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Large �nancial portfolios often contain hundreds of stocks. The aim of this
thesis is to �nd explicit optimal trading strategies that can be applied to portfo-
lios of that size for di¤erent n-stock extensions of the model by Barndor¤-Nielsen
and Shephard [3]. A main ambition is that the number of parameters in our
models do not grow too fast as the number of stocks n grows. This is necessary
to obtain stable parameter estimates when we �t the models to data, and n
is relatively large. Stability over the parameter estimates is needed to obtain
accurate estimates of the optimal strategies. Statistical methods for �tting the
models to data are also given.
The thesis consists of three papers. Paper I presents an n-stock extension to

the model in [3] where the dependence between di¤erent stocks lies strictly in
the volatility. The model is primarily intended for stocks that are dependent,
but not too dependent, such as stocks from di¤erent branches of industry. We
develop optimal portfolio theory for the model, and indicate how to do the sta-
tistical analysis. In Paper II we extend the model in Paper I further, to model
stronger dependence. This is done by assuming that the di¤usion components
of the stocks contain one Brownian motion that is unique for each stock, and
a few Brownian motions that all stocks share. We then develop portfolio opti-
mization theory for this extended model. Paper III presents statistical methods
to estimate the model in [3] from data. The model in Paper II is also considered.
It is shown that we can divide the centered returns by a constant times the daily
number of trades to get normalized returns that are i:i:d: and N (0; 1) : It is a
key feature of the Barndor¤-Nielsen and Shephard model that the centered re-
turns divided by the volatility are also i:i:d: and N (0; 1) : This suggests that we
identify the daily number of trades with the volatility, and model the number of
trades within the framework of Barndor¤-Nielsen and Shephard. Our approach
is easier to implement than the quadratic variation method, requires much less
data, and gives stable parameter estimates. A statistical analysis is done which
shows that the model �ts the data well.
Key words: Stochastic control, portfolio optimization, veri�cation theo-

rem, Feynman-Kac formula, stochastic volatility, non-Gaussian Ornstein-Uhlenbeck
process, estimation, number of trades
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This thesis consists of the following papers:

Paper I: News-generated dependence and optimal portfolios for n stocks in
a market of Barndor¤-Nielsen and Shephard type, to appear in Mathematical
Finance.

Paper II: Portfolio optimization and a factor model in a stochastic volatility
market, submitted.

Paper III: The estimation of a stochastic volatility model based on the number
of trades, submitted.
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1 Introduction

Investing in the stock market can be a pain free way to get rich fast. All you
have to do is to buy the right stock at the right time for a lot of money that you
don�t necessarily have to own. However, no one knows what "the right stock"
or "the right time" is, except in retrospective. Fortunately, the humble investor
can �nd other, more feasible, goals than "to get rich fast." For example, a trader
can try to maximize her expected utility from investing. The concept of utility
is an attempt to capture the risk aversion of a trader: The more money a trader
has, the less interested she will be in an extra 100SEK:
The idea of portfolio optimization is natural. A trader has a certain amount

of money and wants to invest it in a way that maximizes her expected utility.
In other words, she wants to do what she feels is best for her on average. In
fact, there is nothing about this optimality condition that is speci�c to �nance.
The optimal allocation of capital to di¤erent assets is a fundamental problem

in �nance. The �rst contribution to the area was by Markowitz [19]. He sug-
gested that an investor should consider not only the expected rate of return of
the stocks, but also the amount of �uctuation, or volatility, of the stock prices.
This lead to optimal portfolios that diversi�ed the capital between di¤erent as-
sets, instead of investing all the money in the stock with the highest mean rate
of return. Later, Merton solved related problems in continuous time in [20] and
[21]. Merton assumed that stocks behave as multi-variate geometric Brownian
motions. This implies that the volatilities are constant. The geometric Brown-
ian motion is the classic stock price model in stochastic �nance.
It is a well-known empirical fact that many characteristics of stock price data

are not captured by the geometric Brownian motion, and many alternatives
have been proposed. A successful approach that captures several key features
of �nancial data was presented by Barndor¤-Nielsen and Shephard in [3]. They
suggested a stochastic volatility model based on linear combinations of Ornstein-
Uhlenbeck processes with dynamics

dy = ��y (t) dt+ dz (t) ;

where z is a subordinator and � > 0: A subordinator is a Lévy process with
increasing paths. This framework allows us to model several of the observed
features in �nancial time series, such as semi-heavy tails, volatility clustering,
and skewness. Further, it is analytically tractable, see for example [2], [4], [7],
[22], and [24]. We consider some n-stock extensions of this model.
Large �nancial portfolios often contain hundreds of stocks. The aim of this

thesis is to �nd explicit optimal trading strategies that can be applied to port-
folios of that size for di¤erent n-stock extensions of the model in [3]. A primary
objective is that the number of parameters in our models do not grow too fast
as the number of stocks n grows. This is necessary to obtain stable parameter
estimates when we �t the models to data, and n is relatively large. Stability over
the parameter estimates is needed to obtain accurate estimates of the optimal
strategies. We also give statistical methods for �tting the models to data.
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Paper I presents an n-stock extension to the Barndor¤-Nielsen and Shep-
hard model where the dependence between di¤erent stocks lies in that they
partly share the Ornstein-Uhlenbeck processes of the volatility. The model is
mainly intended for stocks that are dependent, but not too dependent, such as
stocks that are not in the same branch of industry. We develop portfolio opti-
mization portfolio theory, and indicate how to do the statistical analysis for the
model. In Paper II we extend the model in Paper I further, so that it can model
stronger dependence between di¤erent stocks. This is done by introducing a
factor structure in the di¤usion components. The idea of a factor structure is
that the di¤usion components of the stocks contain one Brownian motion that
is unique for each stock, and a few Brownian motions that all stocks share.
We then develop optimal portfolio theory for this extended model. Paper III
presents statistical methods to estimate the model in [3] from data. We also
consider the model from Paper II. It is shown that we can divide the centered
returns by a constant times the daily number of trades to get normalized re-
turns that are i:i:d: and N (0; 1) : It is an important theoretical feature of the
stochastic volatility framework of Barndor¤-Nielsen and Shephard that the cen-
tered returns divided by the volatility are also i:i:d: and N (0; 1) : This suggests
that we identify the daily number of trades with the volatility, and model the
number of trades within the framework of Barndor¤-Nielsen and Shephard. Our
approach gives more stable parameter estimates than if we analyzed only the
marginal distribution of the returns directly with the standard maximum likeli-
hood approach. Further, it is easier to implement than the quadratic variation
method, and requires much less data. A statistical analysis is done which shows
that the model �ts the data well.
In Section 2 of this summary we recapitulate some results from classical con-

tinuous time portfolio optimization, and the ideas from stochastic control used
to derive them. Section 3 discusses "stylized" facts of stock price data. Further,
we indicate why the classical models lack all these characteristics. Section 4
introduces the stochastic volatility model of [3]. Finally, in Section 5 we present
the three papers that constitute this thesis.

2 Portfolio optimization

The �rst papers on continuous time portfolio optimization are due to Merton
([20] and [21]). We present in this section a version of Merton�s problem in its
classical setting.
Merton modelled the stock prices as multi-variate geometric Brownian mo-

tions, which for two stocks S1; S2 takes the form

S1 (t) = S1 (0) exp
�
(�1 � 1

2�
2
11 � 1

2�
2
12)t+ �11W1 (t) + �12W2 (t)

�
; (2.1)

S2 (t) = S2 (0) exp
�
(�2 � 1

2�
2
21 � 1

2�
2
22)t+ �21W1 (t) + �22W2 (t)

�
:

Here �i; i = 1; 2; are constants,Wi; i = 1; 2; are independent Brownian motions,
and � is a volatility matrix. The matrix � gives the dependence between the
two stocks.
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In portfolio optimization one has to choose a value function to optimize.
One of the most widely used optimal value functions is

V (t; w) = sup
�
E [U (W� (T )) jt; W (t) = w ] ;

where T is a future date in time, W (T ) is our wealth at time T , U (�) is our
utility function, and � is a trading strategy. The utility function is a measure of
how much we want to risk to obtain more wealth. It is typically assumed to be
concave and increasing. The concavity means that the more money an investor
gets, the less interested she will be in obtaining a little more. The condition
that the utility function should be increasing implies that the investor always
prefers more to less. Merton suggested the utility function

U (w) =
1


w ;

for 0 <  < 1: The trading strategies � are recipes for how we are going to
allocate our wealth between di¤erent assets. This formulation of the portfolio
optimization problem means that we seek the trading strategies such that we
obtain the maximum expected utility from wealth on a future day T:
We outline now the stochastic control approach to �nding this optimal value

function V: First, one assumes that

sup
�

�
lim
t#0

E [V (t;W (t))]� V (0; w)
t

�
= 0:

This "derivative" serves as a necessary condition for optimality. It can be eval-
uated using Itô�s formula which gives an equation called the Hamilton-Jacobi-
Bellman (HJB) equation. So far, we have only found an equation whose solution
we guess is the optimal value function. The next step is to prove a veri�cation
theorem. This theorem says that a solution to the HJB-equation is in fact equal
to the optimal value function. Hence, we have veri�ed that our guess was cor-
rect. The last and �nal step is then to actually �nd the solution to the HJB
equation. This is typically quite hard, since the HJB-equation is nonlinear.
However, it can be done in the setting of this section, and the optimal trading
strategies turn out to be

� = (��0)
�1
(�� r1

¯
)
1

1�  ;

where 1
¯
is a vector of ones.

Portfolio optimization with more general stock price models than the geo-
metric Brownian motion has been treated in a number of recent articles. In [7], a
one-stock portfolio problem in the model in [3] is solved. In the papers [13], [14],
[23], and [26], the stochastic volatility depends on a Brownian motion which is
correlated to the di¤usion process of the risky asset. The paper [9] model the
volatility as a continuous-time Markov chain with �nite state-space, which is
independent of the rest of the model. In [5], [6], and [12], di¤erent portfolio
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problems are treated when the stocks are driven by general Lévy processes,
and [10] look at portfolio optimization in a market with Markov-modulated
drift process. Further, [15] derive explicit solutions for log-optimal portfolios
in complete markets in terms of the semimartingale characteristics of the price
process, and [18] show that there exists a unique solution to the optimal invest-
ment problem for any arbitrage-free model if and only if the utility function has
asymptotic elasticity strictly less than one.

3 "Stylized" features of stock returns

The standard approach to analyze �nancial data is to look at the increments of
the returns process R (t) := log (S (t) =S (0)) for the stock S:We assume that we
are observing returns R (�) ; R (2�)�R (�) ; :::; R (k�)�R ((k � 1)�) ; where
� is one day, and k+1 is the number of consecutive trading days in our period of
observation. It is widely agreed that the returns of �nancial data have, among
other things, the following characteristic features:

� The returns are not normally distributed. Instead, they are peaked around
zero, skew, and have heavier tails than the normal distribution.

� The volatility of the returns changes stochastically over time, and appears
to be clustered. That is, there seems to be a random succession of periods
with high return variance and periods with low return variance.

� The autocorrelation function for absolute returns is clearly positive even
for long lags.

We now give a brief indication that these empirical facts hold. The empirical
density function of the returns in Figure 3.1 seems consistent with the �rst listed
feature. It shows a clear non-normality, and appears to be both peaked around
zero, skew, and more heavy-tailed than the normal distribution. In Figure 3.2,
the volatility of the returns is evidently not constant. The most obvious example
of a volatility cluster is the latter part of 2002. Hence these data give no reason
to doubt the second "stylized" fact. Further, the autocorrelation function of the
absolute returns in Figure 3.3 is positive, and so appears compatible with the
last condition.
The stock price model in Equation (2.1), which is used in the classical port-

folio optimization problem above, does not capture any of the features listed
above: The returns in this model are i:i:d: and normally distributed, and the
volatility is constant. A common approach to improve the geometric Brownian
motion as a stock price model is to assume that the volatility is stochastic.

4 Stochastic volatility models in �nance

There has been published some di¤erent models that include stochastic volatility
in stock price dynamics, see for example [3], [11], [16], and [17]. This thesis
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Figure 3.1: Stars indicate the empirical density function for daily returns for
Volvo B during 1999-08-16 to 2004-08-16. The solid line is the estimated normal
density function to the same data set.
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Figure 3.2: Returns for Ericsson from 1999-08-16 to 2004-08-16.
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Figure 3.3: Empirical autocorrelation function for absolute returns for SKF
from 1999-08-16 to 2004-08-16.

builds upon extensions of the model in [3]. In this model the volatility �2 (�) of
a stock is de�ned as a linear combination of non-Gaussian Ornstein-Uhlenbeck
processes of the form

Yj (t) = yje
��jt +

R t
0
e��j(t�u)dZj(�ju); t � 0: (4.1)

Here yj := Yj (0) ; and yj has the stationary marginal distribution of the process
and is independent of Zj (t) � Zj (0) ; t � 0: The process Zj is a subordinator,
that is, a Lévy process with positive increments. The stock price process S then
takes the form

S (t) = S (0) exp

�Z t

0

�
�+

�
� � 1

2

�
�2 (u)

�
du+

Z t

0

� (u) dW (u)

�
;

for some Brownian motionW: It can be shown that the returns in this model can
get marginal distributions from the Generalized Hyperbolic (GH) distribution.
The GH family is quite general, and includes many distributions that have been
used to model �nancial return data, for example the normal inverse Gaussian
(NIG) distribution, see [1], [3], and [25]. The use of subordinators allows for
sudden increases in the volatility �2 (�), which can be interpreted as the release
of unexpected information. Further, since the Ornstein-Uhlenbeck processes Yj
decrease exponentially, the e¤ect of large jumps in the volatility �2 (�) "lingers."
This models volatility clustering. In essence, the model captures all "stylized"
facts of �nancial data listed above. A further advantage of the Barndor¤-Nielsen
and Shephard model is that it is analytically tractable; Option pricing is treated
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in [22], portfolio optimization for one stock and a bond in [7], and inference
techniques are developed, for example, in [4] and [24].

5 Summary of papers

Most published papers on portfolio optimization with more general stock price
models than the geometric Brownian motion consider only the case of one stock
and a bond. However, large �nancial portfolios often contain hundreds of stocks.
We want to develop explicit optimal trading strategies that can be applied
to portfolios of this size for di¤erent n-stock extensions of the model in [3].
This requires careful modeling of the stock price and volatility dynamics. It
is necessary to have many more observations than parameters to obtain stable
parameter estimates. Therefore, we can not use the standard approach: An
explicit stochastic volatility matrix, and n Brownian motions in the di¤usion
components of all n stocks. The reason is that the number of parameters in
such a model would grow very fast as the number of stocks grows. We want to
capture the essence of the dependence between di¤erent stocks, but still be able
to estimate the model accurately from data.

5.1 Paper I

In this paper we consider Merton�s portfolio optimization problem in a Barndor¤-
Nielsen and Shephard market. An investor is allowed to trade in n stocks and a
risk-free bond, and wants to maximize her expected utility from wealth at the
terminal date T . The case with only one stock was solved in [7]. The dependence
between stocks is assumed to be that they partly share the Ornstein-Uhlenbeck
processes of the volatility. We refer to these as news processes. This gives the
interpretation that dependence between stocks lies solely in their reactions to
the same news. The model is primarily intended for assets which are dependent,
but not too dependent, such as stocks from di¤erent branches of industry. We
show that this dependence generates covariance between the returns of di¤erent
stocks, and give statistical methods for both the �tting and veri�cation of the
model to data. The model retains all the features of the univariate model in [3].
The stochastic optimization problem is solved via dynamic programming

and the associated HJB integro-di¤erential equation. By use of a veri�cation
theorem, we identify the optimal expected utility from terminal wealth as the
solution of a second-order integro-di¤erential equation. The investor is allowed
to have restrictions on the fractions of wealth held in each stock, but also bor-
rowing and short-selling constraints on the entire portfolio. For power utility, we
then compute the solution to this equation via a Feynman-Kac representation,
and obtain explicit optimal allocation strategies. A main advantage with the
model is that the optimal strategies are functions of only 2n model parameters
and the volatility of each stock. This is a desirable feature which allows us to
obtain good estimates of the optimal strategies even when n is large. All results
are derived under exponential integrability assumptions on the Lévy measures
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of the subordinators.

5.2 Paper II

The model in Paper I has a weak point: To obtain strong correlations between
the returns of di¤erent stocks, the marginal distributions have to be very skew.
This might not �t data. In the �rst part of Paper II, we try to deal with this
weakness.
We introduce in Paper II a more general n-stock extension of the model in

Paper I. It is a primary focus that the number of parameters does not grow
too fast as the number of stocks grows. This is necessary to obtain accurate
parameter estimates when we �t the model to data, and n is relatively large.
Accurate parameter estimates is needed to obtain good estimates of the optimal
strategies. Therefore, we do not use the standard approach with n Brownian
motions in the di¤usion components of all n stocks. Instead, we de�ne the
stochastic volatility matrix implicitly by a factor structure. The idea of a factor
structure is that the di¤usion components of the stocks contain one Brownian
motion that is unique for each stock, and a few Brownian motions that all stocks
share. The latter are called factors. Hence, the dependence between stocks lies
both in the stochastic volatility, and in the Brownian motions. A factor model
has fewer parameters than a standard model. The reason is that the number of
factors can be chosen a lot smaller than the number of stocks. We show that this
model can obtain strong correlations between the returns of the stocks without
a¤ecting their marginal distributions.
In the second part we consider an investor who wants to maximize her utility

from terminal wealth by investing in n stocks and a bond. We allow for the
investor to have restrictions on the fractions of wealth held in each stock, as
well as borrowing and short-selling restrictions on the entire portfolio. The
stochastic optimization problem is solved via dynamic programming and the
associated HJB integro-di¤erential equation. We use a veri�cation theorem to
identify the optimal expected utility from terminal wealth as the solution of
a second-order integro-di¤erential equation. We then compute the solution to
this equation via a Feynman-Kac representation for power utility, and obtain
explicit optimal allocation strategies. All results are derived under exponential
integrability assumptions on the Lévy measures of the subordinators.

