the image proessing ould be re�ned to obtain sub-pixel auray.Kwantitatieve Methoden
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Figure 5: The �22 distribution funtion (dashed), together with the empirial umulative distribu-tion of the generalized distanes of the estimates of �2 and �2e from 1000 simulated sequenesof n = 10 partiles, of whih 2 were �xed, when N = 10 and the true parameter values were�2 = 2 and �2e = 1.Nevertheless, the main result in this paper is the theoretial analysis and the data should primarilybe onsidered as an illustrative example of an appliation of the method.A natural question arises on the possibility for the partiles to hange states during the ob-servation period of N + 1 images; that is, from diffusing to �xed or from �xed to diffusing. Forolloidal partiles like those in Figure 1, at least the latter possibility is believed to be highlyunlikely; one a partile has beome adsorbed on one of the speimen glasses, it ontinues to beso for the duration of the experiment. To hange from diffusing to �xed is of ourse possible, butfor the observation lengths we have studied so far, this has also been ruled out; remember thatN equal to 11 orresponds to a total observation length of 440 ms. After future re�nements ofthe image proessing part however, we plan to look at far larger observation lengths and then thesenario of a partile getting stuk beomes more likely. The model must then be modi�ed andone alternative might be a hidden Markov model.Another way to generalize the model, would be to allow for the partiles to have differentsizes and hene different diffusion oef�ients, as disussed in Setion 4.4. If we regard thediffusion oef�ients as random variables from a ommon (but unknown) distribution the taskwould then be to estimate the distribution of the diffusion oef�ients rather than the atualdiffusion oef�ients. Another, simpler and more diret, alternative is to allow for two or threelasses of partiles, eah with a �xed (but unknown) diffusion variane. vol. 72, 2005
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22 Mats Kvarnstr¨omAppendix: Suf�ient statistisConsider the omplete data density (5) with observed trajetories in d dimension. Take thelogarithm and let ~Ylk denote the k:th element of the transformed inrement vetor (see se-tion 2.1) of the l:th dimension trajetory. We getlog gC = z log p� zd2 NXk=1 log(�2 + �k�2e)� z2 NXk=1 Pl ~y2lk�2 + �k�2e++ (1� z) log(1� p)� (1� z)d2 NXk=1 log(�k�2e)� 1� z2 NXk=1 Pl ~y2lk�k�2e= NXk=1 z� dXl=1 ~y2lk���12 1�2 + �k�2e�� 12�2e NXk=1 1� z�k � dXl=1 ~y2lk�+ z�log� p1�p�� d2 NXk=1 log��2 + �k�2e�k�2e ��� �d2 NXk=1 log(�k�2e)� log(1�p)�and we see that a minimal suf�ient statisti an be hosen to bet1 = z dXl=1 ~y2l1...tN = z dXl=1 ~y2lNtN+1 = NXk=1 1� z�k � dXl=1 ~y2lk�tN+2 = zwith the orresponding anonial parameter ��1 = �12 1�2 + �1�2e...�N = �12 1�2 + �N�2e�N+1 = � 12�2e�N+2 = log� p1� p�� d2 NXk=1 log��2 + �k�2e�k�2e �Kwantitatieve Methoden



Estimation of the diffusion oef�ient in a mixture model 23whih is a funtion of our parameter �. Sine this is 3-dimensional and the suf�ient statistisis (N + 2)-dimensional, we say that the omplete data belongs to a urved exponential familyor, with the terminology of BARNDORFF-NIELSEN and COX (1994), a (N+2; 3)-exponentialmodel.Solving for p in the expression for �N+2 above, we getp = e�N+2QNk=1��2+�k�2e�k�2e �d=21 + e�N+2QNk=1��2+�k�2e�k�2e �d=2 = e�N+2QNk=1��N+1�k�k �d=21 + e�N+2QNk=1��N+1�k�k �d=2and we an write the logarithm of the omplete data density aslog gC = �T t� k(�) (22)where � = �(�) and k beomesk(�) = d2 log(N + 1)� dN2 log(�2�N+1) + log�1 + e�N+2 NYk=1��N+1�k�k �d=2� (23)From standard theory of exponential families, we get the umulants of the suf�ient statistis bydifferentiating k(�). In partiular, we have ET = �k�� andVarfTg = �2k����T , whih we denote �and V , respetively.The expetation of the suf�ient statistis an be writtenET = 2666664 dp(�2 + �1�2e)...dp(�2 + �N�2e)d(1� p)N�2ep
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