
T   D  D  T

Non–overlapping Germ–grain Models:
Characteristics and Material

Modelling

J A

Department of Mathematical Sciences
Division of Mathematical Statistics

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden 2005



Non–overlapping Germ–grain Models: Characteristics and Material Modelling
J A

©J A, 2005

ISBN 91-7291-704-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie nr 2386.
ISSN 0346-718X

Department of Mathematical Sciences
Division of Mathematical Statistics
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone+46 (0)31-772 1000
Göteborg, 2005

ii



Non–overlapping Germ–grain Models: Characteristics and Material Modelling
J A
Department of Mathematical Sciences
Division of Mathematical Statistics
Chalmers University of Technology and Göteborg University

Abstract

We consider three different non–overlapping germ–grain models, two of which are con-
structed in a similar fashion. These two models are generalisations of Matérn’s hard–core
models. In both cases we start with a homogeneous Poisson process and use the points as
centres of convex sets, grains, of the same shape. The process is thinned so that no grains
overlap. Two different thinning schemes result in the two models. The pair–correlation
functions and the mark–correlation functions for both models are derived. The models are
fitted to images of inclusions in cast iron.

For one of the models above, if the thinning is performed independently of the grain
sizes we show that the volume fraction is at most 1/2d for dimensiond = 1 or 2. If
the thinning is performed dependently of the grain sizes, itis possible to achieve volume
fraction arbitrarily close to one for any dimension.

The third non–overlapping germ–grain model is a Voronoi tessellation. It is used as a
model for the grain structure of the surface of a metal. As an example of this approach,
we study the influence of grain structure on fatigue life. A crack growth model is applied
to simulated grain structures. The conclusion is that the fatigue life increases, compared
to a model with grains of equal size.

Keywords: Poisson process; Convex sets; Material fatigue; Voronoi tessellation; Germ-
grain process; Pair–correlation function; Mark–correlation function; Short cracks; Vol-
ume fraction
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1 Introduction

1 Introduction

Non–overlapping germ–grain models are important for modelling structures from a wide
range of subjects such as forestry, medicine, astronomy andmaterial science. Properties
characterising germ–grain models are the intensity, the volume fraction and second–order
information such as the pair–correlation function and the mark–correlation function. In
this thesis we will concentrate on finding theoretical characteristics of two closely related
models that will also be used for modelling a material. Another material in another scale
will be modelled using a Voronoi tessellation, which can also be described as a germ–grain
model.

Non–overlapping germ–grain models are described in the literature on stochastic ge-
ometry. We will not attempt to make a detailed reference list, but instead give [10] as an
excellent starting point. A survey on models of non–overlapping spheres is given in [9]
and a survey on the applications of Voronoi tessellations can be found in [8]. Stochastic
models suitable for modelling materials are described in [3].

In the first paper, Paper A, appended to this thesis, we use a Voronoi tessellation on
Poisson points as the grain structure of a metal without defects. The influence of grain
structure on fatigue life is then studied by simulating suchgrain structures and letting a
crack grow according to a deterministic crack growth model.

The second paper, Paper B, is more mathematical. Here two models of non–over-
lapping convex sets, called grains, are considered. We derive second–order characteris-
tics, more precisely the pair–correlation function and themark–correlation function. The
pair–correlation can be used to compare the models to a Poisson process with the same in-
tensity, in the sense that the frequency of pairs of points a certain distance apart is smaller
or greater than in the Poisson process. The mark–correlation function is defined as the
expectation of the product of the marks, here the sizes, of two points given their locations
divided by the mean mark squared. The models are fitted to datasuch as in Figure 1,
which is an image of inclusions, impurities, in cast iron.

In the third paper, Paper C, we consider the volume fraction ofone of the models in
Paper B. The model is constructed by thinning a Poisson process with a convex set, grain,
and a weight associated to each point. A grain is kept only if it is not intersected by any
other grain with equal or higher weight. If the weights are independent of the grain sizes,
we give an upper bound for the volume fraction. If the weightsdepend on the grain sizes,
the volume fraction can be made arbitrarily close to one.

The outline of this thesis is as follows. Some background forthe appended papers is
given in Sections 2, 3 and 4. First, we give an introduction topoint processes including
second–order measures, marked point processes, germ–grain models and theory on con-
vex sets, followed by a short description of fatigue and finally a section on the structures of
metals. In Sections 5, 6 and 7 there are summaries of Papers A,B and C respectively. Note
that the word grain has different meanings in the papers. In Paper A a grain is a part of
the metal with equal orientation of the atom layers. In PaperB and C the non-overlapping
sets are called grains in accordance with such models being called germ-grain models.
Finally, some ideas for further work are given in Section 8.
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2 Stochastic geometry

Figure 1: A cut of cast iron with the black shapes being defects. The image was produced by
Stefano Beretta.

2 Stochastic geometry

2.1 Definitions

We start with the definition of a point process and continue with some basic definitions
to make the notation clear. LetN be the family of all sequences,φ, of points inRd such
thatφ is locally finite, that is each bounded subset ofRd contains a finite number of points
of φ. Usuallyφ is also required to be simple, that is all points ofφ are distinct. IfB is
a subset ofRd, denote the number of points ofφ in B by φ(B). Let N be the smallest
σ-algebra onN such that all mappingsφ→ φ(B) are measurable for any Borel setB. The
formal definition of apoint processΦ in Rd is as a measurable mapping of a probability
space (Ω,F ,P) into (N,N).

Thedistribution, P, of a point processΦ is defined as

P(Y) = P(Φ ∈ Y) = P({ω ∈ Ω : Φ(ω) ∈ Y}), Y ∈ N .

Theexpectationof the number of points ofΦ in a setB can be written

E[Φ(B)] =
∫

N

φ(B)P(dφ) = E





∑

x∈Φ

1B(x)



 .

A point processΦ is stationary if its distribution is invariant under translation, that is
the processesΦ = {Xn} andΦx = {Xn + x} have the same distribution for allx ∈ Rd.
Furthermore it isisotropic if its distribution is invariant under rotations about the origin.
The intensity measureΛ of Φ is defined as

Λ(B) = E[Φ(B)],

for B a Borel set. If it has density with respect to Lebesgue measurethenΛ can be written
in terms of anintensity functionλ(x),

Λ(B) =
∫

B
λ(x)dx.

2



2 Stochastic geometry

If the process is stationary, the intensity function is independent ofx and it becomes a
non-negative real constant, called theintensity, λ. Let the Lebesgue measure inRd be
denotedld and then for a stationary process

Λ(B) = λld(B).

A useful theorem, which will be applied in more complicated forms in Paper B, is the
Campbell theorem. For any non-negative measurable functionf ,

E





∑

x∈Φ

f (x)



 =

∫
∑

x∈φ

f (x)P(dφ) =
∫

f (x)Λ(dx).

In the stationary case the last expression is simplified to

λ

∫

f (x)dx.

2.2 Second–order measures

The second–order measures of a point process correspond to variances and covariances
of stochastic variables. One such measure is thesecond-order factorial moment measure
α(2), defined onRd × Rd. If B1 andB2 are Borel sets andΦ is a point process onRd with
distributionP, α(2) is defined as

α(2)(B1 × B2) =E[#{(x1, x2) : x1 ∈ Φ ∩ B1, x2 ∈ Φ ∩ B2, x1 , x2}]

=

∫
∑

x1,x2∈φ
x1,x2

1B1(x1)1B2(x2)P(dφ).

For a stationary Poisson process with intensityλ it is equal toλ2ld(B1)ld(B2). If the
second-order factorial moment measureα(2) has density with respect to the Lebesgue
measure, this density is called thesecond-order product density̺(2). An interpretation of
the second-order product density is that̺(2)(x1, x2)dV1dV2 is the probability of having a
point in each of two infinitesimally small disjoint Borel sets, with Lebesgue measuresdV1

anddV2, wherex1 andx2 belong to one set each.
Thevarianceof the number of points in a Borel setB can be written in terms ofα(2)

as
Var(Φ(B)) = α(2)(B× B) + Λ(B) − Λ(B)2.

If B1 andB2 are Borel sets, thecovarianceof the number of points in these two sets is,

Cov(Φ(B1),Φ(B2) = α
(2)(B1 × B2) + Λ(B1 ∩ B2) − Λ(B1)Λ(B2).

2.3 Marked point processes and germ–grain models

A marked point processin Rd, Ψ = {Xn,Mn}, is a point process inRd, with pointsXn,
each having a markMn belonging to some space of marks,M. The marked process can be
interpreted as an ordinary point process on the spaceR

d ×M. All definitions for ordinary
point processes can be repeated analogously for marked processes. The only difference is

3



2 Stochastic geometry

that a translation or rotation of a marked process usually only acts on the points and not
on the marks.

Having introduced marked point processes we may be interested in the dependence
between marks. For that purpose themark–correlation functionis defined as

kmm(x, y) =
Ex,y[MxMy]

m̄2
,

whereEx,y[MxMy] is the conditional expectation of the product of two marks given that
the locations of the points arex andy andm̄ is the mean mark. The mark–correlation
function tends to one as|x− y| tends to infinity. If it is above one then the product of the
marks of points inx andy are on average larger than the mean mark squared. If it is below
one then the product of the marks are on average smaller than the mean mark squared.

From some marked point processes we can construct so–calledgerm–grain models.
Suppose the marks are compact sets inRd, that is consider{Xn; Sn}, whereXn ∈ R

d is
called a germ andSn ⊆ R

d is called a grain. Agerm–grain modelis defined as the union

∪∞n=1{Xn + Sn}.

Since grains are affected by rotations, the usual convention for marked point processes
that rotations only apply to the points is not reasonable forgerm–grain models.

A characteristic of a germ–grain model is thevolume fraction, i.e. the fraction of
space covered by grains. For a stationary germ–grain model of non–overlapping grains it
is simply

ρ = λv̄,

whereλ is the intensity of the germs and ¯v is the mean volume of the grains.
One example of a germ–grain model is the Voronoi tessellation. A tessellationparti-

tions a Euclidean space,Rd, into sets,Ci, with non-overlapping interior, that isRd
= ∪iCi.

Let {pi} be a set of points. Each pointpi in this set, from now on called nucleus, generates
a cell (or grain)Ci. Let one grainCi consist of all points inRd which haspi as their nearest
nucleus,

Ci = {x ∈ R
d : |pi − x| ≤ |pj − x| ,∀pj}, (1)

where| · | is the Euclidean distance. If the set of points,{pi}, is locally finite, i.e. any finite
region contains a finite number of points, theCi ’s are called aVoronoi tessellationandCi

a Voronoi cell.
See [10] for a general reference on point processes. A general reference on the prop-

erties of Voronoi tessellations is [8] and a more mathematical reference is [6].

2.4 Convex sets

In this section we will considerRd, mostly ford = 2 or 3. We start with some set theoretic
definitions. The multiplication of a setA by scalar is denoted

cA= {cx : x ∈ A}.

Thereflectionof A is
Ǎ = {−x : x ∈ A}
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2 Stochastic geometry

and thetranslationof A by x is

Ax = {x+ y : y ∈ A}.

TheMinkowski additionof two setsA1 andA2 is

A1 ⊕ A2 = {x1 + x2 : x1 ∈ A1, x2 ∈ A2},

that can also be written
A1 ⊕ A2 = {x : A1 ∩ (Ǎ2)x , ∅}.

A setC is convexif

αx+ (1− α)x ∈ C ∀x, y ∈ C, 0 < α < 1.

Minkowski addition of convex sets preserves the convexity. In Paper C, we are interested
in the addition of sets of the same shape. For two convex setsC1 andC2 and scalarsx1

andx2 the volume ofx1C1 ⊕ x2C2 can be written as a sum in terms of themixed volumes,

νi,d−i(C1,C2) = ν(C1, . . . ,C1
︸ÃÃÃÃÃÃ︷︷ÃÃÃÃÃÃ︸

i

,C2, . . . ,C2
︸ÃÃÃÃÃÃ︷︷ÃÃÃÃÃÃ︸

d−i

),

as

ld(x1C1 ⊕ x2C2) =
d∑

i=1

(

d
i

)

xi
1xd−i

2 νi,d−i(C1,C2).

For our purposes it is enough to know thatνd,0(C1,C2) = ld(C1), ν0,d(C1,C2) = ld(C2) and
that for a convex setC,

l2(C) ≤ ν(C, Č) ≤ 2l2(C),

and
l3(C) ≤ ν(C,C, Č) ≤ 3l3(C).

The lower bounds are attained by centrally symmetric sets and the upper bounds are at-
tained by triangles ifd = 2 and tetrahedrons ifd = 3. For a convex setC1 with a rotation
invariant distribution and an arbitrary convex setC2 thegeneralised Steiner formulagives

E[ld(C1 ⊕C2)] =
1
κd

d∑

i=0

κd−kE[νd−k,k(C1, Bd)]νk,d−k(C2, Bd),

whereBd is the unitd–dimensional ball with volumeκd. In d = 2 andd = 3 this simplifies
to

E[l2(C1 ⊕C2)] = E[l2(C1)] +
E[S1(C1)]S1(C2)

2π
+ l2(C2)

and

E[l3(C1 ⊕C2)] = E[l3(C1)] +
E[b̄(C1)]S2(C2)

2
+
E[S2(C1)]b̄(C2)

2
+ l3(C2),

whereSd−1(C) is the (d − 1)–dimensional surface area andb̄(C) is the mean width of a
convex setC ∈ Rd. Let g be a line passing through the origin, theng(C) is the small-
est distance between two parallel hyperplanes such thatC is between them and that are
perpendicular tog. Thenb̄(C) is the mean ofg(C) for all linesg.

A general reference on convex geometry is [2].
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4 Metal structure

3 Fatigue

Fatigue is the failure in a structure that occurs after the structure has been subjected to a
repeated load. The term fatigue is used since the failure often occurs after a long period of
repeated stress, at a level considerably lower than the stress needed to break the structure
if it was applied only once. The standard example of fatigue is to take a paperclip and
notice that it breaks after repeatedly bending it back and forth at the same spot, although
it is virtually impossible to break it in one bending. When a metal is subjected to a load,
it is possible that small cracks start to form in the metal grains, most often at the surface.
Cracks can also start growing in some defect already present within the metal. The cracks
then continue to grow, as more load cycles are applied, untila crack spans the entire object
and it breaks. Possibly cracks can stop or close, but that is not our concern here.

Laboratory tests can be performed to assess the fatigue properties of materials. Iden-
tical test specimens are subjected to a cyclic load until thespecimens break or to a max-
imum number of load cycles. The procedure is repeated for different load amplitudes.
Data are plotted in a Wöhler curve, where the logarithm of the load amplitude is plotted
against the logarithm of the number of cycles to failure. Often there is a linear relation
between the load level and the fatigue life, the number of cycles to failure, for high loads.
For some materials there may be a fatigue limit, which is a stress level below which failure
will never occur. In [1] there is a section on fatigue.

4 Metal structure

Metals are crystalline materials, that is the atoms are ordered in a three–dimensional pat-
tern. Common atomic arrangements in metals are the body-centred cubic (BCC), the
face-centred cubic (FCC) and the hexagonal closed-packed (HCP) structures. The last
two arrangements are the most efficient ways, in terms of occupied space, of stacking
equally sized spheres and because of this they are called close-packed structures. One
way of illustrating the atomic structure is in terms of a unitcell, which is the smallest
repetitive unit within the crystal, see Figure 2.

