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A Parametri Approah to Yeast Growth Curve Estimation and StandardizationIlona PylvänäinenDepartment of Mathematial StatistisChalmers University of Tehnology and Göteborg UniversityAbstratThe purpose of this thesis is to ontribute to the understanding of yeast growth.It builds upon a dataset onsisting of growth urves of 576 Saharomyes erevisiaemutants in eight di�erent environments. The data will be a part of a publily availab-le phenotypi library, PROPHECY, ontaining growth urves and harateristis ofviable S. erevisiae mutants in a wide variety of growth onditions.We ompare the �ts of modi�ations of logisti, Gompertz, and Chapman-Rihardsmodels for the growth urves. The omparisons indiate that the modi�ed Chapman-Rihards model desribes our growth data best. Relevant information about the be-havior of the mutants is obtained by estimating the physiologially important growthparameters: the lag time (time to adapt to the environmental hange), the maxi-mum relative growth rate, and the e�ieny of growth. We introdue an alternativeparameterization of the modi�ed Chapman-Rihards model that uses these growthparameters and investigate its uniqueness and parameter restritions. We also showonvexity of its logarithmi parameter spae.One of our �ndings is that the lag time and the growth rate depend stronglyon the initial population size. However, in large-sale experiments with hundreds ofstrains, it is di�ult to have the same onstant initial population size. To addressthis problem and to enable easy visualization of the data, we develop a method tostandardize growth urves with respet to the initial population size. The idea is touse a modi�ed Chapman-Rihards urve to predit what the behavior of a growthurve would have been, had the population had a �xed standard initial size. As aresult, the initial population size orrelation with lag time and growth rate reduesremarkably. We also introdue two ways to onstrut a summary urve from severalstandardized growth urves.We suggest a set of �ltering methods, based on the standardized and summaryurves, in order to detet experiments and individual urves that are atypial orspurious. Finally, we ompare the variability of wild type normalized mutant growthparameters from the modi�ed Chapman-Rihards, standardized, and summary urves.The varianes are typially slightly smaller with the standardizing and summarizingmethods than with the diret Chapman-Rihards approah.Keywords: Biosreen, Chapman-Rihards model, growth urve, growth rate, lagtime, optial density (OD), Saharomyes erevisiae, standardized urve, stationaryphase OD inrement, summary urveMSC2000 lassi�ation: 62P10
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Chapter 1IntrodutionSaharomyes erevisiae, better known as baker's yeast, has been domestiated thou-sands of years ago. It is used in baking, brewing and wine making. S. erevisiae is alsoan important model system in modern biology and mediine. It reprodues quikly,and large numbers of ells an be grown in ulture in a very small spae, in the sameway as bateria an be grown. However, S. erevisiae has the advantage of being aeukaryoti organism, and thus the results from geneti studies with S. erevisiae aremore easily appliable to human biology. The ollaboration of more than 600 sien-tists from over 100 laboratories in Europe, USA, Canada, and Japan resulted in apubliation of the omplete genomi sequene of the S. erevisiae in 1996 [10℄. It wasthe �rst ompletely sequened eukaryote.To omplete the haraterization of the S. erevisiae genome, the funtions of thenovel genes need to be determined. The S. erevisiae genome has roughly six thou-sand genes of whih approximately seventy perent have a known funtion [14℄. Oneimportant approah for haraterizing a novel gene is to produe a knok-out mutant1laking the gene, the logi being that the behavior of the mutant, its phenotype, willgive important information about the funtion of the gene. Mutant strains of yeastare produed in several international onsortia. During the past few years hundredsof papers on large-sale funtional genomis have been published, where these mutantstrains play a key role.Reently large-sale phenotypi haraterizations have reeived a lot of attention.As a result, a few laboratories have speialized in the large-sale phenotypi analysesof qualitative phenotypes, suh as growth or non-growth on agar plates ontaining anumber of di�erent ompounds. Although automated to some extent, these methodsrequire a substantial amount of manual work, and may su�er from relying on sub-jetive judgment in the assessment of growth. Besides, these methods do not allow1A mutant: a strain that di�ers from the wild type beause it arries one or more geneti hangesin its DNA. A wild type: referene strain within a spei� strain bakground.1



to distinguish the three physiologially relevant growth parameters: lag time (timeto adapt to the environmental hange), maximum relative growth rate (kinetis ofgrowth), and stationary phase OD inrement (related to the e�ieny of growth).Winzeler et al [28℄ showed that large numbers of deletion strains an be pooled,grown together and analyzed in parallel by using DNA bar-odes to uniquely markeah strain that misses a gene. In the next step, miroarrays are used to follow theabundane of the di�erent bar-odes as ells proliferate. Although being a powerfulapproah, this methodology has some drawbaks. One of the most serious onernsmight be the positive and negative interations between mixed strains that are aninherent onsequene of this experimental setup [25℄.In an alternative approah, Warringer and Blomberg [25℄ designed a system forlarge-sale quantitative phenotypi analysis of S. erevisiae based on a ommeriallyavailable Biosreen C Analyzer2. In this system it is possible to sreen automatiallyfor phenotypi e�ets for hundreds of di�erent mutants. The analysis of the growthurves is automati and provides estimates for growth parameters. The purpose of thesystem is to build a publily available phenotypi library, PROPHECY3, ontaininggrowth urves and harateristis of viable S. erevisiae mutants in a wide variety ofgrowth onditions, and to use the library for studying gene funtions. PROPHECYis publily aessible at http://prophey.lundberg.gu.se and it is ontinuously updatedwith growth data [7℄.Warringer et al [27℄ used the system for phenotypi analysis of a set of 14 deletionstrains in S. erevisiae. Applying 96 onditions and analyzing 3000 growth urves,statistially signi�ant phenotypes for nearly all strains in the sreen were deteted.These quantitative phenotypes portray aberrant growth behavior onsidering all threegrowth parameters, thus apturing defets in multiple, independent aspets of growth.Erison et al [6℄ applied the system on quantitative phenotypi analysis of 576 S.erevisiae mutants in eight di�erent environments. Statistially signi�ant phenotypeswere revealed for over sixty perent of the analyzed genes. A funtional role for themajority of the genes had not been reported earlier [14℄.These developments are important initial steps towards large-sale analysis of mu-tants based on rigorous statistial grounds. However, more analytial tools need to beput in plae before the methodology beomes fully operational. It is the aim of thisthesis to address several issues related to growth urve modeling and growth para-meter estimation. We hope that the results we obtain will ontribute to establishing ofa rigorous modeling basis that will failitate the phenotypi analysis of large numbersof mutants.In Chapter 2 we introdue the data that motivated the thesis and brie�y disussthe issues of alibration and blank orretion related to the yeast growth data from the2Labsystems Oy, Finland3PRO�ling of PHEnotypi Charateristis in Yeast2



Biosreen. In Chapter 3 we ompare the �ts of modi�ations of logisti, Gompertz,and Chapman-Rihards models for S. erevisiae growth urves. The omparisonsshow that of these the modi�ed Chapman-Rihards model desribes our growth databest. In Chapter 4 we give an alternative biologial parameterization to the modi-�ed Chapman-Rihards model, and investigate the basi theoretial properties of thisparameterization.The lag time and the growth rate depend strongly on the initial population size.However, in large-sale experiments with hundreds of mutants, it is di�ult to keepthe initial population size onstant. To address this problem and to enable easyvisualization of the data, we introdue a method to standardize growth urves withrespet to the initial population size in Chapter 5. The idea is to predit what thebehavior of a growth urve would have been, had the population had a standard initialpopulation size. In Chapter 6 we present two ways to onstrut a summary urve fromurves from parallel experiments.In Chapter 7 we suggest a set of methods based on the standardized and summaryurves to �lter out urves or whole experiments that are atypial or spurious. Finally,in Chapter 8 we ompare the variability of wild type normalized mutant growth para-meters from the modi�ed Chapman-Rihards, standardized, and summary urves.

3



4



Chapter 2Bakground2.1 How does S. erevisiae grow?S. erevisiae divides by budding.1 The ell yle begins with a single, unbudded ell.This ell buds, the bud grows to nearly the size of the parent ell, the nuleus divides,and the two ells separate into two unbudded ells. The yle then starts over forboth of the ells. The result is an exponential inrease in the number of ells. Thedoubling time varies with the strain, the growth medium, and the temperature. Formore details, f. [20℄.When ells are inoulated (seeded), they require a period of preparation before theystart dividing. Following this lag phase, whih may be up to several hours or dayslong, they enter the exponential phase during whih their number and mass doubleat equal time intervals. After a period of growth at a relatively onstant rate perell, some environmental ondition, suh as lak of nutrient, beomes growth limitingso that the rate of growth diminishes and growth eventually stops. The number ofells and the ell mass beome onstant. In the stationary phase ells do not divideanymore, but they usually remain viable for several days. An example of a typiallogarithmi growth urve is displayed in Figure 2.1.22.2 Optial densityOptial density (absorbane), OD, is a widely used onept in the estimation of thetotal number of ells present in a ulture. It is a measure of the turbidity of the ulture.A ell suspension looks loudy (turbid) to the eye beause ells satter the light passing1We work with haploid ells.2This is an ideal growth urve. In growth inhibiting environments growth urves an have di�erentshapes. 5
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Figure 2.1: A typial logarithmi growth urve, where Nt is the number of ells at timet.through the suspension. The more ell material is present, the more the suspensionsatters the light and the more turbid it will be. Optial density an be measuredwith a spetrophotometer, a devie that passes light through a ell suspension anddetets the amount of unsattered light that goes through. For uniellular organisms,optial density is proportional (within ertain limits) to the number of ells as well asto the ell mass. Optial density measurements are quik and easy to perform, andthey do not disturb or destroy the sample. They are used widely to monitor the rateof growth of ultures, sine the same sample an be heked repeatedly [2℄.Optial density is de�ned asOD = log10�I0I � ;where I0 is the intensity of the inident light and I is the intensity of the transmittedlight [17℄. The exat optial density of a ulture depends on the onentration of theells present, the speies and strain of the mirobe present, the growth onditions used,and the wavelength of the light being transmitted. Optial density measurementssense all ells present in a solution, irrespetively of their viability.Sine the ell sizes a�et the absorption apaity, the OD measurements are neverperfetly proportional to the number of ells or to the ell mass. This error a�etseven the measurements done in the exponential phase sine the ell size distributionin a ulture depends on the age distribution whih in turn depends on the rate ofgrowth. For the sake of simpliity in the sequel, we hoose to ignore this problem,both in the alibration (Setion 2.4.1) and in the interpretation of the data.6



2.3 Biosreen C AnalyzerBiosreen C Analyzer is an instrument developed to perform a wide range of miro-biology experimentation automatially [1℄. It is simultaneously a dispenser/diluter,inubator and optial density measurement unit, integrated with a omputer.A heating/ooling system provides a wide range of inubation temperatures (from1oC to 60oC). Di�erent shaking intensities and intervals an be hosen (the platesare shaken to provide homogeneous dispersion of ells). Optial density is measuredby a wide band (450-580 nm) �lter whih is rather insensitive to olor hanges in thesample.There are two 100-well (10 � 10) disposable Honeyomb multiwell plates in eahBiosreen C instrument. The volume of eah well is 400 �l. Eah well an be re-garded as an individual test vessel. The Biosreen mirobiology reader monitors opti-al density of the 200 wells simultaneously. The test duration may vary from a singlemeasurement to seven weeks of measurements, and the maximum number of measure-ments per well is 400. This design strongly redues the time and work needed for doingexperiments ompared with traditional manual tehniques. In addition, the preisionof the Biosreen measurements is higher than the preision of manual measurements.2.4 Motivating datasetAltogether 577 strains of S. erevisiae � 576 mutants and one wild type � were runin synthetially de�ned (SD) medium3, whih is the referene ondition, and in sevendi�erent environments where either some hemial was added to the SD medium, oranother temperature than the standard 30oC was used. The di�erent environmentsand their abbreviations are given in Table 2.1. Optial density was reorded usinga Biosreen C Analyzer. Measurements were taken every 20 minutes during a 48hour period, i.e. at 145 time points. Strains were run in quadrupliates (refereneondition) or in dupliates (environments), in the same well loation and in the sameBiosreen C Analyzer instrument during di�erent days. The wild type positions onthe plates were randomized one, with one per quadrant. The positioning of the wildtypes and mutants on the plates and in the Biosreen instruments is shown in FigureA.1 in Appendix A. In the sequel, by run we refer to eah 48 hour period of ODmeasurements of 192 mutants and 8 wild types in a spei� Biosreen instrument.All data are smoothened so that eah OD value lower than the previous value (i.e.the OD value at the previous time point) is set the previous value. This is biologiallyreasonable sine the measured OD values tend to be too small rather than too large,mostly due to air bubbles. For more information about the data, see [6℄. When we3The SD medium ontains yeast nitrogen base (YNB), ammonium, sulphate, suini aid andthe neessary amino aids. 7



Table 2.1: The environments of the motivating dataset and their abbreviations.Environment AbbreviationTemperature 39oC 39oCTemperature 41oC 41oCDinitrophenol DNCa�eine CANatrium hloride NAMethylviologen MVMethylmethanesulfonate MMReferene ondition NO
refer to a spei� run, we write the environment abbreviation (for 39oC and 41oC onlythe numbers are written), then the Biosreen instrument (C, D or E), and then thedate, e.g. 39D0307 stands for the run in environment 39oC, in Biosreen instrumentD, on Marh 7.2.4.1 CalibrationA tehnial hallenge in automated reording of yeast growth by optial density mea-surement is the non-linear relation between measured OD value and number of ellsat higher ell densities. The yeast ultures should ideally be diluted at higher ODvalues, but this is not possible in the urrent high throughput setup. Therefore aalibration urve funtion is needed to transform the non-linear relation to a linear,so that the alibrated OD values would be proportional to the number of ells. Also, ablank representing the bakground absorption of the plate has to be subtrated fromthe measured OD values.Calibration dataA 100-well plate and �ve di�erent Biosreen instruments were used. First the wellswere �lled with 350�l sterile water, and the OD was measured one in eah Biosreen.This gave us the well and Biosreen spei� blanks. Then, the water was poured o� theplate and the plate was plaed in a 37oC hamber to make all the water evaporate.Stationary phase wild type ells (that had been growing on a shaker in 30oC over8
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Figure 2.2: Calibration urve and the data that were used to �t the alibration urvefuntion. The well spei� blank values are subtrated and the resulting OD values forthe diluted samples are multiplied by ten.night) were spun down, washed, and suspended in water. From this ell suspensiondi�erent volumes were taken into tubes. These undiluted samples were eah dilutedten times in another tube to obtain the diluted samples. Then, 45 wells were �lledwith diluted and another 45 wells with undiluted samples, and the plate was measuredone in eah Biosreen.Sine the OD values were measured in �ve Biosreens, there are 225 pairwise ODmeasurements of diluted and undiluted samples. The well and Biosreen spei� blankwas subtrated from eah of the measured OD values and the blank orreted dilutedvalues were multiplied by the dilution fator (Table B.1 in Appendix B). Then, inorder to get more robust measurements of the OD, the well spei� averages overall Biosreen instruments were taken so that there were 45 average OD values of thediluted and 45 average OD values of the undiluted samples (Table B.2 in AppendixB). After these steps, the well spei� averages of the diluted values were regardedas perfet size proportional measurements (for the higher values this is somewhatinonsistent with the resulting alibration urve).Curve �ttingUsing regression, a urve was �tted with the well spei� average of the blank orretedundiluted OD (x) as independent and the well spei� average of the blank orreteddiluted OD multiplied by ten (y) as dependent variable (Figure 2.2). Therefore, weassume that due to the blank subtration and multipliation by ten, the amount ofvariation in y is muh larger than the amount of variation in x.9