5.3 Paper III

A drawback with the Barndor¤-Nielsen and Shephard model has been the dif-
�culty to estimate the parameters of the model from data. Perhaps the most
intuitive approach to do this is to analyze the quadratic variation of the stock
price process, see [4]. This makes it in theory possible to recover the volatil-
ity process from observed stock prices. However, in reality the model does not
hold on the microscale, and even if is only regarded as an approximation this
approach still requires very much data. In addition, it is hard to implement in
a statistically sound way due to peculiarities in intraday data. For example,
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the stock market is closed at night, and there is more intense trading on certain
hours of the day. None of these features are present in the mathematical model.
In this paper we develop statistical methods for estimating the models in [3]

and Paper II from data. The models are discretized under the assumption that
the Wiener integrals in the Barndor¤-Nielsen and Shephard modelZ t

t��
� (s) dB (s) � � (t) ";

for " 2 N (0; 1) : In addition, we impose some restrictions on the volatility
in order to be able to estimate the model from data. We argue that it is
inappropriate to estimate the GH-distribution directly from �nancial return
data. The reason is that the GH-distribution is "almost" overparameterized.
To overcome this problem, we verify that we can divide the centered returns by a
constant times the number of trades in a trading day to get a sample that is i:i:d:
and N (0; 1) : It is an important feature of the stochastic volatility framework in
[3] that the centered returns divided by the volatility are also i:i:d: and N (0; 1) :
This implies that we identify the daily number of trades with the volatility, and
model the number of trades within the model in [3]. Our approach gives more
stable parameter estimates than if we analyzed only the marginal distribution of
the returns directly with the standard maximum likelihood method. Further, it
is easier to implement than the quadratic variation method, and requires much
less data. It gives also an economical interpretation of the discretely observed
linear combination of non-Gaussian Ornstein-Uhlenbeck processes that de�ne
the stochastic volatility. In addition, our approach implies that we can view the
continuous time volatility as the intensity with which trades arrive. A statistical
analysis is performed on data from the OMX Stockholmsbörsen. The results
indicate a good model �t.
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News-generated dependence and optimal
portfolios for n stocks in a market of
Barndor¤-Nielsen and Shephard type
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Abstract
We consider Merton�s portfolio optimization problem in a Black and

Scholes market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck
type. The investor can trade in n stocks and a risk-free bond. We assume
that the dependence between stocks lies in that they partly share the
Ornstein-Uhlenbeck processes of the volatility. We refer to these as news
processes, and interpret this as that dependence between stocks lies solely
in their reactions to the same news. The model is primarily intended for
assets which are dependent, but not too dependent, such as stocks from
di¤erent branches of industry. We show that this dependence generates
covariance, and give statistical methods for both the �tting and veri�ca-
tion of the model to data. Using dynamic programming, we derive and
verify explicit trading strategies and Feynman-Kac representations of the
value function for power utility. A primary advantage with the model is
that the optimal strategies are functions of only 2n model parameters and
the volatility of each stock. This allows us to obtain accurate estimates
of the optimal strategies even when n is large.

1 Introduction

A classical problem in mathematical �nance is the question of how to optimally
allocate capital between di¤erent assets. In a Black and Scholes market with
constant coe¢ cients, this was solved by Merton in [16] and [17]. Recently, [6]
solved a similar problem for one stock and a bond in the more general market
model of [3]. In [3], Barndor¤-Nielsen and Shephard propose modeling the
volatility in asset price dynamics as a weighted sum of non-Gaussian Ornstein-
Uhlenbeck (OU) processes of the form

dy (t) = ��y (t) dt+ dz (t) ;
The author would like to thank Holger Rootzén and Fred Espen Benth for valuable

discussions, as well as for carefully reading through preliminary versions of this paper.
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where z is a subordinator and � > 0. This framework is a powerful modeling
tool that allows us to capture several of the observed features in �nancial time
series, such as semi-heavy tails, volatility clustering, and skewness. We extend
the model by introducing a new dependence structure, in which the dependence
between assets lies in that they share some of the OU processes of the volatility.
We will refer to the OU processes as news processes, which implies the inter-
pretation that the dependence between �nancial assets is reactions to the same
news. We show that this dependence generates covariance, and give statistical
methods for both the �tting and veri�cation of the model to data. The model is
primarily intended for assets which are not too dependent, such as stocks from
di¤erent branches of industry.
In this extended model we consider an investor who wants to maximize her

utility from terminal wealth by investing in n stocks and a bond. This problem
is an n-stock extension of [6]. We allow for the investor to have restrictions on
the fractions of wealth held in each stock, as well as borrowing and short-selling
restrictions on the entire portfolio. For simplicity of notation, we have formu-
lated and solved the problem for two stocks and a bond. However, the general
case is completely analogous. The stochastic optimization problem is solved
via dynamic programming and the associated Hamilton-Jakobi-Bellman (HJB)
integro-di¤erential equation. By use of a veri�cation theorem, we identify the
optimal expected utility from terminal wealth as the solution of a second-order
integro-di¤erential equation. For power utility, we then compute the solution
to this equation via a Feynman-Kac representation, and obtain explicit optimal
allocation strategies. These strategies are functions of only 2n model parame-
ters and the volatility of each stock. This is a desirable feature which allows
us to do portfolio optimization with a large number of stocks. All results are
derived under exponential integrability assumptions on the Lévy measures of
the subordinators.
Recently, portfolio optimization under stochastic volatility has been treated

in a number of articles. In [11], [13], and [23], the stochastic volatility depends
on a stochastic factor that is correlated to the di¤usion process of the risky
asset. The paper [8] models the stochastic factor as a continuous-time Markov
chain with �nite state-space. This process is assumed to be independent of the
di¤usion process. Both [8] and [23] use an approach to solve their portfolio
optimization problems that is similar to ours. The paper [19] uses partial obser-
vation to solve a portfolio problem with a stochastic volatility process driven by
a Brownian motion correlated to the dynamics of the risky asset. Going beyond
the classical geometric Brownian motion, [4], [5], and [10] treat di¤erent portfo-
lio problems when the risky assets are driven by Lévy processes, and [9] look at
portfolio optimization in a market with unobservable Markov-modulated drift
process. Further, [14] derive explicit solutions for log-optimal portfolios in terms
of the semimartingale characteristics of the price process. For an introduction
to the market model of Barndor¤-Nielsen and Shephard we refer to [2] and [3].
For option pricing in this context, see [18].
This paper has six sections. In Section 2 we give a rigorous formulation of

the market and the portfolio optimization problem. We also discuss the market
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model and the implications of the dependence structure. In Section 3 we derive
some useful results on the stochastic volatility model, and on moments of the
wealth process. We prove our veri�cation theorem in Section 4, and use it in
Section 5 to verify the solution we have obtained. Section 6 states our results,
without proofs, in the general setting.

2 The optimization problem

In this section we de�ne, and discuss, the market model. We also set up our
optimization problem.

2.1 The market model

For 0 � t � T <1, we assume as given a complete probability space (
;F ; P )
with a �ltration fFtg0�t�T satisfying the usual conditions. Introduce m in-
dependent subordinators Zj , and denote their Lévy measures by lj(dz); j =
1; :::;m: Remember that a subordinator is de�ned to be a Lévy process taking
values in [0;1) ; which implies that its sample paths are increasing. The Lévy
measure l of a subordinator satis�es the conditionZ 1

0+

min(1; z)l(dz) <1:

We assume that we use the cádlág version of Zj : Let Bi; i = 1; 2; be two Wiener
processes independent of all the subordinators. We now introduce our stochastic
volatility model. It is an extension of the model proposed by Barndor¤-Nielsen
and Shephard in [3] to the case of two stocks, under a special dependence struc-
ture. To begin with, our model is identical to theirs. We will discuss the
di¤erences as they occur.
The next extension of the model, to n stocks, is only a matter of notation.

Denote by Yj ; j = 1; :::;m, the OU stochastic processes whose dynamics are
governed by

dYj(t) = ��jYj(t)dt+ dZj(�jt), (2.1)

where the rate of decay is denoted by �j > 0: The unusual timing of Zj is
chosen so that the marginal distribution of Yj will be unchanged regardless of the
value of �j : To make the OU processes and the Wiener processes simultaneously
adapted, we use the �ltration

f� (B1 (t) ; B2 (t) ; Z1 (�1t) ; :::; Zm (�mt))g0�t�T :

From now on we view the processes Yj ; j = 1; :::;m in our model as news
processes associated to certain events, and the jump times of Zj ; j = 1; :::;m as
news or the release of information on the market. The stationary process Yj
can be represented as

Yj (s) =
R t
�1 exp (u) dZj (�js+ u) ; s � t;
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but can also be written as

Yj (s) = yje
��j(s�t) +

R s
t
e��j(s�u)dZj(�ju); s � t; (2.2)

where yj := Yj (t) ; and yj has the stationary marginal distribution of the process
and is independent of Zj (s) � Zj (t) ; s � t: In particular, if yj = Yj (t) � 0;
then Yj (s) � 0; since Zj is non-decreasing. We set Zj (0) = 0, j = 1; :::;m; and
set y := (y1; :::; ym) : We assume the usual risk-free bond dynamics

dR (t) = rR (t) dt;

with interest rate r > 0. De�ne the two stocks S1; S2 to have the dynamics

dSi (t) = (�i + �i�i (t))Si (t) dt+
p
�i(t)Si (t) dBi (t) . (2.3)

Here �i are the constant mean rates of return; and �i are skewness parameters.
We will call �i + �i�i (t) the mean rate of return for stock i at time t: For
notational simplicity in our portfolio problem we denote the volatility processes
by �i instead of the more customary �2i : We de�ne �i as

�i (s) := �
t;y
i (s) :=

Pm
j=1 !i;jYj (s) ; s 2 [t; T ] ; (2.4)

where !i;j � 0 are weights summing to one for each i: The notation �t;yi denotes
conditioning on Y (t) : Our model is here not the same as just two separate mod-
els of Barndor¤-Nielsen and Shephard type. The di¤erence is that the volatility
processes depend on the same news processes. These volatility dynamics gives
us the stock price processes

Si (s) = Si (t) exp

�Z s

t

�
�i +

�
�i � 1

2

�
�i (u)

�
du+

Z s

t

p
�i (u)dBi (u)

�
: (2.5)

This stock price model does not have statistically independent increments and
it is non-stationary. It also allows for the increments of the returns Ri (t) :=
log (Si (t) =Si (0)) ; i = 1; 2; to have semi-heavy tails as well as both volatility
clustering and skewness. The increments of the returns Ri are stationary since

Ri (s)�Ri (t) = log
�
Si (s)

Si (0)

�
� log

�
Si (t)

Si (0)

�
= log

�
Si (s)

Si (t)

�
=L Ri (s� t) ;

where " =L " denotes equality in law.

2.2 Discussion of the market model

This section aims to show that the dependence structure proposed in Section 2.1
is not only simple from a statistical point of view, but also has very appealing
economical interpretations.
The paper [3] suggests a model with n stocks with dynamics

dS (t) = f�+ �� (t)gS (t) dt+�(t)
1
2 S (t) dB(t);
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where � is a time-varying stochastic volatility matrix, � and � are vectors, and
B is a vector of independent Wiener processes. This model includes ours as a
special case with � being a diagonal matrix. However, in the classical Black
and Scholes market, dependence is modelled by covariance. In the case of two
stocks this means that for s � t;

S1 (s) = S1 (t) exp
��
�1 � 1

2�11 �
1
2�12

�
(s� t) +p�11B1 (s) +

p
�12B2 (s)

�
;

and

S2 (s) = S2 (t) exp
��
�2 � 1

2�21 �
1
2�22

�
(s� t) +p�21B1 (s) +

p
�22B2 (s)

�
;

for a volatility matrix �; and B1 (t) = B2 (t) = 0.
In our model, stock prices develop independently beside from reacting to the

same news. The model is mainly intended for assets that are dependent, but not
too dependent. For example, stocks from di¤erent branches of industry. From
an economic viewpoint, one can expect the model parameters to be more stable
than in the classical Black and Scholes market. For example, we do not require
stability over expected rate of return. Instead we ask that every time the market
is �nervous�to a certain degree, i.e. for every speci�c value of the volatility �i;
the mean rate of return �i + �i�i will be the same. We can interpret this as
that we only need stability in how the market reacts to news. Note that we do
not make a distinction between good and bad news.
As we will see, for the purpose of portfolio optimization we do not need to

know the weights !i;j : More importantly, the model generates a non-diagonal
covariance matrix for the increments of the returns over the same time period,
which is the most frequently used measure of dependence in �nance. Since the
returns have stationary increments, it is su¢ cient to show this result for Ri;
i = 1; 2: Note that we have

Cov (R1 (s)�R1 (t) ; R2 (u)�R2 (v))
= Cov (R1 (s) ; R2 (u))� Cov (R1 (s) ; R2 (v))

� Cov (R1 (t) ; R2 (u)) + Cov (R1 (t) ; R2 (v)) ;

for s; t; u; v 2 [0; T ] : As will be shown below, for s; t 2 [0; T ] ; we have that

Cov (R1 (s) ; R2 (t)) (2.6)

=
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jV ar (Yj (0))

� e
��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j
;

which for s = t simpli�es to

Cov (R1 (t) ; R2 (t)) (2.7)

= 2
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jV ar (Yj (0))
e��jt � 1 + �jt

�2j
:
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This result says that the model generates a covariance matrix between returns,
but we do not immediately know which correlations that can be obtained. It
turns out that we can get correlations Corr (R1 (t) ; R2 (t)) in the entire interval
(�1; 1) :
To derive Equation (2.6), by de�nition of �i we have that

E [R1 (s)R2 (t)]

= E
��Z s

0

�1 +
�
�1 � 1

2

�
�1 (u) du+

Z s

0

p
�1 (u)dB1 (u)

�
�
�Z t

0

�2 +
�
�2 � 1

2

�
�2 (u) du+

Z t

0

p
�2 (u)dB2 (u)

��
= �1�2st+ �1s

�
�2 � 1

2

� mX
j=1

!2;jE
�Z t

0

Yj (u) du

�

+ �2t
�
�1 � 1

2

� mX
j=1

!1;jE
�Z s

0

Yj (u) du

�

+
�
�1 � 1

2

� �
�2 � 1

2

� mX
i;j=1

!1;i!2;jE
�Z s

0

Yi (u) du

Z t

0

Yj (u) du

�
:

Similarly,

E [R1 (t)] = �1t+
�
�1 � 1

2

� mX
j=1

!1;jE
�Z t

0

Yj (u) du

�
:

This gives that

Cov (R1 (s) ; R2 (t))

=
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jCov

�Z s

0

Yj (u) du;

Z t

0

Yj (u) du

�
:

By stationarity, we have that E [Yj (t)] = �Yj ; for some constant �Yj > 0; for all
t 2 R: If we assume that u � v; the independence of the increments of Yj gives
that

Cov (Yj (u) ; Yj (v))

= E
��
Yj (u)� �Yj

� �
Yj (v)� �Yj

��
= E

�
e��j(v�u)Yj (u)

2
+ Yj (u)

Z v

u

e��j(v�s)dZ (�js)

�
� �2Yj

= e��j(v�u)E
h
Yj (0)

2
i
� e��j(v�u)�2Yj

= e��j(v�u)V ar (Yj (0)) :

The same calculations for v � u shows that

Cov (Yj (u) ; Yj (v)) = e
��j jv�ujV ar (Yj (0)) ;
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and we get

Cov

�Z s

0

Yj (u) du;

Z t

0

Yj (u) du

�
(2.8)

=

Z s

0

Z t

0

Cov (Yj (u) ; Yj (v)) dudv

= V ar (Yj (0))
e��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j
:

By Itô�s isometry (see [24]) we get, similarly as above,

V ar (Ri (t)) =
mX
j=1

 
2
�
�i � 1

2

�2
!2i;jV ar (Yj (0))

e��jt � 1 + �jt
�2j

+ !i;j�Yj t

!
;

for i = 1; 2: This gives

Corr (R1 (s) ; R2 (t))

=
1

2

�
�1 � 1

2

� �
�2 � 1

2

����1 � 1
2

�� ���2 � 1
2

�� mX
j=1

!1;j!2;jV ar (Yj (0))

� e
��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j

� 1vuutPm
j=1

 
!21;jV ar (Yj (0))

e��js�1+�js
�2j

+
!1;j�Yj s

2
�
�1�

1
2

�2
!

� 1vuutPm
j=1

 
!22;jV ar (Yj (0))

e��jt�1+�jt
�2j

+
!2;j�Yj t

2
�
�2�

1
2

�2
! ;

and, for s = t;

Corr (R1 (t) ; R2 (t))

=

�
�1 � 1

2

� �
�2 � 1

2

����1 � 1
2

�� ���2 � 1
2

��
�

mX
j=1

!1;j!2;jV ar (Yj (0))
e��jt � 1 + �jt

�2j

� 1vuutPm
j=1

 
!21;jV ar (Yj (0))

e��jt�1+�jt
�2j

+
!1;j�Yj t

2
�
�1�

1
2

�2
!
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� 1vuutPm
j=1

 
!22;jV ar (Yj (0))

e��jt�1+�jt
�2j

+
!2;j�Yj t

2
�
�2�

1
2

�2
! :

There is always a trade-o¤ between accuracy and applicability when design-
ing models. An obvious advantage of our model is that we do not have to
estimate a stochastic volatility matrix, and hence we need less data to obtain
good estimates of the model parameters. A drawback is that, to obtain high
correlations, we need the model to be very skew. This might not �t observed
data. Another drawback is that we do not distinguish between good and bad
news. An alternative stock price model would be

dSi (t) =
�
�i + �

1
i �

1
i (t)� �2i �2i (t)

�
Si (t) dt+

p
�i(t)Si (t) dBi (t) ,

where �1i ; �
2
i > 0; and �

1
i ; �

2
i are linear combinations of the news processes such

that �1i + �
2
i = �i: We have chosen to not use this model as it would be hard to

estimate from data. For example, the marginal distributions of the returns will
no longer �t in the framework of Barndor¤-Nielsen and Shephard. We are also
required to obtain estimates of the "positive" respectively "negative" volatilities
in the statistical estimation of the model.