Figure 2: Unit cells of the face-centred cubic (to the left) and the body-centred cubic atomic
structures. Two slip planes are shaded in the FCC cell and one in the BCC cell.

A slip plane, such as those shown in Figure 2, is a preferred plane of atoms that will
move when a stress is applied. The number of unique non-parallel slip planes depends on

6



5 Summary of Paper A

the crystal structure. The FCC crystal has four slip planes, the BCC has six and the HCP
has one. Each plane can slip in three directions in the FCC and HCP crystals and in two
directions in the BCC crystal.

A crystalline material is usually composed of many crystals. In the cooling process
of a melt of a crystalline material, small crystals, or grains, start to form at many loca-
tions. As the melt cools each of the grains grows by incorporating atoms from the liquid
surroundings. In the area where two grains meet, called the grain boundary, the atoms
are not ordered since the two grains do not generally have thesame direction of their
atomic planes. If all grains have the same chemical composition, the metal is said to have
one phase. More on metal structures can be found in textbooks in material science, for
example [1].

5 Summary of Paper A

Supposedly identical components made of metal often show substantial differences in
fatigue lives. The differences are apparent even during controlled tests with identical
stress levels. One source of variation could be differences in the structure of the metal.
The idea in Paper A is to use a simulated grain structure and apply the existing theory
of crack propagation to study the influence of grain structure on fatigue life. A short
crack growth model is used since the main part of the fatigue life occurs during the crack
initiation phase.

The crack growth model is adapted from Navarro-de los Rios model for short crack
growth under uniaxial loading [7]. The crack is modelled on the surface of the metal and
consequently the three-dimensional structure is disregarded. Since the point here is to use
a grain structure with grains of different sizes, the Navarro-de los Rios model, which is
described for grains of equal size, has to be modified to the current situation.

In the simulations the metal grain structure is a Voronoi tessellation in two dimensions
of points generated from a Poisson process. The crack path was determined and the
crack was allowed to grow to a maximum length of ten times the mean grain size, with
possibility to stop before that. The crack growth rate as a function of crack length and
the number of cycles to failure were calculated for fifteen stress levels, the latter resulting
in a Wöhler curve for the short crack growth. Compared with the fatigue life of a metal
with all grains equal in size, that is the original Navarro-de los Rios model, the fatigue
lives in the simulations were longer. The fatigue life decreased with increasing number of
grains, probably reflecting the fact that with increasing number of grains there is a greater
probability of finding a large grain, where the crack is assumed to start. The standard
deviation of the logarithm of the life lengths conditional on finite life is in the order of
0.2-0.4.

As expected grain size variation gives rise to fatigue life dependent on component size.
However, only a part of the observed fatigue life variation is explained by the varying grain
size according to the simulations.

7



6 Summary of Paper B

6 Summary of Paper B

We consider two models of non-overlapping convex grains, which are generalisations of
Matérn’s two hard-core processes, see [5]. These models weredescribed in [4] and are
constructed as follows. Convex sets, called grains, are placed at points of a homogeneous
Poisson process and the process is thinned by two different procedures. The first thinning
scheme, called pairwise, gives independent weights to bothpoints in a pair with overlap-
ping grains and the point with strictly higher weight wins. New weights are assigned in
every comparison. A point is kept only if it wins in all pairwise comparisons. The sec-
ond scheme, called global, gives each point a weight once andfor all, and the point with
strictly higher weight is kept when comparing with weights of overlapping grains. The
weight may depend on the size of the grain in both cases.

The second-order product densities, defined in Section 2, ofthe above models are
derived when the grains have equal orientation. In the derivation of the product densities,
the thinning procedure can be thought of as a process giving marks to the original Poisson
process. A point gets mark 0 if it is removed and mark 1 if it is retained. The second-order
product density can then be written in terms of the intensity, λ, of the Poisson process and
the two-point mark distributionMx1,x2 as

̺(2)(x1, x2) = λ
2Mx1,x2((1,1)). (2)

The two-point mark distribution is the distribution of the marks in x1 and x2 under the
condition that there are points inx1 andx2. The main idea, when calculating the product
density, is then to find the probability that two points inx1 andx2 both have marks 1. It
is equal to the probability that no points of the original point process win over them. The
number of points that win overx1 or x2 is Poisson distributed and the essential step, when
deriving the product density, is to calculate the expectation of this distribution.

As spheres are an important special case, the product densities for the models are
stated both for spheres of equal radii in Theorems 2 and 3 and for spheres having a certain
radius distribution in Theorems 4 and 5. When the grains are convex sets with the same
orientation, the product densities are stated in Theorems 6and 7. Except for some special
cases, the product densities must be calculated by means of anumerical integration.

In the case of spheres of equal size the pair-correlationg, which is the product density
divided by the squared intensity, is compared to a Poisson process with the same intensity,
see Figure 3 below and also Figure 5 in Paper B. The comparisonsis made in terms of
the frequency of pairs of points with certain interpoint distances. For short distances, less
than two times the radius, the pair-correlation is 0, meaning that two points cannot exist at
that distance. For a slightly larger distance, between two times and four times the radius,
pairs of points occur more frequently than in a Poisson process. For even larger distances,
larger than four times the radius, the frequency of point pairs is the same as in a Poisson
process. As the intensity of the original Poisson process tends to infinity the frequency of
point pairs, at a distance between two and four times the radius, in the global model gets
smaller, but is still slightly larger than for a Poisson process. In the pairwise model on
the other hand the pair–correlation at this distance tends to infinity as the intensity of the
original Poisson process tends to infinity.

Next we consider the mark–correlation function for the radii. Observe that we now
consider our processes to have two marks. One of the marks is as above the 0–1 mark and

8



6 Summary of Paper B
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Figure 3: Pair-correlation function for the pairwise and the global model in two dimensions with
the same intensity after thinning,λth = 4, and radius of the spheresr0 = 0.1. The intensity before
thinning was 5.74 and 34.11 for the two pairwise models giving the sameλth, labelled low and
high respectively in the plot, and 5.56 for the global.

the other is the radius. Let the radius distribution before thinning be denotedFR and let
the intensity before thinning be denotedλ. The conditional distribution of the 0–1 mark of
two points given their locationsx1 andx2 and their radiik1 andk2 is denotedMx1,k1,x2,k2. A
new second–order measure is introduced for the radii marks,which in the current setting
can be written,

̺
(2)
S (x1, x2) = λ

2

∫ ∞

0

∫ ∞

0
Mx1,k1,x2,k2((1,1))FR(dk1)FR(dk2).

We show that the mark–correlation function, defined in Section 2, can be expressed in
terms of this measure,

kmm(x1, x2) =
̺

(2)
S (x1, x2)

̺(2)(x1, x2)
.

From examples, for instance with Rayleigh distributed radii, see Figure 4, we can see
that the mark–correlation behaves qualitatively like the pair–correlation in the sense that
the curves have similar shapes. If the mark–correlation is below one for some distance
between the two points then the product of the marks, radii, at those points are lower than
the mean radius squared. If the mark–correlation is above one the product of the marks for
points that distance apart are larger than the mean mark squared. Observe that in Figure
4 the correlation functions are shown for two pairwise models and one global model,
all having the same intensity. One of the pairwise models andthe global model have
pair–correlation and mark–correlation that coincide, because when at most two spheres
overlap, the result of global and pairwise thinning is similar.

The models were constructed to describe inclusions in cast iron, see Figure 1. They
were fitted to such data in the case when the weight distribution was independent of the

9



6 Summary of Paper B
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Figure 4: Pair–correlation function, above, and mark–correlation function, below, for models start-
ing with Rayleigh distributed radii with parameter 1 and weights independent ofthe radii. Both the
pair–correlation and the mark–correlation coincides for the global model and one of the pairwise
models.
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7 Summary of Paper C

radius. The fit was made by estimating the intensity and the radius distribution. The
pair–correlation function was used as a measure of the quality of the fit. Two images
of the same material were used. The fit to one of the images for both models seemed
reasonable and the other one was not. The problem was that thepair–correlation of the
images seemed higher than achievable with either of the models. Possibly the fit could be
better either by letting the weights depend on the radius or by thinning an inhomogeneous
Poisson process. In the later case some theoretical work is needed.

7 Summary of Paper C

The purpose of this paper is to study the volume fraction of the global model in Paper B.
The model is defined as follows. Grains in the form of convex sets are placed at points
of a homogeneous Poisson process. The points are given weights that may depend on the
grain sizes. The process is thinned by only keeping those grains that do not overlap with
any other grain with equal or higher weight.

By a coupling argument we can show that the process is increasing in the intensity of
the Poisson process if the weights are continuous and independent of the radii. This is
not necessarily the case if the weights are allowed to dependon the radii or if they are not
continuous.

If the intensity of the Poisson process tends to infinity and the weight distribution is
independent of the grain sizes, then the volume fraction is at most 1/2d if d = 1 or d = 2,
with equality for centrally symmetric grains of equal size.In this case our model is iden-
tical to considering the intact grains of the dead leaves model. For simplicity we consider
spherical grains in the following. Ifd = 1 we can show the result by Jensen’s inequality.
Let Rbe the radius before thinning and letµ be the mean radius before thinning. Then the
volume fraction can be written

ν = E

[ R
R+ µ

]

.

If d = 2 the volume fraction can be written

ν = E

[ R2

R2 + 2µR+ γ

]

,

whereγ = ER2, which can be shown to be less than or equal to 1/4. This is proved
by observing that the argument of the expectation of is belowa line which in turn has
expectation less than or equal to 1/4. We can show that for a two point radius distribution
the volume fraction is at most 1/2d for anyd by straightforward calculations. This makes
it natural to conjecture that the volume fraction is at most 1/2d for all d.

If the weights are allowed to depend on the radii the volume fraction can be made
arbitrarily close to one. The idea is most easily described in two dimensions. The model
can be thought of as dropping discs on a plane. The discs are dropped in reversed weight
order. When all discs have been dropped the ones that can be seen whole from below are
the ones remaining after thinning. The achieved volume fraction can be made close to one
by dropping large discs first and then smaller and smaller in the right way.
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8 Future work

Common for all three papers appended to the thesis is that we have worked with non–
overlapping germ–grain models. The models have been used todescribe materials.

In the future, the ideas from Paper A could be applied to a material for which there is
real life data available. Then we could compare the variancein the theoretical results to
the variance of the data and draw conclusions about the importance of the variability of
grain sizes. Since the large grains in a grain structure seemto be of importance it would
also be interesting to find the extreme value distribution ofthe largest grain in a Voronoi
tessellation and compare to real data.

The models in Paper B were inspired by images of inclusions incast iron, see Figure
1. The fit was not satisfactorily and one idea is to use weightsdepending on the radius.
Another idea is to have an inhomogeneous Poisson process as starting process. The last
approach would need some theoretical work before application. Other models could be
explored.

In Paper C we conjecture that the upper bound 1/2d holds for any dimensiond, but
it remains to be proved ford ≥ 3. To show this would probably involve some other
technique than the one used in the paper.
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Abstract

The aim of the present study is to investigate the influence of the variation of metal grain sizes on fatigue lives. The grain structure is

simulated from a Poisson–Voronoi model and the short crack growth model of Navarro and de los Rios is applied. The resulting fatigue life

decreased with increasing component size, probably reflecting the fact that with increasing number of grains there is a larger probability of

finding a large grain where the crack starts. The standard deviation of the logarithm of the lives was in the order of 0.2–0.4, i.e. the variation in

grain size explains only part of the observed variance in real fatigue data.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Short crack; Grain structure; Voronoi tessellation

1. Introduction

Supposedly identical components made of metal often

show substantial differences in fatigue lives. The differences

are apparent even during controlled tests with identical

stress levels. Miller writes in [3] that the scatter in fatigue

data needs to be put in a perspective by for example detailed

studies of the effect of material structure on early crack

growth. One model of early (short) crack growth has been

developed by Navarro and de los Rios in [5–10]. The

purpose of this study is to investigate the effect of grain size

variation on fatigue life. Since the main part of the fatigue

life is explained by the crack initiation, the model of

Navarro–de los Rios will be used, as in [12], but modified to

handle grains of varying sizes. A stochastic grain structure

will be obtained by simulation. Similar ideas have been used

by Ahmadi and Zenner [1] in a study of the growth of

microcracks under the influence of cyclic loading. They

compared simulations of cracks in a two-dimensional

hexagonal lattice with experiments and the distribution of

cracks was claimed to be in quantitatively good agreement

between simulations and experiments. The main differences

in the ideas from the present paper is the deterministic grain

structure and our focus on scatter. A stochastic grain

structure, a Voronoi tessellation, is used by Meyer,

Brückner-Foit and Möslang [2] but focusing more on the

crack patterns when several cracks are allowed to grow.

Here also the results were found to be in good agreement

with experiments.

The grain model is introduced in Section 2.1 and the

Navarro–de los Rios model with modifications is described

in Section 2.2 along with some computational details. The

results are presented in Section 3 and analysed in Section 4.

2. Model

2.1. Grain structure

In the proposed model the metal grain structure is a

Voronoi tessellation in two or three dimensions of points

generated from a Poisson process (see Fig. 1). The reason

for using a Voronoi tessellation can be argued as follows. If,

in the crystallisation process of a one phase metal, all grains

begin to grow simultaneously and at the same rate the

resulting grain structure would be a Voronoi tessellation.

The tessellation could be modified by allowing the grains to

begin their growth at different times and by using a different

point process with more or less clustering of the points.

A tessellation partitions an Euclidean space ðRnÞ into

sets, (Ci), with non-overlapping interior, that is Rn
ZgiCi.

Let {pi} be a set of points. Each point pi in this set, from now
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on called nuclei, generates a cell (or grain) Ci. One grain Ci

consists of all points in R
n which has pi as their nearest

nuclei

Ci Z fx2R
n
: jjpi Kxjj% jjpj Kxjj;cpjg; (1)

where k$k is the Euclidean distance. If the set of points {pi}
is locally finite (any finite region contains a finite number of

points) the Cis are called a Voronoi tessellation and Ci

a Voronoi cell. A general reference on the properties

of Voronoi tessellations is [11] and a more mathematical

one is [4].

The realisations of Voronoi tessellations were accom-

plished using MATLAB version 6.5.1. First points were

generated according to a Poisson process in two dimensions.

Secondly, the function ‘voronoin’ were used on these points

giving the Voronoi tessellation. To handle the effect of

edges, points were generated in a slightly larger area than

the one needed.

The metal simulated here is assumed to have a face-

centred cubic (FCC) atomic structure and one phase

(homogeneous in terms of chemical composition). In the

model each grain is given a random (uniformly distributed)

slip plane direction which determines the directions for the

other slip planes (Fig. 2).

2.2. Crack growth model

The crack growth model is adapted from Navarro–de los

Rios model for short crack growth under uniaxial loading

[5–10]. The crack is modelled on the surface of the metal

and consequently the three dimensional structure is

disregarded. Since the point here is to use a grain structure

with grains of different sizes, the Navarro–de los Rios

model, which is described for grains of equal size (as in

[12]), has to be modified to the current situation. In short, the

Navarro–de los Rios model considers the plastic slip

produced ahead of a crack to be represented by a continuous

distribution of dislocations. It is assumed that when slip is

initiated in a grain the entire grain undergoes slip and is only

blocked by the grain boundary, i.e. the front of the plastic

zone coincides with the grain boundary. Slip is initiated in

the next grain when the stress ahead of the plastic zone is

enough to move new dislocations. This stress only depends

on the position of the crack tip relative to the grain

boundary.