We assume that the blank orreted diluted OD values and the blank orretedundiluted OD values are almost equal approximately up to 0.3. A ubi funtiony = x+ x3was �tted.4 Using least squares estimation, we obtained the urve 5y = x+ 0:83x3: (2.1)Having a seond degree term in the polynomial would make the urve too steep inthe right end, so that when extrapolating for high values of x, the values of y wouldbe too high.We measured the same plate in eah Biosreen and plotted the results orrespond-ing to all pairs of Biosreens against eah other. Sine the di�erenes between theOD values from the di�erent Biosreens were rather small, and the lines were loseto the 45o degree line, we deided to use the same alibration urve funtion for allBiosreens. All data in this thesis are alibrated using the funtion (2.1) where now xis the blank orreted OD value from the Biosreen and y is the resulting alibratedblank orreted OD value (more about the blank orretion in the next setion).2.4.2 Blank orretionIn the 576 mutants experiment a blank equal to 0:067 was used for all wells in allBiosreens. This blank is the average blank of all wells in all �ve Biosreens in twoexperiments where the OD values of wells ontaining only sterile water were measured.In these experiments there were altogether 1500 observations whih varied between0.060 and 0.112. The histogram of the blank values is shown in Figure 2.3.Varianes within Biosreens were rather small (the average of all the within Bio-sreen varianes was less than 0:00005). There were di�erenes between Biosreens,the lowest Biosreen average being 0.063 and the highest being 0.072.The same blank value was used in all Biosreens and in all wells beause in pratieit is not possible to measure Biosreen and well spei� blanks for eah run. Neitheran the Biosreen averages from the blank experiments be used as Biosreen spei�blanks, beause the blank depends also on the disposable plates. In the alibrationdata it is however important to use the well and Biosreen spei� blanks beause theerrors are multiplied by ten.4Sine x and y are assumed to be almost equal approximately up to 0.3, the oe�ient of x wasset to one.5The value of  was 0.8324057, but here it is rounded to 0.83 for simpliity. In all alulations = 0:8324057 was used. 10
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Figure 2.3: Histogram of the blank values from two experiments where the OD val-ues of wells ontaining only sterile water were measured. There are in total 1500observations.2.4.3 DisussionIt would have been possible to �t a alibration urve funtion assuming that there ismeasurement error in both x and y, but then the error strutures should have beenmodeled more arefully. The alibration urve �tting ould alternatively have beendone in two steps. First, to �t the funtion as we did. Seond, to replae the smally values (e.g. values orresponding to x < 0:35) by the values from the �rst stepalibration urve funtion and �t the urve again. This approah ould be motivatedby the observation that the measurement preision of x is muh higher than themeasurement preision of y, and that the small x values are rather aurate.We do not really know how well the alibration urve funtion works for high ODvalues. In the dataset that it is based upon, the highest undiluted OD value is 1.22,but in the motivating dataset (and in most of the data olleted in PROPHECY) thereare OD values up to 1.7. Also, we are aware that the use of the same blank value inall Biosreens and in all wells is questionable. The e�et of a false blank value wasfound to be alarmingly large, although some of it may disappear in the later analysisof the growth parameters due to our experimental setup [12℄. The few really extremeblank measurements are hopefully measurement errors, rather than true blanks.
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Chapter 3Growth modelsAn adequate growth model is useful for desribing growth urves and for onentratingthe information in measured data into a number of meaningful parameters. Also, aparametri model will be needed when standardizing growth urves with respet tothe initial OD, as we will see in Chapter 5.In this hapter we ompare the following ommonly used funtions as models foryeast growth: logisti [30℄, Gompertz [9℄, Rihards [13℄, and Chapman-Rihards [11℄.All of them model the relative population size log(Nt=N0), where N0 is the initial sizeof the population and Nt is the size of the population at time t. Modeling log(Nt=N0)an be a problem beause the urves annot pass through 0 at t = 0. Therefore weadopt the ideas of Garthright [8℄ and modify the funtions in order to model log(Nt)instead.3.1 Traditional growth models and their suggested bio-logial parameterizationsMost of the ommonly used funtions for desribing a sigmoidal1 growth urve utilizeparameters that do not have a lear biologial interpretation and it an be di�ultto give initial values for the parameters in the model �tting algorithms. To addressthis problem Zwietering et al [30℄ re-parameterized the logisti, Gompertz, Rihards,Shnute [16℄, and Stannard [19℄ growth urve funtions. They showed that the modi-�ed funtions of Rihards, Shnute, and Stannard are basially the same. The newparameters in the re-parameterized funtions are: Az the asymptote, the maximumvalue of the growth reahed (on the logarithmi sale); � the maximum relative popu-lation growth rate, the slope of the tangent of the logarithmi growth urve at the1A sigmoidal growth urve is an inreasing urve whih �rst has a onvex shape and then a onaveshape. 13



in�etion point; and �z the lag time, the time axis interept of the tangent at thein�etion point on the logarithmi growth urve. We use the notations Az and �z forthe growth parameters in the Zwietering's re-parameterized funtions to distinguishthem from the modi�ed growth parameters that we will atually use and estimate(Setion 3.2.2).For easy referene we give the growth urve funtions together with their re-parameterized forms here. Note that we always assume that measurements start attime zero, so that t � 0.Logisti: The logisti growth funtion isvt = log�NtN0� = �01� �1e��2t= Az1 + e 4�Az (�z�t)+2 ;where �0; �2; Az; �; �z > 0, and �1 < �1.Gompertz: The Gompertz funtion isvt = log�NtN0� = �0e�eb��2t= Aze�e �eAz (�z�t)+1 ;where �0; b; �2; Az; �; �z > 0.Rihards: The Rihards funtion isvt = log�NtN0� = �0�1 + �ek(��t)� 1�= Az�1 + �e �Az (1+�)(1+ 1� )(�z�t)+(1+�)� 1� ; (3.1)where �0; k; Az ; �; �z > 0, and � 6= 0.Chapman-Rihards: The Chapman-Rihards funtion [11℄ isvt = log�NtN0� = �0 h1� �1e��2ti1=(1��3) ; (3.2)where 14



�0; �2 > 0, 0 < �3 < 1 , and 1� �3 < �1 < 1;or �0; �2 > 0, �3 > 1 , and �1 < 1� �3:The restritions 1 � �3 < �1 < 1 and �1 < 1 � �3 are made in order to havethe in�etion time point of the urve later than at time zero. Re-parameterizing theChapman-Rihards funtion so that it ontains biologial parameters as in Zwieteringet al [30℄ (the re-parameterizing is done in the same way as the re-parameterization ofthe modi�ed Chapman-Rihards funtion, whih will be presented in detail in Setion3.2.1), givesvt = log�NtN0� = Az 2641� (1� �3)e� �3�3�13 �Az (�z�t)+�3375 11��3 ; (3.3)where Az = �0;� = �0�2� �31��33 ;�z = log � �11��3�� �3�2 :Substituting � by �3� 1 in the re-parameterized Rihards funtion (3.1) would resultin the re-parameterized Chapman-Rihards funtion (3.3). In fat, the Chapman-Rihards model is also known as the Rihards model.When �3 = 2=3, the funtion (3.2) results in the von Bertalan�y funtion [22℄.Rihards [13℄ showed that the funtion is also equivalent to the logisti model when�3 = 2. The restrition that we have adopted, that the in�etion time point shouldbe positive, restrits the values of �1 and �3 so that the otherwise possible �3 = 0is not allowed. However, with �3 = 0 and 0 < �1 < 1, the funtion orrespondsto the monomoleular growth model [21℄. The limiting form of the funtion when�3 tends to 1 and �1 tends to 0 in a subordinated rate, is the Gompertz (for moredetails, f. Appendix C). We will not disuss the details of the von Bertalan�y andmonomoneular models.The Chapman-Rihards model is very �exible. It an be �tted to both expo-nential and sigmoidal growth patterns. This high �exibility is, however, ombined15



with disadvantages as well. The parameters (�1; �2; �3) a�et the growth urve in ahighly ollinear manner whih an ause onvergene problems in the urve �ttingalgorithms.3.2 Modi�ed growth modelsAll models desribed above have a problem at t = 0 beause vt > 0 for all t (althoughv0 is lose to 0). Therefore we modify them in the spirit of Garthright [8℄, i.e. insteadof modeling log (Nt=N0), we model log(Nt). That is, we introdue a new parameterD < 0, and set gt = log(Nt) = yt +D; (3.4)where D is log(N0)� y0. We then have for the logisti urve,yt = �01� �1e��2t ; (3.5)for the Gompertz urve, yt = �0e�eb��2t ; (3.6)and for the Chapman-Rihards urve,yt = �0 h1� �1e��2ti1=(1��3) : (3.7)By adding the parameter D, �tting problems that would our whenever y0 is notie-ably above zero, are avoided.Convention 1 In the sequel, when we write logisti, Gompertz or Chapman-Rihards,we refer to their modi�ed versions as presented in this setion.3.2.1 Growth parametersTo obtain information about the growth behavior of the ells, we estimate the followingphysiologially important growth parameters: the lag (or adaptation) time �, the(maximum relative) growth rate �, and the stationary phase OD inrement Y .The lag time is traditionally de�ned as the time required to adjust ell metabolismto onditions permissive for reprodution [23℄. For instane, a longer lag time inertain hemial environment may indiate that it takes a longer time for the ellsto produe a defense against the hemial, and thus a longer time to be able tostart growing. The (maximum relative) growth rate is the maximum derivative of16



the logarithmi growth urve gt. From the growth rate the doubling time, the timerequired for the population to double, an easily be alulated as log(2)=�.2 A smallergrowth rate in some environment may for example indiate that the DNA repliationtakes a longer time in that environment, or that the rate of ell death is larger thanin the referene ondition. The amount of time required for a population to reah aspei� size is, for a range of relatively large sizes, approximately determined by theinitial population size, the lag time, and the doubling time. Therefore both lag timeand growth are important in safety related food mirobiology, for example.The ell density in the stationary phase re�ets the ahieved biomass inrease,given a limited amount of energy, i.e. the e�ieny of growth. We estimate thee�ieny of growth by the stationary phase OD inrement, the di�erene between the�nal OD and the initial OD. For example, a smaller stationary phase OD inrement insome environment may indiate that in that partiular environment the ells annotuse the existing energy as e�etively as in the referene ondition.3.2.2 Derivation of the growth parameters of the Chapman-RihardsmodelNext, the growth parameters of the Chapman-Rihards modelgt = log(Nt) = �0 h1� �1e��2ti1=(1��3) +D (3.8)are derived. Beause of modeling log(Nt) instead of log(Nt=N0) and adding the pa-rameter D, the growth parameters Az and �z that Zwietering et al use are not theparameters we want to estimate. In addition, the stationary phase OD inrement weestimate di�ers from the parameter Az of Zwietering et al in that it is the inrementon the non-logarithmi sale. The growth parameter derivation is illustrated in Figure3.1.The stationary phase OD inrement: The stationary phase OD inrement, the�nal OD minus the initial OD, isY = e�0+D � eg0= e�0+D � e�0(1��1) 11��3 +D:(We have idealized slightly in that we think of the �nal OD to be not that at theend of experiment but the value after in�nite time.) The stationary phase OD inre-ment should only be estimated for urves that have reahed, or almost reahed, thestationary phase at the last time point.2Note that in the �tted Chapman-Rihards urve there is no exat exponential phase, but if therewas one with the relative growth rate �, the doubling time would be log(2)=�.17
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Figure 3.1: An illustration of the growth parameter alulation in the Chapman-Rihards model. Here Nt is the population size at time t, tI is the in�etion timepoint, y0 is given by (3.7) (at t = 0), D = log(N0)� y0, and � is the lag time.The growth rate: The (maximum relative) growth rate, �, is de�ned as the slopeof the tangent of the logarithmi growth urve gt at its in�etion point. The in�etiontime point tI is obtained by alulating the seond derivative of the funtion (3.8) withrespet to t, setting this to zero and solving with respet to t. The �rst derivative isdgtdt = �0�1�2e��2t �1� �1e��2t� 11��3�11� �3while the seond derivative is given byd2gtdt2 = �0�21�22 � 11��3 � 1� e�2�2t(1� �1e��2t) 11��3�21� �3� �0�1�22e��2t �1� �1e��2t� 11��3�11� �3 :Equating this to zero gives the solutiontI = log( �11��3 )�2 :18



The growth rate parameter � is �nally derived by alulating the �rst derivative atthis in�etion time point tI :� = �dgtdt �tI = �0�2� �31��33 :Sine we work on the logarithmi size sale, � orresponds to the maximum relativegrowth rate on the absolute sale.The lag time: The tangent line through the in�etion point ism = �t+ �0� 11��33 � �tI +D:The lag time �, is the time axis value at the interept of this tangent line with thebase line y0 +D, so thaty0 +D = ��+ �0� 11��33 � �tI +D: (3.9)Solving (3.9) with respet to � yields:� = y0 � �0� 11��33 + �tI�= �0(1� �1) 11��3 � �0� 11��33 + � log( �11��3 )�2� :We were not able to rewrite the funtion (3.8) so that it would only ontain thegrowth parameters and D and �3. However, if needed, the initial values for theparameters (in the model �tting algorithms) an be estimated using the estimatesfrom the least squares �t of the model for log(Nt=N0), funtion (3.3). Furthermore,in Chapter 4 we will see that the Chapman-Rihards model an be expressed as afuntion of the initial OD denoted by s, the derivative d0 at time zero, �, �, and �3,even if we annot write down the funtion expliitly.The growth parameters of the logisti and Gompertz models are derived analo-gously. The growth parameters are� = 41��1 � log(� 1�1 )� 2�2 ;� = �0�24 ;Y = e�0+D � e �01��1+D;19



for the logisti model, and � = be + e�eb � 1e�2e ;� = �0�2e ;Y = e�0+D � e�0e�eb+D;for the Gompertz model.3.2.3 Comparing the �ts of the modi�ed growth modelsWe ompare the �ts of the modi�ed growth models on the smoothened, blank or-reted, and alibrated data desribed in Setion 2.4, i.e. hundreds of growth urvesfrom di�erent environments. Nonlinear regression models were �tted via least squaresin the 145 measurement points, using the large-sale algorithm in the lsqnonlin-funtion in Matlab.3 It is a subspae trust region method based on the interior-re�etive Newton method desribed in [3℄, [4℄. Our experiene shows that the solu-tions are not sensitive to the hoie of the start values. For the sake of reproduibility,we give the exat start values that we used for the parameters in the model �ttingalgorithms: �0 = 4:5, �1 = �50, �2 = 0:3, D = �3 for the logisti; �0 = 4:5, b = 3:2,�2 = 0:3, D = �3 for the Gompertz; and �0 = 4:5, �1 = �50, �2 = 0:3, �3 = 3,D = �3 for the Chapman-Rihards.The �ts are ompared visually and by looking at the oe�ient of determination,r2 = 1� SSESST = 1� P145tp=1(g�tp � xtp)2P145tp=1(xtp � �x)2 ; (3.10)where g�tp is the �tted urve value at time point tp, xtp is the observed4 value at timepoint tp, and �x = P145tp=1 xtp145 .Figures 3.2-3.5 show typial urves �tted by the three models ompared. Asexpeted, the Chapman-Rihards method nearly always gives the best �t, sine itenompasses both the logisti and the Gompertz models. The Gompertz model over-estimates the slope, and moreover, it does not give a su�iently good �t at any partof the urve. The logisti model gives a better �t than the Gompertz. However, theresidual plots imply that there is a small systemati error in the Chapman-Rihards3The Matlab funtions are available upon request.4Smoothened, blank orreted, and alibrated OD value.20



model as well. The minor systemati deviations of the data from the theoretial modelare in the beginning of the urve and in the transition from the exponential phase tothe stationary phase.We are primarily interested in modeling typial growth urves rather than prob-lemati growth urves. Hene, the disussion above onsiders typial growth urves.However, we would like to say a few words about �tting atypial growth urves, threeexamples are given in Figure 3.6. The Chapman-Rihards model gives learly thebest �t also for atypial urves although it annot be onsidered su�ient to desribethem. The top urve in Figure 3.6 is an example of an outome of tehnial artifats.The middle urve is a typial example of a urve in the Methylmethanesulfonate en-vironment. The Chapman-Rihards model should not be used for the urves in thisenvironment. The bottom urve shows oasionally observed atypial behavior in thevery beginning of an experiment. Given the diversity of forms atypial urves assume,it is very di�ult to �nd a model that �ts su�iently well to all types of growthurves. However, even if the model annot be onsidered su�ient to desribe atypi-al urves, it ould be possible to use the information of the �t, e.g. the oe�ient ofdetermination, to �lter out bad urves. We will do this in Chapter 7.It is natural that the Chapman-Rihards model gives the best �t of the data sineit enompasses the other two models and it has more parameters than the other twomodels. This does not neessarily mean that the model �ts well to the data, themodel ould be over�tting. As the number of parameters in a model inreases, themodel urve an bend in more ompliated ways. If the number of parameters inour model is larger than neessary to ath the main harateristis of the "true"growth urve, the risk of over�tting inreases. Similarly, if we use models with lessparameters than neessary, the risk of under�tting inreases; the models may not be�exible enough to math the atual growth urve well enough. However, sine thereare so many measurements for eah urve, we do not have reason to believe that wehave any over�tting problem here.3.3 A three part modelFrom the residual plots of the �t of hundreds of growth urves, we see that the �t inthe beginning of the urve and in the transition from the exponential phase to thestationary phase, is often not good. Even the �t of the Chapman-Rihards modelis sometimes rather poor in these parts of the urve. In addition, sine the modelsare sigmoidal, the linear part of the urve may be poorly estimated. This is the aseespeially with the Gompertz model.The desire to overome the problems mentioned above was one of the reasons whywe wanted to �t a model whih divides the growth urve into three parts. The otherreason was to try to neutralize orrelation between the initial OD and the lag time,21



and between the initial OD and the growth rate.It has been reported that the initial OD may in�uene the rate of growth [5℄. Thisis a natural phenomenon, beause in a sample with more ells in the beginning, thereare less nutrients per ell, and thus the population an grow for a shorter time (thana population with less ells in the beginning) before it runs out of nutrients. It maynot even reah the maximum growth rate. The growth in the beginning, when thereare still enough nutrients for all the ells, does not tend to be a�eted by the initialOD.We investigated the orrelation between initial OD (the alibrated and blank or-reted OD value at the time zero) and growth parameters on a dataset ontaining99 wild types in the referene ondition. The initial OD values vary between 0.015and 0.106 (Figure 3.7). The dataset omes from an experiment where the e�et ofthe initial OD was studied, and thus the range of the initial OD values is wide onpurpose. The growth parameters are alulated as given in Setion 3.2.2 (using theChapman-Rihards model). There is a strong negative orrelation between the lagtime and initial OD, and between the growth rate and initial OD (Figure 3.8). How-ever, there is hardly any orrelation between the initial OD and the stationary phaseOD inrement. Figures 3.9-3.11 show the histograms of the initial OD values in eahenvironment and over all environments in the motivating dataset. The averages andoe�ient of variations of the initial OD values in eah run are given in Table 3.1.We onstrut a model onsisting of three parts: the beginning of the urve untilthe in�etion point, the linear part following the in�etion point, and the rest afterthe linear part.5 One of the funtions, the logisti, the Gompertz, or the Chapman-Rihards, is used but with the exeption that the linear part in the middle is modeledas a straight line. That is, we have
g�t = 8>>>>>><>>>>>>:

gt; t � tI ;gtI + �(t� tI); tI � t � tI +�;gt�� + ��; t � tI +�; (3.11)
where � is the time span of the linear part (� � 0) and gt is the logisti, theGompertz, or the Chapman-Rihards funtion as given in (3.4). The three part modelis illustrated in Figure 3.12.5We still all the ut point in�etion point. 22