2.3 Statistical methodology

In this section we describe a methodology for �tting the model to return data.
We will do this for a Normalized Inverse Gaussian distribution (NIG) ; which
has been shown to �t �nancial data well, see e.g. [1], [3], and [21]. Our
choice plays no formal role in the analysis. We assume that we are observ-
ing Ri (�) ; Ri (2�)�Ri (�) ; :::; Ri (k�)�Ri ((k � 1)�) ; where � is one day,
and k+1 is the number of consecutive trading days in our period of observation.
TheNIG-distribution has parameters � =

p
�2 + 2; �; �; and �: Its density

function is

fNIG (x;�; �; �; �)

=
�

�
exp

�
�
p
�2 � �2 � ��

�
q

�
x� �
�

��1
K1

�
��q

�
x� �
�

��
e�x;

where q (x) =
p
1 + x2 and K1 denotes the modi�ed Bessel function of the

third kind with index 1: The domain of the parameters is � 2 R; �;  > 0; and
0 � j�j � �:
A standard result is that if we take � to have an Inverse Gaussian distribution

(IG) ; and draw a N (0; 1)-distributed random variable "; then x = �+��+
p
�"

will be NIG-distributed. The IG-distribution has density function

fIG (x; �; ) =
�p
2�
exp (�)x�

3
2 exp

�
� 1
2

�
�2x�1 + 2x

��
; x > 0;

where � and  are the same as in the NIG-distribution. The existence and
integrability of Lévy measures lj such that the volatility processes �i will have
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IG-distributed marginals is not obvious. See [2] and [22] for this theory. The
Lévy density l of the subordinator Z of an IG-distributed news process Y is

l (x) = (2�)
� 1
2
�

2

�
x�1 + 2

�
x�

1
2 e�

2x
2 ;

where (�; ) are the parameters of the IG-distribution, see [3].
The method described in [3], which we further extend, uses that the marginal

distributions of the volatility processes �i are invariant to the rates of decay �j :
These parameters �j are then used to �t the autocorrelation function of the �i;
��i (h) = Cov (�i (h) ; �i (0)) =V ar (�i (0)) ; h 2 R; to log-return data.
For simplicity of exposition we will assume that we only need one � to cor-

rectly model the autocorrelation function of both stocks. However, for reasons
to be explained later, we will assume thatm = 3; and that all �1 = �2 = �3 = �:
For our model calculations show that, for general m;

��i (h) = !i;1 exp (��1 jhj) + :::+ !i;m exp (��m jhj) ;

where the !i;j � 0; are the weights from the volatility processes that sum to
one. Observe that since we have assumed the rates of decay �j to be equal, we
immediately get that ��i (h) = exp (�� jhj) : We proved this simpler result in
Subsection 2.2. The proof of the general case is analogous.
We assume that we have �tted NIG-distributions to the empirical marginal

distributions of two stocks, and that we have found a � such that our model has
the right autocorrelation function. This can be done by empirically calculating
the autocorrelation functions ��i (h) for di¤erent values of h; and then �nd a
� so that the theoretical and empirical autocorrelation functions match. We
denote the IG-parameters of the volatility processes �i by (�i; i) ; i = 1; 2:
By Equation (2.7) we can now �t the covariance of the model to the empirical
covariance from the return data. This can be done by letting the two stocks
�share�the news process Y3, and each have one of the news processes Yi; i = 1; 2;
�of their own.�In general, this is done for each rate of decay. We formulate this
mathematically as

�1 = !1;1Y1 + !1;3Y3 � IG (�1; 1)
�2 = !2;1Y2 + !2;3Y3 � IG (�2; 2) :

We now state two properties of IG-distributed random variables that we will
need below. For X � IG (�X ; X), we have that

aX � IG
�
a
1
2 �X ; a

� 1
2 X

�
:

Furthermore, if Y � IG (�Y ; Y ) and is independent of X and we assume that
X = Y =: ; we have that X + Y � IG (�X + �Y ; ) : Because of this formula
we can let

!1;1Y1 � IG (�1;1; 1)
!1;3Y3 � IG (�1;3; 1) ;
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where
�1;1 + �1;3 = �1; (2.9)

and
!2;1Y2 � IG (�2;1; 2)
!2;3Y3 � IG (�2;3; 2) ;

where
�2;1 + �2;3 = �2; (2.10)

We see, by the scaling property of the IG-distribution, that the two expressions
for the distribution of Y3,

Y3 � IG
�
!
� 1
2

1;3 �1;3; !
1
2
1;31

�
; (2.11)

and
Y3 � IG

�
!
� 1
2

2;3 �2;3; !
1
2
2;32

�
; (2.12)

must be identical. With the aid of Equation (2.8), in which we use that the
variance V ar (Y (0)) of a stationary inverse Gaussian process Y is �=3, we see
that Equation (2.7) becomes

2
�
�1 � 1

2

� �
�2 � 1

2

� !1;3
!2;3

�2;3
32

e��j� � 1 + �j�
�2j

= C (2.13)

where C is the covariance that we want the returns to have. It is now straight-
forward to check that for reasonably small C there are non-unique choices of
!i;j such that we can obtain both the right autocorrelation function of �i and
a speci�c covariance for the returns. The autocorrelation function parameter �
is already correct by assumption, and we constructed the news processes Yj so
that their marginal distribution would not depend on it. Hence we only have
to take care of the covariance of the returns Ri. We do this by using Equations
(2.9),..., (2.13). Note that there is nothing crucial in our choice of covariance as
measure of dependence, nor does it matter how many di¤erent rates of decay
we use.
We now give a simple approach to determine how well our model captures

the true covariance. We begin by �tting a marginal distribution to return data,
thereby obtaining the parameters �i and �i; i = 1; 2: Since we have that the
return processes Ri; i = 1; 2; are semimartingales, their quadratic variations, de-
noted by [�] ; are

R s
t
�i (u) du; s � t: That is, for a sequence of random partitions

tending to the identity, we have

[log (Si=Si (t))] (s) =

Z s

t

�i (u) du;

where convergence is uniformly on compacts in probability. This is a standard
result in stochastic calculus. For each trading day we now empirically calcu-
late the integrated volatility, that is, we calculate the quadratic variation of
the observed returns over a trading day and, by the formula above, use that
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as a constant approximation of the volatility during that day. If we do this
for a number of trading days, we get approximations of the volatility processes
�i for that period of time. Using the �tted parameters �i, �i and generated
N (0; 1)-distributed variables in Equation (2.5), we can now simulate �alterna-
tive�returns. We then calculate the covariance-matrix of both the return data
set and the simulated alternative returns and compare them statistically.

2.4 The control problem

A main purpose of this paper is to �nd trading strategies that optimizes the
trader�s expected utility from wealth in a deterministic future point in time.
The utility is measured by a utility function U chosen by the trader. This
utility function U is a measure of the trader�s aversion towards risk, in that it
concretizes how much the trader is willing to risk to obtain a certain level of
wealth. Our approach to �nding these trading strategies, and the value function
V , is dynamic programming and stochastic control. We will make use of many of
the results in [6], since most of their ideas are applicable in our setting. However,
we need to adapt their results to our case.
In this section we set up the control problem under the stock price dy-

namics of Equation (2.3). Recall that �1 and �2; are weighted sums of the
news processes, see Equation (2.4). We begin by de�ning a value function V
as the maximum amount of expected utility that we can obtain from a trad-
ing strategy, given a certain amount of capital. We then set up the associated
Hamilton-Jakobi-Bellman equation of the value function V: This equation is a
central part of our problem, as it is, in a sense, an optimality condition. Most
of the later sections will be devoted to �nding and verifying solutions to it.
Denote by �i (t) the fraction of wealth invested in stock i at time t, and set

� = (�1; �2) : The fraction of wealth held in the risk-free asset is (1� �1 � �2).
We allow no short-selling of stocks or bond, which implies the conditions �i 2
[0; 1] ; i = 1; 2; and �1+�2 � 1; a.s., for all t � s � T: However, these restrictions
are partly for mathematical convenience. We could equally well have chosen
constants ai; bi; c; d 2 R; ai < bi; c < d; such that the constraints would have
taken the form �i 2 [ai; bi] ; i = 1; 2; and c � �1 + �2 � d; a.s., for all t �
s � T: The analysis is analogous in this case, but more notationally complex.
This general setting allows us to consider, for example, law enforced restrictions
on the fraction of wealth held in a speci�c stock, as well as short-selling and
borrowing of capital. We state the main results in this setting in Section 6.
The wealth process W is de�ned as

W (s) =
�1 (s)W (s)

S1 (s)
S1 (s)+

�2 (s)W (s)

S2 (s)
S2 (s)+

(1� �1 (s)� �2 (s))W (s)

R (s)
R (s) ;

where �i (s)W (s) =Si (s) is the number of shares of stock i which is held at time
s:We also assume that the portfolio is self-�nancing in the sense that no capital
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is entered or withdrawn. This can be formulated mathematically as

W (s) =W (t)+
2X
i=1

Z s

t

�i(u)W (u)

Si(u)
dSi(u)+

Z s

t

(1� �1(u)� �2(u))W (u)
R(u)

dR (u) ;

for all s 2 [t; T ] : See [15] for a motivating discussion. The self-�nancing condi-
tion gives the wealth dynamics for t � s � T as

dW (s) =W (s)�1 (s) (�1 + �1�1 (s)� r) ds (2.14)

+W (s)�2 (s) (�2 + �2�2 (s)� r) ds+ rW (s)ds
+ �1(s)

p
�1(s)W (s)dB1(s) + �2(s)

p
�2(s)W (s)dB2(s);

with initial wealth W (t) = w:
The following de�nition of the set of admissible controls now seems natural.

De�nition 2.1 The set At of admissible controls is given by At := f� =
(�1; �2) : �i is progressively measurable, �i (s) 2 [0; 1] ; i = 1; 2; and �1+ �2 � 1
a.s. for all t � s � T; and a unique solution W� of Equation (2.14) existsg.

An investment strategy � = f� (s) : t � s � Tg is said to be admissible if
� 2 At. Later we will need some exponential integrability conditions on the
Lévy measures. We therefore assume that the following holds:

Condition 2.1 For constants cj > 0 to be speci�ed below,Z 1

0+

(ecjz � 1) lj(dz) <1; j = 1; :::;m:

Recall that the Lévy density l of the subordinator Z of an IG-distributed
news process Y is

l (x) = (2�)
� 1
2
�

2

�
x�1 + 2

�
x�

1
2 e�

2x
2 ;

where (�; ) are the parameters of the IG-distribution. Hence Condition 2.1 is
satis�ed for cj < 2=2:
We know from the theory of subordinators that we have

E
h
eaZj(�jt)

i
= exp

�
�j

Z 1

0+

(eaz � 1) lj(dz)t
�

(2.15)

as long as a � cj with cj from Condition 2.1 holds.
Denote (0;1) by R+ and [0;1) by R0+; and assume that y = (y1; :::; ym) 2

Rm0+. De�ne the domain D by

D := f(w; y) 2 R+�Rm0+g:

We will seek to maximize the value function

J(t; w; y;�) = Et;w;y [U (W� (T ))] ;
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where the notation Et;w;y means expectation conditioned by W (t) = w; and
Yj(t) = yj ; j = 1; :::;m: The function U is the investor�s utility function. It is
assumed to be concave, non-decreasing, bounded from below, and of sublinear
growth in the sense that there exists positive constants k and  2 (0; 1) so that
U(w) � k(1 + w) for all w � 0: Hence our stochastic control problem is to
determine the optimal value function

V (t; w; y) = sup
�2At

J(t; w; y;�); (t; w; y) 2 [0; T ]� �D; (2.16)

and an investment strategy �� 2 At, the optimal investment strategy, such that

V (t; w; y) = J(t; w; y;��):

The HJB equation associated to our stochastic control problem is

0 = vt + max
�i2[0;1];i=1;2;
�1+�2�1

f(�1 (�1 + �1�1 � r) + �2 (�2 + �2�2 � r))wvw (2.17)

+
1

2

�
�21�1 + �

2
2�2
�
w2vww

�
+ rwvw �

mX
j=1

�jyjvyj

+
mX
j=1

�j

Z 1

0

(v (t; w; y + z � ej)� v (t; w; y)) lj(dz);

for (t; w; y) 2 [0; T )�D: We observe that we have the terminal condition

V (T;w; y) = U(w); for all (w; y) 2 �D; (2.18)

and the boundary condition

V (t; 0; y) = U(0); for all (t; y) 2 [0; T ]� Rm0+: (2.19)

3 Preliminary estimates

This section aims at relating the existence of exponential moments of Y to
exponential integrability conditions on the Lévy measures, as well as developing
moment estimates for the wealth process and showing that the value function
is well-de�ned. The proof of Lemma 3.1 can also be found in [6].

Lemma 3.1 Assume Condition 2.1 holds with cj = �j=�j for �j > 0. Then

E
�
exp(�j

Z s

t

Yj(u)du)

�
� exp

�
�j
�j
yj + �j

Z 1

0+

�
exp

�
�jz

�j

�
� 1
�
lj(dz)(s� t)

�
Proof. We get from the dynamics (2.1) of Yj that

�j

Z s

t

Yj(u)du = yj + Zj(�js)� Zj(�jt)� Yj(s)

� yj + Zj(�js)� Zj(�jt)
=L yj + Zj(�j(s� t));
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since Yj(s) � 0 when yj = Yj (t) � 0; and " =L " denotes equality in law. Recall
that we have de�ned Zj (0) = 0: The result follows from Equation (2.15).
We know that U(w) � U(0) since U is non-decreasing. This gives that

E [U (W�(T ))] � U(0); for � 2 At; which implies that V (t; w; y) � U(0): The
sublinear growth condition of U gives that

V (t; w; y) = sup
�2At

E [U (W�(T ))] � k
�
1 + sup

�2At

E
�
W�(T )�

��
:

This means that we obtain an upper bound to the optimal value function if we
have control of the wealth process.

Lemma 3.2 Assume Condition 2.1 holds with

cj =
2�(j�1j+�)!1;j+2�(j�2j+�)!2;j

�j
; j = 1; :::;m;

for some � > 0: Then

sup
�2At

Et;w;y
�
(W�(s))�

�
� w� exp

0@2� mX
j=1

(j�1j+ �)!1;j + (j�2j+ �)!2;j
�j

yj + C(�)(s� t)

1A ;
where

C(�) = � (j�1 � rj+ j�2 � rj+ r)

+
1

2

mX
j=1

�j

Z 1

0+

�
exp

�
2�
(j�1j+ �)!1;j + (j�2j+ �)!2;j

�j
z

�
� 1
�
lj(dz):

Proof. The proof is analogous to [6, Lemma 3.3]. Hence, we only sketch
the details. We have by Equation (2.14) and Itô�s formula that

W�(s) = w exp

�Z s

t

� (u; �1 (u) ; �2 (u)) du

+

Z s

t

�1 (u)
p
�1 (u)dB1 (u) +

Z s

t

�2 (u)
p
�2 (u)dB2 (u)

�
;

where

�(u; �1; �2) = �1(u)(�1 + �1�1 � r) + �2(u)(�2 + �2�2 � r)

+ r � 1
2
(�1(u))

2�1 �
1

2
(�2(u))

2�2:

De�ne

X(s) = exp

�Z s

t

2��1 (u)
p
�1 (u)dB1 (u) +

Z s

t

2��2 (u)
p
�2 (u)dB2 (u)

�1
2

Z s

t

(2�)2 (�1 (u))
2
�1 (u) du�

1

2

Z s

t

(2�)
2
(�2 (u))

2
�2 (u) du

�
:
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We can prove that X is a martingale. This can be used together with Hölder�s
inequality to get the result.
From now on we assume that Condition 2.1 holds with

cj =
2�(j�1j+�)!1;j+2�(j�2j+�)!2;j

�j
; j = 1; :::;m:

This ensures that the value function is well-de�ned.

4 A veri�cation theorem

We state and prove the following veri�cation theorem for our stochastic control
problem.

Theorem 4.1 Assume that

v(t; w; y) 2 C1;2;1([0; T )� (0;1)� [0;1)m) \ C([0; T ]� �D)

is a solution of the HJB equation (2.17) with terminal condition (2.18) and
boundary condition (2.19). For j = 1; :::;m; assume

sup
�2At

Z T

0

Z 1

0+

E [jv (s;W� (s) ; Y (s�) + z � ej)� v (s;W� (s) ; Y (s�))j] lj(dz)ds <1;

and

sup
�2At

Z T

0

E
h
(�i(s))

2
�i(s) (W

�(s))
2
(vw (s;W

� (s) ; Y (s)))
2
i
ds <1;

i = 1; 2: Then

v(t; w; y) � V (t; w; y); for all (t; w; y) 2 [0; T ]� �D:

If, in addition, there exist measurable functions ��i (t; w; y) 2 [0; 1]; i = 1; 2; being
the maximizers for the max-operator in Equation (2.17), then �� = (��1 ; �

�
2) de-

�nes an optimal investment strategy in feedback form if Equation (2.14) admits
a unique solution W�� and

V (t; w; y) = v(t; w; y) = Et;w;y
h
U
�
W��(T )

�i
; for all (t; w; y) 2 [0; T ]� �D:

The notation C1;2;1([0; T )� (0;1)� [0;1)m) means twice continuously di¤er-
entiable in w on (0;1) and once continuously di¤erentiable in t; y on [0; T ) �
[0;1)m with continuous extensions of the derivatives to t = 0 and yj = 0;
j = 1; :::;m:

Proof. The proof is similar to Theorem 4.1 in [6]. Therefore we omit some
details. Let (t; w; y) 2 [0; T )�D and � 2 At; and introduce the operator

M�v := (�1 (�1 + �1�1 � r) + �2 (�2 + �2�2 � r))wvw
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+
1

2

�
�21�1 + �

2
2�2
�
w2vww + rwvw �

mX
j=1

�jyjvyj

+
mX
j=1

�j

Z 1

0+

(v(t; w; y + z � ej)� v(t; w; y)) lj (dz) :

Itô�s formula gives that

E [v(s;W�(s); Y (s))]

= v(t; w; y) + E
�Z s

t

(vt + L�v) (u;W�(u); Y (u)) du

�

� v(t; w; y) + E

24Z s

t

0@vt + max
�i2[0;1];i=1;2;
�1+�2�1

L�v

1A (u;W�(u); Y (u)) du

35
= v(t; w; y);

We get now that
v(t; w; y) � E [U (W�(T ))] ;

for all � 2 At, by putting s = T and invoking the terminal condition for v: The
�rst conclusion in the theorem now follows by observing that the result holds
for t = T and w = 0:
We prove the second part by verifying that �� is an admissible control. Since

�� is a maximizer,
max

�i2[0;1];i=1;2;
�1+�2�1

L�v = L�
�
v;

which for s = T gives that

v (t; w; y) = E
h
U
�
W�� (T )

�i
� V (t; w; y) :

This proves the theorem.

5 Explicit solution

In this section we construct and verify an explicit solution to the control problem
(2.16), as well as an explicit optimal control ��, when the utility function is of
the form

U(w) = �1w ;  2 (0; 1):

5.1 Reduction of the HJB equation

In this subsection we reduce the HJB equation (2.17) to a �rst-order integro-
di¤erential equation by making a conjecture that the value function v has a
certain form.
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We conjecture that the value function has the form

v(t; w; y) = �1wh(t; y); (t; w; y) 2 [0; T ]� �D;

for some function h(t; y): We de�ne the function � : [0;1)� [0;1)! R as

�(�1; �2) = max
�i2[0;1];i=1;2
�1+�2�1

f�1 (�1 + �1�1 � r) + �2 (�2 + �2�2 � r) (5.1)

� 1
2

�
�21�1 + �

2
2�2
�
(1� )

	
+ r:

If we insert the conjectured value function into the HJB equation (2.17) we get
a �rst-order integro-di¤erential equation for h as

0 = ht(t; y) + �(�1; �2)h (t; y)�
mX
j=1

�jyjhyj (t; y) (5.2)

+
mX
j=1

�j

Z 1

0+

(h (t; y + z � ej)� h (t; y)) lj (dz) ;

where (t; y) 2 [0; T )� [0;1)m: The terminal condition becomes

h (T; y) = 1; 8y 2 [0;1)m;

since v(T;w; y) = U (w) = �1w .
For our purposes, we will need � to be continuously di¤erentiable. This

follows from Danskin�s theorem, see for example [7, Theorem 4.13 and Remark
4.14]. Calculations give that our candidates for optimal fractions of wealth are

��i (�i) =
1

1� 

�
�i � r
�i

+ �i

�
; (5.3)

whenever ��i 2 (0; 1) and ��1 + ��2 < 1; and

��i = 0; (5.4)

when ��i � 0: When ��1 + ��2 � 1, the optimal fractions of wealth are

��1 (�1; �2) =
1

(1� )

�
(�1 + �1�1 � r)� (�2 + �2�2 � r)

(�1 + �2)

�
+

�2
(�1 + �2)

; (5.5)

and
��2 = 1� ��1 : (5.6)

Note that this strategy only depends on the parameters �i; �i; and the volatility
for each stock.