The crack is initiated in the centre of a large grainwith a slip

plane close to the plane of maximum shear stress, that is the

angle between the slip plane and the load direction is close to

458. Inmaking a decision inwhich grain to start, a compromise

is made between size and direction of slip planes. If l is the

length of the grain along a slip plain going through the centre

of the grain and q is the angle between the slip plane and the

plane of maximum shear stress, a new length is calculated by

lcZl cos 2q (this is repeated for the three slip planes through

the centre of the grain). This calculation reflects the fact that

the sheer is zero both perpendicular and parallel to the main

load direction. The grain selected for the crack to start in is

the one with maximal lc. The crack is supposed to grow along

a slip plane at all times.

The crack growth rate is determined by

da

dN
Z ff; (2)

where a is half the surface crack length, N the number of

load cycles, f represents the fraction of dislocations ahead of

the crack that participates in the crack growth process and

depends on the applied stress and the material and f is the

plastic displacement of the crack-tip given by

fZ
2ð1KnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kn2
p

mn
sa; (3)

where s is the applied load, m the shear modulus and n

Poisson’s ratio. Here, nZa/c is a dimensionless parameter, c

the length of half the crack and half the plastic zone

(see Fig. 3).

The slip band is blocked by the grain boundary and the

crack will grow at a decreasing rate as it approaches

Fig. 1. A Voronoi tessellation of points generated from a Poisson process.

Fig. 2. Slip planes in a closed packed metal seen in two dimensions.
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the boundary until slip can be transfered to the next grain.

This happens at a critical value of n equal to

n
i
c Z cos

p

2

sKsLi

scomp

� �

; (4)

where scomp is the resistance to plastic deformation of the

crack tip. Consecutive grains are numbered iZ1,2,3,..

When s is smaller than sLi the stress is not enough to

overcome the boundary and the crack stops. The minimum

stress required for slip propagation is given by

sLi Z sFL
mi

m1

ffiffiffiffiffiffiffi

�di

2ci

s

(5)

where ci is the length of half the crack plus half the plastic

zone when the crack grows in grain i, �di is the mean of the

length the crack has grown in each grain, sFL is the fatigue

stress and

mi

m1

Z 1C2:07
2

p
arctanð0:522ðiK1Þ2Þ

� �1:86

: (6)

is the ratio of grain orientations.

When a new slip band is initiated in the next grain and the

plastic zone is supposed to span the entire new grain, and

therefore, n decreases to

n
iC1
s Z

ci

ciC1

n
i
c; (7)

which is a rescaling of the old value of n by the new value of

c. According to the model, the crack will grow along that

slip plane in the new grain that is closest to the plane of

maximum shear stress (the angle between this plane and the

loading direction is 458), regardless of which direction the

slip plane takes in the third dimension under the surface.

The growth rate Eq. (2) can be integrated over a grain

(or over parts of a grain) to give the number of cycles spent

in that grain

DNi Z
m

f ð1KnÞ2s ðarcsin nic Karcsin n
i
sÞ: (8)

The total number of cycles is then obtained by summing

over all grains.

In the Navarro–de los Rios model all the grains are

assumed to be equal in size and because of the symmetry in

that case it is enough to do calculations on half the crack.

Here, however, the crack may not grow at the same rate at

both directions after the first grain. Practically, this is solved

by considering the two growth directions separately. As an

approximation of the total cracklength after, say, N cycles,

we can calculate how long the crack is in both directions

separately, by using Eq. (8). The total cracklength after N

cycles is then obtained by adding the cracklengths in the two

directions. The growth rate at N cycles is approximated by

adding the growth rates for the two directions at N cycles.

The values of the parameters used in the calculations

are the same as in [12] for commercially pure aluminium.

These are shown in Table 1. They used fZ6.16!10K5

(2(s–sFL))
2.696.

3. Results

Simulations were made of two-dimensional Voronoi

tessellations where the number of nuclei were taken from a

Poisson distribution with expectation (denoted lA) 2000,

4000 and 9000, which corresponds to looking at

Table 1

Parameter values for commercially pure aluminium

Parameter Value

m 25.0 GPa

scomp 50.0 MPa

sFL 42.5 MPa

n 0.33

Fig. 3. Illustration of the parameters c and a.

Fig. 4. A simulated crack and grain structure.
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components of increasing size. More specifically, squares of

sides 2, 4 and 6 giving the area A to be 4, 16 and 36,

respectively, were used with an intensity, l, of points per

unit area as 250. The unit of the area is not important since

the grain size is only included implicitly in the Navarro–de

los Rios models, i.e. in the material constants. These choices

gave a mean intercept length of the grains in the

tessellations as approximately 0.050 calculated from the

simulations. The crack path was determined as described in

Section 2.2 and the crack was allowed to grow to a

maximum (it could stop before, if s!sLi in Eq. (4)) length

of 10 times the mean grain size. The crack growth rate as a

function of crack length and the number of cycles to failure

were calculated, the latter resulting in a Wöhler curve for

the short crack growth. For each value of the expectation the

simulation was repeated 1000 times.

Fig. 4 shows an example of a simulated crack, not

showing the entire simulated square, and Fig. 5 the crack

growth rate as a function of crack length for this crack. In

the latter figure, there is also the corresponding plot for a

grain structure with equal grain sizes. The growth rate

decreases when the crack get close to a boundary, then

increases sharply as the crack resumes its growth in the next

grain. Fig. 6 shows a Wöhler curve for the initial crack

growth for expectation in the Poisson distribution equal to

9000. As a comparison the results from using a model

without grain size variation is plotted in the same figure. A

regression was made on the lives for Ds ranging from 94 to

100 MPa to NZa(Ds)b with the values of the coefficients in

Table 2 as the result, i.e. the life decreases with lA or

equivalently component size.

The observations at NZ108 are of cracks that have

stopped before they were 10 times the mean grain size long.

The variation conditional on finite fatigue life of the number

of cycles to failure first increases with the applied load and

the decreases (plot in Fig. 7). Fig. 8 shows the percentage of

cracks that stopped, i.e. the fatigue life is infinite.

It is often claimed that the intercept lengths of the grains

in metals with unimodal distribution of grains is

approximately lognormal. In Fig. 9 is a quantile plot of

the logarithm of the intercept lengths in a simulation. The

points are supposed to follow a straight line if the lognormal

distribution is appropriate.

4. Discussion

The discussion following is purely qualitative because of

lack of real data. There is no evaluation of the Voronoi

model as a grain structure apart form the comparison of

Fig. 5. Logarithmic crack growth rate plots for the original Navarro–de los Rios model to the left and for the Voronoi tessellation model to the right.

Fig. 6. Wöhler curve for the initial crack growth. The unfilled rings

corresponds to life lengths calculated from the model with equal grain sizes.

Table 2

Coefficients in NZa(Ds)b, when Ds is in MPa

Expectation (lA) a!1044 b

1000 1.91 K23.7

4000 1.75 K23.7

9000 1.24 K23.6

J. Andersson / International Journal of Fatigue 27 (2005) 847–852850



the intercepts with the lognormal distribution. The agree-

ment is not very good since the observations are not on a

straight line. In this context, however, this is not the crucial

thing to compare but rather the distribution of large grains

which is more important for the crack growth. Probably the

common knowledge of the intercept lengths being lognor-

mal is not always accurate so the best way to do a good

comparison would be to use a real material.

The calculated fatigue lives should be seen as an example

of what is possible to do with this modelling approach. The

crack growth model of Navarro–de los Rios is used only

in the form of grains of equal sizes as a first approximation.

For future simulations the results for unequal grain

sizes in Vallellano, Navarro and Domı́nguez [13] can be

used instead. The reason for not using it here was

the extra complexity in programming. Our belief is that

the approximation does not change the results qualitatively

and other approximations made have probably a larger

impact.

Comparing the simulations to a computation with equal

grain sizes show that the crack growth rate curve is more

irregular. The advantage of using a grain structure with

varying grain sizes as opposed to one with equal grains is

that the crack can stop and that it is possible to calculate the

variance of the fatigue lives.

There are many simulations with infinite life even for

higher loads which is not observed in real data. The

explanation is that if a crack stops in a real material there

may be a crack that can continue somewhere else in the

structure. If a crack stops here there is no other crack that

starts at another location. In principle it is possible to

simulate that situation, however, then a decision have to be

made when to stop creating new cracks.

The standard deviation of the lives conditional on finite

life first increases with the load and then decreases as

expected from observations. The increase in the beginning

is due to the censored data which really have large fatigue

lives and hence would increase the standard deviation if

they were accounted for.

The fatigue life decreased with increasing number of

grains, probably reflecting the fact that with increasing

number of grains there is a larger probability of finding a

large grain (where the crack is assumed to start). The

standard deviation of the logarithm of the lives conditional

on finite life is in the order of 0.2–0.4 depending on the load.

Grain size variation gives rise to a longer fatigue life

compared with a structure with equal grains. One possible

explanation is that even if the crack starts in a large grain

and grows fast there, the next grains is probably smaller than

in a structure of equally sized grains, and therefore, it grows

slower in the second grain. The fatigue life decreases, as

Fig. 9. A normal quantile plot of the logarithm of 110 intercept lengths in a

two-dimensional Voronoi tessellation.

Fig. 8. The percentage of cracks that stopped in Fig. 6, i.e. the number of

observations at NZ108 cycles.

Fig. 7. The standard deviation conditional on finite fatigue life of the

number of cycles in Fig. 6 as a function of the load.
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expected with component size, i.e. the size of the area

simulated. However, only a part of fatigue life variation

observed in doing experiments is explained by the varying

grain size according to the simulations.
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Product densities and mark–correlations of two
models of non-overlapping grains

Jenny Andersson

Abstract

We consider two models of non-overlapping convex grains, which are generali-
sations of Matérn’s two hard-core processes. Grains are placed at points of a homo-
geneous Poisson process and the process is thinned by two different procedures. The
second-order product density and the mark–correlation function is derived for the
point process with convex grains of equal orientation. As spheres are an important
special case, the product densities for the models are stated both for spheres of equal
radii and for spheres having a certain radius distribution. The models are fittedto
data of inclusions in cast iron.
Keywords:Second-order product density, Poisson process, Pair-correlation, Marked
point process, Convex set
AMS 2000 Subject Classification: Primary 60D05, Secondary 60G55

1 Introduction

A point process where the points cannot be closer than a fixed minimal distance is called
a hard-core point process. Matérn [5] introduced two such processes. In the first one
he considers a Poisson process and excludes every point witha distance to its nearest
neighbour less than a fixed numberR > 0. In the second model each point is given a
weight, uniformly distributed on (0,1) and independent of the weights of other points.
Points are then retained if there are no other points within distanceR with lower weight
and removed otherwise. These models can be thought of as systems of non-overlapping
spheres with radiiR/2. A survey of random systems of non-intersecting spheres isfound
in [11]. Hard-core models are used, for example in forestry applications, see [13].

Another example of hard-core models is the simple sequential inhibition model, SSI,
which is also called the random sequential adsorption model, RSA, used in physical and
biological sciences. Spheres are placed randomly and sequentially in a bounded region.
A sphere is rejected if it intersects a previously placed sphere. Other items than spheres
could be used. For a survey on RSA models, see for example [17].

The Stienen model and a generalisation, the lily-pond model, describe sets of spheres
with random radii. Points are generated according to a stationary Poisson process. In the
Stienen model, each Poisson point is the centre of a sphere with a diameter equal to the
distance to its nearest neighbour. See [10] and pages 218 and380 in [12] for more on the
Stienen model, for example the pair-correlation function.In the lily-pond model spheres
are grown radially, at the same time and at the same rate, fromthe Poisson points. Each

1



sphere grows until it meets another sphere. In [1] there are some recent results and an
overview of previous results for the lily-pond model.

Some hard-core models are examples of Gibbs processes, which are also studied in
the literature on physics. An accessible mathematical treatment can be found in [6].

A model which is closely related to Matérn’s second model is Matheron’s dead leaves
model, see [3] and [14]. In two dimensions, discs are droppedsequentially according to a
Poisson process on the plane. Parts of a new disc that intersects an old disc are invisible,
that is we watch the discs from below. In a finite area, the process can be stopped once all
the surface is covered by discs, since new discs dropped do not influence the distribution
of the intact discs. The centres of the intact discs correspond to the points that are not
removed in Matérns second model when the intensity of the Poisson process tends to
infinity, according to [14].

Månsson and Rudemo [4] describe two models of non-overlappinggrains, which are
generalisatations of Matérn’s models. The processes are obtained by thinning a stationary
Poisson process. A convex compact set, called grain, is associated with each point. In
the simplest case the grains are spheres with equal radii. Points with overlapping grains
are either removed or kept, according to two different procedures, in a way that leaves
points with non-overlapping grains. The first thinning scheme, called pairwise, gives
independent weights to both points in a pair with overlapping grains, and the point with
strictly higher weight wins. New weights are assigned in every comparison. A point is
kept only if it wins in all pairwise comparisons. The second scheme, called global, gives
each point a weight once and for all and the point with strictly higher weight is kept when
comparing with weights of overlapping grains. The weight may depend on the size of
the grain in both cases. Figure 1 shows realisations of thesemodels for spheres of equal
sizes. The models in [4] were originally inspired by inclusions in steel and nodular cast
iron, which are important for the fatigue strength of these materials.

Similar to the models in [4] are the generalisations of Matérn’s second model in [15].
In the first generalisation the weights may have some distribution that is not uniform and
which is independent of the radius. As in Matérn’s model, a point in x is removed if there
is another point in the ball of radiusR, centred inx with lower weight thanx. This gives
exactly the same point process after thinning as the global model above with the same
weight distribution and all radii equal toR/2. In the second generalisation, the radii of
the points are not constant but follow some distribution, that is a pointx gets radiusrx. A
point in x is now removed if there is no other point with lower weight in the sphere with
radiusrx centred atx. This is not a model of non-overlapping spheres as the globalmodel
of [4]. For example, it is possible to have one sphere completely inside another. In [15]
thinning intensities, product-densities and mark–correlations for both models are derived.

In [4], the thinning probabilities, the relation between the point processes before and
after thinning, the volume fraction and the size distributions after thinning are considered.
To further characterise these models we are interested in studying second-order character-
istics. Once a second-order measure and the first moment measure are known, variances
and covariances can be calculated. Furthermore, the second-order properties can be used
to compare the models, for example to a stationary Poisson process. For studying the de-
pendence of the sizes of spheres we are also interested in themark–correlation function.