3.3.1 Fitting the three part model to the dataWe �tted the three part model as a nonlinear regression model via least squares asin Setion 3.2.3, to the same data.6 The start values for the parameters in the model�tting algorithms were the same as in Setion 3.2.3 and the start value for � was 0.Atypial growth urves are exluded from the omparisons. Examples of urve �tswith the three part model are given in Figures 3.13-3.16. Figures 3.2-3.5 show thesame data �tted by the ordinary models.The Gompertz model gains the most from adding the linear part in the middle.For almost all urves the estimate of � is larger than one hour, and the �t of themodel improves remarkably ompared to the ordinary Gompertz model. With thelogisti growth funtion as gt, the estimate of � is zero for more than 50% of theurves. For the rest of the urves the �t is in general improved by adding a linear partin the middle. However, the ordinary Chapman-Rihards model (3.8) gives a better�t than the three part model with logisti or Gompertz funtion.The estimate of � is smallest when using the Chapman-Rihards funtion in thethree part model. For over 90% of the urves it is zero, and for over 95% less thanone hour. Even for the urves with the estimate of � larger than one hour, the �t ofthe the three part model is often similar to the �t of the ordinary Chapman-Rihardsmodel. Although in some ases the �t of the three part model is learly better, it doesnot neutralize the orrelation between the initial OD and lag time and the orrelationbetween the initial OD and growth rate (Figure 3.17). In Chapter 5 we will introdueanother method to neutralize the e�et of the initial OD.3.4 DisussionWith rather typial "normal" growth urves, the Chapman-Rihards model alwaysgives a reasonably good �t. However, the residual plots imply that there is a systematierror in the model, and that the Chapman-Rihards model is not ideal for our data.On the other hand, sine the small deviations of the data from the theoretial modelare mostly in the transition from the exponential phase to the stationary phase, thegrowth parameter estimation should not su�er from the model not being exat.The three part model with logisti and Gompertz funtions was learly betterthan the logisti and Gompertz models themselves, but not better than the ordinaryChapman-Rihards model. When ompared to the Chapman-Rihards model, thethree part model with the Chapman-Rihards funtion gave a better �t in few ases,and in the rest of the ases the �t was equal to that of the Chapman-Rihards model.Sine the tree part model is more ompliated than the Chapman-Rihards model,6The Matlab funtions are available upon request.23



adding a linear part in the middle may not be relevant here. However, in Chapter 5we will see that it is essential in the standardization of urves.
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Figure 3.2: The logisti, Gompertz and Chapman-Rihards models are �tted to thedata NOD0305, well 3. The orresponding residual plots are on the right.25
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Figure 3.3: The logisti, Gompertz and Chapman-Rihards models are �tted to thedata NOC0426, well 7. The orresponding residual plots are on the right.26
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Figure 3.4: The logisti, Gompertz and Chapman-Rihards models are �tted to thedata NOD0326, well 3. The orresponding residual plots are on the right.27
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Figure 3.5: The logisti, Gompertz and Chapman-Rihards models are �tted to thedata NOD0406, well 1. The orresponding residual plots are on the right.28
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Figure 3.6: Some atypial growth urves (starting from the top: 39C0309, well 62;MMC0408, well 6; 41E0314, well 20) and �tted Chapman-Rihards models. The or-responding residual plots are on the right.29
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Figure 3.9: The initial OD values of all mutants and wild types in eah environment.The values are blank orreted and alibrated.
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Figure 3.10: The initial OD values of all mutants and wild types in eah environment.The values are blank orreted and alibrated.
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Figure 3.11: The initial OD values of all mutants and wild types in all environments.The values are blank orreted and alibrated.
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Table 3.1: The mean, minimum, maximum and oe�ient of variation (%) of theinitial OD values of all mutants and wild types in eah run. The values are blankorreted and alibrated.Run Mean Min Max CV (%) Run Mean Min Max CV (%)39C0307 0.10 0.05 0.15 14 MVC0413 0.06 0.03 0.21 3439D0307 0.10 0.04 0.15 14 MVD0413 0.07 0.02 0.11 2239E0307 0.10 0.03 0.14 15 MVE0413 0.07 0.04 0.14 2239C0309 0.10 0.07 0.16 15 MVC0417 0.06 0.03 0.09 2139D0309 0.10 0.05 0.16 13 MVD0417 0.06 0.02 0.10 2339E0309 0.10 0.04 0.15 16 MVE0417 0.06 0.03 0.08 1941C0312 0.10 0.05 0.14 12 MMC0408 0.07 0.03 0.36 4241D0312 0.10 0.04 0.15 15 MMD0408 0.08 0.03 0.15 3041E0312 0.10 0.04 0.13 13 MME0408 0.06 0.03 0.12 3341C0314 0.10 0.06 0.19 14 MMC0411 0.06 0.02 0.10 2441D0314 0.10 0.05 0.15 21 MMD0411 0.06 0.02 0.09 2241E0314 0.09 0.04 0.12 14 MME0411 0.06 0.03 0.11 20DNC0316 0.25 0.19 0.35 11 NOC0305 0.08 0.04 0.16 23DND0316 0.30 0.22 0.44 12 NOD0305 0.11 0.03 0.35 47DNE0316 0.29 0.19 0.48 13 NOE0305 0.12 0.04 0.36 51DNC0319 0.22 0.16 0.31 13 NOC0326 0.08 0.04 0.11 17DND0319 0.32 0.21 0.46 13 NOD0326 0.08 0.04 0.20 28DNE0319 0.30 0.18 0.40 13 NOE0326 0.09 0.04 0.23 26CAC0328 0.15 0.06 0.29 24 NOC0406 0.06 0.03 0.08 20CAD0328 0.13 0.06 0.27 33 NOD0406 0.06 0.03 0.09 23CAE0328 0.13 0.05 0.21 24 NOE0406 0.06 0.03 0.09 18CAC0330 0.09 0.03 0.20 36 NOC0426 0.07 0.01 0.15 48CAD0330 0.07 0.01 0.19 40 NOD0426 0.07 0.02 0.17 40CAE0330 0.05 0.01 0.15 39 NOE0426 0.06 0.02 0.18 40NAC0321 0.10 0.06 0.16 15NAD0321 0.10 0.05 0.16 16NAE0321 0.12 0.03 0.30 34NAC0323 0.11 0.05 0.18 22NAD0323 0.11 0.03 0.19 24NAE0323 0.10 0.01 0.23 30
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Figure 3.13: The three part model with logisti, Gompertz and Chapman-Rihardsfuntions �tted to the data NOD0305, well 3. The estimates of � are 8.37 (Gompertz),4.86 (Logisti) and 1.57 (Chapman-Rihards).35
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Figure 3.14: The three part model with logisti, Gompertz and Chapman-Rihardsfuntions �tted to the data NOC0426, well 7. The estimates of � are 6.98 (Gompertz),3.75 (Logisti) and 3.38 (Chapman-Rihards).36
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Figure 3.15: The three part model with logisti, Gompertz and Chapman-Rihardsfuntions �tted to the data NOD0326, well 3. The estimates of � are 8.22 (Gompertz),4.78 (Logisti) and 2.28 (Chapman-Rihards).37
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Chapter 4An alternative parameterization ofthe Chapman-Rihards modelIn this hapter we will see that the Chapman-Rihards model growth urves presentedin Chapter 3 an be expressed as a funtion of the initial population size s (on thenon-logarithmi sale), the growth parameters �; �, and Y; and the derivative at timezero (on the logarithmi sale), denoted by d0. This last parameter is a naturalomplement to �, �, and Y in the phenotypi analysis of the mutants: if the �ts ofthe models were perfet, d0 would niely re�et the initial adaptation behavior.Although we annot state the Chapman-Rihards funtion expliitly in terms ofthe parameters s, d0, �, �, and Y , it is still important to investigate the basi prop-erties of this parameterization. It will, for example, be used in the onstrution ofsummary urves in Chapter 6.Reall that the Chapman-Rihards model is given bygt = �0 h1� �1e��2ti1=(1��3) +D; t � 0;where either �0; �2 > 0, 0 < �3 < 1, 1 � �3 < �1 < 1 or �0; �2 > 0, �3 > 1,�1 < 1��3. The parameter D is always negative. The Chapman-Rihards urves arenot de�ned at �3 = 1, but the limiting forms when �3 tends to 1 and �1 tends to 0 ina subordinated rate, are members of the Gompertz family.The model we will study in this setion is the Gompertz augmented Chapman-Rihards model whih is obtained from the above equation by writing �1 = eb(1��3),b > 0, gt = �0 h1� eb(1� �3)e��2ti1=(1��3) +D; for �3 6= 1; andgt = �0e�eb��2t +D; for �3 = 1:41



For more details, f. Appendix C.The parameterization properties of the model will be studied in Setion 4.1. Theparameter spae (augmented with the parameters orresponding to the Gompertzurves) is also given expliitly. Setion 4.2 investigates ertain onvexity properties ofthe parameter spae.4.1 UniquenessIn this setion we show that a hybrid parameterization (between the original and thenew parameterization) with s, d0, �, �, and �3 as parameters is unique. We thenaddress the question of the uniqueness of the representation by the parameters s, d0,�, �, and Y: We formally hek all but one of the steps of the proof. While no formalproof of the monotoniity of a ertain impliit funtion stated in Conjeture 1 (onpage 45) is available, we show through an extensive numerial investigation that theonjeture is likely to hold. Theorem 1 is the main result of the setion.We will need the following basi property of the Chapman-Rihards model:Proposition 1 The (�0; �1; �2; �3;D)-parameterization is unique.Proof. This uniqueness is probably well-known, but for ompleteness we give a proofin Appendix E.The parameters of the new parameterization (in the ase �3 6= 1) an be writtenas s = e�0(1��1) 11��3 +D (4.1)d0 = �0�1�2(1� �1) �31��31� �3 (4.2)� = (1� �1) 11��3 � �3 11��3 + �3 �31��3 log( �11��3 )�2�3 �31��3 (4.3)� = �0�2�3 �31��3 (4.4)Y = e�0+D � e�0(1��1) 11��3 +D (4.5)= e�0+D � s;= eA � s; 42



where A = �0 +D is the asymptote of the urve (on the logarithmi sale).We start with a lemma onerning the Gompertz model in the hybrid parameteri-zation:Lemma 1 The Gompertz urve orresponding to any hybrid parameter ombinations > 0, 0 < d0 < �, � > 0, � > 0, and �3 = 1 is unique. The parameter b is thesolution of the equation b+1� eb = log(d0� ), and the three other parameters are givenby �0 = ��be+e�eb� 1e , �2 = b+e�eb+1�1� , and D = log(s) � ��e�ebbe+e�eb� 1e . Furthermore, thestationary phase OD inrement isY = e 1�e�ebb�1e +e�eb !��+log(s) � s:Proof. See Appendix C.We will next state a series of tehnial lemmas and propositions formulated for aspeial Chapman-Rihards sub-model, restrited by the assumptions s = 1, 0 < d0 <1, � = 1, � = 1. We will refer to this as the unit-saled model.In the unit-saled model, the equations (4.1-4.4) are equivalent to the equations(4.6-4.9) below d0 = �1(1� �1) �31��3(1� �3)� �31��33 ; (4.6)�0 = 1� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3 ; (4.7)�2 = 1�0� �31��33 ; (4.8)D = ��0(1� �1) 11��3 : (4.9)Reall that �0; �2 > 0, 0 < �3 < 1, 1��3 < �1 < 1 or �0; �2 > 0, �3 > 1, �1 < 1��3.The asymptote A = �0 +D an be written asA = 1� (1� �1) 11��3� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3 : (4.10)
43



The following lemma addresses the hybrid parameterization in the unit-saled ase:Lemma 2 The (d0; �3)-parameterization is unique in the unit-saled model, i.e. thereis exatly one urve in the Chapman-Rihards (Gompertz augmented) model for eahombination of 0 < d0 < 1 and �3 > 0, and s = 1, � = 1, � = 1.Proof. The parameterization is unique if the equation (4.6) has at most one solution�1 < 1 � �3 for �xed �3 > 1, or 1 � �3 < �1 < 1 for �xed �3 suh that 0 < �3 < 1.Rewrite the equation (4.6) asf(�1) := �1(1� �1) �31��3 � d0(1� �3)�3 �31��3 = 0:Di�erentiate f with respet to �1 to obtainf 0(�1) = (1� �1) �31��3 � �1�3(1 � �3) (1� �1) �31��3(1� �1)= (1� �1) �31��3 �1� �1�3(1� �3)(1� �1)� :For �3 > 1 and �1 < 1� �3,f 0(�1) = (1� �1) �31��3 �1� �1�3(1� �3)(1� �1)�> (1� �1) �31��3 �1� (1� �3)(1� �1)(1� �3)(1� �1)� = 0;and for 0 < �3 < 1 and 1� �3 < �1 < 1,f 0(�1) = (1� �1) �31��3 �1� �1�3(1� �3)(1 � �1)�< (1� �1) �31��3 �1� (1� �3)�3(1� �3)�3� = 0:The above monotoniity properties, the ontinuity and appropriate sign hanges of fin the allowed �1 intervals, prove the required existene and uniqueness of �1 in bothases �3 < 1 and �3 > 1. (The uniqueness of the Gompertz urve when �3 = 1 followsdiretly from Lemma 1). 2It is time for a seond result about the Gompertz augmented model:Lemma 3 Fix 0 < d0 < 1: In the unit-saled model, the funtion A de�ned in (4.10)with the onstraint (4.6) is ontinuous at �3 = 1 as a funtion of �3 > 0.44



Proof. See Appendix C.The following lemma is used in the proof of Lemma 5(b).Lemma 4 Fix �3 > 0: In the unit-saled model, the funtion A de�ned in (4.10) withthe onstraint (4.6) is stritly inreasing as a funtion of d0, 0 < d0 < 1.Proof. See Appendix E.Lemma 5 Fix 0 < d0 < 1: In the unit-saled model, the funtion A de�ned in (4.10)with the onstraint (4.6) satis�es(a) lim�3!0A =1(b) lim�3!1A = 1�d0d0�log(d0)�1 .Proof. See Appendix E.Now, we are prepared to disuss the main alternative parameterization. As indi-ated earlier, we need the following monotoniity assumption:Conjeture 1 Fix 0 < d0 < 1: In the unit-saled model, the funtion A de�ned in(4.10) with the onstraint (4.6) is stritly dereasing as a funtion of �3 > 0.Note that the onjeture is purely tehnial. Reall that the following restritionsalso apply: 1� �3 < �1 < 1 for 0 < �3 < 1 or �1 < 1� �3 for �3 > 1. The onjetureis further disussed and numerially motivated in Appendix D.In the sequel we assume that Conjeture 1 holds.Proposition 2 Provided that Conjeture 1 holds, the (d0; A)-parameterization is uni-que in the unit-saled model, and the Chapman-Rihards (Gompertz augmented) urvesexist if and only if A > 1�d0d0�log(d0)�1 .Proof. Consider a model urve from the hybrid parameterization with s = 1, � = 1,� = 1, and 0 < d0 < 1 and �3 �xed. The asymptote of this urve is given by (4.10),where �1 solves (4.6). Now onsider A a funtion of �3. This funtion is obviouslyontinuous at any �3 6= 1 and Lemma 3 states that it is also ontinuous at �3 = 1.Conjeture 1 states that A is stritly dereasing and hene (4.10) has at most onesolution �3, for �1 and A �xed. Combining this with the two limits in Lemma 5�nally ompletes the proof.Proposition 3 Provided that Conjeture 1 holds, the (d0; Y )-parameterization is uni-que in the unit-saled model, and the Chapman-Rihards (Gompertz augmented) urvesexist only for Y > e 1�d0d0�log(d0)�1 � 1. 45



Proof. Follows from Proposition 2 and equation (4.5).For any Chapman-Rihards (Gompertz augmented) model urve we an arbitrarilytime sale, sale and translate the log-size dimension, and the resulting urve is stilla Chapman-Rihards (Gompertz augmented) model urve. This model invarianetogether with Lemma 2 and Proposition 3 will be used to prove:Theorem 1 Consider the Chapman-Rihards Gompertz augmented model.(a) Any model urve is uniquely determined by the parameters s, d0, �, �, and�3. The parameters are onstrained by the inequalities s > 0, 0 < d0 < �, � > 0,� > 0, and �3 > 0. Curves with �3 = 1 orrespond to the Gompertz urves.(b) Provided that Conjeture 1 holds, any model urve is uniquely determinedby the parameters s, d0, �, �, and Y: The parameters are onstrained by theinequalities s > 0, 0 < d0 < �, � > 0, � > 0, andY > Y ; Y := e 1� d0�d0� �log( d0� )�1!��+log(s) � s:() The unique Gompertz urve for eah allowed parameter ombination s, d0, �,and � orresponds to the stationary phase OD inrement parameterY = e 1�e�ebb�1e +e�eb !��+log(s) � s;where b is the solution of the equationb+ 1� eb = log�d0� � :Proof.(a) Take a Chapman-Rihards model growth urvegt(�0; �1; �2; �3;D) = �0 h1� �1e��2ti1=(1��3) +Dand transform it by multiplying t by some onstant  > 0, by multiplying the wholeurve by some onstant k > 0, and by moving the urve (upwards or downwards) bysome onstant m. Then,kgt(�0; �1; �2; �3;D) +m = k��0 h1� �1e��2ti1=(1��3) +D�+m (4.11)= k�0 h1� �1e��2ti1=(1��3) + kD +m= gt(k�0; �1; �2; �3; kD +m);46



so that the result is still a Chapman-Rihards model urve.Take a growth urve gt with �xed (�0; �1; �2; �3;D) orresponding to the hybridparameters (s; d0; �; �; �3). Then using (4.11) with k = 1�� ,  = �, m = � log(s)�� , weget 1��gt�(�0; �1; �2; �3;D)� log(s)�� = ĝt(1; d0� ; 1; 1; �3); (4.12)where the ĝt refers to the unique urve with hybrid parameters known to exist in thisase by Lemma 2. Inverting the relation (4.12) gives thatgt(�0; �1; �2; �3;D) = ��ĝ t� (1; d0� ; 1; 1; �3) + log(s);for any s > 0, 0 < d0 < �, � > 0, � > 0, and �3 > 0, so that gt must also be uniquelydetermined by s, d0, �, �, and �3. Starting with an arbitrary ombination of s > 0,0 < d0 < �, � > 0, � > 0, and �3 > 0,��ĝ t� (1; d0� ; 1; 1; �3) + log(s)is always a model urve with parameters s, d0, �, �, and �3. This motivates theparameter spae restritions.(b) We may show the statements by showing that for s; d0; �, and � �xed, �3 isdetermined by Y , if Conjeture 1 holds. Using (4.12) we obtainA(1; d0� ; 1; 1; �3) = A(s; d0; �; �; �3)�� � log(s)�� ;and hene Y (1; d0� ; 1; 1; �3) = �Y (s; d0; �; �; �3)s + 1� 1�� � 1: (4.13)Now, suppose that several �3-hoies yielded the same Y on the right side of (4.13).Then the same �3-hoies would result in the same Y also on the left side, whih wouldontradit Proposition 3, if the Conjeture 1 was true. Finally, by inverting (4.13),we also get the parameter spae onstraints from the restrition of Y in Proposition3. () Follows diretly from Lemma 1. 2
47