Remark 5.1 Note that we can �nd a constant � > 0 such that

j�(�1; �2)j � �+ j�1j�1 + j�2j�2:
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5.2 Veri�cation of explicit solution

In this subsection we de�ne a Feynman-Kac formula that we verify as a classical
solution to the related forward problem of Equation (5.2). We indicate then how
we can show that our conjectured solution v coincides with the optimal value
function V:
De�ne the function h (t; y) by

h (t; y) = Et;y
h
exp

�R T
t
�(�1 (s) ; �2 (s)) ds

�i
; (t; y) 2 [0; T ]� Rm0+:

We prefer to re-write the function h on a form that is simpler for us to handle.
By the stationarity of Y; we have that

h (t; y) = Et;y
"
exp

 Z T

t

�(�1 (s) ; �2 (s)) ds

!#
(5.7)

= E0;y
"
exp

 Z T�t

0

�(�1 (s) ; �2 (s)) ds

!#
;

for (t; y) 2 [0; T ]� Rm0+:We de�ne now

g (t; y) := h (T � t; y) = Ey
�
exp

�Z t

0

�(�1 (s) ; �2 (s)) ds

��
:

Note that g (0; y) = 1: The only di¤erence between the two functions is the
direction of the time variable t: We show now that g is well-de�ned under an
exponential growth hypothesis in �1 and �2:

Lemma 5.1 Assume Condition 2.1 holds with cj = 
�j
(j�1j!1;j + j�2j!2;j) for

j = 1; :::;m: Then

g (t; y) � exp

0@kt+  mX
j=1

(j�1j!1;j + j�2j!2;j)
�j

yj

1A ;
for some positive constant k:

Proof. From Remark 5.1 we know that

j�(�1; �2)j � �+ j�1j�1 + j�2j�2
for some constant � > 0: Therefore,

g (t; y) = Ey
�
exp

�Z t

0

�(�1 (s) ; �2 (s)) ds

��
� Ey

�
exp

�Z t

0

�+  j�1j�1 (s) +  j�2j�2 (s) ds
��

� e�tEy
24 mY
j=1

e(j�1j!1;j+j�2j!2;j)
R t
0
Y
yj
j (s)ds

35 :
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By independence of the Yj ; j = 1; :::;m; we get the result by Lemma 3.1.
We will need that g is continuously di¤erentiable in y for h to satisfy Equa-

tion (5.2).

Lemma 5.2 Assume Condition 2.1 holds with cj = 
�j
(j�1j!1;j + j�2j!2;j) ;

j = 1; :::;m: Then g 2 C0;1
�
([0; T ])� Rm0+

�
; that is, g (�; y) is continuous for

all y 2 Rm0+ and g (t; �) is once continuously di¤erentiable for all t 2 [0; T ] :

Proof. The proof is analogous to Lemma 5.3 in [6].
To prove that g solves the suitably modi�ed Equation (5.2), we need the

following result concerning the expectation of the jumps of g: In our view, the
proof of Lemma 5.4 in [6] is incorrect. We therefore give a di¤erent proof.

Lemma 5.3 Assume Condition 2.1 holds with cj = 
�j
(j�1j!1;j + j�2j!2;j) +

(1�)
2 (!1;j + !2;j) for j = 1; :::;m. Then

mX
j=1

E

"Z T

0

Z 1

0+

jg (t; Y (u) + z � ej)� g (t; Y (u))j lj (dz) du
#
<1:

Proof. Since �0yj � cj�j=; we have that

jg (t; y + z � ej)� g (t; y)j

�
����Ey �exp�Z t

0

�
�
�
y+z�ej
1 (s) ; �

y+z�ej
2 (s)

�
ds

�
� exp

�Z t

0

�(�y1 (s) ; �
y
2 (s)) ds

������
� Ey

�
exp

�Z t

0

�(�y1 (s) ; �
y
2 (s)) + cj�jze

��jsds

�
� exp

�Z t

0

�(�y1 (s) ; �
y
2 (s)) ds

��

� exp

0@k1t+  mX
j=1

(j�1j!1;j + j�2j!2;j)
�j

yj

1A (exp (cjz)� 1) ;
for k1 > 0 by Lemma 5.1. Since

Y
yj
j (s) � yj + Zj (�js) ;

we have that

E

"Z T

0

Z 1

0+

jg (t; Y (s) + z � ej)� g (t; Y (s))j lj (dz) ds
#
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�
Z T

0

ek1t+k2
Pm

j=1 yjE

24exp
0@ mX

j=1

(j�1j!1;j + j�2j!2;j)Zj (�js)
�j

1A35 ds
�
Z 1

0+

(exp (cjz)� 1) lj (dz)

<1;

by the assumptions, for k2 > 0:
We give now a proposition that shows that g (t; y) is a classical solution to

the related forward problem of Equation (5.2). Its proof is very much the same
as in [6, Proposition 5.5], and we omit it.

Proposition 5.1 Assume there exists " > 0 such that Condition 2.1 is satis�ed
with cj =

2
�j
(j�1j!1;j + j�2j!2;j)+ (1�)

2 (!1;j + !2;j)+ " for j = 1; :::;m; and
some " > 0. Then g (t; �) belongs to the domain of the in�nitesimal generator of
Y and

0 = gt (t; y)� �(�1; �2) g (t; y) +
mX
j=1

�jyjgyj (t; y) (5.8)

�
mX
j=1

�j

Z 1

0+

(g (t; y + z � ej)� g (t; y)) lj (dz)

for (t; y) 2 (0; T ]� [0;1)m: Moreover, gt is continuous, so that

g 2 C1;1 ((0; T ]� [0;1)m) :

From our conjecture of the form of the value function we have now our
explicit solution candidate, namely

v (t; w; y) = �1wh (t; y) : (5.9)

The candidate for the optimal feedback control �� is given by Equations (5.3)
to (5.6).
Assume now that

cj =
8

�j
((j�1j+ 4)!1;j + (j�2j+ 4)!2;j) +

 (1� )
2

(!1;j + !2;j) ;

for j = 1; :::;m: We note that this implies that the optimal value function V is
well-de�ned, and we can easily proceed as in [6] to check that all the assumptions
in Theorem 4.1 are satis�ed. Hence we have proved that our conjectured solution
coincides with the optimal value function, which is what we wanted to show.

6 Generalizations

In this section we state, without proofs, the most important results for the case
of n stocks,

�i (s) 2 [ai; bi] ; i = 1; :::; n;
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and

c �
nX
i=1

�i � d:

It can be seen that the additional di¢ culty in this setting is merely notational.
The HJB equation associated to this stochastic control problem is

0 = vt + max
�i2[ai;bi];i=1;:::;n;
c�
Pn

i=1 �i�d

(
wvw

nX
i=1

�i (�i + �i�i � r) +
1

2
w2vww

nX
i=1

�2i �i

)

+rwvw �
mX
j=1

�jyjvyj +
mX
j=1

�j

Z 1

0

(v (t; w; y + z � ej)� v (t; w; y)) lj(dz);

for (t; w; y) 2 [0; T )�D: We still have the terminal condition

V (T;w; y) = U(w); for all (w; y) 2 �D;

and the boundary condition

V (t; 0; y) = U(0); for all (t; y) 2 [0; T ]� Rm+ :

The solution to this equation can be shown to be

v (t; w; y) = �1wh (t; y) = �1wEy
h
e
R T
t
�(�y1 (s);:::;�

y
n(s))ds

i
;

where � is de�ned as

�(�1; :::; �n) (6.1)

= max
�i2[ai;bi];i=1;:::;n;
c�
Pn

i=1 �i�d

(
nX
i=1

�i (�i + �i�i � r)�
1� 
2

nX
i=1

�2i �i

)
+ r:

The optimal fractions of wealth are given by the parameters �� = (��1 ; :::; �
�
n)

that obtain �(�1; :::; �n) in Equation (6.1).
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Abstract

The aim of this paper is to �nd explicit optimal portfolio strategies
for a n-stock stochastic volatility model. We introduce an extension of
the stochastic volatility model proposed in [2]. It is a modi�cation of
[18], and characterizes the dependence by the use a factor structure. The
idea of a factor structure is that the di¤usion components of the stocks
contain one Brownian motion that is unique for each stock, and a few
Brownian motions that all stocks share. Hence, the dependence between
stocks lies both in the stochastic volatility, and in the Brownian motions
in the di¤usion components. The model in the present paper can obtain
strong correlations between the returns for di¤erent stocks without a¤ect-
ing their marginal distributions. This was not possible in [18]. Further,
the number of model parameters does not grow too fast as the number
of stocks n grows. This allows us to obtain stable parameter estimates
for relatively large n: We use dynamic programming to solve Merton�s
optimization problem for power utility, with utility drawn from terminal
wealth. Explicit optimal portfolios for n stocks are obtained, which is of
large practical importance. A method to �t this model to data is given in
the companion paper [19].

1 Introduction

We consider a version of the problem of optimal allocation of capital between
di¤erent assets. This was solved by Merton in [20] and [21] for a Black and Sc-
holes market with constant coe¢ cients. Recently, [5] solved a similar problem
for one stock and a bond in the more general market model of Barndor¤-Nielsen
and Shephard [2]. This model assumes that the volatility in asset price dynam-
ics be modelled as a weighted sum of non-Gaussian Ornstein-Uhlenbeck (OU)

The author would like to thank his supervisors Holger Rootzén and Fred Espen Benth for
valuable discussions, as well as for carefully reading through preliminary versions of this paper.
He is also grateful to Michael Patriksson for guiding him to some theorems from optimization
theory.
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processes of the form
dy (t) = ��y (t) dt+ dz (t) ;

where z is a subordinator and � > 0. This idea allows us to capture several of
the observed features in �nancial time series, such as semi-heavy tails, volatility
clustering, and skewness. A multi-stock extension of [5] was considered by
[18]. In that paper, the dependence between stocks is that they share some of
OU processes of the volatility. This is given the interpretation that the stocks
react to the same news. The model was primarily intended for stocks that
are dependent, but not too dependent, such as stocks from di¤erent branches
of industry. It retains all the features of the univariate model of [2]. Further
advantages are that it requires little data and gives explicit optimal portfolio
strategies. The disadvantage of the model used in [18] is that to obtain strong
correlations between the returns of di¤erent stocks, the marginal distributions
have to be very skew. This might not �t data. In the present paper, we deal with
this disadvantage. It is a primary objective that the number of parameters in
our model do not grow too fast as the number of stocks n grows. In other words,
the parameter estimates must be stable for relatively large n: This feature is
necessary since we want to be able to apply the optimal strategies to portfolios
that contain a considerable number of stocks. Therefore, we do not use the
standard approach: An explicit stochastic volatility matrix, and n Brownian
motions in the di¤usion components of all n stocks. Instead, we de�ne the
stochastic volatility matrix implicitly by a factor structure. The idea of a factor
structure is that the di¤usion components of the stocks contain one Brownian
motion that is unique for each stock, and a few Brownian motions that all stocks
share. The latter are called factors. This means that the dependence between
stocks lies both in the stochastic volatility, and in the Brownian motions. A
factor model has fewer parameters than a standard model. The reason is that
the number of factors can be chosen a lot smaller than the number of stocks.
We show that this model can obtain strong correlations between the returns of
the stocks without a¤ecting their marginal distributions.
The object of this paper is to �nd explicit optimal allocation strategies for

the factor model described above. We consider an investor who wants to max-
imize her utility from terminal wealth by investing in n stocks and a bond.
This problem is an extension of [18] and [5]. We allow for the investor to
have restrictions on the fractions of wealth held in each stock, as well as bor-
rowing and short-selling restrictions on the entire portfolio. The stochastic
optimization problem is solved via dynamic programming and the associated
Hamilton-Jakobi-Bellman (HJB) integro-di¤erential equation. We use a veri�-
cation theorem to identify the optimal expected utility from terminal wealth as
the solution of a second-order integro-di¤erential equation. We then compute
the solution to this equation via a Feynman-Kac representation for power utility.
Thus explicit optimal allocation strategies are obtained, which from an applied
perspective is a key feature of the solution. All results are derived under expo-
nential integrability assumptions on the Lévy measures of the subordinators.
Portfolio optimization with stochastic volatility has been treated in a num-
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ber of articles. In [11], [13], and [27], the stochastic volatility depends on a
stochastic factor, correlated to the di¤usion process of the risky asset. The
paper [7] models the stochastic factor as a continuous-time Markov chain with
�nite state-space that is assumed to be independent of the di¤usion process.
The approach to solve the portfolio optimization problems in [7] and [27] is re-
lated to the approach in this paper. In [24], partial observation is used to solve
a portfolio problem with a stochastic volatility process driven by a Brownian
motion correlated to the dynamics of the risky asset. The papers [3], [4], and
[9] treat di¤erent portfolio problems when the risky assets are driven by Lévy
processes, and [8] look at portfolio optimization in a market with unobserv-
able Markov-modulated drift process. Further, [14] derive explicit solutions for
log-optimal portfolios in complete markets in terms of the semimartingale char-
acteristics of the price process, and [17] show that there exists a unique solution
to the optimal investment problem for any arbitrage-free model if and only if
the utility function has asymptotic elasticity strictly less than one. We refer
to [1] and [2] for an introduction to the market model of Barndor¤-Nielsen and
Shephard. See [23] for option pricing in this context.
This paper is divided into six sections. In Section 2 we give a rigorous

formulation of the market model. We discuss the dependence structure of the
market, but also alternative models. In Section 3 we set up the control problem.
Section 4 shows that our problem is well de�ned. We prove our veri�cation
theorem in Section 5, and use it in Section 6 to verify the solution we have
obtained.

2 The model

2.1 Model de�nitions

For 0 � t � T <1, we assume as given a complete probability space (
;F ; P )
with a �ltration fFtg0�t�T satisfying the usual conditions. We take m indepen-
dent subordinators Zj , and denote their Lévy measures by lj(dz); j = 1; :::;m:
We recall that a subordinator is de�ned to be a Lévy process taking values in
[0;1) : This implies that its sample paths are increasing. The Lévy measure l
of a subordinator satis�es the conditionZ 1

0+

min(1; z)l(dz) <1:

We assume that we use the cádlág version of Zj : We introduce now a n stock
extension of the model proposed by Barndor¤-Nielsen and Shephard in [2]. Our
model is a generalization of that in [18].
Consider n+q independent Brownian motions Bi: Denote by Yj ; j = 1; :::;m,

the OU stochastic processes whose dynamics are governed by

dYj(t) = ��jYj(t)dt+ dZj(�jt), (2.1)
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where �j > 0 denotes the rate of decay. The unusual timing of Zj is chosen so
that the marginal distribution of Yj will be unchanged regardless of the value
of �j : We use the �ltration

fFtg0�t�T := f� (B1 (t) ; :::; Bn+q (t) ; Z1 (�1t) ; :::; Zm (�mt))g0�t�T ;

to make the OU processes and the Wiener processes simultaneously adapted.
We view the processes Yj ; j = 1; :::;m in our model as news processes as-

sociated to certain events, and the jump times of Zj ; j = 1; :::;m as news or
the release of information on the market. The stationary process Yj can be
represented as

Yj (s) = yje
��j(s�t) +

R s
t
e��j(s�u)dZj(�ju); s � t; (2.2)

where yj := Yj (t) ; and yj has the stationary marginal distribution of the process
and is independent of Zj (s)�Zj (t) ; s � t: Note in particular that if yj � 0; then
Yj (s) > 0 8s 2 [t; T ] ; since Zj is non-decreasing. We set Zj (0) = 0; j = 1; :::;m;
and set y := (y1; :::; ym) : We de�ne �2i as

�i (t)
2
:= �t;yi (s)

2
:=
Pm

j=1 !i;jYj (s) ; s 2 [t; T ] ; (2.3)

where !i;j � 0 are weights summing to one for each i: The notation �t;yi (�)2
denotes conditioning on Y (t) : Further, we de�ne

�i;k (s)
2
:= �t;yi;k (s)

2
:=
Pm

j=1 �i;j;k!i;jYj (s) ; s 2 [t; T ] ;

where �i;j;k 2 [0; 1] are weights chosen so that

�i (s)
2
=
Pq

k=0 �i;k (s)
2
; 8s 2 [t; T ] :

We will see now that the �i;j;k give the volatilities for each Brownian motion.
De�ne the stocks Si; i = 1; :::; n; to have the dynamics

dSi (t) = Si (t)

 �
�i + �i�i (t)

2
�
dt+ �i;0 (t) dBi (t) +

qX
k=1

�i;k(t)dBn+k (t)

!
.

Here �i are the constant mean rates of return; and �i are skewness parameters.
The Brownian motions Bn+k; k = 1; :::; q; are referred to as the factors, and we
will call �i + �i�i (t)

2 the mean rate of return for stock i at time t: Note that
the choice of volatility process �2i preserves the features of the univariate model
in [2]. These stock price dynamics gives us the stock price processes

Si (s) = Si (t) exp

�Z s

t

�
�i +

�
�i � 1

2

�
�i (u)

2
�
du+

Z s

t

�i;0 (u) dBi (u) (2.4)

+

qX
k=1

Z s

t

�i;k(u)dBn+k (u)

!
:
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This stock price model does not have statistically independent increments. It
allows for the increments of the returns Ri (t) := log (Si (t) =Si (0)) ; i = 1; :::; n;
to have semi-heavy tails as well as both volatility clustering and skewness. The
increments of the returns Ri are stationary since

Ri (s)�Ri (t) = log
�
Si (s)

Si (0)

�
� log

�
Si (t)

Si (0)

�
= log

�
Si (s)

Si (t)

�
=L Ri (s� t) ;

where " =L " denotes equality in law.
We assume the usual risk-free bond dynamics

dR (t) = rR (t) dt;

with interest rate r > 0.
The idea of this model is to model the dependence between stocks in two

ways. First of all the stocks share the news processes Yj ; j = 1; :::;m: This
implies that the volatilities of di¤erent stocks will be similar. Second, we char-
acterize the dependence further by letting stocks depend on common factors.
We will show below that this allows us to obtain high correlations between the
returns for di¤erent stocks without a¤ecting their marginal distributions. Our
n-stock extension preserves the qualities of the univariate model. In addition,
the number of factors can be chosen to be a lot less than the number of stocks.
This means that much less data is required to estimate the model compared
to if an explicit volatility matrix would have been used. This is an important
feature, since �nancial data can typically not be assumed to be stationary for
long periods of time. The concept of characterizing dependence by factors is
not new. For example, it is used in the Factor-ARCH model (see [10]). It is
also indicated in [2].