In Section 2, we give a description of the pairwise and globalmodels. We define the
product density and derive an expression for calculating the product density in terms of a
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(a) Before thinning (b) Pairwise thinning

(c) Global thinning

Figure 1: Realisation of pairwise and global thinning of a Poisson process in theunit square ofR2

with intensityλ = 100, where all the spheres have an equal radius 0.05.

two-point mark probability in Section 3. This expression has previously been used in [8]
and [9]. In Section 4 we calculate the second-order product density for spherical grains
with fixed radii for the two thinning procedures. This may seem somewhat superfluous
as the same calculations for general radius distribution are carried out in Section 5, but
we think it is worthwhile to present the ideas of the proofs inan easier setting. Section
6 states the product densities for convex, compact grains with the same orientation. A
general discussion of conditional mark distributions for point processes with two types
of marks is given in Section 7. This material is needed in Section 8 where the mark–
correlation functions for the pairwise and the global modelare stated. As the models
were inspired by inclusions in cast iron, we fit them to such data in Section 9. Comments
and indications of future work are given in Section 10.
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2 Description of the models

Consider a Poisson point process with constant intensityλ in Rd. On each point a sphere,
or some other convex set, in general called grain, is centred. The radius of the sphere
associated with a point has distributionFR, which is independent of the point process and
of the radii of other points. The process is thinned so that there are no intersecting spheres,
according to two different schemes:

(P) Pairwise assignment of weights. For each pair of points with intersecting spheres
both points get weights independent of each other and the point with the lower
weight is removed. In the case of equal weights both are removed. A point will
only be retained if it wins in each of the pairwise comparisons. For example, if three
points have intersecting spheres it is possible that all three points will be removed.

(G) Global assignment of weights. The points get i.i.d. weights once and for all. As
before, points with intersecting spheres compete and the one with strictly higher
weight is retained.

Both in the global and pairwise case the weight may depend on the radius, but not on the
point process. Denote the weight distribution for a sphere with radiusr by FW|r .

The thinning procedure can be thought of as giving marks to the original Poisson
process. A point gets mark 1 if it is kept and 0 if it is removed.Now we have a marked
processΦ = {[Xn; Mn]} with points {Xn} constituting a stationary Poisson process with
intensityλ in Rd and to eachXn an associated markMn taking values inM = {0,1}.

The intensity is an important characteristic of a point process. For the current models
it can be expressed in terms ofh(r), the retention probability, i.e. the probability that a
point with radiusr will be retained, see [4], as

λth = λ

∫ ∞

0
h(r)FR(dr). (2.1)

Let W1(r) and W2(y) be two independent weights with distribution functionsFW|r and
FW|y, andκd the volume of the unit sphere ind dimensions. The retention probability for
the pairwise case is

hP(r) = exp

{

−λκd
∫ ∞

0
P(W1(r) ≤W2(y))(r + y)dFR(dy)

}

. (2.2)

For a random variableX with distribution functionF let F̄(x) = P(X ≥ x). The retention
probability for the global case is

hG(r) =
∫ ∞

0
exp

{

−λκd
∫ ∞

0
F̄W|y(w)(r + y)dFR(dy)

}

FW|r(dw). (2.3)

A further characteristic of these models is the radius distribution after thinning. In
general it is not the same as the distribution before thinning, but the right tail of the
distribution can be preserved, if large spheres are kept in the thinning. See [4] for a
discussion of the radius distribution.
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3 The second–order product density

As mentioned in the Introduction, we want to study functionsthat describe the second-
order behaviour of these models. One such function is the second-order product density
̺(2). It is the density with respect to the Lebesgue measure of thesecond-order factorial
moment measureα(2)

P onRd × Rd. If B1 andB2 are Borel sets andΨ is a point process on
R

d with distributionPΨ, α(2) is defined as

α
(2)
P (B1 × B2) =E[#{(x1, x2) : x1 ∈ Ψ ∩ B1, x2 ∈ Ψ ∩ B2, x1 , x2}]

=

∫

∑

x1,x2∈ψ
x1,x2

1B1(x1)1B2(x2)PΨ(dψ). (3.1)

An interpretation of the second-order product density is that

̺
(2)
P (x1, x2)dV1dV2

is the probability of having a point in each of two infinitesimally small disjoint Borel
sets, with Lebesgue measuresdV1 anddV2, wherex andy belong to one set each. The
following result will be used in the calculation of the second-order product density for the
thinned processes defined above.

Lemma 3.1 LetΦ = {[Xn; Mn]} be a simple marked point process inRd with marks in
M = {0,1}, where the associated point process{Xn} is a stationary Poisson process with
intensityλ. Then the second-order product density̺(2)

th for the process consisting of points
with marks 1 can be written as

̺
(2)
th (x1, x2) = λ

2Mx1,x2((1,1)), (3.2)

whereMx1,x2 is the two-point mark distribution, defined onM×M. If the process consist-
ing of points with marks 1 is stationary and isotropic the product density will only depend
on the distance|x1 − x2| between the two points, and̺(2)

th (x1, x2) is simplified to

̺
(2)
th (r) = λ2Mo,r((1,1)), (3.3)

for one point at the origin and one point in locationr at distance r from the origin.

The two-point mark distributionMx1,x2 describes the marks inx1 andx2 under the con-
dition that there are points inx1 andx2, see [7]. It can be thought of as a two-fold Palm
distribution.

The proof of Lemma 3.1, which is given below, is rather technical and may be skipped
without affecting the reading of further sections. We need a modification of Theorem
2.3 from [7] with the assumption of the stationarity and isotropy of the marked process
removed. The proof of this modification can essentially be found in [7], but is not stated in
a theorem. The theorem below, which states the modification,can be called the “two-point
Campbell theorem”.
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Theorem 3.2 Let Φ = {[Xn; Mn]} be a simple marked point process inRd with marks
in M = {0,1} and distribution P. The set of all outcomes ofΦ is denoted by N. Let
{Mx1,x2 : x1, x2 ∈ Rd} be the family of corresponding two-point mark distributionsand
let α(2) be the second-order factorial moment measure of{Xn}. For every measurable
f : Rd ×M × Rd ×M→ R+,

∫

N

∑

[x1;m1]∈ϕ
[x2;m2]∈ϕ

x1,x2

f (x1,m1, x2,m2)P(dϕ)

=

∫

Rd×Rd

∫

M×M

f (x1,m1, x2,m2)Mx1,x2(d(m1,m2))α(2)(d(x1, x2)).

Now we are ready to prove Lemma 3.1 with the aid of Theorem 3.2.

Proof of Lemma 3.1. For a thinned process with distributionPth the second-order fac-
torial moment measure is

α
(2)
th (B1 × B2) =

∫

∑

x1∈ϕ, x2∈ϕ
x1,x2

1B1(x1)1B2(x2)Pth(dϕ).

This expression can be rewritten in terms of the original marked processΦ with distribu-
tion P. Let 1{1}×{1}(m1,m2) be the indicator function of the event that bothx1 andx2 are
retained when thinning. By summing over all points inΦ that are retained in the thinning
procedure we get

α
(2)
th (B1 × B2) =

∫

N

∑

[x1;m1]∈ϕ
[x2;m2]∈ϕ

x1,x2

1B1(x1)1B2(x2)1{1}×{1}(m1,m2)P(dϕ).

By Theorem 3.2,

α
(2)
th (B1 × B2)

=

∫

B1×B2

∫

M×M

1{1}×{1}(m1,m2)Mx1,x2(d(m1,m2))α
(2)(d(x1, x2))

=

∫

B1×B2

1
∑

m1=0

1
∑

m2=0

1{1}×{1}(m1,m2)Mx1,x2(d(m1,m2))α
(2)(d(x1, x2))

=

∫

B1×B2

Mx1,x2((1,1))α(2)(d(x1, x2)).

For a homogeneous Poisson process with intensityλ, the second-order factorial moment
measureα(2)(B1×B2) = λ2ld(B1)ld(B2), see for example [12]. Since the product density of
the thinned process is the density ofα(2)

th with respect to Lebesgue measure we get (3.2).
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4 Spheres with fixed radii

4.1 Second-order product densities

In this section we derive the second-order product density for the two point processes with
spheres of radiusr0 and continuous weight distribution. The following notation is used.
Let Bd(x, r) = {y ∈ Rd : |x− y| ≤ r} be thed-dimensional sphere centred inx with radius
r and letld be the Lebesgue measure inRd. Moreover, letκd = ld(B(x,1)), the volume of
the unitd-dimensional sphere, so thatld(B(x, r)) = κdrd. Quantities in the pairwise case
and the global case are indexed by P and G, respectively.

From equations (2.1), (2.2) and (2.3), the intensities of the thinned processes are

λthP = λ exp

{

−1
2
λκd(2r0)

d

}

for the pairwise model and

λthG =
1− exp

{

−λκd(2r0)
d
}

κd(2r0)d
,

for the global model, when the intensity of the Poisson process before thinning isλ.

Theorem 4.1 Let V= κd(2r0)d and q(r) = ld(Bd(o,2r0)∩Bd(r,2r0))1, with |o− r| = r. For
the pairwise model with spherical grains of fixed size, the second-order product density is

̺(2)(r) =























0 if r ≤ 2r0

λ2 exp
{

−λ(V − 1
4q(r))

}

if 2r0 < r ≤ 4r0

λ2 exp{−λV} if r > 4r0.

(4.1)

2r0

r

r0

o r

Figure 2: Two spheres at distancer in 2-d.

1See Appendix A for calculations in two and three dimensions.
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Proof. We use (3.3) to calculate the product density, i.e. we needMo,r((1,1)), the two-
point mark probability that two points at distancer both have marks 1, that is the proba-
bility of retaining two points at distancer. Given one point at the origin,o, and one point
at distancer from the origin located inr, see Figure 2, the probability that both points are
retained is zero ifr ≤ 2r0, since then their spheres intersect and at least one of them must
be removed and henceMo,r((1,1)) = 0. Forr > 2r0 the two-point mark probability can
be rewritten as

Mo,r((1,1)) = P({# of points that win overo or r} = 0). (4.2)

The points that win overo or r constitute an inhomogeneous Poisson process with inten-
sity functionλb(x). Whenλ is the intensity of the Poisson process before thinning, the
mean number of points inRd of this inhomogeneous process can be written

∫

Rd
λb(x)dx =

∫

Rd
λP(A point in x wins overo or r)dx.

For r > 2r0 points that belongs to the union ofBd(o,2r0) and Bd(r,2r0) are possible
candidates for winning over eithero or r or both. More precisely points inBd(o,2r0) \
Bd(r,2r0) can beato, but notr, points inBd(r,2r0) \ Bd(o,2r0) can beatr, but noto and
points inBd(o,2r0) ∩ Bd(r,2r0) can beato or r. If Wo is the weight ofo, Wr is the weight
of r, Wx1 is the weight ofx when competing witho andWx2 is the weight ofx when
competing withr, then

∫

Rd
λb(x)dx =λ

∫

Rd

[

1{Bd(o,2r0)\Bd(r,2r0)}(x)P(Wx1 ≥Wo)

+ 1{Bd(r,2r0)\Bd(o,2r0)}(x)P(Wx2 ≥Wr)

+ 1{Bd(r,2r0)∩Bd(o,2r0)}(x)P(Wx1 ≥Wo ∪Wx2 ≥Wr)
]

dx

(4.3)

since the sets are disjoint. Further simplification gives,
∫

Rd
λb(x)dx = λ

∫

Rd

[

1{Bd(o,2r0)\Bd(r,2r0)}(x)
1
2

+ 1{Bd(r,2r0)\Bd(o,2r0)}(x)
1
2
+ 1{Bd(r,2r0)∩Bd(o,2r0)}(x)

3
4

]

dx

=λ
[1
2

ld(Bd(o,2r0) \ Bd(r,2r0)) +
1
2

ld(Bd(r,2r0) \ Bd(o,2r0))

+
3
4

ld(Bd(r,2r0) ∩ Bd(o,2r0))
]

.

(4.4)

Recalling (4.2) we get

Mo,r((1,1)) = exp
{

−
∫

Rd
λb(x)dx

}

. (4.5)

Equations (4.4) and (4.5) combined with (3.3), using

ld(Bd(o,2r0) \ Bd(r,2r0)) = ld(Bd(r,2r0) \ Bd(o,2r0))

= κd(2r0)
d − ld(Bd(o,2r0) ∩ Bd(r,2r0))

concludes the proof. Observe thatq(r) = γd(r,2r0) = ld(Bd(o,2r0) ∩ Bd(r,2r0)) = 0 for
r > 4r0.
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Theorem 4.2 Let V= κd(2r0)d and q(r) = ld(Bd(o,2r0)∩ Bd(r,2r0))2, with |o− r| = r.For
the global model with spherical grains of fixed radii, the second-order product density is

̺(2)(r) =











































































0 if r ≤ 2r0

2

{

1
V(2V − q(r))

− e−λV

V(V − q(r))

+
e−λ(2V−q(r))

(V − q(r))(2V − q(r))

}

if 2r0 < r ≤ 4r0

(

1− e−λV

V

)2

if r > 4r0.

(4.6)

Remark: This formula can be found on page 164 in [12]. The proof given here is very
similar to that of Theorem 4.1.

Proof. Conditioning on the probability that a point ino has weightwo and a point inr, at
distancer from the origin, has weightwr, the probability that both points are retained can
be found as in the proof of Theorem 4.1 above. Denote a point inx having radiusrx by
[x; rx]. For simplicity’s sake we take the weight distribution to be uniform, but it could be
any continuous distribution. Instead of (4.2) we get

Mo,r((1,1))

=

∫ 1

0

∫ 1

0
P({# of points that win over [o; wo] or [r; wr]} = 0)dwodwr.

Another difference from the proof of Theorem 4.1 is that in (4.3)

P(Wx1 ≥Wo) is replaced byP(Wx ≥ wo) =
∫ 1

wo

dw = 1− wo,

P(Wx2 ≥Wr) is replaced byP(Wx ≥ wr) =
∫ 1

wr

dw = 1− wr

and similarly

P(Wx1 ≥Wo ∪Wx2 ≥Wr) is replaced by

P(Wx ≥ min(wo,wr)) =
∫ 1

min(wo,wr)
dw = 1−min(wo,wr).

This leads to

Mo,r((1,1))

=

∫ 1

0

∫ 1

0
exp
{

− λ[(1− wo)(κd(2r0)
d − ld(Bd(o,2r0) ∩ Bd(r,2r0)))

+ (1− wr)(κd(2r0)
d − ld(Bd(o,2r0) ∩ Bd(r,2r0)))

+ (1−min(wr,wo))ld(Bd(o,2r0) ∩ Bd(r,2r0))
]

}

dwodwr.

(4.7)

Evaluating (4.7) and multiplying byλ2 gives (4.6).

2See Appendix A for calculations in two and three dimensions.
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4.2 Behaviour of the models

According to [4] the intensities after thinning behave quite differently for the two models,
see Figure 3. For the pairwise caseλth → 0 asλ → ∞ and it has a maximum inλth =

2/(κd(2r0)de) for λ = 2/(κd(2r0)d). On the other hand, for the global case,λth is increasing
in λ and asλ→ ∞, λth→ 1/(κd(2r0)d).
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Figure 3: The intensity after thinning for the pairwise and the global models in two dimensions
for spheres of equal radii=0.1.