4.2 Convexity propertiesIn this setion we work under the assumption that Conjeture 1 is true and use theparameterization with s; d0; �; �, and Y . The results in this setion will be needed inChapter 6 where two methods for onstruting summary urves are disussed. Moreonretely, the existene of summary urves is equivalent to the onvexity of the newparameter spae (for all �xed s) or that of its logarithmi version (for all �xed log(s)).As disussed in detail in Chapter 6, the method I summary urves do not always existwhereas the method II summary urves always exist.Reall the notation Y for the lower bound of Y (stated in Theorem 1),Y (s; d0; �; �) = s264e 1� d0�d0� �log( d0� )�1!�� � 1375 :The key to the proof is the following lemma:Lemma 6 The log(Y ) is onvex as a funtion of log(d0), log(�), and log(�) for any�xed log(s), where s > 0, 0 < d0 < �, � > 0, and � > 0.Proof. The proof is rather tehnial and we have therefore hosen to give it in Ap-pendix E.Theorem 2 Consider the parameter spae (s; d0; �; �; Y ), where s > 0 is �xed, 0 <d0 < �, � > 0, � > 0, and Y > Y . Then the following holds(a) The parameter spae is not onvex for any �xed s.(b) The omponent-wise logarithmi version of the parameter spae is onvex forall �xed log(s).Proof.(a) Fix two parameter ombinations with the same s:(s; d0(1); �(1); �(1); Y(1)) and (s; d0(2); �(2); �(2); Y(2)).48



Take a onvex ombination of the parameters and letd0� = �d0(1) + (1� �)d0(2);�� = ��(1) + (1� �)�(2);�� = ��(1) + (1� �)�(2);Y� = �Y(1) + (1� �)Y(2);for some 0 < � < 1. The parameter spae is onvex if and only if �� > 0, �� > 0,0 < d0� < ��, and Y� > Y � (s; d0�; ��; ��). Sine it is obvious that �� > 0, �� > 0,0 < d0� < ��, the onvexity of the parameter spae is equivalent to proving thatY� > Y � (s; d0�; ��; ��) : (4.14)We next onstrut a set of parameters for whih the previous inequality is violated.For s = 1, take � = 0:5, d0(1) = 0:1, d0(2) = 0:0001, �(1) = �(2) = 1, �(1) = �(2) = 1,Y(1) = 0:91 (> Y (1) � 0:8997), and Y(2) = 0:25 (> Y (2) � 0:1295). ThenY� = 0:25 + 0:912 = 0:58and Y �(1; 0:1 + 0:00012 ; 1; 1) � 0:5913;whih ontradits (4.14). For an arbitrary �xed s, multiply Y(1) and Y(2) by s andleave the other parameters unhanged.(b) Fix again two parameter ombinations with the same s:(s; d0(1); �(1); �(1); Y(1)) and (s; d0(2); �(2); �(2); Y(2)).Take a onvex ombination of the parameters on the logarithmi level and denote theorresponding non-logarithmi parameters byd0� = d�0(1)d1��0(2);�� = ��(1)�1��(2) ;�� = ��(1)�1��(2) ;Y� = Y �(1)Y 1��(2) ;49



for some 0 < � < 1. Sine �� > 0, �� > 0, 0 < d0� < ��, proving thatlog(Y�) = � log(Y(1)) + (1� �) log(Y(2)) (4.15)> log [Y � (log(s); log(d0�); log(��); log(��))℄ ;will imply the onvexity of the omponent-wise logarithmi version of the parame-ter spae for all �xed log(s). The inequality (4.15) follows from Lemma 6 and theobservation thatlog(Y(i)) > log �Y �log(s); log(d0(i)); log(�(i)); log(�(i))�� ; i = 1; 2:2
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Chapter 5Standardizing urvesAs was seen in Setion 3.3, the lag time and growth rate depend strongly on theinitial OD. However, in large-sale experiments with analysis of hundreds of mutants,it is hard to keep the initial OD onstant between di�erent experiments. Hene,it would be desirable to redue the orrelation and to make the urves more easilyomparable by developing a method for standardizing growth urves with respetto the initial OD. Our approah has as a starting point the simultaneous �tting ofa three part model urve (introdued in Chapter 3) in [12℄ (for more details, f.Appendix F). In the optimal �t of the simultaneous model, one of the urves willtypially be a Chapman-Rihards urve while the other will be a three part modelurve. However, this approah is not fully satisfatory as it does not neutralize theinitial OD orrelation with the lag time and growth rate.The philosophy of the new approah we introdue in this hapter is as follows.Assume that the idealized model of a logarithmi growth urve onsisting of a lagphase, an exponential phase and a stationary phase, is true. What di�erene should weexpet between the urves starting from di�erent population sizes, but with similar ellphase ompositions? In the �rst phase, when there are plenty of nutrients available,we expet the same relative growth behavior. In the seond phase, the time of theexponential growth will be shorter for a larger initial population. And �nally, whenthe nutrient onentrations are "low enough", the entry into the stationary phase willtake plae with populations of approximately the same sizes and similar ompositions,so that the logarithmi urves will have a similar shape also in this part.In the type of data we have, a large proportion of the variability in the �ttedurves omes from the initial population size. Can we predit what the behavior of agrowth urve would have been, had the population had a standard initial OD? Can weredue the sensitivity of the growth parameter estimates to initial OD? Essentially, theidealized model tells us to ut away a linear piee in the middle of one of the logarithmigrowth urves in order to get the other. Moreover, it is natural to expet roughly the51



same stationary phase OD inrement. The total growth of the population has todo with how e�etively the available energy is used. We do not know exatly whathappens, but it is likely that some of the energy onsumption in the beginning goes toinitiating the growth proess whih would imply a slightly smaller stationary phase ODinrement for larger populations, but we will ignore this. In the exponential phase thepopulations grow and onsume nutrients similarly exept that the population witha smaller initial OD grows for a longer time beause there is more energy per ellavailable. The small di�erene in the population sizes when the lak of nutrientsbegins to slow down the growth, possibly also a�ets the relative growth rate slightly(the larger the population is, the faster it will onsume the resoures). However,this e�et is probably quite small and therefore we will ignore it. Altogether theseapproximations motivate the assumption that the stationary phase OD inrementsshould be approximately equal irrespetive of the size of the initial OD (within ertainlimits of initial OD).The idea behind the standardization is that we �x a standard initial OD andpredit what would have happened, had we done the experiment with the standardinitial OD and �tted the Chapman-Rihards urve on these measurements. We hopethat with the standardization, the urves from di�erent runs and environments beomemore easily omparable. The standardization will also be useful for visualizing thedata.We �rst present a method for standardizing growth urves upwards, i.e. when thestandard initial OD is larger than the observed initial OD. We begin by desribing themethod for standardizing one urve and then generalize it to obtain a standardizedgrowth urve of two or more urves. Seond, we present a method for standardizinggrowth urves downwards. The urves are standardized upwards or downwards de-pending on the relation between the hosen standard initial OD and their observedinitial OD based on the ordinary Chapman-Rihards urve �t.15.1 Standardizing upwardsHere, we try to predit what would have happened had the initial OD been �xed to belarger than the observed initial OD. We use the three part model presented in Setion3.3 to �t the observed urve so that a standardized urve an be obtained by 'lifting'the �tted urve to start from log(s0) and removing the linear piee from the middle(Figure 5.1). The growth parameters, i.e. � (lag time), � (maximum relative growthrate), and Y (stationary phase OD inrement), are to be the same for the three partmodel urve and for the standardized urve. Sine the time span of the linear part inthe three part model is not modeled freely, the parameter values (and thus the �tted1The observed initial OD is de�ned as the value of the Chapman-Rihards urve �t to the observedOD values at time zero. 52
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is the (maximum relative) growth rate, and � is the time span of the linear part. We�t the three part model to the observed data with the onstraint that by removing thelinear piee in the middle and lifting the urve by � � 0, we obtain the standardizedurve, whih will be denoted by g�t :g�t = �0 h1� �1e��2ti1=(1��3) +D + �:Let s0 denote the standard initial OD (a �xed value). The logarithm of the initialOD of the standardized urve has to equal log(s0), i.e.�0(1� �1) 11��3 +D + � = log(s0): (5.2)Solving the equation (5.2) for � gives� = log(s0)� �0(1� �1) 11��3 �D:The time span of the linear part, �, is adjusted so that the stationary phase ODinrement of the three part model urveY = e�0+D+�� � e�0(1��1) 11��3 +Dequals the stationary phase OD inrement of the standardized urveY � = e�0+D+� � e�0(1��1) 11��3 +D+� :This yields� = ��0 �D + log[e�0+D+� � e�0(1��1) 11��3 +D+� + e�0(1��1) 11��3 +D℄� : (5.3)Model �tting proedureWe �rst �x a standard initial OD s0. The urves whih initial OD aording to theChapman-Rihards model �t is smaller than or equal to s0, will be standardized usingthis proedure:1. An initial value of � is hosen.2. The model (5.1) is �tted using a nonlinear least squares method, keeping ��xed.3. The stationary phase OD inrements, Y and Y �, are alulated. If jY �Y �j > ,then a new value of � is alulated as given in (5.3). The onstant  is themaximum allowed di�erene between Y and Y � ( is usually a very small realnumber).The steps 2 and 3 are repeated until jY � Y �j < .54



5.1.1 Standardizing two or more urves simultaneouslyThe method presented in the previous setion an easily be generalized to obtaina single standardized urve for n urves. The three part models are �tted to theobserved urves with a onstraint that the standardized urve an be obtained byremoving the linear piees and lifting the urves to start at log(s0). The lag time andgrowth rate are kept the same in all three part model urves and in the standardizedurve. The stationary phase OD inrement of the standardized urve is set to be thesame as the average of the stationary phase OD inrements of the three part modelurves.In the sequel, we disuss a standardization method for two urves. The generali-zation to n urves an be done analogously. The three part models with the Chapman-Rihards funtion an be written asg�(k)t = 8>>>>>>><>>>>>>>:
g(k)t ; t � tI ;g(k)tI + �(t� tI); tI � t � tI +�k;g(k)t��k + ��k; t � tI +�k; (5.4)where g(k)t = �0 h1� �1e��2ti1=(1��3) +Dk;and k = 1; 2. The standardized urve isg�t = �0 h1� �1e��2ti1=(1��3) +Dk + �k;where �k � 0.The logarithm of the initial OD of the standardized urve is set to equal log(s0),i.e. �0(1� �1) 11��3 +D1 + �1 = �0(1� �1) 11��3 +D2 + �2 = log(s0): (5.5)Solving the equation (5.5) for �1 and �2, gives�1 = log(s0)� �0(1� �1) 11��3 �D1;�2 = log(s0)� �0(1� �1) 11��3 �D2:The stationary phase OD inrements of the three part model urves areY1 = e�0+D1+��1 � e�0(1��1) 11��3 +D1 ;Y2 = e�0+D2+��2 � e�0(1��1) 11��3 +D2 :55



The time spans of the linear parts, �1 and �2, are adjusted so that the stationaryphase OD inrement of the standardized urve equals the average of the stationaryphase OD inrements of the three part model urves, i.e. Y � = Y1+Y22 . The expressionsfor �1 and �2 beome �1 = ��0 �D2 � �2 + �1 + log[$℄� ; (5.6)where$ = eD2+�22e�0 � 2e�0(1��1)1=(1��3) + e�0(1��1)1=(1��3)��1 + e�0(1��1)1=(1��3)��2 � e�0+�2���2 ;and �2 = ��0 �D2 + log[#℄� ; (5.7)where# = eD2+�22e�0 � 2e�0(1��1)1=(1��3) + e�0(1��1)1=(1��3)��1 + e�0(1��1)1=(1��3)��2 � e�0+�1���1 :One possible variant of this standardization method would be to require thatlog(Y �) = log(Y1)+log(Y2)2 (instead of Y � = Y1+Y22 ), yielding a methodology loselyrelated to the method II summary urves that will be presented in Chapter 6.Model �tting proedureThe models are �tted using a nonlinear least squares method. First a standard initialOD s0 is �xed. As in the standardization of a single urve, this proedure will beused only for urves whih initial OD aording to the Chapman-Rihards model �tis smaller than or equal to s0:1. Initial values for �1 and �2 are obtained by �rst standardizing eah of theurves separately i.e. using the method presented in Setion 5.1.2. The Model (5.4) is �tted keeping �1 and �2 �xed.3. The stationary phase OD inrements, Y1, Y2, and Y �, are alulated. If jY1+Y22 �Y �j > , a new value for �1 is alulated using equation (5.6) and the model is�tted again keeping �1 and �2 �xed. The onstant  is the maximum alloweddi�erene between Y1+Y22 and Y �.4. The stationary phase OD inrements, Y1, Y2, and Y �, are alulated. If jY1+Y22 �Y �j > , a new value for �2 is alulated using equation (5.7) and the model is�tted again keeping �1 and �2 �xed.The steps 3 and 4 are repeated until jY1+Y22 � Y �j < . The model �tting proedureis illustrated in Figure 5.2. 56
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The model of the standardized urve is written asg�t = �0 h1� �1e��2ti1=(1��3) +D + �;where � (� 0) is obtained by setting the initial log(OD) value of the standardizedurve to log(s0) �0(1� �1)1=(1��3) +D + � = log(s0) (5.9)and solving equation (5.9) with respet to � whih yields� = log(s0)� �0(1� �1) 11��3 �D:The stationary phase OD inrement of the standardized urveY � = e�0+D+� � e�0(1��1) 11��3 +D+�has to equal the stationary phase OD inrement of the observed urveY = e�0+D�(gtU�gtL) � e�0(1��1) 11��3 +D= e�0+D��0�(1��1e��2(tL+�)) 11��3 �(1��1e��2tL) 11��3 � � e�0(1��1) 11��3 +D :This gives � = �tL + 1�2 log264 �11� �(1� �1e��2tL) 11��3 + ['℄�1��3 375 ; (5.10)where' = �0 +D � log �e�0(1��1) 11��3 +D + e�0+D+� � e�0(1��1) 11��3 +D+���0 :Model �tting proedureFirst the standard initial OD s0 is �xed. The urves whih initial OD aording tothe Chapman-Rihards model �t is larger than or equal to s0 will be standardizedusing this proedure:1. An initial value of � is hosen.2. The model (5.8) is �tted using a nonlinear least squares method, keeping ��xed. 59



3. The stationary phase OD inrements, Y and Y � are alulated. If jY �Y �j > ,then a new value of � is alulated as given in (5.10). The onstant  is themaximum allowed di�erene between Y and Y �.The steps 2 and 3 are repeated until jY � Y �j < .Generalizing this method to two or more urves is not as trivial as in the ase ofstandardizing upwards. The algorithms for simultaneous standardizations of urvesdownwards, or for simultaneous standardizations where some urves would be stan-dardized upwards and some downwards, would beome ompliated but ertainly notimpossible. However, a standardized urve for two or more urves an easily be ob-tained by standardizing �rst eah urve separately and then making a summary urveof them. The summarizing method will be presented in Chapter 6.5.3 Fitting the standardization models to the dataWe �tted the standardization models to hundreds of growth urves of the data de-sribed in Setion 2.4.2 The initial OD values vary between 0.01 and 0.48, and theaverage is 0.107. There are large di�erenes in initial OD between di�erent environ-ments (Figures 3.9-3.10). A nonlinear regression model was �tted via least squaresin the same way as in Setion 3.2.3. The maximum allowed di�erene in the sta-tionary phase OD inrement between �tted and standardized urves was 0.001 (i.e. = 0:001). The parameter estimates from the Chapman-Rihards model �t wereused as start values in the model �tting algorithms for �0, �1, �2, �3, and D. Thestart value for � was 20js� s0j, where s is the initial OD aording to the Chapman-Rihards model �t to the observed data. The urve �t with di�erent standard initialOD values was investigated visually and also using the oe�ient of determination.The �t is rather good when standardizing one urve, however, it is not as good aswith the Chapman-Rihards method. It is best for the urves with a small di�erenebetween the observed and standard initial OD. An example of the �t of a urvestandardized upwards with s0 = 0:15, s0 = 0:20, and s0 = 0:30 is given in Figure 5.4.The same urve is standardized downwards with s0 = 0:08, s0 = 0:05, and s0 = 0:03in Figure 5.5. Figure 3.2 shows the Chapman-Rihards model �t of the urve.For standardizing two urves the method works reasonably well when the urveshave rather normal and similar shapes, see e.g. Figure 5.6. Also for obtaining astandardized urve of several urves the method works, given that the urves haverather normal and similar shapes (Figure 5.7). However, if that is not the ase, the�t an beome poor (Figure 5.8).2The Matlab funtions are available upon request.60