2.2 The dependence

In this section we describe brie�y how to estimate the one-stock model from
data. We then calculate explicit formulas for the covariances and correlations
for the increments of the returns between di¤erent stocks.
We assume that we are observing returnsRi (�) ; Ri (2�)�Ri (�) ; :::; Ri (k�)�

Ri ((k � 1)�) ; for stock i = 1; :::; n; where � e.g. is one day, and k + 1 is the
number of trading days in our period of observation. We recall the standard
result that if we take �2 to have a Generalized Inverse Gaussian distribution
(GIG) ; and draw an independent N (0; 1)-distributed random variable "; then
x = �+ ��2 + �" will have a Generalized Hyperbolic distribution (GH). This
class is quite �exible and contains many of the most frequently used marginal
distributions in �nance. We see by this result that if we choose GIG-marginals
of our continuous time volatility processes �2i , we will obtain approximately
GH-marginals of the increments of the returns Ri; i = 1; :::; n. The existence
and integrability of Lévy measures lj such that the volatility processes �2i will
have GIG-distributed marginals is not obvious. See [1] and [26, Section 17] for
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this theory. We estimate the rates of decay �j by using the autocorrelation
function of the volatility processes �2i : The autocorrelation � is de�ned by

�� (h) =
Cov(�(h)2;�(0)2)

V ar(�(0)2)
; h 2 R:

Straightforward calculations show that

��i (h) = !i;1 exp (��1 jhj) + :::+ !i;m exp (��m jhj) ;

where the !i;j � 0; are the weights from the volatility processes. The weights
sum to one for each i = 1; :::; n.
Our model generates a non-diagonal covariance matrix for the increments

of the returns over the same time period, which is the most frequently used
measure of dependence in �nance. It is an important feature of the model in
the present paper that we can estimate the covariances of the increments of
the returns between di¤erent stocks from data without a¤ecting the marginal
distributions. This was not possible for strong correlations in the model in [18].
It is su¢ cient to show this result for the returns Ri; i = 1; 2; since the returns
have stationary increments. First note that

Cov (R1 (s)�R1 (t) ; R2 (u)�R2 (v))
= Cov (R1 (s) ; R2 (u))� Cov (R1 (s) ; R2 (v))

� Cov (R1 (t) ; R2 (u)) + Cov (R1 (t) ; R2 (v)) ;

for s; t; u; v 2 [0; T ] :
We now calculate the correlation between the returns Ri; i = 1; 2: It turns

out that

Corr (R1 (s) ; R2 (t))

=

0@��1 � 1
2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jV ar (Yj (0))

�e
��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j

+

qX
k=1

E

"Z min(s;t)

0

�1;k(u)�2;k(u)du

#!

� 1rPm
j=1

�
2
�
�1 � 1

2

�2
!21;jV ar (Yj (0))

e��js�1+�js
�2j

+ !1;j�Yjs
�

� 1rPm
j=1

�
2
�
�2 � 1

2

�2
!22;jV ar (Yj (0))

e��jt�1+�jt
�2j

+ !2;j�Yj t
� :
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We have by de�nition of �2i and Itô�s isometry (see [28])

E [R1 (s)R2 (t)]

= E
��Z s

0

�
�1 +

�
�1 � 1

2

�
�1 (u)

2
�
du+

Z s

0

�1;0 (u) dB1 (u)

+

qX
k=1

Z s

0

�1;k(u)dBn+k (u)

!

�
�Z t

0

�
�2 +

�
�2 � 1

2

�
�2 (u)

2
�
du+

Z t

0

�2;0 (u) dB2 (u)

+

qX
k=1

Z t

0

�2;k(u)dBn+k (u)

!#

= �1�2st+ �1s
�
�2 � 1

2

� mX
j=1

!2;jE
�Z t

0

Yj (u) du

�

+ �2t
�
�1 � 1

2

� mX
j=1

!1;jE
�Z s

0

Yj (u) du

�

+
�
�1 � 1

2

� �
�2 � 1

2

� mX
i;j=1

!1;i!2;jE
�Z s

0

Yi (u) du

Z t

0

Yj (u) du

�

+

qX
k=1

E

"Z min(s;t)

0

�1;k(u)�2;k(u)du

#
:

Similarly,

E [R1 (t)] = �1t+
�
�1 � 1

2

� mX
j=1

!1;jE
�Z t

0

Yj (u) du

�
:

This gives that

Cov (R1 (s) ; R2 (t))

=
�
�1 � 1

2

� �
�2 � 1

2

� mX
j=1

!1;j!2;jCov

�Z s

0

Yj (u) du;

Z t

0

Yj (u) du

�

+

qX
k=1

E

"Z min(s;t)

0

�1;k(u)�2;k(u)du

#
:

By stationarity, we have that E [Yj (t)] = �Yj ; for some constant �Yj > 0; for all
t 2 R: If we assume that u � v; the independence of the increments of Yj gives
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that

Cov (Yj (u) ; Yj (v))

= E
��
Yj (u)� �Yj

� �
Yj (v)� �Yj

��
= E

�
e��j(v�u)Yj (u)

2
+ Yj (u)

Z v

u

e��j(v�s)dZ (�js)

�
� �2Yj

= e��j(v�u)E
h
Yj (0)

2
i
� e��j(v�u)�2Yj

= e��j(v�u)V ar (Yj (0)) :

The same calculations for v � u shows that

Cov (Yj (u) ; Yj (v)) = e
��j jv�ujV ar (Yj (0)) ;

and we get

Cov

�Z s

0

Yj (u) du;

Z t

0

Yj (u) du

�
(2.5)

=

Z s

0

Z t

0

Cov (Yj (u) ; Yj (v)) dudv

= V ar (Yj (0))
e��js + e��jt � e��j js�tj � 1 + 2�j min (s; t)

�2j
:

Finally, we get by Itô�s isometry (see [28]), similar to above, that

V ar (Ri (t)) =
mX
j=1

 
2
�
�i � 1

2

�2
!2i;jV ar (Yj (0))

e��jt � 1 + �jt
�2j

+ !i;j�Yj t

!
;

for i = 1; 2:

2.3 Alternative n-stock extensions

We introduced in [18] the notion of news-generated dependence. We meant by
this that the dependence between stocks lies in that they react to the same
news. In other words, the stocks share news processes. A natural extension of
this model is to distinguish between good and bad news. This can be done, for
example, by considering the stock dynamics

dSi (t) =
�
�i + �i�i (t)

2
�
Si (t) dt+�i(t)Si (t) dBi (t)+Si (t)

mX
j=1

�i;j
Yj (t)

dZj (�jt) ;

or

dSi (t) =

0@�i + mX
j=1

�i;jYj (t)

1ASi (t) dt+ �i(t)Si (t) dBi (t) ;
8



for constants �i;j 2 R; j = 1; :::;m; i = 1; :::; n: It is the signs of �i;j that decides
whether a news process Yj is associated with good or bad news. The �rst model
is a modi�cation of a model proposed in [2]. The di¤erence is mainly that we
have normalized the jumps in the stocks price process so that they are always
less than the stock price itself. We do this to avoid that the stock prices become
negative as a result of large negative jumps. The second model is a generalization
of the model in [18], which is the special case where �i;j = �i!i;j : The optimal
portfolio problem for this model can be solved using analogous techniques as in
[18]. These two extensions both seem reasonable from a modelling perspective,
but we have chosen to not pursue them any further. The reason is that we
suspect that they will be hard to estimate from data. For example, the returns
of these models can not in general be written (approximately) on the form
x = �+��2+�"; where � and � are constants, " is a N (0; 1)-distributed random
variable, and �2 has the marginal distribution of the volatility process of the
stock price. This means that we can not obtain marginals from the generalized
hyperbolic distribution (for example the NIG-distribution) just by choosing
generalized inverse Gaussian marginals of the volatility processes. Further, the
�rst model has the disadvantage that is gives discontinuous stock prices, unlike
the model we have chosen to work with.

3 The control problem

We want to solve the problem of how a trader is supposed to invest in a stock
market to optimize her expected utility from wealth in a deterministic future
point in time. We measure utility by a utility function U: This function is
chosen by the trader, and measures the trader�s aversion towards risk in that
it concretizes how much the trader is willing to risk to obtain a certain level
of wealth. We use dynamic programming and stochastic control to �nd the
maximum expected utility from terminal wealth, and the trading strategies to
obtain it.
In this section we set up the control problem for the market model of 2.1.

Recall that �2i are weighted sums of the news processes, see Equation (2.3).
We de�ne a optimal value function V as the maximum amount of expected
utility that we can obtain from a trading strategy, given a certain amount of
capital. We then set up the associated Hamilton-Jakobi-Bellman equation for
the optimal value function V:
Denote by �i (t) the fraction of wealth invested in stock i at time t, and set

� = (�1; :::; �n) : The fraction of wealth held in the risk-free asset is (1� �1 � :::� �n).
We choose constants ai; bi; c; d 2 R; ai < bi; c < d; and let the constraints take
the form �i 2 [ai; bi] ; i = 1; :::; n; and c � �1+:::+�n � d; a.s., for all t � s � T:
This means that we can consider, for example, law enforced restrictions on the
fraction of wealth held in a speci�c stock, as well as short-selling and borrowing
of capital.

9



We de�ne the wealth process W as

W (s) =
�1 (s)W (s)

S1 (s)
S1 (s) + :::+

�n (s)W (s)

Sn (s)
Sn (s)

+
(1� �1 (s)� :::� �n (s))W (s)

R (s)
R (s) ;

where �i (s)W (s) =Si (s) is the number of shares of stock i which is held at time
s:We assume also that the portfolio is self-�nancing in the sense that no capital
is entered or withdrawn. This can be formulated mathematically as

W (s) =W (t)+
nX
i=1

Z s

t

�i(u)W (u)

Si(u)
dSi(u)+

Z s

t

(1� �1(u)� �2(u))W (u)
R(u)

dR (u) ;

for all s 2 [t; T ] : See [16] for a motivating discussion. This condition gives the
wealth dynamics for the model from Subsection 2.1 for t � s � T as

dW (s) =W (s)

nX
i=1

�i (s)
�
�i + �i�i (s)

2 � r
�
ds (3.1)

+ rW (s) ds+W (s)
nX
i=1

�i (s)�i;0 (s) dBi (s)

+W (s)
nX
i=1

qX
k=1

�i (s)�i;k (s) dBn+k (s) ;

with initial wealth W (t):
We now de�ne our set of admissible controls.

De�nition 3.1 The set At of admissible controls is given by At := f� =
(�1; :::; �n) : �i are adapted to fFsgt�s�T , �i (s) 2 [ai; bi] ; i = 1; :::; n; and
c � �1 (s) + ::: + �n (s) � d; a:s:8t � s � T; and a unique solution W� � 0 of
Equation (3.1) existsg.

An investment strategy � = f� (s) : t � s � Tg is said to be admissible if � 2
At. The conditions in the de�nition are natural: We impose trading regulations
both on each stock and on the entire portfolio. Further, we want our wealth to
be positive, and we should always be able to tell how rich we are.
We will need later some exponential integrability conditions on the Lévy

measures. We therefore assume that the following holds:

Condition 3.1 For a constant cj > 0 to be speci�ed below,Z 1

0+

(ecjz � 1) lj(dz) <1; j = 1; :::;m:

10



We know from the theory of subordinators that we have

E
h
eaZj(�jt)

i
= exp

�
�jt

Z 1

0+

(eaz � 1) lj(dz)
�

(3.2)

as long as a � cj with cj from Condition 3.1 holds.
Denote (0;1) by R+ and [0;1) by R0+; and assume that y = (y1; :::; ym) 2

Rm+ . We will seek to maximize the value function

J(t; w; y;�) = Et;w;y [U (W� (T ))] ;

where the notation Et;w;y means expectation conditioned by W (t) = w; and
Yj(t) = yj ; j = 1; :::;m: The function U is the investor�s utility function. It is
assumed to be concave, non-decreasing, bounded from below, and of sublinear
growth in the sense that there exists positive constants k and � 2 (0; 1) so that
U(w) � k(1 + w�) for all w � 0: Hence our stochastic control problem is to
determine the optimal value function

V (t; w; y) = sup
�2At

J(t; w; y;�); (t; w; y) 2 [0; T ]� Rm+1+ ; (3.3)

and an investment strategy �� 2 At, the optimal investment strategy, such that

V (t; w; y) = J(t; w; y;��):

The HJB equation associated to our stochastic control problem is

0 = vt + max
�i2[ai;bi];i=1;:::;n;
c��1+:::+�n�d

(
nX
i=1

�
�i
�
�i + �i�

2
i � r

�
wvw +

1

2
�2i �

2
i;0w

2vww

�
(3.4)

+
1

2

X
1�h;i�n

X
1�k�q

�h�i�h;k�i;kw
2vww

9=;+ rwvw �
mX
j=1

�jyjvyj

+
mX
j=1

�j

Z 1

0

(v (t; w; y + z � ej)� v (t; w; y)) lj(dz);

for (t; w; y) 2 [0; T )�Rm+1+ :We observe that we have the terminal condition

V (T;w; y) = U (w) ; 8 (w; y) 2 Rm+1+ ; (3.5)

and the boundary condition

V (t; 0; y) = U (0) ; 8 (t; y) 2 [0; T ]� Rm+ : (3.6)

We recall the motivation to this equation for the convenience of the reader.
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Assume that the Dynamic Programming Principle holds. That is, if

V (t; w; y) 2 C1;2;1
�
[0; T ]� Rm+1+

�
;

then for any stopping time � � T a:s: and t � T;

V (t; w; y) = sup
�2At

Et;w;y [V (W� (�) ; Y (�) ; �)] :

The notation C1;2;1
�
[0; T ]� Rm+1+

�
means twice continuously di¤erentiable in

w on (0;1) and once continuously di¤erentiable in (t; y) on [0; T ] � Rm+ with
continuous extensions of the derivatives to t = 0; t = T; w = 0; and yj = 0;
j = 1; :::;m: We see that if we choose stopping times � so that � # t; then

sup
�2At

�
lim
�#t

Et;w;y [V (�;W (�) ; Y (�))]� V (t; w; y)
� � t

�
= 0; (3.7)

where we assume that we may change the order of the supremum operator and
the limit operator. If we evaluate Equation (3.7), we get the HJB equation (3.4).

4 Well-de�nedness of the optimal value function

In this section we show that the optimal value function is well-de�ned. We start
by stating a lemma that we will need both in this section and in some of the
subsequent sections. It is due to [5].

Lemma 4.1 Assume Condition 3.1 holds with cj = �j=�j for �j > 0. Then

Et;y
�
exp(�j

Z s

t

Yj(u)du)

�
� exp

�
�j
�j
yj + �j

Z 1

0+

�
exp

�
�jz

�j

�
� 1
�
lj(dz)(s� t)

�
We want to show that the optimal value function V (t; w; y) is well-de�ned.

If we use the sublinear growth condition on the utility function U; we see that

V (t; w; y) = sup
�2At

Et;w;y [U (W�(T ))] � k
�
1 + sup

�2At

Et;w;y
h
(W� (T ))

�
i�
:

This observation points out a direction for us to take in showing this property:

We want to obtain an upper bound for sup�2At
Et;w;y

h
(W� (s))

�
i
:

Lemma 4.2 Assume Condition 3.1 holds with

cj = �̂
2
Pn

i=1 2� (j�ij+ �)
!i;j
�j
; j = 1; :::;m;

where � > 0: Then

sup
�2At

Et;w;y
h
(W� (s))

�
i
� w� exp

 
��̂

 
nX
i=1

j�i � rj+ r
!
(s� t)

!
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� exp

0@1
2
�̂2

mX
j=1

�
cjyj + �j

Z 1

0+

fexp (cjz)� 1g lj(dz) (s� t)
�1A :

Proof. Itô�s formula and Equation (3.1) gives that

W�(s) = w exp

 Z s

t

� (u; Y (u)) du+
nX
i=1

Z s

t

�i (u)�i;0 (u) dBi (u)

+
nX
i=1

qX
k=1

Z s

t

�i (u)�i;k (u) dBn+k (u)

!
;

where

�(u; Y (u)) =
nX
i=1

�
�i (u)

�
�i + �i�i (u)

2 � r
�
� 1
2
(�i (u))

2
�2i

�
+ r:

We now have that

Et;w;y
h
(W� (s))

�
i

= w�Et;w;y
"
exp

 
�

Z s

t

� (u; Y (u)) du+ �
nX
i=1

Z s

t

�i (u)�i;0 (u) dBi (u)

+�
nX
i=1

qX
k=1

Z s

t

�i (u)�i;k (u) dBn+k (u)

!#
:

We want to be able to conclude that the Wiener integrals are parts of a mar-
tingale, so we can control their expectations. Therefore, we de�ne

X(s) := exp

 
nX
i=1

Z s

t

2��i (u)�i;0 (u) dBi (u)

+
nX
i=1

qX
k=1

Z s

t

2��i (u)�i;k (u) dBn+k (u)

�1
2

nX
i=1

Z s

t

(2�)
2
(�i (u))

2
�i (u)

2
du

!
:

Due to the exponential integrability conditions on Yj from Lemma 4.1 we have
that

E

"
exp

 
nX
i=1

Z T

0

�i (t)
2
dt

!#
<1:
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Hence the Wiener integrals are all well-de�ned continuous martingales. Then
X(s) is a martingale by Novikov�s condition (see [25, p. 140]), so we have that

Et;w;y [X(s)] = 1:

The de�nition of X gives that

Et;w;y
h
(W� (s))

�
i

= w�Et;w;y
"
exp

 
�

Z s

t

� (u; Y (u)) du+
nX
i=1

Z s

t

�2 (�i (u))
2
�i (u)

2
du

!
X (s)

1
2

#
:

Further, we have by Hölder�s inequality and the fact that X is a martingale that

Et;w;y
h
(W� (s))

�
i

� w�Et;w;y
"
exp

 
2�

Z s

t

� (u; Y (u)) du+
nX
i=1

Z s

t

2�2 (�i (u))
2
�i (u) du

!# 1
2

� Et;w;y [X (s)]
1
2

= w�Et;w;y
"
exp

 
2�

Z s

t

� (u; Y (u)) du+
nX
i=1

Z s

t

2�2 (�i (u))
2
�i (u) du

!# 1
2

:

But since �i � max (1; ja1j ; :::; janj ; jb1j ; :::; jbnj) =: �̂;

Et;w;y
"
exp

 
2�

Z s

t

� (u; Y (u)) du+

nX
i=1

Z s

t

2�2 (�i (u))
2
�i (u)

2
du

!# 1
2

� exp
 
��̂

 
nX
i=1

j�i � rj+ r
!
(s� t)

!

� Et;w;y
24exp

0@�̂2 nX
i=1

mX
j=1

Z s

t

2� (j�ij+ �)!i;jYj (u) du

1A35 1
2

We can now apply Lemma 4.1 m times with �j = �̂2
Pn

i=1 2� (j�ij+ �)!i;j :
We have now proved that both the optimal value function of our control

problem and the wealth process are well-de�ned, since

V (t; w; y) � k
 
1 + w� exp

 
��̂

 
nX
i=1

j�i � rj+ r
!
(s� t)

!