When comparing product densities of the global model and the pairwise model it is
clearer to consider the pair-correlation function instead. It is defined as

g(r) = ̺(2)(r)/λ2
th,

giving

gP(r) =























0 if r ≤ 2r0

exp
{

λ1
4γd(r,2r0)

}

if 2r0 < r ≤ 4r0

1 if r > 4r0

and

gG(r) =































































0 if r ≤ 2r0

2

λ2
thG

{

1
V(2V − q(r))

− e−λV

V(V − q(r))

+
e−λ(2V−q(r))

(V − q(r))(2V − q(r))

}

if 2r0 < r ≤ 4r0

1 if r > 4r0,
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for the two models. For a Poisson processg(r) = 1, r > 0, see [12]. Whenr ≤ 2r0, the
pair-correlation is 0 and there can be no pair of points separated by such distances. The
pair-correlation is 1 for both models whenr > 4r0, meaning that the frequency of point
pairs at distances larger than 4r0 is the same as in a Poisson process.

For the pairwise model and 2r0 < r ≤ 4r0, the pair-correlation is increasing inλ, that
is whenλ→ ∞ the process has a higher frequency of pairs of points at distances between
2r0 and 4r0 than a homogeneous Poisson process even though the intensity after thinning
tends to zero at the same time. On the other hand, whenλ goes to infinity for the global
model,gG tends to (2V)/(2V − q(r)), for 2r0 < r ≤ 4r0, which is between 1 and 1.1 inR2,
since 0≤ q(r)/V < 2/3 −

√
3/π. In Rd an upper bound forq(2r0) is 1/2, implying that

(2V)/(2V − q(r)) is never greater than 4/3. This means that the global process has almost
the same pair-correlation as a Poisson process except for the hard cores.

If we compare the pair-correlation functions for the same value of the intensity after
thinning we get three different behaviours since the pairwise model can have the sameλth

for two differentλ, as can be seen in Figure 3. Figure 4 and Figure 5 show a plot of the
pairwise and the global pair-correlation function in two dimensions.
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0.8
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1.1
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1.3
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r

g(
r)

pairwise−low
pairwise−high
global

Figure 4: Pair-correlation function for the pairwise and the global model in two dimensions with
the same intensity after thinning,λth = 4, and radius of the spheresr0 = 0.1. The intensity before
thinning was 5.74 and 34.11 for the two pairwise models giving the sameλth, labelled low and
high respectively in the plot, and 5.56 for the global.

5 Spheres with general radius and weight distributions

Now we turn to a more general case than above, where the spheres radii have some non-
degenerate distribution. Let the spheres have radius distribution FR and the weights have
distributionFW|r which may depend on the radius.
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Figure 5: Pair-correlation function for the pairwise and the global model in two dimensions with
the same intensity after thinning,λth = 2/(κd(2r0)de) = 5.86, and radius of the spheresr0 = 0.1.
The intensity before thinning was 15.92 for the pairwise model and 10.59 for the global. Compared
with Figure 4 there is only one pairwise model sinceλth is chosen as the maximum in Figure 3.

Theorem 5.1 Letδd(r, r1, r2) = ld(Bd(o, r1)∩ Bd(r, r2)) with |o− r| = r and let Wi(x) have
distribution FW|x. For the pairwise model with spherical grains, the second-order product
density is

̺(2)(r) = λ2

∫ r

0

∫ r−ro

0
exp
{

−λ
∫ ∞

0
[

(

κd(ro + rw)d − δd(r, ro + rw, r r + rw)
)

P(W1(ro) ≤W2(rw))

+
(

κd(r r + rw)d − δd(r, ro + rw, r r + rw)
)

P(W3(r r) ≤W4(rw))

+ δd(r, ro + rw, r r + rw)P(W1(ro) ≤W2(rw) ∪W3(r r) ≤W4(rw))
]

FR(drw)
}

FR(dr r)FR(dro).

(5.1)

Proof. Consider two points, one at the origin,o, and the other at a distancer from the
origin, in locationr. As before, useMo,r((1,1)) in (3.3) and condition on the sphere ato
having radiusro and the sphere atr having radiusr r. Denote a point inx having radiusrx

by [x; rx]. If the distance betweeno and r is less than the sum of their radii, both of the
points cannot be retained, hence we integrate over all radiisuch thatr > ro + r r

Mo,r((1,1)) =
∫ ∞

0

∫ ∞

0
1{r>ro+r r}

P({# points that win over [o; ro] or [r; r r]} = 0)FR(dro)FR(dr r).
(5.2)

As before, the points that win over [o; ro] or [r; r r] constitute an inhomogeneous Poisson
process with intensity functionλb(x). Whenλ is the intensity of the stationary Poisson
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process, the mean number of points inRd of this inhomogeneous process can be written
∫

Rd

λb(x)dx =
∫

Rd

λP(A point in x wins over [o; ro] or [r; r r])dx

= λ

∫

Rd

∫ ∞

0
P(A point in [x; rw] wins over [o; ro] or [r; r r])FR(drw)dx.

(5.3)

A point with radiusrw is a possible candidate for winning overo if it belongs to the set

{x ∈ Rd : Bd(o, ro) ∩ Bd(x, rw) , ∅} = Bd(o, ro + rw),

and similarly it is a candidate for winning overr if it belongs toBd(r, rw + r r). Points in
Bd(o, ro+ rw)∩Bd(r, rw+ r r) can win over botho andr. These three sets can be made into
three disjoint sets, and lettingWi(x) have distributionFW|x, we get

∫

Rd

λb(x)dx

=λ

∫

Rd

∫ ∞

0

[

1{Bd(o,ro+rw)\Bd(r,r r+rw)}(x)P(Wx1(rw) ≥Wo(ro))

+1{Bd(r,r r+rw)\Bd(o,ro+rw)}(x)P(Wx2(rw) ≥Wr(r r))

+1{Bd(r,r r+rw)∩Bd(o,ro+rw)}(x)P(Wx1(rw) ≥Wo(ro) ∪Wx2(rw) ≥Wr(r r))
]

FR(drw)dx.

The weights do not depend onx, thus giving,
∫

Rd

λb(x)dx

=λ

∫

[

ld(Bd(o, ro + rw) \ Bd(r, r r + rw))P(Wx1(rw) ≥Wo(ro))

+ ld(Bd(r, r r + rw) \ Bd(o, ro + rw))P(Wx2(rw) ≥Wr(r r))

+ ld(Bd(r, r r + rw) ∩ Bd(o, ro + rw))

P(Wx1(rw) ≥Wo(ro) ∪Wx2(rw) ≥Wr(r r))
]

FR(drw).

(5.4)

The probability in (5.2) is

P({# of points that win over [o; ro] or [r; r r]} = 0)

= exp
{

−
∫

Rd

λb(x)dx
}

. (5.5)

Insert (5.4) and (5.5) in (5.2), multiply byλ2 and the proof is complete.
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Theorem 5.2 Let δd(r, r1, r2) = ld(Bd(o, r1) ∩ Bd(r, r2)) with |o − r| = r. For the global
model with spherical grains, the second-order product density is

̺(2)(r) =λ2

∫ r

0

∫ r−ro

0

∫∫

exp
{

− λ
∫

[

∫ ∞

wo

(κd(ro + rw)d − δd(r, ro + rw, r r + rw))FW|rw(dw)

+

∫ ∞

wr

(κd(r r + rw)d − δd(r, ro + rw, r r + rw))FW|rw(dw)

+

∫ ∞

min(wo,wr)
δd(r, ro + rw, r r + rw)FW|rw(dw)

]

FR(drw)
}

FW|ro(dwo)FW|r r(dwr)FR(dr r)FR(dro).

(5.6)

Proof. A point in x with its associated radius and weight is denoted by [x; rx; wx]. The
ideas of the proof are the same as for the proof of Theorem 5.1,but condition also on
the weights of the two typical points ino and r beingwo andwr respectively, i.e. (5.2)
becomes

Mo,r((1,1)) =
∫ ∞

0

∫ ∞

0

"
1{r>ro+r r}

P({# of points that win over [o; ro; wo] or [r; r r; wr]} = 0)

FW|ro(dwo)FW|r r(dwr)FR(dro)FR(dr r).

(5.7)

Furthermore, to calculate the expectation of the number of points that beato or r, we must
also condition on the radius and the weight ofx

∫

Rd

λb(x)dx

=

∫

Rd

λP(A point in x wins over [o; ro; wo] or [r; r r; wr])dx

= λ

∫

Rd

"
[1{Bd(o,ro+rw)\Bd(r,r r+rw)}(x)1{wx≥wo}

+ 1{Bd(r,r r+rw)\Bd(o,ro+rw)}(x)1{wx≥wr}

+ 1{Bd(r,r r+rw)∩Bd(o,ro+rw)}(x)1{wx≥min(wr,wo)}]

FW|rw(dwx)FR(drw)dx.

The last steps are the same as those in the proof of Theorem 5.1.

Remark: If the weight distribution is continuous and independent ofthe radius it does
not matter which form it has.

To evaluate the product density for special cases it is usually necessary to do the inte-
gration numerically. Below there is one simple example when it is possible to calculate
the product density exactly and another example when numerical integration is necessary.
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Example 5.1. Consider a model inR2 with two spheres of radiusr1 andr2 and letpi be
the probability of a sphere having radiusr i, before thinning. Let the weight distribution
be uniform and independent of the radius. An expression forδ2(r, r i + rk, r j + rk), the area
of the intersection of two discs with radiir i + rk andr j + rk at distancer, can be found in
Appendix A. Then, for the pairwise model, the intensity after thinning is

λthP = λ

2
∑

i=1

pi exp

{

−λ1
2
π
(

(r i + r1)
2p1 + (r i + r2)

2p2
)

}

,

by (2.1) and (2.2). By (5.1), the product density is

̺
(2)
P (r) =λ2

2
∑

i=1

2
∑

j=1

1{r i+r j<r} exp
{

−λ
2
∑

k=1

[π

2
(

(r i + rk)
2 + (r j + rk)

2)

− 1
4
δ2(r, r i + rk, r j + rk)

]

pk

}

pj pi .

Let Vi =
∑2

k=1 pkπ(r i + rk)2 andqi, j(r) =
∑2

k=1 pkδ2(r, r i + rk, r j + rk). From (2.1), (2.3)
and (5.6), the corresponding quantities for the global modelare

λthG =

2
∑

i=1

1− exp
{

−λπ∑2
j=1(r i + r j)2pj

}

π
∑2

j=1(r i + r j)2pj

pi

and

̺
(2)
G (r) =

2
∑

i=1

2
∑

j=1

1{r i+r j<r}
{

(Vi − qi, j(r))(V j − qi, j(r))(Vi + V j)

+ ViVj(Vi + V j − 2qi, j(r)) exp[−λ(Vi + V j − qi, j(r))]

− Vi(Vi + V j − qi, j(r))(V j − qi, j(r)) exp[−λV j]

− V j(Vi + V j − qi, j(r))(Vi − qi, j(r)) exp[−λVi]
}

/
{

ViVj(Vi − qi, j(r))(V j − qi, j(r))(Vi + V j − qi, j(r))
}

pi pj .

The pair–correlation functions,̺(2)/λ2
th, for both models with parametersr1 = 0.2, r2 =

0.1, p1 = 0.5 andp2 = 0.5, are shown in Figure 6. The intensities before thinning were 10
in the pairwise case and 4.4 in the global case, giving intensity 2.5 for both models after
thinning. In the global model after thinning, the probability that a sphere has radiusr1

is approximately 0.42. In the pairwise model after thinning,the probability that a sphere
has radiusr1 is approximately 0.28. The calculations of these probabilities can be done
using Theorem 3.2 in [4]. The jump atr = 0.2 occurs because the spheres must have a
radius which is at least 0.1 and consequently the points mustbe separated by at least 0.2.
The next jump atr = 0.3 occurs because two spheres with radii which are 0.1 and 0.2,
respectively, cannot be closer than 0.3. The final jump atr = 0.4 is explained in the same
way.

¤
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Figure 6: Pair-correlation function for the pairwise and the global model for spheres of two sizes
with the same intensity after thinning,λth = 2.5.

Example 5.2. Consider the pairwise and global models inR2. Let the radii be Rayleigh
distributed with parameter 1, that is mean radius is about 1.25, and take the weight dis-
tribution independent of the radii. In Figure 7 there is a plot of the pair–correlations for
two versions of the pairwise model and one version of the global model, all with the same
intensity after thinning, 0.017. The intensities before thinning were 0.021 for one of the
pairwise models and the global model while it was 0.4 for the other pairwise model. The
mean radius after thinning was 1.18 for the pairwise model starting with low intensity,
for the other pairwise model it was 0.593 and finally for the global model it was 1.19.
Pairwise and global models starting withλ = 0.021 behave almost identically in terms of
pair-correlation. When only two spheres overlap, there is nodifference between the global
model and the pairwise model, hence the similarity of pair–correlations for low starting
intensity. In Figure 8 there are simulations of these modelsin a square of side 50 together
with the simulation before thinning.

As we have seen before, the intensity after thinning as a function of the intensity before
thinning has a maximum for the pairwise model. In this example it occurs forλ = 0.115
giving λth = 0.0373. In that case the pair-correlation can be found in Figure 9 along with
a realisation.

The intensity after thinning of the global model tends to 0.0560 asλ tends to infinity.
Takingλ = 0.5 givesλth = 0.0558 and the resulting pair–correlation and a simulation is
found in Figure 10.

¤
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Figure 7: Pair–correlation function for models starting with Rayleigh distributed radiiwith param-
eter 1 and weights independent of the radii. See Example 5.2 for further details.

6 Convex, compact grains

Let us instead of spherical grains consider grains with the same shape and orientation as
a convex, compact set inRd. To describe such a set some notation is needed. For a set
A ⊆ Rd, the translation ofA by x ∈ Rd is defined as

Ax = {x+ y : y ∈ A},

the reflection ofA is defined as
Ǎ = {−x : x ∈ A}

and the Minkowski-addition ofA andB ⊆ Rd is defined as

A⊕ B = {x+ y : x ∈ A, y ∈ B}.

Another useful way to write the Minkowski-addition is

A⊕ B = {x : A∩ (B̌)x , ∅}. (6.1)

Define the size of a setA ∈ Rd as half its diameter, to have the size of a sphere equal to its
radius, i.e. the size is defined as,

1
2

sup
x,y∈A
|x− y|.

The family of convex, compact setsC in Rd having size 1 and containing the origin is
denoted byCd. ForC ∈ Cd, let C(r) = {ry : y ∈ C}, that is a set of the same shape and
orientation asC but of sizer > 0. By Theorem 4.1 in [4], (2.2) and (2.3) are valid if

17



(a) Before thinning,λ = 0.4 (b) Pairwise,λ = 0.4, λth = 0.017, mean
radius= 0.593

(c) Before thinningλ = 0.021 (d) Pairwiseλ = 0.021,λth = 0.017, mean
radius= 1.18

(e) Globalλ = 0.021, λth = 0.017, mean
radius= 1.19

Figure 8: Realisations of pairwise and global models with the same intensity after thinning, 0.017,
see Example 5.2, starting with Rayleigh(1) distributed radii. The squares have side 50. The pair-
wise realisation in (b) was obtained by thinning (a) and the pairwise and globalrealisations in (d)
and (e) respectively were obtained by thinning (e).
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(a) Pair–correlation (b) Realisation

Figure 9: Pair–correlation and a simulation for the pairwise model with Rayleigh(1) distributed
radii and intensity before thinning 0.115, giving maximal intensity after thinning0.0373. See
Example 5.2.
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(a) Pair–correlation (b) Realisation

Figure 10: Pair–correlation and a simulation for the global model with Rayleigh(1) distributed
radii and intensity before thinning 0.5, giving close to maximal intensity after thinning, 0.0558.
See Example 5.2.
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κd(r + y)d is replaced by{x : ld{C(r) ∩ C(y)x , ∅}, or equivalentlyld(C(r) ⊕ Č(y)). Take
the example where all grains have the same sizer0, the intensity of the Poisson process
before thinning isλ and the weight distribution is independent of size. In that case the
intensities for the thinned processes are for the pairwise model,

λthP = λ exp

{

−1
2
λld
(

C(r0) ⊕ Č(r0)
)

}

and for the global model,

λthG =
1− exp

{

−λld
(

C(r0) ⊕ Č(r0)
)}

ld
(

C(r0) ⊕ Č(r0)
) .