Both when standardizing upwards or downwards, it is important that the standardinitial OD does not di�er too muh from the observed OD. When the di�erene is large,the �t an beome poor and the growth rate and lag time may be overestimated orunderestimated. Two examples of a �t when s0 is far from the observed initial ODare shown in Figure 5.9. The data are the same as in Figures 5.4-5.5. The growthparameter estimates from the standardized urves with di�erent s0 and the oe�ientof determinations of the �tted urves are shown in Table 5.1.We also ompared the estimates of the growth parameters from the least squares �tof the Chapman-Rihards model with the estimates from the standardized urves. Theaverages of the growth parameter estimates are nearly the same with both methods ifthe standard initial OD is lose to the average of the observed initial OD values. Theoe�ient of variations of repliates' growth parameter estimates tend to be smallerwith the standardization method.In Setion 3.3 we investigated the orrelation of the initial OD with growth rateand lag time estimated with ordinary Chapman-Rihard model and ordinary threepart model, i.e. when the time span of the linear part is modeled freely. In thesequel, we investigate the mentioned orrelations when the growth rate and lag timeare estimated with the standardization method. Nine di�erent standard initial ODvalues are used: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1. With all ofthem the orrelation between growth rate and initial OD redues remarkably, mostwith s0 = 0:04, ompared with the ordinary Chapman-Rihards model or the ordinarythree part model (Figures 3.8, 3.17, 5.10, and 5.11). The orrelation between initialOD and lag time redues also, however, it remains rather high with all values of s0.5.4 DisussionFrom a oneptional point of view, standardizing downwards proved to be more dif-�ult than standardizing upwards. When standardizing downwards, if both the ob-served urve and the urve that we would have gotten from a ulture with a standardinitial OD, have reahed the exponential phase, they should look similar both inthe beginning and in the end, just as with standardizing upwards. However, if theobserved urve has not reahed the exponential phase, the whole population omposi-tion is di�erent, and the transition mehanisms should give another urve form. If wehave reahed the exponential phase but our parametri model does not apture that,the shapes should again look similar. This observation makes the use of the ut-outapproah slightly less ad-ho.In order not to have to model a long unknown part, the standard initial ODshould not be too low ompared to the observed initial OD. How large should thestandard initial OD then be? It may be natural to use approximately the average ofthe observed initial OD values, or a value that is onsidered to be ideal. However,61



more researh on how to hoose the standard initial OD is needed.Besides enabling easy omparison of data from di�erent experiments, the stan-dardization method redues the orrelation between initial OD and growth rate andinitial OD and lag time, ompared to the ordinary Chapman-Rihards method. It ispossible that with the standardization method we have a systemati error in both lagtime and growth rate. However, this systemati error will anel out, at least partly,in the data analysis (in Chapter 8) when the mutant values are normalized using thewild type values in the same run.The aims of using the ordinary Chapman-Rihards method and the standardiza-tion method an be di�erent. The standardization may be appropriate when the aimis to have omparable urves or to visualize data rather than to model the urvesaurately.Table 5.1: The growth parameter estimates from the standardized urve and the oef-�ient of determination of the �tted urve (NOD0305, well 3). The growth parameterestimates and the oe�ient of determination of the Chapman-Rihards model �t tothe same urve.Method � � Y r2Chapman-Rihards 2.897 0.227 4.007 0.9999Standardization, s0 = 0:015 4.368 0.270 4.031 0.9998Standardization, s0 = 0:030 3.674 0.251 4.019 0.9999Standardization, s0 = 0:050 3.223 0.238 4.008 0.9999Standardization, s0 = 0:080 2.835 0.228 3.995 0.9999Standardization, s0 = 0:150 2.277 0.215 3.986 0.9999Standardization, s0 = 0:200 2.148 0.212 3.981 0.9999Standardization, s0 = 0:300 1.980 0.207 3.976 0.9998Standardization, s0 = 0:900 1.711 0.198 3.962 0.9995
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Figure 5.4: Standardizing one urve (NOD0305, well 3) upwards with di�erent stan-dard initial OD. The log(OD) values (dotted), the �tted growth urve (solid) and thestandardized growth urve (dashed). The orresponding residual plots of the �ttedurves are on the right. 63



0 10 20 30 40
−4

−3

−2

−1

0

1

2

Time

Lo
g(

O
D

)

Standardization method, s
0
=0.08

0 10 20 30 40
−0.5

0

0.5

Time

R
es

id
ua

ls

Standardization method, s
0
=0.08

0 10 20 30 40
−4

−3

−2

−1

0

1

2

Time

Lo
g(

O
D

)

Standardization method, s
0
=0.05

0 10 20 30 40
−0.5

0

0.5

Time

R
es

id
ua

ls

Standardization method, s
0
=0.05

0 10 20 30 40
−4

−3

−2

−1

0

1

2

Time

Lo
g(

O
D

)

Standardization method, s
0
=0.03

0 10 20 30 40
−0.5

0

0.5

Time

R
es

id
ua

ls

Standardization method, s
0
=0.03

Figure 5.5: Standardizing one urve (NOD0305, well 3) downwards with di�erentstandard initial OD values. The log(OD) values (dotted), the �tted growth urves(solid) and the standardized growth urve (dashed). The orresponding residual plotsof the �tted urves are on the right. 64
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Figure 5.6: Standardizing two urves (NAC0321 and NAC0323, well 88). The log(OD)values (dotted), the �tted growth urves (solid) and the standardized growth urve(dashed). The orresponding residual plot of the �tted urves is on the right.
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Figure 5.7: Eight wild types in referene ondition (NOC0326) �tted with the stan-dardization method. The log(OD) values (dotted), the �tted growth urves (solid) andthe standardized growth urve (dashed). The orresponding residual plot of the �ttedurves is on the right. 65
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Figure 5.8: Eight wild types in 39oC (390307) �tted with the standardization method.The log(OD) values (dotted), the �tted growth urves (solid) and the standardizedgrowth urve (dashed). The orresponding residual plot of the �tted urves is on theright.
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Figure 5.9: Standardizing one urve (NOD0305, well 3) with values of s0 that di�ergreatly from the observed initial OD. The log(OD) values (dotted), the �tted growthurves (solid) and the standardized growth urve (dashed). The orresponding residualplots of the �tted urves are on the right.
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Figure 5.10: The initial OD of the 99 wild types in referene ondition plotted againstlag time and growth rate estimates from the standardization method with di�erent s0.68
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Figure 5.11: The initial OD of the 99 wild types in referene ondition plotted againstlag time and growth rate estimates from the standardizing method with di�erent s0.
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Chapter 6Summarizing urvesIn Chapter 5 we suggested a method by whih the growth urves an be standardizedwith respet to the initial OD. It is possible to �t a standardized urve diretly on allurves that we wish to have a representative urve for. However, if the urves do nothave similar shapes, or if there are many urves to be standardized simultaneously,the �t an beome poor and the estimated urves an get strange shapes. It may bebetter to standardize individual urves or groups of urves, and then summarize theresults.Two similar methods to summarize growth urves are presented. For these meth-ods, the urves to be summarized have to be standardized �rst, i.e. they must havethe same initial OD. The summary urves are based either on averages of the growthparameters d0, �, �, and Y , or on averages of log(d0), log(�), log(�), and log(Y ), ofthe standardized urves. In this hapter we work under the assumption that Conje-ture 1 is true, so that the growth parameter parameterization an be assumed to beunique aording to Theorem 1.6.1 Method IIn this method, the Chapman-Rihards model is used for the summary urves. Thed0, �, �, and Y of the summary urve are to equal the averages of the orrespondingparameters of the standardized urves it summarizes, and the initial OD is to equalthe standard initial OD.The model parameter values are obtained as follows. Let n be the number ofstandardized urves to be summarized, and let�d0 = Pni=1 d0(i)n (6.1)71



be their average derivative at time zero,�� = Pni=1 �(i)n (6.2)their average lag time, �� = Pni=1 �(i)n (6.3)their average growth rate, and �Y = Pni=1 Y(i)n (6.4)their average stationary phase OD inrement. Furthermore, s0 is the standard initialOD. To �nd the parameters in the original parameterization it would be possible touse the nonlinear least squares method to minimizef(�0; �1; �2; �3;D) = �s0 � e�0(1��1) 11��3 +D�2+ " �d0 � �0�1�2(1� �1) 11��3�11� �3 #2
+ 264��� (1� �1) 11��3 � � 11��33 + � �31��33 log( �11��3 )�2� �31��33 3752+ ���� �0�2� �31��33 �2+ � �Y ��e�0+D � e�0(1��1) 11��3 +D��2 ;and provided that this minimum is approximately zero, the argmin vetor wouldapproximate the vetor of the parameters �0; �1; �2; �3, and D. However, we havehosen to use the least squares method only to obtain estimates for �1 and �3, andalulate the values of �0, �2, and D expliitly.In order to estimate �1 and �3, we �rst translate the urve as shown in (4.12) sothat the initial OD, growth rate, and lag time are all equal to one, the derivative attime zero is �d0�� , and the stationary phase OD inrement is� �Ys0 + 1� 1���� � 1:72



The translation does not a�et �1 and �3. They an be estimated by applying thenonlinear least squares method skethed above on the equations below, derived from(4.1-4.5) and the assumptions that s = 1, � = 1, and � = 1:�d0�� = �1(1� �1) �3�31��3(1� �3)� �3�3�13� �Ys0 + 1� 1���� = e"�3 �31��3 log� �11��3 �+(1��1) 11��3 �� 11��33 #�1e1�(1��1) 11��3 :Then we move bak to the non-translated urve and obtain �0, �2, and D from theequations below, derived from (4.1-4.5),�2 = (1� �1) 11��3 � � 11��33 + � �31��33 log( �11��3 )� �31��33 �� ;�0 = ���2� �31��33 ;D = log(s0)� �0(1� �1) 1�3�1 :There is a theoretial risk that the minimum zero annot be reahed, beausethe spei� parameter vetor is not permitted in the Chapman-Rihards model (seeTheorem 2), but the problem seems to be of minor pratial relevane (see Setion6.3). This problem an be avoided by using method II, desribed in the next setion.6.2 Method IIHere, we onstrut a summary urve for whih the logarithms of d0, �, �, and Y equalthe averages of the logarithms of the orresponding parameters of the standardizedurves that it summarizes. The model parameter values are obtained in the same way73



as in method I, exept that instead of �d0, ��, ��, and �Y , as given in (6.1- 6.4),~d0 = ePni=1 log[d0(i)℄n = nqePni=1 log[d0(i)℄;~� = ePni=1 log[�(i)℄n = nqePni=1 log[�(i)℄;~� = ePni=1 log[�(i)℄n = nqePni=1 log[�(i)℄;~Y = ePni=1 log[Y(i)℄n = nqePni=1 log[Y(i)℄;are used.6.3 Fitting the dataBoth summarizing methods were tested on hundreds of growth urves of the datadesribed in Setion 2.4.1 There were no problems with the �t as long as the lagtimes were not lose to zero. When this happened, method II was the more sensitiveone. Although theoretially the method I summary urves do not always exist, thiswas never a problem in our data.Figure 6.1 shows examples of summary urves of double measurements for mu-tants in 39oC. The two methods often result in almost the same urve, sine thestandardized urves of the double measurements tend to have similar shapes. In Fig-ure 6.2 there are summary urves of a mutant in referene ondition and in Ca�eine,and a mutant in referene ondition and in Dinitrophenol. It an be seen that whenthe shapes of the standardized urves are very di�erent (whih is natural in this asesine they are urves from di�erent environments), the summary urves from the twomethods di�er more. An example of summarizing several urves an be seen in Figure6.3.Figure 6.4 displays an example of three di�erent ways to obtain a representativeurve for the wild types in 39oC. In the �rst one, all 48 wild type urves are stan-dardized simultaneously. In the seond one, a method I summary urve of all the48 individually standardized wild type urves is �tted. In the third one, a method Isummary urve of the six runwisely standardized wild type urves is �tted. The threeurves look similar. However, the lag time and growth rate di�er quite a lot bet-ween the three methods (Table 6.1): the standardization method gives a remarkably1The Matlab funtions are available upon request.74



smaller slope and thus smaller lag time than the other two methods. For ompari-son, we look at the averages of the growth parameter estimates of the 48 urves fromthe Chapman-Rihards method. The summary urve of individually standardizedwild type urves gives growth parameter estimates losest to the averages from theChapman-Rihards method. However, espeially in lag time, the di�erenes betweenthe estimates from the summary urve and the averages of the estimates from theChapman-Rihards method are large. Note however, that it is di�ult to omparethe summarizing and simultaneous standardization methods beause in the simultane-ous standardization the standard initial OD has to be larger than the observed initialOD values. Therefore, in this example it is also di�ult to ompare the Chapman-Rihards method and summarizing method estimates, sine the standard initial OD ishigher than the observed OD values. If the standard initial OD was lose to the aver-age of the observed OD values, the Chapman-Rihards and the summarizing methodwould produe rather similar results on average.6.4 DisussionAlthough theoretially method I summary urves do not always exist, this is not aproblem in our data. The two summarizing methods produe often almost the sameresults. There are more omputational problems with the method II when lag timesare very lose to zero.It would have been possible to try other methods too, suh as using averages forsome parameters and averages of logarithms for some parameters. We have hosento take logarithms of all parameters beause we have previously used this type ofmeasures in the alulation of logarithmi phenotypi indexes (LPI) in the analysisof the data [6℄[26℄. Thus, this type of summary urves are natural beause theyan diretly be used in the alulation and illustration of the LPI. The LPI will bedisussed in more detail in Chapter 8.
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Figure 6.1: For three mutants: individually standardized urves (dashed) for both runsin 39oC (from top: 39E0307 and 39E0309, well 13; 39E0307 and 39E0309, well 25;39C0307 and 39C0309, well 7) and their summary urves (solid).76
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Figure 6.2: Individually standardized urves (dashed) and their summary urves(solid). (Top) A mutant in a�eine and in referene ondition (CAC0328 andNOC0305, well 4). (Bottom) A mutant in Dinitrophenol and in referene ondition(DND0316 and NOD0305, well 8).
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Figure 6.3: Individually standardized urves (dashed) and their summary urve (solid)for the eight wild types in a run in Natrium hloride (NAC0323).
Table 6.1: Growth parameter values of the representative urves for the wild types in39oC (see Figure 6.4).Estimation method � � YStandardized urve of all wild types 0.238 0.241 3.326Summary urve (method I) of all individuallystandardized wild type urves 1.484 0.275 3.384Summary urve (method I) of runwiselystandardized wild type urves 0.139 0.234 3.347Chapman-Rihards method oneah wild type, average value 1.677 0.283 3.369
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Figure 6.4: Di�erent ways to obtain a representative urve for all the wild types in39oC. (Top, left): Wild type urves (dotted) and their standardized urve. (Top,right): Individually standardized wild type urves (dashed) and their summary urve(solid). (Bottom, left): Runwisely standardized wild type urves (dashed) and theirsummary urve (solid). (Bottom, right): In the same plot the standardized urve ofall 48 wild types (solid), the summary urve of all individually standardized urves(dotted) and the summary urve of runwise wild type urves (dashed). The summaryurves are �tted using method I.
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Chapter 7Quality �ltersIn large-sale sreenings, where hundreds of strains are measured in eah run, a badrun may a�et the results of hundreds of tests in the data analysis. Espeially ifthe data from large-sale sreenings are analyzed in an automati way, it is of greatimportane to try to implement �lters that automatially detet individual urvesor whole runs that look atypial or spurious. In this hapter we will disuss thepossibility to use the wild type ontrols in eah run to identify dubious runs. We willalso suggest a set of �ltering methods that will address some of the problems withindividual urves.The motivation for having wild type ontrols in eah run is twofold. First, we wishto neutralize the variability in the experimental onditions by omparing the behaviorof the mutants with the behavior of the wild types in the same run. Seond, the wildtypes are also there to ontrol that the within run variability is reasonably stable.We will disuss how we an �nd dubious runs by using the growth parameters fromthe standardized wild type urves and by visually omparing their runwise summaryurves.In most of the data olleted in PROPHECY, there are only two repeated mea-surements for eah strain, so that it is rather hard to distinguish a bad behavior of aurve from the natural experimental variability of the two urves. However, e.g. thevery fat that one of the urves may look nie and an be �tted by a standardizedmodel urve, while the other annot, is a sign of warning.Coe�ient of determination with a suitable threshold an be used to �lter outindividual urves that have atypial shapes and thus annot be well desribed bythe parametri model. This approah may also be applied to �nd ollapsing urves.The OD values oasionally drop in suessive time points long before the urve hasentered the stationary phase. If this happens for several suessive measurement timepoints, there is probably some aggregation of ells attahing to eah other or to thewall of the well, and the measurements should not be trusted (an example is given in81



Figure 7.1). However, if this only happens in single time points and after that the ODvalues are "normal" again, it is believed to be due to air or gas bubbles, and the restof the measurements should not be too muh a�eted. Most of the time the OD valuesdrop in the end of the urves when they probably have reahed the stationary phase(an example is given in Figure 7.2). In these ases the hosen smoothening (i.e. eahOD value lower than the previous value is set to the previous value) will take are ofthis problem in a natural way. If the OD values drop before the urve has reahedthe stationary phase, the smoothening will typially make the estimated urve biaseddownwards. We will desribe a simple �ltering proedure to detet urves with thistype of atypial behavior.The samples that do not at least double in size are �ltered away (an example isgiven in Figure 7.3). Some urves grow so slowly that at the last measurement timepoint they are still far from the stationary phase (an example is given in Figure 7.4).A simple �lter to detet suh urves will also be desribed. Yet another problem,whih we will not treat in any formal way, is that in some experiments there seems tobe no delay at all and the relative growth is maximal at time zero.In the next hapter we will use the quality �ltering tehniques desribed here toompare the variability of so alled logarithmi strain oe�ients [6℄[26℄ for the growthparameters �, �, and Y estimated using ordinary Chapman-Rihards, standardization,and summarizing methods. To do that we need to �rst de�ne a set of quality �ltersand to disuss expliit hoies for the thresholds.
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Figure 7.1: An example of a urve whih ollapses before entering the stationary phase(39C0309, well 39). The OD values are alibrated and blank orreted, but they arenot smoothened. 82
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Figure 7.2: An example of a urve whih ollapses after entering stationary phase(39C0309, well 83). The OD values are alibrated and blank orreted, but they arenot smoothened.7.1 Quality �lters for runsThe quality �lters for the runs are based on the data of the eight wild types in eahrun.Comparability of runs within environmentTo investigate the omparability of the runs within spei� environment, we �rstmake runwise method I summary urves of the wild types. These summary urves areinspeted visually. We also alulate oe�ient of variations for �, �, and Y estimatedfrom the summary urves. If at least one of the oe�ient of variations is higher thana threshold, the runs are not onsidered omparable. In that ase, either the deviatingruns or the whole environment an be �ltered away.Within run variabilityThe within run variability is assessed by alulating the oe�ient of variations of the�, �, and Y from the standardized wild type urves in eah run. If the oe�ient ofvariation for some run exeeds a threshold, the run will be �ltered away.7.1.1 Testing on dataThe urves in Methylmethanesulfonate (MM) have so abnormal shapes that theChapman-Rihards model annot desribe them su�iently well and thus no sum-83
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Figure 7.3: An example of a "non-growing" urve (41E0312, well 91). The OD valuesare alibrated and blank orreted, but they are not smoothened.mary urves are �tted to the urves in this environment. The blank orreted andalibrated non-smoothened wild type urves in Methylmethanesulfonate are shown inFigure 7.5.The runwise summary urves (s0 = 0:1) for eah environment exept Methyl-methanesulfonate are shown in Figure 7.6. In Dinitrophenol (DN) and Ca�eine (CA)the stationary phase OD inrements di�er rather muh between the runs, however,the shapes of the urves are similar. The oe�ient of variations for the growthparameters from the summary urves are given in Table 7.1. The oe�ient of varia-tion for lag time is rather high in some environments, espeially in 39oC, 41oC, andMV. In fat, in these environments there tends to be no delay, and the growth oftenslows down after a while. Thus alulating lag times in these environments may bequestionable.Appropriate thresholds for the oe�ient of variations ould be 10% for growthrate and 20% for stationary phase OD inrement. Setting a threshold to the oe�ientof variation for lag time is more ompliated. The lag time itself is not a very robustmeasure and therefore either no threshold or a rather high threshold, e.g. 100%, forthe oe�ient of variation of lag time should be applied.If at least one of the oe�ient of variations exeeds the threshold, we onludethat there is something seriously wrong with the experiment and it should be redoneor the results should be simply exluded from the analysis (or, at least, the paramet-ri model should not be used). With these thresholds all the environments (exeptMethylmethanesulfonate whih was exluded due to abnormal urve shapes) wouldpass the �lter for the omparability of runs within environment.84