� exp

0@1
2
�̂2

mX
j=1

�
cjyj + �j

Z 1

0+

fexp (cjz)� 1g lj(dz) (s� t)
�1A1A :
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Note that we also have that U (0) � V (t; w; y) ; since U is non-decreasing.
From now on we assume that Condition 3.1 holds with

cj =
Pn

i=1 2� (j�ij+ �)
!i;j
�j
; j = 1; :::;m:

This ensures that the value function is well-de�ned.

5 A veri�cation theorem

We prove in this section a veri�cation theorem for our control problem. This
theorem says essentially that if we can �nd a solution to our HJB equation, then
that solution is the optimal value function.

Theorem 5.1 (Veri�cation Theorem) Assume that

v (t; w; y) 2 C1;2;1
�
[0; T ]� Rm+1+

�
is a solution of the HJB equation (3.4) with terminal condition (3.5) and bound-
ary condition (3.6). Assume that

sup
�2A0

Z T

0

Z 1

0+

E [jv (t;W� (t) ; Y (t�) + z � ej)� v (t;W� (t) ; Y (t�))j] lj (dz) dt <1;

and

sup
�2A0

Z T

0

E
h
(�i (t)�i (t)W

� (t) vw (t;W
� (t) ; Y (t)))

2
i
dt <1;

for i = 1; :::; n: Then

v (t; w; y) � V (t; w; y) ; 8 (t; w; y) 2 [0; T ]� Rm+1+ :

Further, if there exist measurable functions ��i (t; w; y) 2 [ai; bi] ; i = 1; :::; n; c �
��1 (t; w; y)+:::+�

�
n (t; w; y) � d; a:s:; being the maximizers for the max-operator

in Equation (3.4), and Equation (3.1) admits a unique solution W�� � 0; then
�� de�nes an optimal investment strategy in feedback form and

V (t; w; y) = v (t; w; y) = Et;w;y
�
U
�
W�� (T )

��
; 8 (t; w; y) 2 [0; T ]� Rm+1+ :

Proof. Let (t; w; y) 2 [0; T )�Rm+1+ and � 2 At; and introduce the operator

M�v :=
nX
i=1

�
�i
�
�i + �i�

2
i � r

�
wvw +

1

2
�2i �

2
i;0w

2vww

�

+
1

2

X
1�h;i�n

X
1�k�q

�h�i�h;k�i;kw
2vww + rwvw �

mX
j=1

�jyjvyj :
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Itô�s formula gives that

v (s;W� (s) ; Y (s))

= v (t; w; y) +

Z s

t+

fvt (u;W� (u) ; Y (u�)) +M�v (u;W� (u) ; Y (u�))g du

+
nX
i=1

Z s

t+

W� (u)�i (u)�i;0 (u�) vw (u;W� (u) ; Y (u�)) dBi (u)

+
nX
i=1

qX
k=1

Z s

t+

W� (u)�i (u)�i;k (u�) vw (u;W� (u) ; Y (u�)) dBn+k (u)

+
mX
j=1

Z s

t+

Z 1

0+

[v (u;W� (u) ; Y (u�) + z � ej)

�v (u;W� (u) ; Y (u�))]Nj (�jdu; dz) ;

where the Nj are the Poisson random measure in the Lévy-Khintchine repre-
sentation of Zj ; j = 1; :::;m: We have used that [Yj ; Yj ]

c
= 0; j = 1; :::;m; by

Theorem 26 in [25], where [�; �]c denotes the continuous part of the quadratic
covariation. Further, the Kunita-Watanabe inequality (see [25, p. 69]) tells
us that d [X;Yj ]

c is a:e:(path by path) absolutely continuous with respect to
d [Yj ; Yj ]

c
; j = 1; :::;m; for a semimartingale X:We know from the assumptions

that the Itô integrals are martingales and that the integrals with respect to Nj
have �nite expectation. Hence we have that

Et;w;y
�Z s

t+

Z 1

0+

v (u;W� (u) ; Y (u�) + z � ej)� v (u;W� (u) ; Y (u�))Nj (�jdu; dz)
�

= �j

Z s

t+

Z 1

0+

Et;w;y [v (u;W� (u) ; Y (u�) + z � ej)� v (u;W� (u) ; Y (u�))] lj (dz) du;

for j = 1; :::;m; where we have used the Fubini-Tonelli theorem, the cádlág prop-
erty of Y; and the fact that, for Borel sets �; Nj (t;�)� tlj (�) is a martingale.
This gives us that

Et;w;y [v (s;W� (s) ; Y (s))]

= v (t; w; y) + Et;w;y
�Z s

t+

(vt + L�v) (u;W� (u) ; Y (u�)) du
�

� v (t; w; y) + Et;w;y
�Z s

t+

�
vt + max

�2At

L�v
�
(u;W� (u) ; Y (u�)) du

�
= v (t; w; y)

where

L�v :=M�v +
mX
j=1

�j

Z 1

0+

(v (t; w; y + z � ej)� v (t; w; y)) lj(dz):
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If we choose s = T and use the terminal condition for v; we get that

v (t; w; y) � Et;w;y [U (W� (T ))] ;

for all � 2 At: The �rst conclusion in the theorem now follows by observing
that the result holds for t = T and w = 0:
We have that ��i (s;W (s); Y (s)) are Fs-measurable for t � s � T; since

��i (t; w; y) is assumed to be a measurable function, i = 1; :::; n. This, together
with the assumptions gives that �� (s;W (s) ; Y (s)) is an admissible control.
Further,

max
�2At

L�v = L�
�
v;

since �� is a maximizer. The calculations in the �rst part of the theorem hold
with equality by letting � = ��; and we get that

v (t; w; y) = Et;w;y
h
U
�
W�� (T )

�i
� V (t; w; y) :

This means that

v (t; w; y) = V (t; w; y) = E
h
U
�
W�� (T )

�i
;

for (t; w; y) 2 [0; T ] � Rm+10+ , since the equality holds for t = T and w = 0 by
the terminal and boundary conditions (3.5) and (3.6).
In the next two sections we verify two Feynman-Kac formulas as solutions

to our problem.

6 An explicit solution

In this section we derive a solution to our optimal control problem when

U (w) = w

  2 (0; 1) :

We impose also a condition on the weights �i;j;k:

Condition 6.1 We assume that for every h; i = 1; :::; n; and k = 1; :::; q; if
�h;k�i;k > 0; then

�h;j;k > 0, �i;j;k > 0

for every j = 1; :::;m:

This condition means that each factor has some news processes Yj associated
with it, and these Yj are part of the volatility for every stock that is a¤ected
by the factor. We obtain the solution by constructing a function, along with its
associated controls, such that all the assumptions in our veri�cation theorem
are satis�ed. More precisely, we need to verify that a well-de�ned function

v (t; w; y) 2 C1;2;1
�
[0; T ]� Rm+1+

�
17



is a solution to the HJB equation (3.4) with terminal condition (3.5) and bound-
ary condition (3.6), that

sup
�2A0

Z T

0

Z 1

0+

E [jv (t;W� (t) ; Y (t�) + z � ej)� v (t;W� (t) ; Y (t�))j] lj (dz) dt <1;

and that

sup
�2A0

Z T

0

E
h
f�i (t)�i (t)W� (t) vw (t;W

� (t) ; Y (t))g2
i
dt <1;

for i = 1; :::; n: Our �rst step will be to reduce the HJB equation to a related
equation that is simpler to handle.

6.1 Reduction of the HJB equation

We conjecture that the solution to the HJB equation (3.4) is of the form

v (t; w; y) = w

 h (t; y) ; (t; w; y) 2 [0; T ]� Rm+1+

where h is some function of t; y: It is obvious that v is continuous in w: If we
insert the function v in the HJB equation (3.4), we get the associated equation

0 = ht (t; y) +  max
�i2[ai;bi];i=1;:::;n;
c��1+:::+�n�d

(
nX
i=1

�
�i
�
�i + �i�

2
i � r

�
� 1
2
(1� )�2i �2i;0

�
(6.1)

�1
2
(1� )

X
1�h;i�n

X
1�k�q

�h�i�h;k�i;k + r

9=;h (t; y)�
mX
j=1

�jyjhyj (y; t)

+
mX
j=1

�j

Z 1

0+

(h (t; w; y + z � ej)� h (t; w; y)) lj(dz);

with the terminal condition

h (T; y) = 1; 8y 2 Rm+ : (6.2)

In other words, we have replaced the problem of �nding a solution to the HJB
equation (3.4) by the presumably simpler problem of �nding a solution to Equa-
tion (6.1). Our next step is to �nd a well-de�ned function h that satis�es Equa-
tion (6.1).

6.2 A solution to the reduced HJB equation

In this subsection we de�ne a Feynman-Kac formula and show that it is well-
de�ned and continuously di¤erentiable. We show also that it solves the reduced
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HJB equation (6.1).
We set

h (t; y) = Et;y
h
exp

�R T
t
�(Y y (s)) ds

�i
; (t; y) 2 [0; T ]� Rm+ ; (6.3)

as our candidate solution, where y = Y (0) ; with vector notation. Note that this
function satis�es the terminal condition (6.2) since h (T; y) = 1: The function
� : Rm+ ! R is de�ned as

�(y) = max
�i2[ai;bi];i=1;:::;n;
c��1+:::+�n�d

(
nX
i=1

�
�i
�
�i + �i�

2
i � r

�
� 1
2
(1� )�2i �2i;0

�
(6.4)

�1
2
(1� )

X
1�h;i�n

X
1�k�q

�h�i�h;k�i;k

9=;+ r:
For technical reasons, we prefer to re-write the function h on a form that is

simpler for us to deal with. By the stationarity of Y; we have that

h (t; y) = Et;y
"
exp

 Z T

t

�(Y y (s)) ds

!#
= E0;y

"
exp

 Z T�t

0

�(Y y (s)) ds

!#
;

for (t; y) 2 [0; T ]� Rm+ : We de�ne now

g (t; y) := h (T � t; y) = Ey
�
exp

�Z t

0

�(Y y (s)) ds

��
:

The only di¤erence between the two functions is the direction of the time vari-
able t:
We will now show that g is well-de�ned.

Lemma 6.1 Assume Condition 3.1 holds with cj = �̂
�j

Pn
i=1 j�ij!i;j ; j =

1; :::;m: Then

g (t; y) � exp

0@kt+ �̂ mX
j=1

nX
i=1

j�ij!i;jyj
�j

1A ;
for (t; y) 2 [0; T ]� Rm+ ; and some constant k > 0:

Proof. It is straightforward to see that we can write � as

�(y) = max
�i2[ai;bi];i=1;:::;n;
c��1+:::+�n�d

�
� (y)

T
� � 1

2
�TQ (y)�

�
+ r (6.5)

where Q is a positive de�nite matrix for every y 2 Rm+ ; and �i =
�
�i + �i�

2
i � r

�
.
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It follows by the positive de�niteness of Q that we can �nd a constant � > 0
such that

j�(y)j � �+ �̂
nX
i=1

j�ij�2i ; (6.6)

where we recall that �̂ = max (1; ja1j ; :::; janj ; jb1j ; :::; jbnj) : Hence, we have

g (t; y) = Ey
�
exp

�Z t

0

�(Y y (s)) ds

��
� Ey

"
exp

 


Z t

0

�+ �̂
nX
i=1

j�ij�i (s)2 ds
!#

� e�tEy
24 mY
j=1

exp

 
�̂

nX
i=1

j�ij!i;j
Z t

0

Yj (s) ds

!35 :
Further, we have by the independence of the Yj ; j = 1; :::;m; and by Lemma
4.1 that

g (t; y) � e�t
qY
j=1

exp

�
�̂
Pn

i=1 j�ij!i;j
�j

yj

+�j

Z 1

0+

�
exp

�
�̂
Pn

i=1 j�ij!i;j
�j

z

�
� 1
�
lj (dz) t

�
:

The result follows from Condition 3.1.
We show now that g is continuously di¤erentiable in y.

Lemma 6.2 Assume Condition 3.1 holds with cj = �̂
�j

Pn
i=1 j�ij!i;j ; j =

1; :::;m: Then
g 2 C0;1

�
[0; T ]� Rm+

�
:

Proof. De�ne the compact intervals An =
�
1
n ; n

�
; n = 1; 2; ::: . Let (t; y) 2

[0; T ]�An and set

F (t; y) = exp

�Z t

0

�(Y y (s)) ds

�
:

We have then that

@F (t; y)

@yj
=

�
@

@yj

Z t

0

�(Y y (s)) ds

�
e
R t
0
�(Y y(s))ds;

for each j = 1; :::;m: We know from Equation (6.5) that for �xed y; � is a
quadratic program with linear constraints. It is well known from optimization
theory that this problem has a unique solution, see for example [22, Theorem
2.1]. We can now apply Danskin�s theorem, see for example [6, Theorem 4.13,
Remark 4.14], to conclude that � is continuously di¤erentiable. Since y 2 An;
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we can also conclude that ry� is bounded on An. From [12, Theorem 2.27(b)],
and the fact that

�j

Z t

0

Yj(u)du � yj + Zj(�jt)

we have that����@F (t; y)@yj

���� = �����Z t

0

�0yj (Y
y (s)) e��jsds

�
e
R t
0
�(Y y(s))ds

����
�

������k1tek2t
0@ mY
j=1

exp

 
�̂

nX
i=1

j�ij!i;j
Z t

0

Yj (s) ds

!1A������
�

������ek3t+k4
Pm

j=1 yj

0@ mY
j=1

exp

 
�̂

nX
i=1

j�ij!i;j
�j

Zj (�jt)

!1A������ :
But

exp

 
�̂

nX
i=1

j�ij!i;j
�j

Zj (�jt)

!
is integrable by Condition 3.1. Hence, we have that j@F (t; y) =@yj j is uniformly
bounded in y on An; and we can apply [12, Theorem 2.27(b)] to show that
g (t; y) = E [F (t; y)] is di¤erentiable in y on An; and that

@g(t;y)
@yj

= E
h
@F (t;y)
@yj

i
; 8y 2 An; j = 1; :::;m:

Note that j@F (t; y) =@yj j is continuous in t and y: We get now by using [12,
Theorem 2.27(a)] that @g (t; y) =@yj is continuous in (t; y) 2 [0; T ] � An. We
conclude the proof by observing that di¤erentiability and continuity are local
notions, and that limn!1An = Rm+ :
We show now that g is a classical solution to the related forward problem of

Equation (6.1).

Proposition 6.1 Assume that Condition 3.1 holds with

cj = "+


�j

 
2�̂

nX
i=1

j�ij!i;j

+
(1� ) �̂2

2

0@ X
1�h;i�n

X
1�k�q

p
�h;j;k!h;j�i;j;k!i;j +

nX
i=1

�i;j;0!i;j

1A1A ;
for j = 1; :::;m: Then g (t; �) belongs to the domain of the in�nitesimal generator
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of Y and

0 = �gt (t; y) + �(y) g (t; y)�
mX
j=1

�jyjgyj (y; t) (6.7)

+
mX
j=1

�j

Z 1

0+

(g (t; w; y + z � ej)� g (t; w; y)) lj (dz) ;

for (t; y) 2 [0; T ]� Rm+ ; with initial value

g (0; y) = 1; y 2 Rm+ : (6.8)

We have also that gt is continuous, so that g 2 C1;1
�
[0; T ]� Rm+

�
:

We will need some integrability and continuity conditions on the Lévy mea-
sure integrals in order to prove this theorem.

Lemma 6.3 Assume that Condition 3.1 holds with

cj =


�j

 
�̂

nX
i=1

j�ij!i;j

+
(1� ) �̂2

2

0@ X
1�h;i�n

X
1�k�q

p
�h;j;k!h;j�i;j;k!i;j +

nX
i=1

�i;j;0!i;j

1A1A ;
for j = 1; :::;m: Then

mX
j=1

E

"Z T

0

Z 1

0+

jg (t; Y (s) + z � ej)� g (t; Y (s))j lj (dz) ds
#
<1;

for all (t; y) 2 [0; T ]� Rm+ : In addition, the integralZ 1

0+

jg (t; y + z � ej)� g (t; y)j lj (dz)

is continuous in (t; y) 2 [0; T ]� Rm+ :

Proof. We know that
p
x is strictly concave and increasing. This gives that

@

@yj
(�h;k�i;k) �

@

@yj

�p
�h;j;k!h;j�i;j;k!i;jyj

�
;

for every h; i; j; k: We have then by inspection that ry� is bounded and that
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����0yj ��� � cj�j=; which is due to Condition 6.1. This gives that
jg (t; y + z � ej)� g (t; y)j

�
����Ey �exp�Z t

0

�
�
Y y+z�ej (s)

�
ds

�
� exp

�Z t

0

�(Y y (s)) ds

������
� Ey

�
exp

�Z t

0

�(Y y (s)) + cj�jze
��jsds

�
� exp

�Z t

0

�(Y y (s)) ds

��

� exp

0@k1t+ �̂ mX
j=1

nX
i=1

j�ij!i;jyj
�j

1A (exp (cjz)� 1) ;
for k1 > 0 by Lemma 6.1. We have then that

E

"Z T

0

Z 1

0+

jg (t; Y (s) + z � ej)� g (t; Y (s))j lj (dz) ds
#

�
Z T

0

ek1t+k2
Pm

j=1 yjE

24exp
0@�̂ mX

j=1

nX
i=1

j�ij!i;jZj (�js)
�j

1A35 ds
Z 1

0+

(exp (cjz)� 1) lj (dz) ;

for k2 > 0; since
Y
yj
j (s) � yj + Zj (�js) :

The integral with respect to the Lévy measure is �nite by assumption. We recall
from Equation (3.2) that

E
h
eaZj(�jt)

i
= exp

�
�jt

Z 1

0+

(eaz � 1) lj (dz)
�
;

as long as a � cj with cj from Condition 3.1 holds. Hence, the expectation part
is �nite as well, which concludes the �rst part of the proof. The second part
can be proved by similar techniques.
We are now ready to prove Proposition 6.1.
Proof Proposition 6.1. We observe that the assumptions in Lemmas 6.1,

6.2, and 6.3 are satis�ed. This gives that if g solves Equation (6.7) then gt is
continuous in (t; y) 2 (0; T ) � Rm+ ; with continuous extensions to t = 0 and
t = T .
We know that Yj j = 1; :::;m; are adapted, cádlág, and have paths of �nite

variation on compacts since Yj (t) � Zj (�jt) : We have from [25, Theorem 26]
that Yj j = 1; :::;m; are quadratic pure jump semimartingales. Since y ! g (t; y)
is continuously di¤erentiable, Itô�s formula (see [25, Theorem 33]) gives that the
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mapping s! g (t; Y (s)) is a semimartingale with dynamics

g (t; Y (s)) = g (t; y) +
mX
j=1

�j

Z s

0

Yj (u) gyj (t; Y (u)) du

+
mX
j=1

Z s

0

Z 1

0+

(g (t; Y (u�) + z � ej)� g (t; Y (u�)))Nj (�jdu; dz) ;

where Nj is the Poisson random measure in the Lévy-Khintchine representation
of Zj ; j = 1; :::;m: If we take expectation on both sides and apply Fubini�s
theorem (see [12, Theorem 2.37]), we get