The main difference from spheres is that the second-order product density cannot be
written in terms of a distance anymore since the thinned process is not isotropic. How-
ever, the process is stationary, meaning that it is enough toconsider̺ (2)(o, y). The fol-
lowing notation is used in the theorems below. LetQd(u, ru, r) = ld(C(ru)u ⊕ Č(r)) and
Sd(o, ro, y, ry, r) = ld((C(ro) ⊕ Č(r)) ∩ (C(ry)y ⊕ Č(r))).

Theorem 6.1 For the pairwise model with convex grains of the same shape and orienta-
tion as C∈ Cd, the second-order product density is

̺(2)(o, y) = λ2

∫ ∞

0

∫ ∞

0
1{ro,ry:C(ro)∩C(ry)y=∅} exp

{

−λ
∫ ∞

0
[

(

Qd(o, ro, r) − Sd(o, ro, y, ry, r)
)

P(W1(ro) ≤W2(r))

+
(

Qd(y, ry, r) − Sd(o, ro, y, ry, r)
)

P(W3(ry) ≤W4(r))

+ Sd(o, ro, y, ry, r)P(W1(ro) ≤W2(r) ∪W3(ry) ≤W4(r))
]

FR(dr)
}

FR(dro)FR(dry).

(6.2)

Proof. The proof is similar to that of Theorem 5.1. We consider one point at the origin
and one point iny and want to findMo,y((1,1)). The integration corresponding to (5.2) is
only performed for sizes of the grains ofo andy such that these grains are not overlapping,
hence the indicator function in (5.2) is changed to 1{ro,ry:C(ro)∩C(ry)y=∅}.

The only other difference compared with spherical grains is the sets where points can
win overo or y. A point with a grain of sizer is a possible candidate for winning overo
if it belongs to the set

{x ∈ Rd : C(ro) ∩C(r)x , ∅} = C(ro) ⊕ Č(r),

where the equality comes from (6.1). Similarly a point inC(ry)y ⊕ Č(r) can win over
y. Points common to both these sets can win over either point, that is points in (C(ro) ⊕
Č(r)) ∩ (C(ry)y ⊕ Č(r)).

The remaining steps are the same as those in Theorem 5.1.
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Theorem 6.2 For the global model with convex grains of the same shape and orientation
as C∈ Cd, the second-order product density is

̺(2)(o, y) =λ2

∫∫∫∫

1{ro,ry:C(ro)∩C(ry)y=∅} exp
{

− λ
∫

[

∫ ∞

wo

(Qd(o, ro, r) − Sd(o, ro, y, ry, r))FW|r(dw)

+

∫ ∞

wy

(Qd(y, ry, r) − Sd(o, ro, y, ry, r))FW|r(dw)

+

∫ ∞

min(wo,wr)
Sd(o, ro, y, ry, r)FW|r(dw)

]

FR(dr)
}

FW|ro(dwo)FW|ry(dwy)FR(dro)FR(dry).

Proof. Apply exactly the same modifications as in the proof above to the proof of Theo-
rem 5.2.

For ellipses and squares of equal sizes inRd, expressions for the Lebesgue measures
needed in this section are stated in Appendix A.

Example 6.3. For squares of equal size, inR2, the pair-correlation function is shown in
Figure 11. As in Section 4.2 there are two pairwise models forone intensity after thinning.
A discussion of the behaviour of the two models can be carriedout in the same manner as
in Section 4.2. ¤
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Figure 11: The pair-correlation function for squares of size
√

2, that is side of length 2, in two
dimensions. The intensity after thinning is 0.03 for all three models. There are two pairwise
models for one intensity after thinning, since the intensity after thinning behavesas in Figure 3.
The pair-correlation is 0 for−2 < x < 2 and−2 < y < 2.

22



7 Second-order measures of a point process with
two types of marks

This section is a preparation for Section 8, where the mark–correlations for the two
thinned processes are obtained. We will consider a point process with two types of marks,
later to be thought of as a radius and a 0–1 variable telling whether a point is kept or not
when thinning. The global and the pairwise models can be described in this setting. Sev-
eral second–order factorial moment measures and their relations will be discussed with
the objective to find relations such as (7.7) and to state Theorem 7.1. This section follows
[7] rather closely, the difference being that we treat the two marks as being separate in-
stead of possibly having a mark vector. Since one type of marks will be used to distinguish
between kept and deleted points it is impractical to have themarks in vector form.

ConsiderΦ = {Xn; Kn; Mn}, a simple stationary point process inRd with two types of
marks in the measurable mark spaces [K,K] and [M,M] respectively. Let

NM = {φ = {xn; kn; mn} : xn ∈ Rd, kn ∈ K,mn ∈ M, φ(B) < ∞ for boundedB ⊆ Rd}

be the set of all locally finite point configurations and letNM be the correspondingσ–
algebra. Denote the distribution ofΦ on [NM,NM] by P. In the following,B, B1 andB2

are Borel sets onRd, K1, K2 ∈ K, andM1, M2 ∈ M.
The second-order factorial moment measure for a point process without marks is de-

fined in (3.1). With the setting of a marked point process several second–order factorial
moment measure can be defined either in terms of points or marks or points and marks.
The second–order factorial moment measure for the points and both sorts of marks is
defined as

α(2)(B1 × K1 × M1 × B2 × K2 × M2)

=

∫

NM

∑

[x1;k1:m1]∈φ
[x2;k2;m2]∈φ

x1,x2

1B1(x1)1B2(x2)1K1(k1)1K2(k2)1M1(m1)1M2(m2)P(dφ). (7.1)

Expressed in words this is the expectation of the number of pairs of distinct points where
one is inB1 having marks belonging to the setsK1 and M1 and the other one is inB2

having marks belonging toK2 andM2.
We will go on to introduce more factorial moment measures that will be used later on.

Exploiting the relations between these measures, distributions will arise that can be inter-
preted as conditional distributions given for example points at certain locations. The next
second–order factorial moment measure to be introduced is already defined in (3.1). This
factorial moment measure concerns the points and disregards the marks of the process,
and we can restate it here as

α
(2)
P (B1 × B2) = α

(2)(B1 × K ×M × B2 × K ×M)

=

∫

NM

∑

[x1;k1:m1]∈φ
[x2;k2;m2]∈φ

x1,x2

1B1(x1)1B2(x2)P(dφ). (7.2)
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For all K1,K2,M1 andM2, α(2)(· × K1 × M1 × · × K2 × M2) is absolutely continuous
with respect toα(2)

P , sinceα(2)(· × K1 × M1 × · × K2 × M2) is zero wheneverα(2)
P is zero.

Hence by the Radon–Nikodym theorem

α(2)(B1 × K1 × M1 × B2 × K2 × M2)

=

∫

B1

∫

B2

KMx1,x2(K1 × M1 × K2 × M2)α
(2)
P (d(x1, x2)), (7.3)

where for fixedK1,K2,M1 and M2, KMx1,x2(K1 × M1 × K2 × M2) is a density. If we
instead consider fixedx1, x2 ∈ Rd, x1 , x2, it turns out thatKMx1,x2 is a distribution on
[K2 ×M2,K2 ×M2] and it can be interpreted as the conditional distribution of the marks
given points atx1 andx2. The last result can for example be found in [2].

Another second–order factorial moment measure is obtainedby considering the points
and one type of marks, that is,

α
(2)
M (B1 × K1 × B2 × K2) = α

(2)(B1 × K1 ×M × B2 × K2 ×M)

=

∫

NM

∑

[x1;k1:m1]∈φ
[x2;k2;m2]∈φ

x1,x2

1B1(x1)1B2(x2)1K1(k1)1K2(k2)P(dφ). (7.4)

Similarly as before, for allM1 andM2, α(2)(· × ·×M1× ·× ·×M2) is absolutely continuous
with respect toα(2)

M and we get

α(2)(B1 × K1 × M1 × B2 × K2 × M2)

=

∫

B1

∫

B2

∫

K1

∫

K2

Mx1,k1,x2,k2(M1 × M2)α
(2)
M (d(x1, k1, x2, k2)), (7.5)

whereMx1,k1,x2,k2 is a distribution on [M2,M2] for fixed x1, x2 ∈ Rd, x1 , x2 andk1, k2 ∈ K.
The interpretation is as above as the distribution of the second type of marks given points
at x1 andx2 with marksk1 andk2 respectively.

By the definitions given in (7.2) and (7.4) we can see thatα
(2)
M is absolutely continuous

with respect toα(2)
P . Via the Radon–Nikodym theorem another conditional distribution,

Kx1,x2, arises. For fixedx1, x2 ∈ Rd, x1 , x2, it is a distribution on [K2,K2] with the
interpretation as the conditional distribution of theK–marks given points inx1 and x2,
that is,

α
(2)
M (B1 × K1 × B2 × K2) =

∫

B1

∫

B2

Kx1,x2(K1 × K2)α
(2)
P (d(x1, x2)). (7.6)

Rewriting (7.5) and (7.6) in form of densities and combining weget

α(2)(d(x1, k1,m1, x2, k2,m2))

=Mx1,k1,x2,k2(d(m1,m2))Kx1,x2(d(k1, k2))α
(2)
P (d(x1, x2)).

(7.7)

It is now possible to state the following theorem, which is a Campbell type theorem,
as in [7] with the notation given above. The theorem can be shown by first showing that it
holds for indicator functions, using (7.1) and (7.7), then that it holds for simple functions
and finally that it holds for positive functions.
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Theorem 7.1 For every measurable f: Rd × K ×M × Rd × K ×M→ R+,
∫

NM

∑

[x1;k1;m1]∈φ
[x2;k2;m2]∈φ

x1,x2

f (x1, k1,m1, x2, k2,m2)P(dφ)

=

∫

Rd×Rd

∫

K×K

∫

M×M

f (x1, k1,m1, x2, k2,m2)Mx1,k1,x2,k2(d(m1,m2))

· Kx1,x2(d(k1, k2))α
(2)
P (d(x1, x2)).

The following simplifications will be useful later. If the underlying point process is
Poisson distributed with constant intensityλ and theK–marks has distributionF which
is independent of the point process and also independent fordifferent points we get
α

(2)
P (d(x1, x2)) = λ2dx1dx2,Kx1,x2(d(k1, k2)) = F(dk1)F(dk2) and hence

∫

NM

∑

[x1,k1,m1]∈φ
[x2,k2,m2]∈φ

x1,x2

f (x1, k1,m1, x2, k2,m2)P(dφ)

= λ2

∫

(Rd)2

∫

K2

∫

M2

f (x1, k1,m1, x2, k2,m2)Mx1,k1,x2,k2(d(m1,m2))

· F(dk1)F(dk2)dx1dx2.

(7.8)

8 A thinned point process and the mark-correlation func-
tion

The goal of this section is to find the mark–correlation function for the pairwise and
the global models in the case of spherical grains. With the exceptions of Propositions
8.2 and 8.3 the results are valid for any thinned process subject to the limitations that
the marks are independent and that the point pattern is Poissonian before thinning. The
mark–correlation is a measure of the mean of the product of two marks at certain locations
divided by the mean mark squared. If the mark–correlation islarger than one, calculated
at some locations of points, there is an indication that marks of points at those locations,
are on average larger than the mean mark, or really the product of the marks at those
locations are on average larger than the mean mark squared. If it is below one the marks
are on average smaller than the mean mark. LetFK be the mark distribution, then the
meanK–mark can be written as

k̄ =
∫

R

kFK(dk). (8.1)

Let K1,K2 be marks of points inx1 and x2 respectively. The formal definition of the
mark–correlation function for a marked process is

kmm(x1, x2) =
Ex1,x2[K1K2]

k̄2
, (8.2)
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whereEx1,x2 is the expectation with respect to,Kx1,x2, the conditional distribution of two
marks given points inx1 andx2, that is

Ex1,x2[K1K2] =
∫

K

∫

K

k1k2Kx1,x2(d(k1, k2)). (8.3)

The following description of the thinned processes will be used when deriving their
mark–correlation function. Start with a homogeneous Poisson process with intensityλ
and marks that can be thought of as radii of spheres. In the thinning procedure each
point is given a second type of mark that is one if the point is kept and zero otherwise.
With notation as in Section 7 we haveM = {0,1} andK = R+. The radii are taken
independently and according to distributionFR independently of the Poisson process. Let
Φth = [Xn; Kn] be the process withM–marks all ones and let its distribution be denotedPth.
Then depending on how the thinning is performedPth can be either the pairwise process
or the global process. We do not need this description yet since the formulas leading up to
Lemma 8.1 only uses the fact that we start with a Poisson process, that one type of mark is
positive and independent of marks of other points and that the other type of mark is either
0 or 1.

The mark–correlation for the thinned process is defined in terms of the conditional
distribution after thinning of the radii of two spheres given their location and the mean
radii after thinning as in (8.2). The conditional distribution after thinning of the radii of
two points can be identified with the conditional distribution of the radii in the process
with two types of marks given the location of the points and that theM–marks are both
one. This results in the mark–correlation for the thinned process as,

kmmth(x1, x2) =

!
k1k2Kx1,1,x2,1(d(k1, k2))

k̄2
, (8.4)

with Kx1,m1,x2,m2 defined asM is in (7.5), but with the roles ofM–marks andK–marks
reversed.

By a similar reversion in (7.7),

α(2)(d(x1, k1,m1, x2, k2,m2))

= Kx1,m1,x2,m2(d(k1, k2))Mx1,x2(d(m1,m2))α
(2)
P (d(x1, x2)).

(8.5)

This and (7.7) gives

Kx1,m1,x2,m2(d(k1, k2)) =
Mx1,k1,x2,k2(d(m1,m2))Kx1,x2(d(k1, k2))

Mx1,x2(d(m1,m2))
. (8.6)

Since the radii are taken independently with distributionFR we can make a further sim-
plification and get,

Kx1,m1,x2,m2(d(k1, k2)) =
Mx1,k1,x2,k2(d(m1,m2))FR(dk1)FR(dk2)

Mx1,x2(d(m1,m2))
. (8.7)

By using this expression and that̺(2)(x1, x2) = λ2Mx1,x2(1,1) from Lemma 3.1, the mark–
correlation becomes

kmmth(x1, x2) =

!
k1k2Mx1,k1,x2,k2(1,1)FR(dk1)FR(dk2)

Mx1,x2(1,1)k̄2

=
λ2
!

k1k2Mx1,k1,x2,k2(1,1)FR(dk1)FR(dk2)

̺(2)(x1, x2)k̄2
.