0 10 20 30 40

−2

−1

0

1

2

Time

L
o

g
(O

D
)

Figure 7.4: A growth urve (NAC0323, well 39) whih has not reahed the stationaryphase at the last measurement time point. The OD values are alibrated and blankorreted, but they are not smoothened.The oe�ient of variations of the growth parameters from the standardized urvesof the eight wild types in eah run are given in Tables 7.2-7.3. Again, the oe�ient ofvariations for lag time are high, espeially in environments 39oC, 41oC, and MV. Wewill apply the following thresholds for the runwise oe�ient of variations: 100% forthe lag time, 15% for the growth rate, and 25% for the stationary phase OD inrement.With these thresholds no runs are �ltered out.7.2 Quality �lters for wild type urvesWe try to �nd wild type urves that have not reahed the stationary phase, ollapsebefore reahing the stationary phase or annot be su�iently well desribed by theparametri model. We also �lter out urves whih deviate muh from the others in thesame run. All �lters exept (7.1) are based on the standardized urves. Appropriatethresholds for the di�erent measures will be proposed in Setion 7.2.1.Curves that have not reahed the stationary phaseWe try to identify urves that have not reahed the stationary phase by investigatingthe relation between the derivative of the �tted urve at the last time point (dend)and the growth rate (�). The derivative at the last time point isdend = �0�1�2e��2tend �1� �1e��2tend� 11��3�11� �3 ;85



where tend is the last time point. Let 
 dend� be the threshold for dend� . If dend� � 
 dend� ,the urve is onsidered to have reahed the stationary phase. The urves for whihdend� > 
 dend� are �ltered out.Curves that ollapse before reahing the stationary phaseCurves that ollapse before reahing the stationary phase are to be �ltered away by�rst looking at the smoothened and non-smoothened OD-values (reall that all dataare smoothened so that eah OD value lower than previous value is orreted to equalthe previous value). We alulate the absolute values of the di�erenes of the ODvalues after and before smoothing, relative to the OD values after smoothing,! = ����ODsmoothened �ODnon-smoothenedODsmoothened ���� ; (7.1)until one hour after the stationary phase OD inrement has been reahed1, ignoringthe �rst �ve time points beause the measurements tend to be shaky in the beginning.Of these !'s, we take the third highest2, and denote it by !�. Let 
!� be a thresholdfor !�. If !� > 
!� the urve is onsidered ollapsing before reahing the stationaryphase and it is �ltered out. This method, however, fails to detet many ollapsingurves. Therefore, we also investigate the oe�ient of determination, r2, as given in(3.10).Curves that annot be well desribed with the parametri modelWith the help of the oe�ient of determination also urves that annot be welldesribed with the parametri model are deteted.Curves that deviate greatly from the other urves in the same runThe within run oe�ient of variations of the growth rate (v�) and stationary phaseOD inrement (vY ) of the remaining urves are investigated in order to detet urvesthat deviate greatly from the other urves in the same run. Let 
v� and 
vY be theorresponding thresholds. When v� > 
v� or vY > 
vY , the urve that deviatesmost from the others with respet to this parameter is removed. The oe�ientof variations are alulated again, and the same proedure is repeated until bothoe�ient of variations are below the thresholds.1De�ned as where the stationary phase OD inrement aording to the �t of the standardizedurve has been obtained.2The third highest value of ! is hosen so that the urves would not be �ltered away beause ofa single ollapsing OD value. 86



7.2.1 Testing on dataBefore deiding on the thresholds for the quality �lters for wild types, we tested howthey would work on our data (i.e. all wild types in referene ondition and in allenvironments exept MM). We use a standard initial OD 0.1.Most wild type urves have reahed the stationary phase. An example of a wildtype urve whih may be onsidered not to have reahed the stationary phase is shownin Figure 7.7. For this urve the dend� is 0.138.Figures 7.8 and 7.9 display the non-smoothened growth urves of the wild types oftwo runs in 39oC. The !� values (Table 7.4) might alarm about the wild type urve7 in run 1. The wild type urve number 7 in run 2 that ollapses already at an earlystage might not be deteted by investigating the !�. This urve an be deteted bylooking at its r2 whih is learly smaller than the other wells' r2 (Table 7.4). In fat,also the urve 7 in run 1 would have been deteted by investigating its r2. Figure7.10 shows another example of a urve that annot be su�iently well desribed bythe model. For this urve the r2 is 0.9066.The previous steps �lter out most of the deviating urves. The measures of v�and vY detet urves that deviate from the others even if they are otherwise rather"normal". These type of deviating urves are rare.After having tested the �ltering steps on our data, we propose the following thresh-olds: 
 dend� = 0:08, 
r2 = 0:995, 
!� = 0:3, 
v� = 15%, 
vY = 25%. The wildtype urves in 39oC whih pass the quality �lters using these thresholds are in blakand the ones that do not are in grey in Figure 7.11. Roughly 96% of the wild typeurves in all environments pass the quality �lters.
7.3 Quality �lters for mutant urvesWith the quality �lters for mutants, like for wild types, we try to �nd urves thathave not reahed the stationary phase, ollapse before reahing the stationary phaseor annot be su�iently well desribed by the parametri model. In addition, wetry to �nd non-growing urves (this part is not inluded in the wild type quality�lters beause in our data there are no non-growing wild type urves). No repliateomparisons are done beause there are only two repliates for eah mutant (exeptin the referene ondition). All �lters, exept (7.1) and when de�ning non-growingurves, are based on the standardized urves.87



Non-growing urvesNon-growing urves are de�ned as the urves whose end OD value is less than twiethe initial OD value.3 For the non-growing urves the lag time is set to 48 hours butno growth rate or stationary phase OD inrement is alulated.The urves that have not reahed the stationary phaseThe urves that have not reahed the stationary phase are �ltered out by investigatingthe derivative at the last time point, the same way as in ase of wild types. The urveswhih are onsidered not to have reahed the stationary phase are exluded from theanalysis of stationary phase OD inrement, but if they pass the other riteria of thequality assessment, they remain in the analysis of lag time and growth rate.Curves that annot be well desribed with the parametri modelCurves are to be exluded ompletely from the analysis of the data, if they annotbe �tted with the parametri model or ollapse before reahing the stationary phase.These urves are deteted in the same way as in ase of wild types.We tested the quality �lters on all mutants in referene ondition and in the sixenvironments. The standard initial OD s0 = 0:1 was used. The same thresholds asfor wild types, i.e. 
 dend� = 0:08, 
!� = 0:3, and 
r2 = 0:995 seem to work well.Using the proposed thresholds, 5:6% of the mutant urves are �ltered out totally, 4:7%are onsidered not to have reahed the stationary phase but qualify for the analysisof lag time and growth rate while 0:14% are non-growing. These last ones are setto have a lag time 48 hours but are exluded from the analysis of growth rate andstationary phase OD inrement. Note however, that when one of the two mutanturves is �ltered out, the dupliate is not used in the analysis either. If at least oneof the four mutant urves in the referene ondition is �ltered out, its repliates arenot used in the analysis either (very few urves in the referene ondition are �lteredout). Taking also the dupliate/repliate exlusion into aount, 9:5% of the urvesare �ltered out totally, 6:1% are �ltered out from the analysis of the stationary phaseOD inrement but are inluded in the analysis of lag time and growth rate, and 0:2%are inluded in the analysis of lag time but exluded from the analysis of growth rateand stationary phase OD inrement.
3The OD values are alibrated, blank orreted and smoothened.88



   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

Figure 7.5: Non-smoothened wild type urves in Methylmethanesulfonate (row-wisefrom the top: MMC0408, MMC0411, MMD0408, MMD0411, MME0408, MME0411.).
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Figure 7.6: Runwise summary urves of the eight wild types in eah run.90



Table 7.1: Coe�ient of variations (%) for the growth parameters from the runwisesummary urves of the eight wild types in eah environment.Environment � � Y39oC 24.24 3.26 10.5141oC 68.36 7.07 7.39DN 9.52 3.75 13.25CA 18.34 6.09 18.30NA 15.87 4.18 8.85MV 35.02 6.13 8.08NO 12.17 3.61 4.67

0 10 20 30 40

−2

−1

0

1

2

Time

L
o

g
(O

D
)

Figure 7.7: A wild type growth urve (NAC0321, well 127) whih may not have reahedthe stationary phase at the last measurement time point.91



Table 7.2: Coe�ient of variations (%) for the growth parameters from the eightstandardized wild type urves in eah run.Run � � Y39C0307 42.82 8.19 16.6239D0307 21.79 1.39 9.8239E0307 10.72 1.75 8.2839C0309 9.42 2.32 10.0339D0309 12.84 2.76 16.3039E0309 10.56 1.66 13.3841C0312 27.20 3.21 11.2741D0312 79.96 4.97 17.0941E0312 85.15 2.31 6.9941C0314 41.98 5.64 19.4241D0314 56.52 4.05 15.6041E0314 89.64 5.30 11.87DNC0316 3.81 3.50 21.43DND0316 13.03 9.05 17.89DNE0316 5.09 12.35 22.58DNC0319 7.24 4.86 17.82DND0319 11.05 10.11 19.17DNE0319 6.49 6.70 17.41CAC0328 12.10 5.01 15.36CAD0328 10.41 2.02 13.19CAE0328 14.23 4.15 13.49CAC0330 16.20 5.83 18.73CAD0330 11.09 2.07 23.27CAE0330 50.68 9.62 16.07NAC0321 12.85 1.24 7.44NAD0321 17.02 3.46 24.96NAE0321 22.37 8.28 9.72NAC0323 24.57 3.24 9.61NAD0323 11.97 3.38 5.15NAE0323 15.08 1.56 8.55
92



Table 7.3: Coe�ient of variations (%) for the growth parameters from the eightstandardized wild type urves in eah run.Run � � YMVC0413 64.90 2.44 9.39MVD0413 46.50 0.83 6.03MVE0413 42.35 2.73 3.17MVC0417 42.49 3.78 8.48MVD0417 69.92 6.88 22.36MVE0417 59.00 2.70 12.29NOC0305 5.25 1.97 7.44NOD0305 16.41 7.43 6.43NOE0305 13.73 4.20 5.12NOC0326 2.38 1.28 5.22NOD0326 9.37 1.87 13.29NOE0326 9.37 1.87 13.30NOC0406 7.66 0.80 12.09NOD0406 3.56 0.94 4.61NOE0406 3.93 1.00 3.72NOC0426 10.77 1.63 12.70NOD0426 6.00 1.02 8.09NOE0426 3.24 1.07 4.51
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Figure 7.8: The non-smoothened wild type growth urves of run in 39oC (39D0309).
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Figure 7.9: The non-smoothened wild type growth urves of run in 39oC (39E0309).
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Table 7.4: The !� and the oe�ient of determination (r2) for the standardized wildtype growth urves in two runs in 39oC.Wild type number !� !� r2 r2(39D0309) (39E0309) (39D0309) (39E0309)1 0 0 0.9983 0.99972 0 0 0.9995 0.99833 0 0 0.9989 0.99974 0 0 0.9990 0.99975 0 0 0.9978 0.99966 0 0 0.9994 0.99987 0.4552 0.1876 0.9832 0.99018 0 0 0.9991 0.9997

0 10 20 30 40

−3

−2

−1

0

1

2

Time

L
o

g
(O

D
)

0 10 20 30 40
−0.5

0

0.5

Time

R
e

si
d

u
a

ls

Figure 7.10: An example of a bad urve �t (MVD0417, well 171). The log(OD) values(dotted), the �tted growth urve (solid) and the standardized growth urve (dashed).95



   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

Figure 7.11: The wild type growth urves in 39oC (eah row representing a run, fromthe top: 39C0307, 39D0307, 39E0307, 39C0309, 39D0309, 39E0309). The ones thatwould pass the quality �lters are in blak and the ones that would not are in grey.
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Chapter 8The e�et of standardization andsummarizing on logarithmi strainoe�ients (LSC)In the analysis of the data, the growth behavior of eah mutant is related to theaverage behavior of the eight wild types in the same run, forming wild type normal-ized growth measures, termed runwise logarithmi strain oe�ients, LSC�, LSC�,and LSCY .1 The �nal LSC�, LSC�, and LSCY are the averages of the two (in en-vironment) or four (in referene ondition) runwise logarithmi strain oe�ients.Furthermore, to provide quantitative measures of the spei� gene-by-environmentinterations and to ompensate for general growth defets observed even under fa-vorable growth onditions, LSC from environments are related to LSC from refereneondition, forming logarithmi phenotypi indexes, LPI�, LPI�, and LPIY [26℄.We are interested in whether standardization and summarizing have an e�et onthe logarithmi strain oe�ients, and espeially on the variane of the runwise LSC,i.e. the variane of the wild type normalized mutant repliates. We ompare theLSC alulated based on the �tted (1) ordinary Chapman-Rihards model urves, (2)standardized (s0 = 0:1) urves for mutants and method I summary urves for wildtypes, and (3) standardized urves for mutants and method II summary urves forwild types. The LSC values are alulated on the data that pass the quality �lterspresented in Chapter 7. We see the repliates as a sample of size 2 (environments)or 4 (referene ondition), whih is motivated by that the repetitions are in di�erentruns.1The terms used are LSCadaptation , LSCrate and LSCe�ieny but we refer to these as LSC�, LSC�,and LSCY 97



8.1 LSCThe logarithmi strain oe�ient for lag time for a spei� mutant in a spei� envi-ronment is alulated asLSC� = P2r=1 n1s Psk=1 log(wt(r)k )� log(x(r))o2 (8.1)= LSC(1)� + LSC(2)�2 ;and in the referene ondition asLSC�(0) = P4r=1 n1s Psk=1 log(wt(r)0;k)� log(x(r)0 )o4 (8.2)= LSC(1)�(0) + LSC(2)�(0) + LSC(3)�(0) + LSC(4)�(0)4 ;where wt(r)k is the lag time of the kth wild type in the environment in the run r, sis the number of wild types (that remain in the data after the quality �ltering, themaximum is eight) in the run, wt(r)0;k is the lag time of the kth wild type in the refereneondition in the run r, x(r) is the lag time of the mutant in the run r, and x(r)0 is thelag time of the mutant in the referene ondition in the run r [6℄.The logarithmi strain oe�ients for growth rate and stationary phase OD in-rement are alulated analogously, exept that for the LSC�, the doubling time, i.e.log(2)� , is used instead of the growth rate �. The logarithmi phenotypi indexes for aspei� mutant in a spei� environment, are alulated asLPI� = LSC� � LSC�(0) (8.3)LPI� = LSC� � LSC�(0) (8.4)LPIY = LSCY (0) � LSCY : (8.5)8.1.1 The variane of runwise LSCTo investigate whether the standardization redues the variane of the runwise loga-rithmi strain oe�ients2 we alulated the LSC in three di�erent ways. First, using2That is, the variane of LSC(1) and LSC(2), and the variane of LSC(1)(0), LSC(2)(0), LSC(3)(0), andLSC(4)(0), separately for eah mutant in eah environment and eah growth parameter.98