E [g (t; Y (s))� g (t; y)]
s

= �
mX
j=1

�j
s

Z s

0

E
�
Yj (u) gyj (t; Y (u))

�
du

+

mX
j=1

�j
s

Z s

0

E
�Z 1

0+

g (t; Y (u�) + z � ej)� g (t; Y (u�)) lj (dz) du
�
:

We see from Lemma 6.3 that E
�
Yj (u) gyj (t; Y (u))

�
2 L1 ([0; s] ; Leb) ; since

E [g (t; Y (s))] <1 by Lemma 6.1 and

Yj (t) � yj + Zj (�jt) ; 8t 2 [0; T ] :

Hence, if we note that the Yj j = 1; :::;m; are cádlág, that y 7! g (t; y) is
continuously di¤erentiable, and thatZ 1

0+

g (t; y + z � ej)� g (t; y) lj (dz)

is continuous, by letting s # 0 we get by the Fundamental Theorem of Calculus
for Lebesque Integrals (see [12, Theorem 3.35]) that g (t; �) is in the domain of
the in�nitesimal generator of Y: We denote the in�nitesimal generator by G,
which gives that

Gg (t; y) = �
mX
j=1

�jyjgyj (t; y) +
mX
j=1

�j

Z 1

0+

(g (t; y + z � ej)� g (t; y)) lj (dz) :

The Markov property of Y together with the law of total expectation yields

E [g (t; Y (s))]

= E
h
E
h
e
R t
0
�(Y Y y(s)(u))du

ii
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= E
h
E
h
e
R t
0
�(Y y(u+s))du jFs

ii
= E

h
e
R t+s
s

�(Y y(u))du
i

= E
h
e
R t+s
0

�(Y y(u))due�
R s
0
�(Y y(u))du

i
:

Thus,

E [g (t; Y (s))� g (t; y)]
s

=
1

s
E
h
e
R t+s
0

�(Y y(u))due�
R s
0
�(Y y(u))du � e

R t
0
�(Y y(u))du

i
=
1

s
E
h
e
R t+s
0

�(Y y(u))due�
R s
0
�(Y y(u))du � e

R t+s
0

�(Y y(u))du
i

+
1

s

n
E
h
e
R t+s
0

�(Y y(u))du
i
� E

h
e
R t
0
�(Y y(u))du

io
= E

�
e
R t+s
0

�(Y y(u))du 1

s

n
e�

R s
0
�(Y y(u))du � 1

o�
+
g (t+ s; y)� g (t; y)

s
:

For simplicity of calculations, we assume that t+ s 2 [0; T ] : We can verify that

e
R t+s
0

�(Y y(u))du 1

s

n
e�

R s
0
�(Y y(u))du � 1

o
! ��(y) e

R t
0
�(Y y(u))du;

as s # 0: We need to show now that we can interchange limit and integration.
We de�ne the function

f (s) = e�
R s
0
�(Y y(u))du:

From the mean value theorem and the linear growth assumption on � we get
that

1

s
jf (s)� f (0)j

� 1

s
sup
v2[0;s]

��f 0+ (v)�� s
= sup

v2[0;s]

����(Y y (v)) e� R v0 �(Y y(u))du
���

� sup
v2[0;s]

�����
 
�+ �̂

nX
i=1

j�ij�yi (v)
2

!����� e R T0 �+�̂
Pn

i=1j�ij�
y
i (u)

2du:
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Since each Zj is a non-decreasing process,

sup
v2[0;T ]

 
nX
i=1

j�ij�yi (v)
2

!

�
nX
i=1

j�ij�2i +
nX
i=1

mX
j=1

j�ij!i;jZj (�jT ) ;

which implies

e
R t+s
0

�(Y y(u))du 1

s

n
e�

R s
0
�(Y y(u))du � 1

o
�

0@ nX
i=1

j�ij�2i +
nX
i=1

mX
j=1

j�ij!i;jZj (�jT )

1A
� e2

R T
0
�+�̂

Pn
i=1j�ij�

y
i (u)

2du:

Note that there exists a positive constant k" such that z � k"e
"z; for all z �

0: We have by the independence of the Yj ; Lemma 4.1 and the Dominated
Convergence Theorem that

E
�
e
R t+s
0

�(Y y(u))du 1

s

n
e�

R s
0
�(Y y(u))du � 1

o�
= ��(y) g (t; y) :

We can show analogously that gt exists. We have then that

Gg (t; y) = ��(y) g (t; y) + gt (t; y) ;

which concludes the proof.
We have found a function

v (t; w; y) 2 C1;2;1
�
[0; T ]� Rm+1+

�
that is a solution to the HJB equation (3.4) with terminal condition (3.5) and
boundary condition (3.6). All that is left for us to do is to show that the
remaining conditions in the veri�cation theorem 5.1 hold.

6.3 Veri�cation of the explicit solution

We show in this subsection that

sup
�2A0

Z T

0

Z 1

0+

E [jv (t;W� (t) ; Y (t�) + z � ej)� v (t;W� (t) ; Y (t�))j] lj (dz) dt <1;

(6.9)

26



and that

sup
�2A0

Z T

0

E
h
f�i (t)�i (t)W� (t) vw (t;W

� (t) ; Y (t))g2
i
dt <1; (6.10)

for i = 1; :::; n: Once this is done, all the conditions from the veri�cation theorem
5.1 are satis�ed for our candidate solution v. Hence we have solved our problem
of �nding the optimal value function. Note that the conditions we verify are
slightly modi�ed versions of Equations (6.9) and (6.10), since our conjectured
solution v is of the form

v (t; w; y) =
w


h (t; y) :

Lemma 6.4 Assume that Condition 3.1 holds with

cj =


�j

 
4�̂2

nX
i=1

(j�ij+ 2)!i;j

+
(1� ) �̂2

2

0@ X
1�h;i�n

X
1�k�q

p
�h;j;k!h;j�i;j;k!i;j +

nX
i=1

�i;j;0!i;j

1A1A ;
for j = 1; :::;m: Then

sup
�2A0

Z T

0

Z 1

0+

E [W� (t)
 jh (t; Y (t�) + z � ej)� h (t; Y (t�))j] lj (dz) dt <1;

for all � 2 A0:

Proof. Since ry� is bounded and
����0yj ��� � cj�j=; we have analogous to

Lemma 6.1 thatZ T

0

Z 1

0+

E [W� (t)
 jh (t; Y (t�) + z � ej)� h (t; Y (t�))j] lj (dz) dt

�
Z 1

0+

(exp (cjz)� 1) lj (dz)

�
Z T

0

ek1t+k2
Pm

j=1 yj

�E

24W� (t)

exp

0@�̂ mX
j=1

nX
i=1

j�ij!i;jZj (�jt)
�j

1A35 dt:
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If we apply Hölder�s inequality with p = q = 2 to the expectation part, we get

E

24W� (t)

exp

0@�̂ mX
j=1

nX
i=1

j�ij!i;jZj (�jt)
�j

1A35
= E

h
W� (t)

2
i1=2

E

24exp
0@2�̂ mX

j=1

nX
i=1

j�ij!i;jZj (�jt)
�j

1A351=2 :
We recall from Equation (3.2) and Lemma 4.2 that both expectations are �nite.

Lemma 6.5 Assume that Condition 3.1 holds with

cj =


�j

 
8�̂2

nX
i=1

(j�ij+ 4)!i;j (6.11)

+
(1� ) �̂2

2
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X
1�k�q

p
�h;j;k!h;j�i;j;k!i;j +

nX
i=1

�i;j;0!i;j

1A1A ;
for j = 1; :::;m: ThenZ T

0

E
h
f�i (t)�i (t)W� (t)


h (t; Y (t))g2

i
dt <1:

Proof. It follows from the de�nitions of h and g that they have the same
growth. We have then by Lemma 6.1 thatZ T

0

E
h
f�i (t)�i (t)W� (t)


h (t; Y (t))g2

i
dt

� �̂2k"ekT
Z T

0

E

24W� (t)
2
exp

0@�2�̂ + "

2

� mX
j=1

nX
i=1

j�ij!i;jYj
�j

1A35 dt;
since we can �nd positive constants k" such that �2i � k" exp

�
"
2

Pm
j=1

Pn
i=1

j�ij!i;jYj
�j

�
;

for every i = 1; :::; n: We can now apply Hölder�s inequality with p = q = 2.
This gives that

E

24W� (t)
2
exp

0@�2�̂ + "

2

� mX
j=1

nX
i=1

j�ij!i;jYj
�j

1A35

� E
h
W� (t)

4
i1=2

E

24exp
0@(4�̂ + ") mX

j=1

nX
i=1

j�ij!i;jYj
�j

1A351=2 ;
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which are both �nite by the assumptions, for " su¢ ciently small.
To conclude, we assume that Condition 3.1 holds with cj as in Equation

(6.11). This ensures that all our results are valid for " su¢ ciently small. Further,
we note that there exist measurable functions ��i (y) that are the maximizers for
the max-operator in Equation (3.4). These optimal allocation strategies are the
solution of the quadratic program of Equation (6.4). This gives that Equation
(3.1) admits a unique positive solutionW�� by [25, Ch. 2, Thm. 37]. Hence, all
the assumptions in Theorem 5.1 are satis�ed, and we have solved the problem.
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based on the number of trades

Carl Lindberg
Department of Mathematical Sciences,
Chalmers University of Technology
and Göteborg University, Sweden

Abstract

This paper presents statistical methods for �tting the stochastic volatil-
ity model of Barndor¤-Nielsen and Shephard [5] to data. We also consider
the factor model in [13], which is an n-stock extension of the model in [5].
We argue that the straightforward approach to estimating the Generalized
Hyperbolic (GH) distribution from �nancial return data is inappropriate
because the GH-distribution is "almost" overparameterized. To overcome
this problem, we verify that we can divide the centered returns with a con-
stant times the number of trades in a trading day to obtain normalized
returns that are i:i:d: and N (0; 1) : It is a key theoretical feature of the
framework in [5] that the centered returns divided by the volatility are
also i:i:d: and N (0; 1) : This suggests that we identify the daily number of
trades with the volatility, and model the number of trades with the model
in [5]. Hence, we get an economical interpretation of the non-Gaussian
Ornstein-Uhlenbeck processes that de�ne the stochastic volatility in the
model, but also stable parameter estimates. Further, our approach is eas-
ier to implement than the quadratic variation method, and requires much
less data. An illustrative statistical analysis is performed on data from
the OMX Stockholmsbörsen. The results indicate a good model �t.

1 Introduction

It is a well-known empirical fact that many characteristics of stock price data
are not captured by the classical Black and Scholes model. Many alternatives
that seek to overcome these �aws have been proposed. A common approach
is to assume that the volatility is stochastic. Barndor¤-Nielsen and Shephard

The author would like to thank Holger Rootzén and Fred Espen Benth for valuable
discussions. He is also grateful to Holger Rootzén for carefully reading through preliminary
versions of this paper, and to Henrik Röhs at SIX - Stockholm Information Exchange for
supplying the time series.

1



[5] model the stochastic volatility in asset price dynamics as a weighted sum of
non-Gaussian Ornstein-Uhlenbeck processes of the form

dy = ��y (t) dt+ dz (t) ;

where z is a subordinator and � > 0: It turns out that this framework allows
us to capture several of the observed features in �nancial time series, such as
semi-heavy tails, volatility clustering, and skewness. Further, it is analytically
tractable, see for example [3], [6], [12], [13], [14], and [15]. A drawback with this
volatility model has been the di¢ culty to estimate the parameters of the model
from data. Perhaps the most intuitive approach to do this is to analyze the
quadratic variation of the stock price process, see [4]. This makes it in theory
possible to recover the volatility process from observed stock prices. However,
in reality the model does not hold on the microscale, and even if is only regarded
as an approximation this approach still requires very much data. In addition, it
is hard to implement in a statistically sound way due to peculiarities in intraday
data. For example, the stock market is closed at night, and there is more intense
trading on certain hours of the day. None of these features are present in the
mathematical model. We therefore propose a di¤erent strategy that only uses
daily data.
This paper builds on a model proposed in [13]. The model in [13] is a further

development of the n-stock stochastic volatility model in [12], which in turn was
an extension of [5]. In [12], the stocks are assumed to share some of the OU
processes of the volatility. This is given the interpretation that the stocks react
to the same news. The model is primarily intended for stocks that are depen-
dent, but not too dependent, such as stocks from di¤erent branches of industry.
This model retains the features of the univariate model of [5]. In addition, the
model requires little data since no volatility matrix has to be estimated, and
it gives explicit optimal portfolio strategies. The disadvantage is that to ob-
tain strong correlations between the returns Ri (t) = log (Si (t) =Si (t� 1)) of
di¤erent stocks Si, we need the marginal distributions to be very skew. This
might not �t data. The paper [13] makes an attempt to remedy this. In [13],
the stochastic volatility matrix is de�ned implicitly by a factor structure. The
idea of a factor structure is that the di¤usion components of the stocks con-
tain one Brownian motion that is unique for each stock, and a few Brownian
motions that all stocks share. It is shown that this dependence generates co-
variance between the returns of di¤erent stocks, and that we can obtain strong
correlations without a¤ecting the marginal distributions of the returns of the
stocks. We have chosen to not use a full explicit stochastic volatility matrix,
with n Brownian motions in the di¤usion components of all n stocks, since the
statistical estimation of such models quickly becomes infeasible as the number
of assets grows. To characterize dependence by factors is common in discrete
time �nance, see for example [7] and [10].
In this paper we develop statistical methods for estimating the models in [5]
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and [13] from data. The models are �rst discretized under the assumption thatZ t

t��
� (s) dB (s) � � (t) ";

for " 2 N (0; 1) :We argue that one can not estimate the Generalized Hyperbolic
(GH) distribution directly from �nancial return data, due to that the GH-
distribution is "almost" overparameterized. We are inspired by [1] to verify that
we can divide the centered returns by a constant times the number of trades in a
trading day to get a sample that is i:i:d: and N (0; 1) : It is an important feature
of the stochastic volatility framework in [5] that the centered returns divided by
the volatility are also i:i:d: and N (0; 1) : This suggests that we identify the daily
number of trades with the volatility, and model the number of trades within
the model in [5]. Our approach gives more stable parameter estimates than
if we analyzed only the marginal distribution of the returns directly with the
standard maximum likelihood approach. Further, it is easier to implement than
the quadratic variation method, and requires much less data. It also implies an
economical interpretation of the daily average stochastic volatility, and it hints
that we can view the continuous time volatility as the intensity with which
the trades arrive. A statistical analysis is performed on data from the OMX
Stockholmsbörsen. The results indicate a good model �t.
In Section 2 we present the continuous time model. We then introduce

the discrete time analogue in Section 3. Here, we also discuss our data set,
the stationarity assumptions, and the GH-distribution. The data analysis is
presented in Section 4. The section also contains a discussion.

2 The continuous time model

For 0 � t <1, we assume as given a complete probability space (
;F ; P ) with a
�ltration fFtg0�t<1 satisfying the usual conditions. Introduce m independent
subordinators Zj : Recall that a subordinator is de�ned to be a Lévy process
that takes values in [0;1) ; which implies that its sample paths are increasing.
We assume that we use the cádlág version of Zj ; and denote the Lévy measures
of Zj by lj(dz); j = 1; :::;m:
We present now a n-stock extension of the model proposed by Barndor¤-

Nielsen and Shephard in [5]. It is a generalization of that in [12]. Take n + q
independent Brownian motions Bi: Denote by Yj ; j = 1; :::;m, the OU stochastic
processes whose dynamics are governed by

dYj(t) = ��jYj(t)dt+ dZj(�jt), (2.1)

where �j > 0 denotes the rate of decay. The unusual timing of Zj is chosen so
that the marginal distribution of Yj will be unchanged regardless of the value
of �j : The �ltration

Ft = � (B1 (t) ; :::; Bn+q (t) ; Z1 (�1t) ; :::; Zm (�mt))
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is used to make the OU processes and the Wiener processes simultaneously
adapted.
We follow the interpretations in [12] and [13], and view the processes Yj ;

j = 1; :::;m; as news processes associated to certain events, and the jump times
of Zj ; j = 1; :::;m as news or the release of information on the market. The
stationary process Yj can be represented as

Yj (t) =
R 0
�1 exp (s) dZj (�jt+ s) ; t � 0:

It can also be written as

Yj (t) = yje
��jt +

R t
0
e��j(t�s)dZj(�js); t � 0; (2.2)

where yj := Yj (0) ; and yj has the stationary marginal distribution of the process
and is independent of Zj (t)�Zj (0) ; t � 0: Note in particular that if yj � 0; then
Yj (t) > 0 8t � 0; since Zj is non-decreasing. We set Zj (0) = 0; j = 1; :::;m;
and write y := (y1; :::; ym) : The volatility processes �2i are de�ned as

�i (t)
2
:=
Pm

j=1 !i;jYj (t) ; t � 0; (2.3)

where !i;j � 0 are weights summing to one for each i: Further,

�i;k (t)
2
:=
Pm

j=1 �i;j;k!i;jYj (t) ; t � 0;

where �i;j;k 2 [0; 1] are chosen so that

�i (t)
2
=
Pq

k=0 �i;k (t)
2
; t � 0: (2.4)

The processes �2i;k are the volatilities for factor k for each stock i: De�ne the
stocks Si; i = 1; :::; n; to have the dynamics

dSi (t) = Si (t)

 �
�i + �i�i (t)

2
�
dt+ �i;0 (t) dBi (t) +

qX
k=1

�i;k(t)dBn+k (t)

!
.

Here �i are the constant mean rates of return; and �i are skewness parameters.
The Brownian motions Bn+k; k = 1; :::; q; are referred to as the factors, and we
will call �i + �i�i (t)

2 the mean rate of return for stock i at time t: Note that
if we choose n = 1; we are back in the univariate model of [5]. The stock price
dynamics gives us the stock price processes

Si (t) = Si (0) exp

�Z t

0

�
�i +

�
�i � 1

2

�
�i (s)

2
�
ds (2.5)

+

Z t

0

�i;0 (s) dBi (s) +

qX
k=1

Z t

0

�i;k(s)dBn+k (s)

!
:

This stock price model allows for the increments of the returns

Rci (t) := log (Si (t) =Si (0)) ; i = 1; :::; n;
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to have semi-heavy tails and for both volatility clustering and skewness. In
addition, the increments of the returns Rci are stationary since

Rci (s)�Rci (t) = log
�
Si (s)

Si (0)

�
� log

�
Si (t)

Si (0)

�
= log

�
Si (s)

Si (t)

�
=L Rci (s� t) ;

(2.6)
where " =L " denotes equality in law.
The underlying idea of this model is to capture the dependence between

stocks in two ways: First, by letting the stocks share the news processes Yj ;
j = 1; :::;m; we allow for the volatilities of di¤erent stocks to be similar. Second,
the di¤usion components of the stocks contain one Brownian motion that is
unique for each stock, and a few Brownian motions that all stocks share. It
was shown in [13] that this allows us to obtain strong correlations between the
returns for di¤erent stocks without a¤ecting their marginal distributions. The
model has also the feature of preserving the qualities of the univariate model. In
addition, the number of factors can be chosen to be a lot less than the number
of stocks. This makes it possible to consider more assets than if we modelled the
covariance structure by an explicit volatility matrix, with n Brownian motions
in the di¤usion components of all n stocks. The reason is that the number of
parameters to be estimated is smaller. The idea to characterize dependence by
factors is of course not new, see for example [7] and [10].