(8.8)
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This is really all we need to compute the mark–correlation for the pairwise and the
global processes, but the numerator can be identified with another second–order factorial
moment measure giving a nicer looking expression. To be specific everything will be
expressed for the thinned process, but the definitions hold for more general situations
also. For a process with non–negative marks it is possible todefine a mark–sum measure,
see [7],

ΦS th(B) =
∑

[X;K]∈Φth

K1B(X), (8.9)

that is the sum of all marks of points belonging to the setB. The second–order factorial
moment measure forΦS th is defined as

α
(2)
S th(B1 × B2) =

∫

∑

[x1;k1]∈φ
[x2;k2]∈φ

x1,x2

k1k21B1(x1)1B2(x2)Pth(dφ). (8.10)

We now express this in terms of the original marked point processΦ with distributionP,

α
(2)
S th(B1 × B2) =

∫

∑

[x1;k1;m1]∈φ
[x2;k2;m2]∈φ

x1,x2

k1k21B1(x1)1B2(x2)m1m2P(dφ). (8.11)

Observe that a term in the sum is zero wheneverm1 andm2 are not both one. Withα(2)
S th

written in this way we can apply (7.8) with

f (x1, k1,m1, x2, k2,m2) = k1k21B1(x1)1B2(x2)m1m2

giving,

α
(2)
S th(B1 × B2)

=λ2

∫

(Rd)2

∫

(R+)2

k1k21B1(x1)1B2(x2)Mx1,k1,x2,k2(1,1)

· FR(dk1)FR(dk2)dx1dx2.

(8.12)

Differentiating with respect to the 2–dimensional Lebesgue measure gives thesecond–
order product densityfor the mark–sum measure

̺
(2)
S th(x1, x2) = λ

2

∫

R+×R+

k1k2Mx1,k1,x2,k2(1,1)FR(dk1)FR(dk2). (8.13)

By identifying̺(2)
S th(x1, x2) with the numerator in (8.8) we can state the following Lemma.

Lemma 8.1 The mark–correlation function for the pairwise or the globalmodel can be
expressed as,

kmmth(x1, x2) =
̺

(2)
S th(x1, x2)

̺
(2)
th (x1, x2)k̄2

th

. (8.14)
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In fact Lemma 8.1 holds for any marked process with positive marks, see [7]. If the point
processΦth is stationary and isotropic we adopt the usual (abuse of) notation and write
the mark–correlation in terms of a distancer between two points,

kmmth(r) =
̺

(2)
S th(r)

̺
(2)
th (r)k̄2

th

. (8.15)

Now we move on to the specific cases, but choose to state̺
(2)
S th instead of the mark–

correlation itself, since̺(2)
th is given in Section 5.

Proposition 8.2 For the pairwise model with spherical grains, general weight and ra-
dius distributions and notations as inTheorem 5.1the product–density for the mark–sum
measure is

̺S th
(2)(r) = λ2

∫ r

0

∫ r−ro

0
ror r exp

{

−λ
∫ ∞

0
[

(

κd(ro + rw)d − δd(r, ro + rw, r r + rw)
)

P(W1(ro) ≤W2(rw))

+
(

κd(r r + rw)d − δd(r, ro + rw, r r + rw)
)

P(W3(r r) ≤W4(rw))

+ δd(r, ro + rw, r r + rw)P(W1(ro) ≤W2(rw) ∪W3(r r) ≤W4(rw))
]

FR(drw)
}

FR(dr r)FR(dro).

(8.16)

Proof. This expression is very similar to the product density in Theorem 5.1 and the
proof follows closely that of Theorem 5.1. By (8.13) we needMo,ro,r,r r((1,1)), that is the
probability that both points of a pair are retained if one point located at the origin and the
other at distancer from the origin with radiiro andr r. This is equal to the probability that
no other points will win over those two, provided they are farenough apart so that their
spheres do not overlap. That is

Mo,ro,r,r r((1,1)) = 1{r>ro+r r}P({# points that win over [o; ro] or [r; r r]} = 0), (8.17)

where the right hand side is found in (5.2). An expression forMo,ro,r,r r((1,1)) now follows
exactly as in the proof of Theorem 5.1 and inserting in (8.13)concludes the proof.

Proposition 8.3 For the global model with spherical grains, general weight andradius
distribution and notations as inTheorem 5.2, the product–density for the mark–sum mea-
sure is

̺
(2)
S th(r) =λ

2

∫ r

0

∫ r−ro

0
ror r

∫∫

exp
{

− λ
∫ ∞

0
[

∫ ∞

wo

(κd(ro + rw)d − δd(r, ro + rw, r r + rw))FW|rw(dw)

+

∫ ∞

wr

(κd(r r + rw)d − δd(r, ro + rw, r r + rw))FW|rw(dw)

+

∫ ∞

min(wo,wr)
δd(r, ro + rw, r r + rw)FW|rw(dw)

]

FR(drw)
}

FW|ro(dwo)FW|r r(dwr)FR(dr r)FR(dro).

(8.18)
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Proof. What we need to find isMo,ro,r,r r(1,1). It can be expressed as in (8.17) but to get
anything useful we must condition on the weights and hence

Mo,ro,r,r r((1,1))

=

"
1{r>ro+r r}P({# of points that win over [o; ro; wo] or [r; r r; wr]} = 0)

FW|ro(dwo)FW|r r(dwr).

(8.19)

The result follows from the proof of Theorem 5.2.

The proofs of the theorems in Section 6 can be used in a similarmanner to find the
second-order product density for the mark–sum measure of the pairwise and global mod-
els for convex, compact grains.

Finally, we need the mean radius for the pairwise and the global models. For spherical
grains, general radius distribution and continuous weightdistribution, the mean radius can
be found in [4],

k̄th =
λ

λth

∫ ∞

0
k h(k)FR(dk), (8.20)

with the retaining probability,h, and intensity after thinning,λth, as in Section 2.

Example 8.4. Continuation of Example 5.1. Starting with spheres of radii 0.1 and 0.2
with equal probability, intensity 10 for the pairwise modeland intensity 4.4 for the global
model gives the mark–correlation function in Figure 12. It is similar to the pair–correlation
function discussed in Example 5.1. At small distances between points, less than 0.4, the
pair–correlation is less than 1. This means that those points on average have smaller radii
than the mean radius. When the pair–correlation is greater than 1, the points tend to have
larger radii than on average. For larger distances than 0.8 there is no dependence between
the radii. Two spheres of radius 0.2 have no potential pointsin common that may win
over them in the thinning and hence their radii are independent. For distances below 0.2,
the mark–correlation is undefined since there cannot be any points at such distances.

¤

Example 8.5. Continuation of Example 5.2. In Figure 13 is the mark–correlation of the
three versions of thinning procedures when starting with radii that are Rayleigh distributed
with parameter 1 and intensities before thinning giving thesame intensity after thinning
equal to 0.017. The pairwise model with high starting intensity has mark–correlation
above one for distances approximately between 2 and 5, meaning the sizes of spheres at
those distances are on average larger than the mean size. As with the pair-correlation the
mark–correlation is virtually identical for the pairwise model and the global model when
both have the same low starting intensity.

In Figure 14 there is a plot of the mark–correlation for the pairwise model with the
same radius distribution as above but with maximal intensity after thinning. The global
model with intensity 0.5 before thinning giving intensity after thinning 0.0558 has its
pair–correlation in Figure 15.

¤
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Figure 12: Mark–correlation function for the pairwise and the global model forspheres with radii
0.1 and 0.2 with the same intensity after thinning,λth = 2.5. It is undefined forr less than 0.2.
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Figure 13: Mark–correlation function for models starting with Rayleigh distributed radii with
parameter 1 and weights independent of the radii. See Example 8.5 for furtherdetails.
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Figure 14: Mark–correlation for the pairwise model with Rayleigh(1) distributedradii and inten-
sity before thinning 0.115. See Example 8.5.
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Figure 15: Mark–correlation for the global model with Rayleigh(1) distributed radii and intensity
before thinning 0.5. See Example 8.5.
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9 Inclusions in cast iron

The models were originally inspired by images of inclusionsin cast iron such as the image
in Figure 16 by Stefano Beretta (private communication). Thefit of the models will be
examined by using the estimated intensity after thinning and estimated radius distribution
after thinning to find the intensity and radius distributionbefore thinning in the models
and then checking if the pair–correlation looks similar forthe images and the models.
Inclusions are important in metal fatigue and in particularthe metal is weak were several
inclusions occur close, therefore it is reasonable to use the pair–correlation or the mark–
correlation as a judge of the model fit.

Figure 16: Image of cast iron.

The data set consists of about 1200 images of size approximately 1260 times 950
microns corresponding to 768 times 576 pixels. They are inhomogeneous and it is not
realistic to fit one stationary model to them all. Examining Figure 16 there seems to be a
region across the image consisting of large inclusions surrounded by smaller inclusions.
Furthermore, Figure 17 shows a histogram of the number of points in 61 images of sepa-
rate areas of the same sample. As a comparison the 5th percentile and 95 percentile of a
Poisson process with mean 241, the mean of the histogram, is 216 and 267 respectively,
which strengthens the inhomogeneities observed by the eye.Because of the inhomo-
geneities we only pick two of the images, fit the models to eachseparately and see if the
models are good. The inclusions are assumed to be circular and with this idealisation the
two images chosen look as in Figure 18. The estimated pair-correlation is shown in Figure
19. The estimator we used for the pair–correlation, see for example [16] or [6], is

ĝ(r) =
1

πr λ̂2

n
∑

i=1

n
∑

j=i+1

kb(r − ‖xi − x j‖)
|Wxi ∩Wx j |

,
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Figure 17: Histogram of the number of points in 61 equally sized images of one sample.

whereλ̂ is the intensity estimate,x1, . . . , xn are the centre points of the inclusions,Wxi is
the sample window translated byxi andkb is the Epaněcikov kernel

kb(u) =















3
4b

(

1− (u
b)2
)

if u/b ≤ 1,

0 otherwise.

The bandwidthb was 0.2 divided by the intensity. The left sample in Figure 19seems
to have pair–correlation over 1 for quite short distances. We have seen similar behaviour
in both the global and the pairwise model, but more pronounced for the pairwise model,
suggesting that it will fit better.

From the images the intensity and the radius distribution were estimated. The radius
distribution were assumed to be of gamma type since it is a flexible distribution and gave
a quite good fit according to a quantile plot with the only reservation that the minimal
radius in the images were determined by the resolution. Hence the radius distribution in
the images did not start at zero but at 2.95 microns. This problem is not thought to have a
large impact on the estimation. Once the radius distribution and intensity were estimated,
the intensity before thinning and the radius distribution before thinning were calculated
by an iteration procedure described in [4], with the assumption that the weight distribution
is independent of the radii. The intensity after thinning inthe left image in Figure 18 was
1.61 · 10−4 and the calculated intensity before thinning was 2.31 · 10−4 for the pairwise
model and 2.15· 10−4 for the global model. The intensity after thinning in the right image
in Figure 18 was 2.11 · 10−4 and the calculated intensity before thinning was 3.49 · 10−4

for the pairwise model and 3.04 · 10−4 for the global model. Previously we have seen that
the pairwise model have two different behaviours for the same starting intensity. It does
not seem to be the case that we can get two different behaviours when calculating in the
other direction.
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Figure 18: Two examples of inclusions in cast iron when the inclusions are assumed to be circular.
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Figure 19: The estimated pair–correlation of the examples in Figure 18.

Now it is possible to numerically compute the theoretical pair-correlations for the fit-
ted models, but due to the fluctuations in the estimated pair–correlation function it might
be more informative to simulate and estimate the pair–correlation from simulations. Sim-
ulations of both models were made using the estimated intensity and radius distribution
before thinning. From each of 1000 simulations the pair–correlation was estimated and
for each value of the distance the 97.5 percentile and the 2.5percentile were estimated.
Figure 20 shows the estimated pair–correlation for the image along with a 95% enve-
lope from simulations of the pairwise model. Figure 21 is similar but the envelopes are
computed for the global model.

For the left image the pair-correlation is well outside the envelope for both the pair-
wise and the global model. For the right image the pair–correlation is within the envelopes
which might indicate that at least in terms of the pair–correlation function the models are
appropriate. Both models seem to behave alike in this context. The possibility for the
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Figure 20: Estimated pair–correlation for the images in Figure 18 with approximate 95% envelopes
from 1000 simulations of the pairwise model.
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Figure 21: Estimated pair–correlation for the images in Figure 18 with approximate 95% envelopes
from 1000 simulations of the global model.

pairwise model to have pair–correlation clearly above one for some distances does not
show here, possibly since that phenomenon shows for sparse point patterns. The conclu-
sion is that the two models are not flexible enough to be able tohandle all the images
of the inclusions. There might be some hope in using the models with weight distribu-
tion depending on radius, but it seems hard to choose a reasonable dependence. More
promising is probably to use an inhomogeneous Poisson process for the points before
thinning since the images are clearly inhomogeneous. The left pair–correlation in Figure
19 have several humps which might be due to inhomogeneities of the kind that inclusions
of roughly the same size occur in the same region. One constriction that we applied is the
use of the gamma distribution for the radius. Instead a distribution free estimation could
be performed, but it would probably not influence the resultsmuch. The mark–correlation
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could have been an additional tool in assessing the fit, but since the pair-correlation did
not show a good fit, it was not used at this point.

10 Concluding remarks

We have considered the second-order product density and themark–correlation function
for two models of non-overlapping grains. In simple cases itis possible to get explicit
results and in general we get integrals that need to be calculated numerically. It is an ad-
vantage of these models that they allow easy computation of the product density compared
to many other models of non-overlapping grains found in literature. Other measures, es-
pecially the K–function is commonly used to describe the second order behaviour of point
processes. It is possible to calculate the K–function from the pair–correlation function.
The mark–correlation and the pair–correlation looks very similar for these two models but
that is generally not the case for other marked point processes.

The models are used in an example with inclusion data where itappeared that the data
was too inhomogeneous for a good fit. It would be interesting to try using an inhomo-
geneous Poisson process as the point process before thinning. In that case the results for
the pairwise and global models would need to be recalculated. It may also be worthwhile
to study the behaviour of the models with different kinds of dependence of the weights
on the radii. The most general result in this paper concerns convex grains with the same
orientation. It is not hard to generalise further to allow for random orientations.

36



References

[1] Daley, D.J., Mallows, C.L., Shepp, L.A. (2000),A one-dimensional Poisson growth
model with non-overlapping intervals. Stochastic Process. Appl., 90, 223-241.

[2] Daley, D.J., Vere–Jones, J. (1988),An Introduction to the Theory of Point Processes.
Springer–Verlag.

[3] Jeulin, D. (1989),Morphological modeling of images by sequential random func-
tions. Signal Processing, 16, 403-431.

[4] Månsson, M., Rudemo, M. (2002),Random patterns of nonoverlapping convex
grains. Adv. Appl. Prob., 34, 718-738.

[5] Matérn, B. (1960),Spatial Variation. Meddelanden Statens Skogsforskningsinst. 49.
Statens Skogsforskningsinstitut, Stockholm, Second edition: Springer, Berlin, 1986.

[6] Møller, J., Waagepetersen, R. P. (2004),Statistical Inference and Simulation for
Spatial Point Processes, Chapman & Hall/CRC.