the growth parameters from the Chapman-Rihards method in (8.1) and (8.2). Seondand third, using the growth parameters from the standardized urves for the mutantsas before, but for the wild types the method I and method II summary urve growthparameters. That is, instead of1s sXr=1 log(wt(k)r ) and 1s sXr=1 log(wt(k)0;r )the logarithm of the spei� growth parameter of the summary urve is taken. Notethat the third way orresponds to using the growth parameters from the standardizedurves in (8.1) and (8.2).The averages of the LSC�, LSC�, and LSCY and the averages of the standarddeviations of the runwise LSC�, LSC�, and LSCY in eah environment and over allenvironments are shown in Table 8.1. The lag time estimation for the urves inenvironments 39oC and 41oC is questionable beause there seems to be often almostno delay.8.2 DisussionOverall, the LSC-varianes are slightly smaller with the standardizing and summa-rizing methods than with the diret Chapman-Rihards approah. It is natural thatthe di�erenes in LSC varianes are not large between the three methods sine thedi�erenes in initial OD values are rather small within runs (Table 3.1).We used only s0 = 0:1. It would have been interesting to do the LSC omparisonsalso with other values of s0. This will be the subjet of further researh.
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Table 8.1: Averages of the logarithmi strain oe�ients and averages of the standarddeviations of the runwise logarithmi strain oe�ients.Environment Method LSC� ŝLSC� LSC� ŝLSC� LSCY ŝLSCYC-R -0.13 0.15 -0.07 0.03 0.02 0.1239oC Summary I -0.09 0.22 -0.07 0.03 0.02 0.12Summary II -0.17 0.30 -0.07 0.03 0.02 0.12C-R 0.14 0.42 -0.06 0.03 0.06 0.1241oC Summary I 0.86 0.74 -0.07 0.03 0.07 0.12Summary II 0.55 0.80 -0.06 0.03 0.06 0.12C-R -0.05 0.07 -0.02 0.07 0.06 0.24DN Summary I -0.06 0.06 -0.01 0.07 0.07 0.24Summary II -0.06 0.06 -0.01 0.07 0.06 0.24C-R -0.08 0.12 -0.08 0.05 -0.05 0.14CA Summary I -0.13 0.18 -0.06 0.05 -0.04 0.14Summary II -0.17 0.19 -0.06 0.05 -0.06 0.14C-R -0.10 0.09 -0.01 0.03 0.01 0.08NA Summary I -0.12 0.08 -0.01 0.03 0.01 0.08Summary II -0.13 0.08 -0.01 0.03 0.01 0.08C-R -0.56 0.97 -0.04 0.06 -0.02 0.11MV Summary I -0.48 0.38 -0.04 0.03 -0.01 0.09Summary II -0.74 0.53 -0.04 0.03 -0.02 0.09C-R -0.07 0.13 -0.04 0.05 0.01 0.09NO Summary I -0.05 0.12 -0.04 0.04 0.02 0.09Summary II -0.05 0.12 -0.04 0.04 0.02 0.09C-R -0.14 0.29 -0.05 0.05 0.01 0.13All Summary I -0.14 0.28 -0.04 0.04 0.01 0.13Summary II -0.05 0.24 -0.04 0.04 0.02 0.13
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Chapter 9ConlusionsModern genomis o�ers great opportunities for the study of measurement-relatedtheoretial questions that are important in pratie. In this thesis we foused ontwo problems related to the analysis of mirobial growth: how to standardize thegrowth urves with respet to the initial population size, and how to estimate oneurve from several experiments with di�erent initial population sizes. We adopted theChapman-Rihards growth urves as our basi tool.The Chapman-Rihards model works well for a wide range of "normal" growthurves. However, for growth urves of atypial shapes the �t an be poor. Given thediversity of forms atypial urves assume, it is very di�ult if not impossible to �nda parametri model that �ts su�iently well all types of growth urves. One of themain auses of the bad �t with the Chapman-Rihards model in our setting is that itassumes that the in�etion point is after the �rst measurement time point, whereasin many atypial urves this does not seem to be the ase. An in�etion point beforestarting the measurements implies a negative lag time and that the maximum growthrate was obtained before starting the measurements. Hene, estimating lag time andgrowth rate from this type of urves is questionable.Some of the onerns related to the growth parameter estimation do not diretlydepend on the model used. Warringer and Blomberg [25℄ stressed that the stationaryphase OD inrement should be viewed with some aution as an indiator of e�ienyof growth. First, the relation between the biomass and the OD measured an di�erquite substantially between di�erent strains. Seond, it is not known if the end of thegrowth phase is always the result of omplete utilization of the arbon soure gluoseor due to other limitations.Perhaps the most serious onern related to the growth parameter estimation iswhether the de�nition of the lag time used is appropriate or not. There is urrentlyno generally aepted de�nition for the boundary between the lag and the exponentialphases. If the lag time is de�ned using the tangent line through the in�etion point,101



it will be proportionally shorter for slowly growing ells than for rapidly growing ells.Another problem might be that if the OD measurements are not started soon afterthe sample has been prepared, the lag time is in reality longer than what an be seenfrom the growth urve. Erison et al [6℄ are urrently working with another type oflag time de�nition than the one we have used.The lag time and the growth rate depend strongly on the initial population size.However, in large sale experiments, it is di�ult to have the same onstant initialpopulation size. We introdued a method to standardize growth urves with respetto the initial population size. We use a ertain Chapman-Rihards model to try topredit what the behavior of a growth urve would have been, had the populationhad a standard initial population size. The standardization redues remarkably theinitial population size orrelation with the lag time and growth rate, ompared tothe ordinary Chapman-Rihards method. It is also very useful for visualizing data:without standardization, it is di�ult to know what the di�erene between the urvesis. We found that the di�erenes between the initial population sizes tend to belarger between environments than within environments (Table 3.1). Therefore, thestandardization is important espeially beause it enables omparisons of urves fromdi�erent environments. Furthermore, it will be of great value when lustering on thewhole urves is desired.We introdued two ways to onstrut a summary urve from standardized urves,in order to represent repetitions of similar growth experiments by a single urve. Theyare based on the averages of the growth parameters (method I), or on the averages ofthe logarithms of the growth parameters (method II) of the urves to be summarized.We showed that the method II summary urves always exist whereas the methodI summary urves do not always exist, although the problem seems to be of minorpratial relevane.The standardized and the summary urves ould be a natural omplement tothe phenotypi library Warringer et al [27℄, and Fernandez-Riaud et al [7℄ havebuilt. For example, a standardized urve for eah mutant in eah run and a summaryurve for the eight wild types in eah run ould be made available in PROPHECY.Furthermore, a web tool to analyze the yeast growth data using the standardizingmethod, and to detet individual urves or whole runs that are atypial or spurious,ould be developed.More researh on how to hoose the standard initial population size is needed.One diretion of study is to use the eight wild types in eah run, and investigatethe mean and the variane of their growth parameters from standardized urves withdi�erent standard initial population sizes. It would also be interesting to omparethe standardizing method to the Warringer method [26℄ used today in PROPHECY,e.g. by omparing the LSC-values and their varianes. This is the subjet of futureresearh. 102



The initial population size orrelation with lag time and growth rate ould be anartifat of the alibration urve funtion or the model. However, we do not believe thatit is due to the alibration urve funtion, beause the orrelation redues remarkablywith the standardization. We do not believe that it is due to the model either,beause the orrelation is high also when using the Warringer method [26℄ to estimatethe growth parameters. We do believe that it ould be a biologial e�et, i.e. thatthe maximum growth rate annot be reahed if the initial population size is too large.This has not been tested properly. Therefore, studies with very small initial OD valuesin parallel with initial OD values of the size we have now should be done to verifywhether this really is the ase.The quality �lters presented in this thesis probably need to be developed furtherand omplemented. Some of the problems related to the shapes of the growth urvesmay be due to a slightly false alibration urve funtion or due to a di�erent (orvarying) real blank than the one used in our subtration. Both of these issues requirefurther researh. The measurements that are mostly a�eted by the blank are those inthe very beginning of the logarithmi growth urve. Therefore, it may be relevant tostudy the e�et of the �rst measurement points on the estimated growth parameters.This an be done for example by systematially omparing the estimated growthparameters and their varianes, when the �rst measurement point is ignored, the �rsttwo measurement points are ignored, the �rst three measurement points are ignored,et. One may also try to model the blank using a Bayesian type approah [18℄ so thatit an di�er from the �xed blank value with a penalty in the least squares proedure.Also other smoothing methods besides the one we used, where eah OD value lowerthan the previous value is set to the previous value, may be onsidered. One alternativeis to set eah OD value lower than the previous value to the average of the logarithmsof the previous and the next value.It would be interesting to study the possibility to standardize growth urves usinga non-parametri sigmoidal model. Standardizing upwards an probably be doneapproximately the same way as it was done in this thesis, but it may be more di�ultto standardize downwards. Some attempts to estimate growth parameters using anon-parametri sigmoidal model are done by Warringer et al [24℄.
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Figure A.1: In the motivating dataset: the positioning of the mutants (numbered) andwild types (balls) on the plates and on the three di�erent Biosreen instruments (C, Dand E).
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Table B.1: Calibration urve funtion data (run in June 3, 2002). d=diluted, ud=undiluted,the abbreviations for the spei� Biosreen instruments are given in the parenthesis. Well spe-i� blank values are subtrated from all the OD values and the undiluted values are multipliedby the dilution fator 10.ud (B) d (B) ud (C) d (C) ud (D) d (D) ud (E) d (E) ud (F) d (F)1.211 2.5 1.181 2.78 1.255 3.09 1.196 2.9 1.276 3.271.2 2.65 1.174 2.94 1.243 3.34 1.215 3.13 1.265 3.481.158 2.63 1.134 2.92 1.217 3.29 1.204 3.13 1.231 3.51.151 2.26 1.127 2.5 1.212 2.93 1.206 2.76 1.223 2.981.134 2.18 1.112 2.41 1.191 2.73 1.192 2.6 1.205 2.861.108 1.84 1.094 2.14 1.166 2.33 1.171 2.24 1.17 2.521.09 1.63 1.071 1.87 1.152 2.11 1.163 2 1.156 2.231.011 1.58 1.036 1.82 1.096 2.05 1.125 1.97 1.107 2.320.98 1.24 1.018 1.4 1.094 1.66 1.109 1.62 1.084 1.770.844 1.19 0.875 1.42 0.997 1.6 1.025 1.59 1.008 1.70.858 1.32 0.894 1.32 0.927 1.34 0.862 1.44 0.936 1.390.866 1.06 0.902 1.14 0.952 1.46 0.905 1.45 0.95 1.470.766 0.9 0.8 1.03 0.858 1.26 0.814 1.35 0.849 1.430.919 1.55 0.951 1.72 1.011 2.07 0.973 2.15 1.013 2.210.684 0.82 0.727 0.95 0.78 1.17 0.751 1.21 0.779 1.230.717 0.88 0.788 1 0.817 1.2 0.79 1.28 0.816 1.320.547 0.66 0.628 0.78 0.643 0.9 0.613 0.93 0.647 0.990.577 0.66 0.527 0.74 0.608 0.87 0.615 0.92 0.663 1.030.521 0.64 0.552 0.76 0.615 0.91 0.619 0.94 0.657 1.030.435 0.49 0.459 0.56 0.5 0.72 0.508 0.72 0.515 0.760.577 0.66 0.614 0.77 0.648 0.9 0.637 0.93 0.699 1.030.515 0.49 0.553 0.58 0.602 0.68 0.6 0.66 0.632 0.750.532 0.45 0.563 0.52 0.624 0.64 0.634 0.65 0.648 0.720.506 0.36 0.542 0.43 0.599 0.52 0.608 0.52 0.628 0.570.477 0.45 0.512 0.52 0.563 0.59 0.57 0.62 0.592 0.680.23 0.18 0.262 0.22 0.291 0.29 0.306 0.19 0.353 0.220.186 0.23 0.21 0.26 0.238 0.32 0.25 0.33 0.275 0.350.269 0.25 0.293 0.27 0.324 0.37 0.303 0.41 0.351 0.430.289 0.25 0.315 0.28 0.351 0.36 0.334 0.4 0.37 0.420.307 0.24 0.326 0.27 0.365 0.35 0.348 0.39 0.375 0.360.32 0.27 0.344 0.31 0.385 0.4 0.363 0.43 0.399 0.440.334 0.31 0.361 0.36 0.397 0.46 0.376 0.51 0.411 0.510.356 0.31 0.397 0.35 0.415 0.43 0.387 0.48 0.43 0.550.329 0.25 0.362 0.32 0.385 0.34 0.359 0.39 0.399 0.420.323 0.24 0.354 0.28 0.372 0.33 0.355 0.33 0.412 0.40.33 0.33 0.344 0.35 0.375 0.49 0.365 0.47 0.423 0.540.266 0.37 0.284 0.43 0.306 0.54 0.306 0.57 0.335 0.620.404 0.31 0.428 0.35 0.469 0.46 0.431 0.46 0.506 0.510.425 0.48 0.455 0.56 0.502 0.71 0.465 0.78 0.517 0.890.439 0.49 0.465 0.61 0.514 0.73 0.488 0.76 0.523 0.860.518 0.7 0.531 0.83 0.588 1 0.559 0.96 0.595 1.110.523 0.68 0.538 0.8 0.595 0.92 0.555 0.9 0.594 1.030.528 0.61 0.545 0.73 0.598 0.76 0.569 0.72 0.602 0.910.595 0.65 0.62 0.76 0.673 0.83 0.652 0.83 0.68 0.981.112 1.86 1.109 2.11 1.167 2.38 1.174 2.29 1.197 2.55112



Table B.2: Well spei� means of the alibration urve funtion data. (Well spei�blanks are subtrated from all the OD values and the diluted OD values are multipliedby the dilution fator 10).Well spei� means of Well spei� means ofthe undiluted samples the diluted samples1.22 2.911.22 3.111.19 3.091.18 2.691.17 2.561.14 2.211.13 1.971.07 1.951.06 1.540.95 1.50.895 1.360.915 1.320.817 1.190.973 1.940.744 1.080.786 1.140.616 0.8520.598 0.8440.593 0.8560.483 0.650.635 0.8580.58 0.6320.6 0.5960.577 0.480.543 0.5720.288 0.220.232 0.2980.308 0.3460.332 0.3420.344 0.3220.362 0.370.376 0.430.397 0.4240.367 0.3440.363 0.3160.367 0.4360.299 0.5060.448 0.4180.473 0.6840.486 0.690.558 0.920.561 0.8660.568 0.7460.644 0.811.15 2.24113
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Appendix CGompertz augmentedChapman-Rihards modelThe Chapman-Rihards urves are not de�ned at �3 = 1, but the limiting forms when�3 ! 1 and �1 tends to 0 in a subordinated rate, are members of the Gompertz family;Writing �1 = eb(1��3), b > 0, we de�ne the Gompertz augmented Chapman-Rihardsmodel as gt = �0 h1� eb(1� �3)e��2ti1=(1��3) +D; for �3 6= 1; (C.1)gt = �0e�eb��2t +D; for �3 = 1: (C.2)It is straightforward to see that �3 ! 1 implies that gt de�ned by (C.1) onverges togt de�ned by (C.2). The parameters s, d0, �, � and Y of the Gompertz funtion are:s = e�0e�eb+D (C.3)d0 = �0�2ebe�eb (C.4)� = be + e�eb � 1e�2e (C.5)� = �0�2e (C.6)Y = e�0+D � es: (C.7)115



We will use these equalities to prove Lemma 1.Lemma 1 The Gompertz urve orresponding to any hybrid parameter ombina-tion s > 0, 0 < d0 < �, � > 0, � > 0, and �3 = 1 is unique. The parameter b is thesolution of the equation b+1� eb = log(d0� ), and the three other parameters are givenby �0 = ��be+e�eb� 1e , �2 = b+e�eb+1�1� , and D = log(s) � ��e�ebbe+e�eb� 1e . Furthermore, thestationary phase OD inrement isY = e 1�e�ebb�1e +e�eb ��+log(s) � s:Proof. Fix a parameter ombination s > 0,0 < d0 < �, � > 0 and � > 0. From (C.4)and (C.6) we get d0� = �0�2ebe�eb�0�2e= eb+1e�eb ;whih determines b (unique solution). We get from (C.5)�2 = b+ e�eb+1 � 1� ; (C.8)from (C.8) and (C.6) �0 = ��be + e�eb � 1e ; (C.9)and from (C.3) and (C.9) D = log(s)� ��e�ebbe + e�eb � 1e : (C.10)Now, using (C.9) and (C.10) in (C.7), we getY = e 1�e�ebb�1e +e�eb ��+log(s) � s:2 116



The Lemma 1 implies that for the unit-saled modelA = 1� e�ebb�1e + e�eb : (C.11)Lemma 3 Fix 0 < d0 < 1: In the unit-saled model, the funtion A de�ned in(4.10) with the onstraint (4.6) is ontinuous at �3 = 1 as a funtion of �3 > 0.Proof. De�ne b� so that eb�+1e�eb� = d0, and assume thatlim sup�3!1 b = b� + :Fix a sequene �(n)3 ! 1 suh that, for the orresponding b(n)-sequene,limn!1 b(n) = b� + :However, by rewriting (4.6) we onlude that (reall that �1 = eb(1� �3))d0 = limn!1d0= limn!1 eb(n) �1� eb(n)(1� �(n)3 )� �(n)31��(n)3�(n)3 �(n)31��(n)3= eb�++1e�eb�+ ;whih fores  to equal 0 and thus lim sup�3!1 b = b�. Analogously also lim inf�3!1 ban be shown to equal b�. Hene, b ! b� as �3 ! 1. Using this and taking limit in(4.10), we getlim�3!1A = lim�3!1 1� (1� eb(1� �3)) 11��3� �31��33 hlog� eb(1��3)1��3 �� �3i+ (1� eb(1� �3)) 11��3= 1� e�eb�b��1e + e�eb� ;whih equals A in the Gompertz ase (C.11). Hene, A is ontinuous at �3 = 1. 2117



We �nish this appendix with two ontinuity remarks.Remark 1. In the unit-saled model for �xed 0 < d0 < 1 it is easy to see that alsothe parameters �0, �2 and D onverge when �3 ! 1: setting (4.3), (4.4) and (4.1) toone and using �1 = eb(1 � �3), we obtain the equations for �2, �0 and D, and takinglimits we getlim�3!1�2 = lim�3!1 (1� eb(1� �3)) 11��3 � �3 11��3 + �3 �31��3 log( eb(1��3)1��3 )�3 �31��3= b� + e�eb�+1 � 1;lim�3!1�0 = lim�3!1 1�2� �31��33= 1b�e + e�eb� � 1e ;lim�3!1D = lim�3!1��0(1� eb(1� �3)) 11��3= �e�eb�b�e + e�eb� � 1e ;where b� again solves d0 = eb+1e�eb . Thus all the limiting parameters �2, �0 and Donverge to the Gompertz parameters as laimed.Remark 2. Not only the growth parameters but also the whole Gompertz growthurves interpolate the Chapman-Rihards. Consider the unit-saled Chapman-Rihardsmodel and �x 0 < d0 < 1. Denote lim�3!1 �0 = ��0 , lim�3!1 �2 = ��2 and lim�3!1D =D�. Consider the Chapman-Rihards urvegt = �0 h1� eb(1� �3)e��2ti1=(1��3) +Dfor �xed t. Sineh1� eb(1� �3)e��2ti1=(1��3) = e�eb�e���2 t(1 + o(1)); for all t;where o(1)! 0 as �3 ! 1, we also get thatlim�3!1��0 h1� eb(1� �3)e��2ti1=(1��3) +D� = ��0e�eb����2 t +D�;whih is the Gompertz urve evaluated in this t.118