3 The discrete time model and the data

In this section we introduce a discrete time version of our model, and present the
data that we use in our analysis. Further, the obvious approach to the problem
of estimating the model parameters is discussed. Finally we give an alternative
approach to analyzing the data.

3.1 The discrete time model

Assume that we observe returns

Rci (�) ; R
c
i (2�)�Rci (�) ; :::; Rci (d�)�Rci ((d� 1)�) ;

for stock i = 1; :::; n; with Rc de�ned by Equations (2.5) and (2.6). Here � is
one time unit, and d+1 is the number of consecutive observations. We assume
from now on that the time units are chosen so that � = 1:
The approximation to assume thatZ t

t��
� (s) dB (s) � � (t) "; (3.1)

with " 2 N (0; 1)may be reasonable unless some �j are large so that the volatility
processes will be volatile. This motivates the following approximate discrete

5



time version of the model in Equations (2.5) and (2.6),

Ri (t) = �i + �i�
2
i (t) + �i;0 (t) "i (t) +

qX
k=1

�i;k (t) "n+k (t) ; (3.2)

where t = 1; 2; :::; and "i (�) are sequences of independent N (0; 1) variables,
i = 1; :::; n:
In this paper we will only work with the discrete time volatilities �2i (1) ; :::; �

2
i (d) ;

and not with the underlying news processes Yj : This is a reasonable restriction,
since we have little hope of estimating the news processes Yj accurately. There-
fore, we assume for simplicity that �i;j;k are such that the volatilities for each
factor are fractions of the total volatility. That is, we require that for some
'i;k � 0; k = 0; 1; :::; q; we have �i;k = 'i;k�i; such that Equation (2.4) holds
for i = 1; :::; n. This might not be totally realistic, but is necessary from an
applied perspective due to our inability to estimate the Yj : Inserting this into
Equation (3.2) gives the discrete time model

Ri (t) = �i + �i�
2
i (t) +

vuut1� qX
k=1

'2i;k�i (t) "i (t) +

qX
k=1

'i;k�i (t) "n+k (t) ; (3.3)

where we have used that

'2i;0 = 1�
qX

k=1

'2i;k:

It is important to be able to estimate the dependence structure of the discrete
time model from data. Since the volatility is stochastic we can not hope for
constant correlation. However, the conditional correlation between the returns
of di¤erent stocks turns out to be constant. In fact, for two stocks Ri i = 1; 2;
we have that

Corr (R1 (t)R2 (t)j�1 (t) ; �2 (t))

=
Cov (R1 (t)R2 (t)j�1 (t) ; �2 (t))

�1 (t)�2 (t)

= E

240@vuut1� qX
k=1

'21;k�1 (t) "1 (t) +

qX
k=1

'1;k�1 (t) "n+k (t)

1A
0@vuut1� qX

k=1

'22;k�2 (t) "2 (t) +

qX
k=1

'2;k�2 (t) "n+k (t)

�������1 (t) ; �2 (t)
35

� 1

�1 (t)�2 (t)

=

qX
k=1

'1;k'2;k:
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In general the conditional correlation matrix is given by

��0 +	; (3.4)

where � = ('i;k)
i=n;k=q
i;k=1 ; and 	 is a diagonal matrix where the non-zero ele-

ments are 1�
Pq

k=1 '
2
i;k: This result implies that if we �nd a good model for the

volatility �2 (�) ; we can apply standard factor analysis to the i:i:d: normalized
returns �i (�) : This gives us the parameters 'i;k; and hence also the implicit
constant conditional correlation matrix that describes the correlation between
the returns. Constant conditional correlation is a common feature in discrete
time �nance. A fundamental paper is [7].
Next, we discuss the data to be analyzed.

3.2 The stock market data

We consider �ve di¤erent stocks from the OMX Stockholmsbörsen. The stocks
are Ericsson B, Volvo B, SKF B, Atlas Copco B, and AstraZeneca, which are
given indices i = 1; :::; 5. These �ve are all large companies and are also among
the most traded stocks at the exchange. We have chosen to analyze data from
the time period August 1, 2003 to June 1, 2004. This choice was made primarily
for two reasons. First the time series is long enough to give a fairly large amount
of data, and still short enough to make it reasonable to assume stationarity.
This second reason is also supported by economical considerations. The OMX
Stockholmsbörsen as a whole decreased in value three years in a row from spring
2000 to spring 2003. During this time period the company Ericsson, which
was the most in�uential stock on the exchange, had been close to bankruptcy.
However, Ericsson survived and its stock started to increase in value, and in
the spring of 2003 so did the exchange as a whole. We have chosen to start our
period of observation after the summer of 2003. The reason for this is that by
then the long period of decreasing stock prices was somewhat distant in time.
We stop right before the summer of 2004. The summers are avoided since we
suspect that they will give us problems with non-stationarity due to less activity
on the exchange. This choice of time period of observation gives d = 208:
The data we have used is the daily closing prices for each stock, and the

cumulative number of trades on each day. The time series were kindly given to
us by SIX - Stockholm Information Exchange.

3.3 Limitations of the GH-distribution

In this section we discuss a natural way to estimate the model parameters, and
why this approach is not successful. We treat only the univariate version of our
model, that is n = 1. The Normalized Inverse Gaussian distribution (NIG) is
used to illustrate the discussion. However, the reason that the approach fails is
valid for the more general GH-distribution, too.
The NIG-distribution has been shown to �t �nancial return data well, see

e.g. [2], [5], and [16]. The NIG-distribution has parameters � =
p
�2 + 2; �;
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Figure 3.1: Left: NIG densities for Ericsson. Parameter set 1: Solid line.
Parameter set 2: Dotted line. Right: IG densities for Ericsson. Parameter set
1: Solid line. Parameter set 2: Dotted line.

�; and �; and its density function is

fNIG (x;�; �; �; �)

=
�

�
exp

�
�
p
�2 � �2 � ��

�
q

�
x� �
�

��1
K1

�
��q

�
x� �
�

��
e�x;

where q (x) =
p
1 + x2 and K1 denotes the modi�ed Bessel function of the

third kind with index 1: The domain of the parameters is � 2 R; ; � > 0; and
0 � j�j � �: The NIG-parameters can be estimated from data by the maximum
likelihood method in a straightforward way.
The Inverse Gaussian distribution (IG) is related to the NIG-distribution.

The IG-distribution has density

fIG (x; �; ) =
�p
2�
exp (�)x�

3
2 exp

�
� 1
2

�
�2x�1 + 2x

��
; x > 0;

where � and  are the same as in the NIG-distribution. It is well known that
if �2 has an IG distribution and � is standard normal, then

r = �+ ��2 + �� (3.5)

has a NIG distribution. Recall that the volatility �2 will be observable.
Suppose now that we estimate the NIG-distribution from a set of returns

r (�) with the maximum likelihood method. This gives through Equation (3.5) a
set of IG parameters. Assume further that we manage to estimate the volatility
process � (�)2 so that � (�)2 and r (�) in Equation (3.5) gives normalized returns
� (�) that appear much like i:i:d: N (0; 1) variables. Then we would expect to
see that our estimated � (�)2 had approximately the same IG-distribution as
the NIG-distributed returns imply, since both parameter sets are estimated
from the same data. It turns out that this does not hold for our data set. We
illustrate this with the following example.
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When we estimated the NIG parameters for the observed Ericsson returns
our MATLAB routine came up with two very di¤erent maximum likelihood
estimates, depending on the starting values. These were

1. �1 = 73:8; �1 = 14:7; �1 = �0:0092; �1 = 0:0591

2. �1 = 211; �1 = 108, �1 = �0:0650; �1 = 0:114

These parameter sets give the NIG and IG densities that are shown in
Figure 3.1. We see that the NIG-distributions are virtually indistinguishable.
Accordingly, the likelihood functions for the two sets were within 0:2% of each
other. Still, there is a substantial di¤erence between the IG-densities.
This example indicates that the problem with estimating theNIG-distribution

from returns is not that it is hard to �nd good parameter estimates. Rather,
there are too many of them. We also made a number of pro�le likelihood
function plots. From those it could be seen that there were directions in the
parameter space along which the likelihood function for the NIG-distribution
was very �at. This made the parameter estimates very unstable. Loosely speak-
ing, one can obtain a good �t of the NIG-distribution to return data for many
IG-distributions. In other words, the NIG-distribution is "almost" overpara-
meterized. We need to �nd a way to single out which set of NIG parameter
values that are, in some sense, the correct ones.
Equation (3.5) actually holds in more general. If �2 has a Generalized Inverse

Gaussian (GIG) distribution and � is standard normal, then

r = �+ ��2 + ��

has a GH-distribution. We realize from this result that the GH-distribution
must have the same problem as its subset, the NIG-distribution: If we have
information only about the returns of an asset, the GH-distribution is also
"almost" overparameterized.

4 Analysis

In this section we outline an approach to �tting the discrete time model to data.
The methods are illustrated by applying them to the data set from Subsection
3.2 and estimating the NIG and IG distributions to the returns and volatility,
respectively.

4.1 Method

We propose that instead of using the returns directly one should try to estimate
the model through Equation (4.1). That is, one should try to �nd ways to mea-
sure �2i with parameters �i and �i such that the normalized returns �i (�) are
i:i:d: and N (0; 1) : If we can do this, we can model the �2i within the frame-
work in [5]. This veri�es the validity of the univariate discrete time model,
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which allows us to understand better the structure of the process that gener-
ated the returns Ri (�) : The e¤ort to simultaneously �t the returns Ri (�) to the
NIG-distribution, the volatility process �i (�)2 to the IG-distribution, and the
normalized returns �i (�) to the normal distribution would probably not make
the �t better. Since the NIG-distribution is very �exible, we are likely to get
almost as good estimates by �rst trying to obtain normality of �i (�) ; and �t the
NIG and IG distributions to the returns and the estimated volatility process
later, with �i and �i �xed. The understanding of the model lies �rst of all in
getting �i (�) and the model for �i (�)2 correct. To �nd the parameters in the
distribution of �i (�)2 is the next priority. Equation (3.5) then gives an implied
distribution of the returns Ri (�) that we have a good understanding of.
The analysis is done in four steps.

1. Find volatility processes �2i and parameters �i and �i for each stock so
that the normalized returns

�i (�) =
�
Ri (t)�

�
�i + �i�i (t)

2
��
=�i (t) (4.1)

become independent N (0; 1) : Here we assume that the discrete time
volatility processes �2i is a constant times the number of trades zi (�) on
each trading day. That is,

�i (�)2 = �izi (�) : (4.2)

This means that we can write the loglikelihood function L for the obser-
vations Ri (1) ; :::; Ri (d) ; as

L (�i; �i (0))

= log (� (�i (1)) � ::: � � (�i (d)))

= �1
2

dX
t=1

0B@
�
Ri (t)�

�
�i + �i�i (t)

2
��2

�i (t)
2 + log

�
�i (t)

2
�1CA :

We recall that the continuous time volatility is de�ned as a linear combina-
tion of news processes Yj from Equation (2.2). This implies that our discrete
time volatility model in Equation (3.3) is, in a sense, an average of the continu-
ous time volatility on that trading day. See Equation (3.1). Further, we can view
the continuous time volatility as the intensity with which new trades "arrive".
Note that for X 2 IG (�; ) ; we have that aX 2 IG

�
a1=2�; a�1=2

�
; a > 0:

Hence our volatility model in Equation (4.2) is well-de�ned.
The model in Equation (4.2) is inspired by [1], which uses the cumulative

number of trades as a stochastic clock. The paper [1] shows that the intraday
cumulative number of trades contains enough information to allow us to obtain
almost perfect predictions of the volatility in the near future. Since the concepts
of stochastic time change and stochastic volatility are related, we want to use a
similar idea with daily data for our discretized model. In other words, we verify
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that we can use a constant times the number of trades as �i (�)2 in Equation
(4.1) to obtain �i (�) that are i:i:d: and N (0; 1). Since Equation (4.1) holds in
the model in [5], this implies that we identify the daily number of trades with
the volatility, and model the number of trades within the model in [5]. If we can
do this, we have asserted that our continuous time stochastic volatility model is
reasonable. Further, we get an economical interpretation of the volatility. Note
that it would be desirable to �nd a previsible model for �i (�)2 such that the
normalized returns �i (�) are i:i:d: and N (0; 1) : The reason is that such a model
would make it easier to apply results from, for example, portfolio optimization,
option pricing theory, or risk management. However, we know that this will
be hard, especially for large �. This is due to that a previsible model with
�i (t) 2 Ft�1, such as the GARCH, does not take into account the information
released at time t. The impact of this information could be considerable. In
other words, the �i (�) might behave like an i:i:d: sample, but their distribution
will have thicker tails than the standard normal.

2. The next step is to �nd parameters �i and �i so that the empirical distribu-

tions of �i (�)2 from Equation (4.2) �t the IG
�
�i;
p
�2i � �2i ;

�
distribution.

Hence, we have also speci�ed the NIG-distribution for Ri (�) : We could do
this estimation simultaneously for IG and NIG. However, since the NIG-
distribution is very special we know that even if we would get a slightly better
�t this way, it would be at the cost of less understanding of the process.

3. We next use the estimates of the volatility processes �2i to estimate the
rates of decay �j : This can be done by using the autocorrelation function
of the continuous time volatility process �2i : The autocorrelation ��i is
de�ned by

��i (h) =
Cov(�i(h)2;�i(0)2)

V ar(�i(0)2)
; h � 0:

Straightforward calculations show that

��i (h) = !1 exp (��1 jhj) + :::+ !m exp (��m jhj) ;

where the !j � 0; are the weights from the volatility processes that sum to
one. We estimate the rates of decay �j from the discrete time volatilities
�i (1) ; :::; �i (d) ; by minimizing the least squared distance between the
theoretical and empirical autocorrelation function. We require the rates
of decay �j to be equal for all stocks to allow for the news processes Yj to
be shared by di¤erent stocks.

4. The �nal step is to apply factor analysis to the normalized returns to
�nd the correlation between the di¤erent stocks. We know from Equation
(3.4) that we need the matrix � = ('i;k)

i=n;k=q
i;k=1 to estimate the corre-

lation between the returns of di¤erent stocks. We recall that in factor
analysis it is assumed that a vector x of observed variables with mean 0
can be written as x = �f + e: Here � is a constant n� q matrix of factor

11



loadings, and f and e are vectors of independent factors. It is a com-
mon assumption that the factors in f and e are N (0; 1) and normal with
mean 0; respectively. We can see from Equation (3.3) that the normalized
returns �i (�) are on this form for each t. Hence we can apply standard
factor analysis techniques to the estimated �i (�). We choose the number
of factors q = 2; and use MATLAB�s maximum likelihood factor analysis
estimation with varimax rotation to get an estimate of the factor loadings
matrix � = ('i;k)

i=n;k=q
i;k=1 ; and to test the hypothesis that q = 2 is the

correct number of factors. Varimax rotation rotates the loadings matrix
with an orthogonal matrix, and attempts to make the loadings either large
or small to facilitate interpretation. The factors will still be independent
under this operation.

4.2 Results

We exemplify the analysis with some of the results for the AstraZeneca stock.
The results were very similar for all stocks. It turns out that the simple model
of Equation (4.2) seems quite su¢ cient: The normalized returns appear to come
from an i:i:d: sample for all �ve stocks, and we obtain very good normal QQ
plots, see Figure 4.2. Further, the implied NIG-distribution and the estimated
IG-distribution both �t their empirical density histograms well, see Figure 4.3,
and the empirical autocorrelation functions for �i (�) and j�i (�)j show no signs of
dependence, see Figure 4.4. Further, the volatility process has the characteristic
look of a OU news process, see Figure 4.1. The estimated parameter values for
AstraZeneca were �̂5 = 233:0; �̂5 = 5:612; �̂5 = �5:331�10�4; �̂5 = 0:0370; and
�̂5 = 0:1962: This completes the marginal analysis.
To �t the rates of decay �j , two news processes seemed to give reasonable

results. The estimated parameters for AstraZeneca were !̂5;1 = 0:9224; �̂1 =

0:9127; !̂5;2 = 0:0776; and �̂2 = 0:0262; see Figure 4.5.
Factor analysis of the normalized returns yielded an estimate of the factor

loadings matrix �̂ as

�̂ =

0BBBB@
0:3652 0:5940
0:4963 0:4533
0:7750 0:2779
0:8183 0:3745
0:1498 0:4614

1CCCCA ;
for the orthogonal matrix

T =

�
0:8691 0:4946
�0:4946 0:8691

�
:

The test of the hypothesis that q = 2 is the correct number of factors gave the
p-value p� = 0:5632.
Figure 4.6 gives the factor loadings for the �ve stocks. Note that even though

it is tempting to give the factors some interpretation, one should be cautious
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in doing this. The reason is that the factor loadings matrix is non-unique.
Nevertheless, there appears to be one factor related to the "mechanical" part of
industry, and one related to "softer" branches like medicine and telecom.

4.3 Discussion

We believe that identifying the number of trades with the discrete volatility in
the model in [5] contributes to making that theory more applicable in practice.
First, it gives more stable parameter estimates than if we analyzed only the
marginal distribution of the returns directly with the standard maximum like-
lihood method. Accurate parameter estimates are important in most �elds of
applied risk management and mathematical �nance. For example, option prices,
hedging portfolios, and optimal portfolios all depend on parameters that have
to be estimated from data. It also gives an economical interpretation of the
news processes, which makes the understanding of the model better. Further,
our approach is easier to implement than the quadratic variation method, and
it requires much less data.
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Figure 4.1: Left: The price process in SEK for AstraZeneca from Au-
gust 4, 2003, to June 1, 2004. Right: The estimated volatility process
�̂ � (Number of trades per day) for AstraZeneca during the same time period.
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Figure 4.2: Left: The normalized returns for AstraZeneca during August 1,
2003, to June 1, 2004. Right: The normal probability plot of the normalized
returns for AstraZeneca. The theoretical quantiles are on the y-axes.
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Figure 4.3: Left: Histogram of the returns and the implied NIG den-
sity obtained from the estimated IG density. Right: Histogram of �̂ �
(Number of trades per day) and the estimated IG-density.
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Figure 4.4: Left: The autocorrelation function for the absolute normalized re-
turns for AstraZeneca. Right: The autocorrelation function for the normalized
returns for AstraZeneca. The �gures show the �rst 40 lags, and the straight
lines parallel to the x-axes are the asymptotic 95% con�dence bands �1:96=

p
d.

16



0 10 20 30 40
0.2

0

0.2

0.4

0.6

0.8

Figure 4.5: The autocorrelation function for the volatility process, and the
estimated theoretical autocorrelation for AstraZeneca with two news processes.
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