Appendix DDisussion of Conjeture 1Conjeture 1 Fix 0 < d0 < 1: In the unit-saled model, the funtion A de�ned in(4.10) with the onstraint (4.6) is stritly dereasing as a funtion of �3 > 0.Figure D.1 shows a graph where log(log(A + 1) + 1) is plotted against �3 between0 and 100. Eah urve orresponds to a di�erent d0 (between 0.01 to 0.99). It iseasy to see that A is dereasing as a funtion of �3. The derivatives of A are plottedagainst �3 in Figures D.2 (small values of �3) and D.3 (large values of �3) in order tosee that A is stritly dereasing as a funtion of �3.
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Figure D.1: log(log(A + 1) + 1) is plotted against �3, eah urve orresponds to adi�erent d0 (between 0.01 and 0.99). The larger d0, the larger value of log(log(A +1) + 1).
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Appendix EProofsProposition 1 The (�0; �1; �2; �3;D)-parameterization is unique.Proof. First, look at only the part of the urve starting from the in�etion timepoint tI . Then, sine �1e��2tI = 1� �3; (E.1)we an write gtI+t � gtI = �0(1� (1� �3)e��2t) 11��3 � �0� 11��33= �0(1� e��2t[1 + o(1)℄) � �0� 11��33= �0 � �0e��2t[1 + o(1)℄� �0� 11��33 ;where o(1) ! 0, as t ! 1. Now, if two sets of parameters (�0, �1, �2, �3, D) and(�00, �01, �02, �03, D0) pertain to the same urve gt, then:gtI+t � gtI + �0� 11��33 � �0 = ��0e��2t[1 + o(1)℄gtI+t � gtI + �00�03 11��03 � �00 = ��00e��02t[1 + ~o(1)℄;where also ~o(1)! 0 as t!1. Sine �0e��2t[1+ o(1)℄! 0 and �00e��02t[1+ ~o(1)℄! 0as t!1, it follows that �0 � �0� 11��33 = �00 � �00�03 11��03 ; (E.2)123



and therefore limt!1 �0e��2t�00e��02t = 1: (E.3)From (E.3) it follows that �0 = �00 and �2 = �02, and together with (E.2) we anonlude that � 11��33 = �03 11��03and hene that �3 = �03. From (E.1) we also get that �1 must equal �01. Finally, therelation g0 = �0(1� �1) 11��3 +Dshows that also D must equal D0. 2Lemma 4 Fix �3 > 0: In the unit-saled model, the funtion A de�ned in (4.10)with the onstraint (4.6) is stritly inreasing as a funtion of d0, 0 < d0 < 1.Proof. Let gt be a unit-saled urve orresponding to arbitrary �xed �3 and d0,and denote the asymptoti parameter of this urve A. Consider instead this urvestarting from time point 0 < T < tI , where tI is the in�etion time point of gt, andre-sale and translate it togt(T ) = gT+t(1�T+gT ) � gT1� T + gT :This new urve's t-derivative at zero is d0(T ) = g0T > d0, and the re-salings andtranslation were hosen so that the other four parameters are unhanged, so thatgt(T ) is again a unit-saled urve. Denote the asymptote of the new urveA(T ) = A� gT1� T + gT :It is straightforward to see that the derivative of A(T ) at T = 0 isA0(0+) = �d0 + (1� d0)A;whih is stritly positive if A > d01� d0 :124



By onvexity of gt, gt > d0t for t � tI :Furthermore, we have d0t � t� 1 for t � 11� d0 :Thus if we assume that tI � 11�d0 , we may onlude from the above inequalities thatgtI > tI � 1:But this would ontradit the fat that gt is unit-saled, sine this property impliesthat gtI = tI � 1;and thus it follows that tI > 11�d0 . This foresgtI > d01� d0 ;and therefore also A > d01�d0 , whih proves A0(0+) > 0.Consider the relation (using an obvious notation on the left side)A(1; d0(T ); 1; 1; �3) = A(T ): (E.4)Reall that d0(T ) = g0T , and di�erentiate and evaluate (E.4) at T = 0 to getDd0 [A(1; d0; 1; 1; �3)℄d00(0) = Dd0 [A(1; d0; 1; 1; �3)℄g000 = A0(0+):Loal onvexity implies that g000 > 0, whih proves Dd0 [A(1; d0; 1; 1; �3)℄ > 0. 2Lemma 5 Fix 0 < d0 < 1: In the unit-saled model, the funtion A de�ned in(4.10) with the onstraint (4.6) satis�es(a) lim�3!0A =1(b) lim�3!1A = 1�d0d0�log(d0)�1 .Proof.(a) Note that 1� �3 < �1 < 1 and 0 < �3 < 1, andA = �0 h1� (1� �1) 11��3 i :125



We �rst look at the asymptotis ofh1� (1� �1) 11��3 i :From 1� �3 < �1 < 1 and 0 < �3 < 1, we get that0 < (1� �1) 11��3 < � 11��33 ;and sine lim�3!0+� 11��33 = 0;it follows that lim�3!0+ h(1� �1) 11��3 i = 0 (E.5)and hene lim�3!0+ h1� (1� �1) 11��3 i = 1:Next, we look at the asymptotis of�0 = 1� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3 :From 1� �3 < �1 < 1 and 0 < �3 < 1 it follows that��3 < log� �11� �3�� �3 < � log (1� �3)� �3;so that��3� �31��33 < � �31��33 �log� �11� �3�� �3� < �� �31��33 [log (1� �3) + �3℄ : (E.6)The limit of the left side of (E.6) islim�3!0+���3� �31��33 � = 0and the limit of the right side of (E.6) islim�3!0+�� �31��33 [log (1� �3) + �3℄ = 0;126



and hene lim�3!0+� �31��33 �log� �11� �3�� �3� = 0: (E.7)Using (E.5) and (E.7) and the fat that �0 > 0, we getlim�3!0+�0 = lim�3!0+ 1� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3= 1;so that lim�3!0+A = � lim�3!0+�0�� lim�3!0+ h1� (1� �1) 11��3 i�= 1:(b) Let A(1; d0; 1; 1; �3) denote A as a funtion of �3 when s = 1, � = 1, � = 1,and 0 < d0 < 1 is �xed. Note that �1 < 1� �3. Take a �x �3 and �x �1,�1 = ��3ed0�3�1 : (E.8)Now using equation (E.8) in the equation of the derivative at time zero (4.6) we getd�3 = � ��3ed0�3�1� h1� � ��3ed0�3�1�i �31��3(1� �3)� �31��33 ;where d�3 ! d0 as �3 !1,lim�3!1d�3 = lim�3!1 � ��3ed0�3�1� h1� � ��3ed0�3�1�i �31��3(1� �3)� �31��33= lim�3!1 � �3ed�3�10 � 11��3� 11��33= d0; 127



andlim�3!1A(1; d�3 ; 1; 1; �3) = lim�3!1 1� �1 + �3ed0�3�1� 11��3� �31��33 24log0�� ��3ed0�3�1�1��3 1A� �335+ �1 + �3ed0�3�1� 11��3= 1� d0d0 � log (d0)� 1 :Now, if ~d0 > d0, then ~d�3 > d0 when �3 is large enough. Lemma 4 states thatA(1; d0; 1; 1; �3) is stritly inreasing as a funtion of d0, and hene we have thatA(1; d0; 1; 1; �3) < A(1; ~d�3 ; 1; 1; �3) for �3 large enough) lim supA(1; d0; 1; 1; �3) � lim supA(1; ~d�3 ; 1; 1; �3)= 1� ~d0~d0 � log � ~d0�� 1 :Analogously, for ~~d0 < d0lim infA(1; d0; 1; 1; �3) � lim infA(1; ~~d�3 ; 1; 1; �3)= 1� ~~d0~~d0 � log � ~~d0�� 1 :Due to the ontinuity of 1�d0d0�log(d0)�1 and the arbitrariness of ~d0 > d0 and ~~d0 < d0lim�3!1A(1; d0; 1; 1; �3) = 1� d0d0 � log (d0)� 1 :2 Remark to Lemma 5(b). In fat, it an be shown that the whole urve gt onvergesto a urve whih is de�ned asd0 �e(d0�log(d0)�1)t � 1�d0 � log(d0)� 1 ; when t � 1 + 1� d0d0 � log(d0)� 1and 1� d0d0 � log(d0)� 1 ; when t > 1 + 1� d0d0 � log(d0)� 1 :128



g
t
 

t Figure E.1: A limiting urve of the Chapman-Rihards model when �3 !1.In general, the limiting urves have the form�1 �e��2t � 1�+ �3; when t � log(�)� log(�1�2)�2 ;where �1; �2; �3 > 0. Figure E.1 shows how these urves look like.Lemma 6 The log(Y ) is onvex as a funtion of log(d0), log(�), and log(�) forany �xed log(s), where s > 0, 0 < d0 < �, � > 0, and � > 0.Proof. Take x1 = log(d0� ) = log(d0) � log(�) < 0, x2 = log(�), x3 = log(�), andwrite log(Y ) as a funtion of themLY (log(s);x) = log �elog(s)�e 1�ex1ex1�x1�1 ex2+x3 � 1�� (E.9)= log(s) + log �e 1�ex1ex1�x1�1 ex2+x3 � 1� ;where x = (x1; x2; x3). De�nek(x) = 1� ex1ex1 � x1 � 1ex2+x3and m(x) = log �e 1�ex1ex1�x1�1 ex2+x3 � 1�= log[ek(x) � 1℄:129



The funtion LY (log(s);x) is onvex for any �xed log(s), if m(x) is onvex, i.e. if theHessian D2x[m(x)℄ = ek(x)ek(x) � 1 �D2x[k(x)℄ � 1ek(x) � 1Dx[k(x)℄Dx[k(x)℄T � (E.10)is positive semide�nite. Observe that k(x) > 0 sine x1 < 0, and thusek(x)ek(x) � 1 > 0:Therefore, to prove that (E.10) is positive semide�nite, it is enough to prove thatD2x[k(x)℄ � 1ek(x) � 1Dx[k(x)℄Dx[k(x)℄T (E.11)is positive semide�nite.The funtion k(x) an be written as a produt off(x) = 1� ex1ex1 � x1 � 1 and g(x) = ex2+x3 :Now, using that �g(x)�x2 = �g(x)�x3 = g(x), we an writeD2x[k(x)℄ = g0BBBBB� �2f�x12 �f�x1 �f�x1�f�x1 f f�f�x1 f f
1CCCCCA ;

Dx[k(x)℄Dx[k(x)℄T = g20BBBBBB� � �f�x1�2 �f�x1 f �f�x1 f�f�x1 f f2 f2�f�x1 f f2 f2
1CCCCCCA ;and (E.11) an be written asg0BBBBBB� �2f�x12 � � �f�x1�2 gegf�1 �f�x1 � �f�x1 fgegf�1 �f�x1 � �f�x1 fgegf�1�f�x1 � �f�x1 fgegf�1 f � f2gegf�1 f � f2gegf�1�f�x1 � �f�x1 fgegf�1 f � f2gegf�1 f � f2gegf�1
1CCCCCCA ;
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whih is positive semide�nite if all the submatries have a non-negative determinant[29℄, and that is what we will prove next. We have that g > 0, we will prove thatf � f2gegf � 1 > 0 (E.12)�f�x1 � �f�x1 fgegf � 1 > 0 (E.13)�2f�x12 �� �f�x1�2 gegf � 1 > 0 (E.14)" �2f�x12 �� �f�x1�2 gegf � 1#�f � f2gegf � 1�� � �f�x1 � �f�x1 fgegf � 1�2 > 0; (E.15)the determinants of all the other submatries an immediately be seen to equal zero.To prove (E.12) and (E.13), we will use thategf � 1 > gf ) gegf � 1 < 1f : (E.16)Now, f � f2gegf � 1 > f � f2f = 0;and �f�x1 � �f�x1 fgegf � 1 > �f�x1 � �f�x1 ff = 0:To prove (E.14) is a slightly more elaborate task. We will use the inequalityx1 > ex1=2 � e�x1=2; if x1 < 0; (E.17)whih in turn an be seen by de�ningh(x1) = x1 � (ex1=2 � e�x1=2);and taking derivativeh0(x1) = 1� 12(ex1=2 + e�x1=2)< 1�pex1=2e�x1=2 = 0; for x1 < 0;131



where in the end we used the well known inequality between arithmeti and geometrimeans [15℄. From this and h(0) = 0 it follows that h(x1) > 0 for all x1 < 0, whih isequivalent to (E.17).Now, from (E.16) we �rst get�2f�x12 �� �f�x1�2 gegf � 1 > �2f�x12 �� �f�x1�2 1f ; (E.18)and then we study the sign of this bound�2f�x12 �� �f�x1�2 1f = e3x1x1 � 2e3x1 + 5e2x1 � ex1x12 � ex1x1 � 4ex1 + 1(�ex1 + x1 + 1)3(ex1 � 1) ; (E.19)where (�ex1+x1+1)3 < 0 and ex1�1 < 0, for x1 < 0, so the denominator is positive.We will prove (E.14) from positivity of the nominator, whih we may �rst rewrite as(ex1 � 1)2 � ex1x12 + ex1 f(ex1 � 1) [x1(ex1 + 1)� 2(ex1 � 1)℄g ;where ex1 > 0, ex1 � 1 < 0, and then from (E.17) we see that(ex1 � 1)2 � ex1x12 > (ex1 � 1)2 � ex1(ex12 � e�x12 )2= (ex1 � 1)2 � (ex1 � 1)2= 0; for x1 < 0:We get (E.14) if we also show that x1(ex1 + 1)� 2(ex1 � 1) < 0 for x1 < 0. Writev(x1) = x1(ex1 + 1)� 2(ex1 � 1):Then v0(x1) = 1 + ex1(x1 � 1)> 1 + ex1(ex12 � e�x12 � 1) (by E.17)= ex12 (ex1 � 1)� (ex1 � 1)= (ex1 � 1)(ex12 � 1)> 0; 132



and v(0) = 0. Thusv(x1) = x1(ex1 + 1)� 2(ex1 � 1) < 0; for x1 < 0;and the right-hand side of (E.19) is therefore positive, whih together with (E.18)proves (E.14).To prove (E.15) we �rst observe that�2f�x12 f > � �f�x1�2 ; (E.20)sine the right-hand side of (E.19) is positive by the proof of (E.14). Using (E.20) weget " �2f�x12 �� �f�x1�2 gegf � 1#�f � f2gegf � 1�� � �f�x1 � �f�x1 fgegf � 1�2> � �2f�x12 � �2f�x12 f gegf � 1� �f � f2gegf � 1�� � �f�x1 � �f�x1 fgegf � 1�2= � �2f�x12 �1� fgegf � 1���f �1� fgegf � 1��� � �f�x1 �1� fgegf � 1��2= �1� fgegf � 1�2 " �2f�x12 f �� �f�x1�2# > 0:The transformation between log(d0), log(�), log(�) and x1, x2, x3 is a�ne so thatthe onvexity of log(Y ) holds also in the former oordinates and the lemma is proved.2
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Appendix FSimultaneous models for twogrowth urvesOften in ase of double samples, the initial OD values of the two samples vary, but theend OD values are almost the same, and the growth urves have approximately thesame shape exept for the length of the exponential phase. This is natural, beause inthe sample with less ells in the beginning, there are more nutrients per ell, and thusthe population an grow for a longer time before it runs out of nutrients. However,even the absolute amount of nutrients an vary between double samples, and theyan have di�erent initial and �nal OD values, but the shapes of the growth urves(apart from the length of the exponential phase) still tend to be nearly the same. Insuh ases modeling the growth urves simultaneously would possibly give a betterestimate of the growth behavior than e.g. taking averages of growth parameters oftwo separately modeled urves.
F.1 Model IWe tried to model two growth urves simultaneously using the three part modelpresented in Setion 3.3 so that all parameters exept the time span of the linearpart (�) and D, are the same for both of the urves.The model of the urve with a smaller inrement on the logarithmi sale (i.e. thedi�erene between the logarithm of the initial OD and the logarithm of the end OD)is 135



g�(1)t = 8>>>>><>>>>>: g(1)t ; t � tI ;g(1)tI + �(t� tI); tI � t � tI +�1;g(1)t��1 + ��1; t � tI +�1; (F.1)where g(1)t is the Chapman-Rihards funtiong(1)t = �0 h1� �1e��2ti1=(1��3) +D1;and the model of the urve with a larger inrement on the logarithmi sale is
g�(2)t = 8>>>>><>>>>>: g(2)t ; t � tI ;g(2)tI + �(t� tI); tI � t � tI +�2;g(2)t��2 + ��2; t � tI +�2; (F.2)where g(2)t = �0 h1� �1e��2ti1=(1��3) +D2: (F.3)This model as well as model II below an easily be generalized to more than twosamples.F.2 Model IIWe also tried to �t a model where the asymptotes of the urves (F.1) and (F.2) werefored to be the same. Now�0 +�1�0�2� �31��33 +D1 = �0 +�2�0�2� �31��33 +D2) D2 = D1 + (�1 ��2)�0�2� �31��33= D1 + (�1 ��2)�:136



Thus, the Chapman-Rihards funtion (F.3) in the model of the urve with a lowerinitial OD an be written asg(2)t = �0 h1� �1e��2ti1=(1��3) +D1 + (�1 ��2)�:In our data, the di�erenes in the stationary phase OD inrement of double samplesof normally growing ells are small, in general less than 1%. This gives us reason tobelieve that a simultaneous model, where the asymptotes are fored to be the same,ould be a good ompromise model for two growth urves. It would be more natural tofore the stationary phase OD inrements to be the same, but foring the asymptotesto be the same is almost equal to it and easier to implement.F.3 Fitting the simultaneous models to the dataWe �tted the simultaneous models on dupliate measurements of the data presentedin Setion 3.2.3. The least squares method was used the same way as in Setion 3.2.3.With both of the models the estimates of �1 were nearly always zero. With modelI the �t was rather good when the shapes of the two urves were almost the same.However, if the shapes di�ered muh, the �t was not good. When the asymptotes ofthe two urves were nearly the same, the �ts of the two models were similar, see e.g.Figure F.1. When the asymptotes really di�ered, the �t was naturally better withmodel I, see e.g. Figure F.2. Also if the di�erene between the time spans of theexponential phases is very large, the �t an beome poor.It might be useful to be able to model the eight wild types in eah run simulta-neously. Although it is possible to generalize the simultaneous models for more thantwo urves, the omputations would beome rather ompliated. Moreover, the simul-taneous models do not enable easy omparison of all the urves in the experiment.
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Figure F.1: Two urves are �tted using the simultaneous models. The residual plotsof the �t of the upper urve are in the middle and the residual plots of the �t of lowerurve are at the bottom. 138
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Figure F.2: Two urves are �tted using the simultaneous models. The residual plotsof the �t of the upper urve are in the middle and the residual plots of the �t of lowerurve are at the bottom. 139