[7] Stoyan, D. (1984),On correlations of marked point processes. Math. Nachr., 116,
197-207.

[8] Stoyan, D. (1987),Statistical analysis of spatial point processes: a soft-core model
and cross-correlations of marks. Biom. J., 29, 971-980.

[9] Stoyan, D. (1988),Thinnings of point processes and their use in the statistical anal-
ysis of a settlement pattern with deserted villages. Statistics, 19, 45-56.

[10] Stoyan, D. (1990),Stereological formulae for a random system of non-intersecting
spheres. Statistics, 21, 131-136.

[11] Stoyan, D. (1998),Models of random systems of non-intersecting spheres. Prague
Stochastics ’98, 543-547.

[12] Stoyan, D., Kendall, S.K., Mecke, J. (1995),Stochastic Geometry and its Applica-
tions. 2nd edition. Wiley.

[13] Stoyan, D. Penttinen, A. (2000),Recent applications of point process methods in
forestry statistics. Statist. Sci., 15, 61-78.

[14] Stoyan, D. Schlather, M. (2000),Random sequential adsorption: relationships to
dead leaves and characterization of variability. J. Statist. Phys., 100, 969-979.

[15] Stoyan, D. Stoyan, H. (1985),On one of Matérn’s hard-core point process models.
Math. Nachr., 122, 205-214.

[16] Stoyan, D., Stoyan, H.(1994),Fractals, Random Shapes and Point Fields. Wiley.

[17] Talbot, J., Tarjus, G., Van Tassel, P.R., Viot, P. (2000),From car parking to protein
adsorption: an overview of sequential adsorption processes. Colloids and Surfaces
A, 165, 287-324.

37



A Areas and volumes for some convex sets

A.1 Sphere

d ld(Bd(x, r)) ld(Bd(x,h) ∩ Bd(x+ r,h))

2 πr2 2h2 arccos r
2h −

r
2
√

4h2 − r2

3 4/3πr3 4/3πr3
(

1− 3r
4h +

1
16

( r
h

)3
)

δ2(r, r1, r2) = l2(B2(x, r1) ∩ B2(x+ r, r2))

= r2
1 arccos

(

r2 + r2
1 − r2

2

2rr 1

)

+ r2
2 arccos

(

r2 + r2
2 − r2

1

2rr 2

)

− 1
2

√

2r2r2
1 + 2r2r2

2 + 2r2
1r2

2 − r4 − r4
1 − r4

2

A.2 Ellipse

r

qr

C
x

y

C(r) =















(x, y) :
(x
r

)2

+

(

y
qr

)2

≤ 1,0 < q < 1















l2(C(r)) = πqr2

l2(C(r) ⊕ Č(r)) = l2(C(2r)) = 4πqr2

The area of the intersection of two ellipses where the centreof the second ellipse is
translated bys = (xs, ys) from the centre of the first is

l2(C(r) ∩C(r)s) = q l2(B2(x, r) ∩ B2(x+
√

x2
s + (ys/q)2, r)).

l2([C(r) ⊕ Č(r)] ∩ [C(r)s ⊕ Č(r)])

= q l2(B2(x,2r) ∩ B2(x+
√

x2
s + (ys/q)2,2r))
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x
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A.3 Square

C(r) =
{

(x, y) : −r/
√

2 ≤ x, y ≤ r/
√

2
}

.

The area of the intersection of two squares where the centre of the second square is
translated bys = (xs, ys) from the centre of the first is

l2(C(r) ∩C(r)s) = |
√

2r − xs| · |
√

2r − ys|.

l2([C(r) ⊕ Č(r)] ∩ [Cs(r) ⊕ Č(r)]) = |2
√

2r − xs| · |2
√

2r − ys|
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The volume fraction of a non–overlapping
germ–grain model

Jenny Andersson, Olle Häggström and Marianne Månsson

Abstract

We discuss the volume fraction of a model of non–overlapping convex grains. It
is obtained from thinning a Poisson process where each point has a weightand is
the centre of a grain, by removing any grain that is overlapped by one of larger or
equal weight. In the limit as the intensity of the Poisson process tends to infinity, the
model can be identified with the intact grains in the dead leaves model if the weights
are independent of the grain sizes. In this case we can show that the volume fraction
is at most 1/2d for d = 1 or 2 if the shape is fixed, but the size and the orientation
are random. The upper bound is achieved for centrally symmetric sets of thesame
size and orientation. For generald we can show the upper bound, 1/2d, for spherical
grains with two–point radius distribution. If dependence between weight and size is
allowed, it is possible to achieve a volume fraction arbitrarily close to one.

1 Introduction

The model considered in this paper is a non–overlapping germ–grain model, which is a
generalisation of one of Matérns hard–core models in [6]. It was proposed by Månsson
and Rudemo in [5]. The model is constructed by generating a Poisson process inRd and
letting each point be the centre of a grain. The sizes and orientations of the grains are
random and each grain is given a weight which may depend on itssize. The process is
thinned by rejecting any grain that intersects with anothergrain that has equal or higher
weight. In [5] the intensity and size distribution of the grains after thinning for this model
were given. Furthermore, the asymptotic value of the volumefraction as the intensity
before thinning tends to infinity was derived in the case of fixed-sized grains. One result
is that centrally symmetric sets of equal size give the volume fraction 1/2d.

The aim of the present paper is to study the asymptotic volumefraction, namely if
fixed-sized grains give the highest volume fraction in the case where the weights are
independent of the grain size and if it is possible to choose weights so that the volume
fraction can become arbitrarily close to 1. We believe that 1/2d is an upper limit for the
volume fraction inRd for anyd if the weights are independent of the grain sizes. However
we can only show it in general ford = 1 or 2 and for spherical grains with two–point
distribution for anyd. Furthermore, we show that it is possible to achieve a volume
fraction arbitrarily close to one by a particular choice of radius distribution and weights
depending on the radii.

If the weight distribution is continuous and the intensity tends to infinity, the grains
kept in our model are the same as the intact grains in Matheron’s dead leaves model,
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[7]. It can be defined as follows. Consider a stationary Poisson process{(xi , ti)} with unit
intensity inRd × (−∞,0]. Interpretti as the arrival time of the pointxi ∈ Rd. Let d–
dimensional, possibly random, compact grains be implantedat the pointsxi sequentially
in time, so that a new grain deletes portions of the “older” ones. At timet = 0 the space
R

d is completely occupied, and the grains which are not completely deleted constitute a
tessellation ofRd.

The grains which are intact, that is not intersected by any later grains, constitute a
model of non-intersecting grains. The intact grains can also be considered as the limit
of the generalisation of Matérn’s hard-core model under study here. Let the weights be
continuously distributed on (−∞,0], independent of each other and of the radii. Then the
weights can be identified with the time coordinate in the description of the dead leaves
model given above. The connection between Matérn’s hard-core model and the dead
leaves model in the case of fixed-sized spheres was noted by Stoyan and Schlater [10].
The dead leaves model and generalisations of it, for instance the colour dead leaves, are
studied in a number of papers by Jeulin, see e.g. [4]. Results on the intensity and size
distribution of the intact grains can be found in [3].

When the intensity of the Poisson process tends to infinity andthe grains are spherical
an alternative formulation of our model, which is related tothe description of the dead
leaves model above, can be found in [2]. Consider a (d + 1)–dimensional spaceRd × R+
whereR+ is a time dimension. Each point in a Poisson process in this space is the centre of
a sphere inRd which is tried to be added to the model and the final coordinaterepresents
the time of the trial. A sphere has radiusR(t) at timet. A sphere is not added if it overlaps
with any sphere with smaller value oft regardless of whether this sphere was rejected or
not. The only difference from the formulation in [5] is that the sizes of the spheres are not
random. Large times corresponds to small weights in our model and the functionR(t) is
similar to weights depending deterministically on the radius.

Obviously volume fraction one is impossible to achieve. However, Gilbert, [2], proves
that the volume fraction can be made arbitrarily close to oneby choosing the functionR(t)
carefully. One choice is

R(t) =

(

1+
a(d + a)t

A

)1/(d+a)

, (1.1)

wherea andA > 0 are constants and|a| < 1. Volume fractions close to one are achievable
if A and |a| are small. Ifa is negative, in additionA/|a| needs to be large. Here we will
give an alternative proof of the achievability of volume fractions close to one, based on
a “separation of size” argument somewhat reminiscent of theconstruction of Meester,
Roy and Sarkar, [8], to demonstrate the nonuniversality of critical volume fractions in the
so–called Boolean model of continuum percolation.

The paper is outlined as follows. In Section 2 we give a detailed description of the
model with spherical grains and show that it is stochastically increasing in the intensity of
the Poisson process if the weight distribution is independent of the radius. In Section 3 we
discuss the volume fraction when the intensity of the Poisson process tends to infinity and
the weight distribution is independent of the radius. Our alternative proof that the volume
fraction can be made arbitratily close to one if the weight distribution is dependent of the
radius is given in Section 4. The use of more general convex sets in place of spheres is
considered in Section 5.
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2 Model

For simplicity we give the description of the model for spherical grains, but the generali-
sation to convex grains is obvious. In Section 5 we give the counterpart to (2.2) for convex
grains. The model is constructed by thinning a marked Poisson process, also known as
a Boolean model, with proposal intensityλpr in Rd. Each point in the Poisson process is
given two marks. One of the marks is the radius of a sphere centred at the point and the
other mark is a weight that is allowed to depend on the radius.Points are assigned radii
independently and according to a proposal radius distribution Fpr. The radii are indepen-
dent of the point process. Weights are also assigned independently of the point process
but to stress the possible dependence on radius, the weight distribution is denotedFW|r . A
point is kept in the thinning only if its sphere is not intersected by any other sphere with
equal or higher weight. Note that the radii of the spheres areno longer independent after
thinning. One way of quantifying the dependence is by the mark–correlation function, see
[1]. Some further notation is needed. Letκd be the volume of the unit sphere inRd and
defineF̄(x) = P(X ≥ x) for a random variableX with distribution functionF.

In Sections 3 and 4 we will need some properties of the model, primarily the volume
fractionρ. For a stationary model with intensityλ and non-overlapping grains of random
size it can be written as the intensity times the mean volume of a typical grainv̄, that is

ρ = λv̄. (2.1)

One useful property is the probability that a randomly chosen point with radiusr is kept
when thinning, henceforth called the retention probability, which from [5] is

g(r) =
∫ ∞

0
exp

{

−λprκd

∫ ∞

0
F̄W|y(w)(r + y)dFpr(dy)

}

FW|r(dw). (2.2)

Also from [5] the intensity after thinning is

λ = λpr

∫ ∞

0
g(r)Fpr(dr) (2.3)

and the distribution function of the radius of a randomly chosen sphere after thinning is

F(r) = 1−
λpr

λ

∫ ∞

r
g(s)Fpr(ds). (2.4)

In the following we will mostly be concerned with the case when the intensity of the
Poisson process tends to infinity. When the weight distribution is independent of radius,
the intensity and the volume fraction after thinning are strictly increasing as functions
of the intensity before thinning. In fact the process is increasing in the intensity before
thinning as can be seen in the following theorem.

Theorem 2.1 Consider the model with continuous weight distribution independent of the
radii and letλ1 < λ2. Let X be the union of the resulting spheres forλpr = λ1 and let Y be
the union of the resulting spheres forλpr = λ2. Then X is stochastically dominated by Y.
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Proof. We prove the theorem by a coupling argument. Take a Poisson process inRd with
intensityλ2 and give each point independently a radius with distribution Fpr. Furthermore
give each point a weight that is uniform (0, λ2). Let Ỹ consist of the spheres that are
left when the thinning is performed. This process has the same distribution asY. In the
Poisson process, consider only those spheres that have weights in the interval (λ2−λ1, λ2).
The intensity of this process isλ1 and the radius distribution is stillFpr because the weights
are independent of the radii. Carry out the thinning and call the resulting process of
spheres̃X. It has the same distribution asX. A sphere before thinning with weight greater
than or equal toλ2 − λ1 will belong to Ỹ if and only if it belongs toX̃. A sphere with
weightλ2 − λ1 will only be contained inỸ. We have shown

X̃ ⊆ Ỹ

and henceX is stochastically dominated byY.

The condition that the weight distribution is continuous isnecessary in the argument
above.

Example 2.1. Let the spheres have equal radii,r, and let the weights be constant. Then
all spheres will be removed except those that do not intersect with any other sphere. The
intensity after thinning is by using (2.2) and (2.3)

λpr exp{−λprκd2
drd}.

The intensity after thinning is at most 1/(κd2drde) for λpr = 1/(κd2drd) and it tends to zero
asλpr tends to infinity. ¤

If the weights are continuous but depend on the radii, the process is not necessarily in-
creasing.

Example 2.2. Let the radii take value 1 ora with probabilitiesp andq = 1 − p respec-
tively. Let the weight distribution be uniform in (0,1) given radius 1 and let it be uniform
in (1,2) given radiusa. Then the intensity, by (2.2) and (2.3), is

1
κd2d

{

exp
( − λprκd(1+ a)dq

)(

1− exp(−λprκd2
dp)
)

+
1− exp

( − λprκd2dadq
)

ad

}

.

Whenλpr tends to infinityλ tends to 1/(κd2dad). Let d = 2, a = 2 andp = q = 1/2,
then numerical inspection shows that the intensity has maximum approximately 0.027 for
λpr ≈ 0.088. The value ofλ asλpr tends to infinity is 1/(16π) ≈ 0.020. ¤

Theorem 2.1 implies that the process exists in the limit asλpr tends to infinity. If the
weights are allowed to depend on the radii, the limit processdoes not necessarily exist.

Example 2.3. Suppose we have a model with two different radii of the spheres, 1 and 2,
with probabilities 1/2 each. LetN be large,N = 100 say, and let the weight of a sphere
of radius 1 be uniform in

∞
⋃

i=0

(

N2i − 1
N2i

,
N2i+1 − 1

N2i+1

)
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and let the weight of a sphere of radius 2 be uniform in

∞
⋃

i=0

(

N2i+1 − 1
N2i+1

,
N2i+2 − 1

N2i+2

)

.

The limit process is not well defined since asλpr → ∞ the process will fluctuate between
consisting mostly of spheres of radius 1 and consisting mostly of spheres of radius 2.¤

3 Volume fraction for the spherical case if the
weight distribution is independent of the radius

In this section we will consider the case where the weight distribution is continuous and
independent of the radii andλpr → ∞. As noted earlier the model then coincides with
the intact grains of the dead leaves model. We will show that the largest volume fraction
achievable is that of the process with all radii being equal.In that case the volume fraction,
as shown in [5], is 2−d.

Theorem 3.1 If the weight distribution is continuous and independent of the radii and
λpr → ∞, then, forRd with d = 1 or 2, the volume fraction is at most

1
2d
,

with equality if and only if the spheres have equal radii.

Proof. First we need to find an expression for the volume fraction. From (2.2) the reten-
tion probability for fixedr, whenλpr is the intensity of the Poisson process, is

g(r) =
1− exp{−λprκdE[(r + Y)d]}

λprκdE[(r + Y)d]
,

whereY has distributionFpr. By (2.4), the expectation ofRd is

E[Rd] =
λpr

λ

∫ ∞

0
rdg(r)Fpr(dr)

and hence the volume fraction is by (2.1),

ρ =

∫ ∞

0
rd 1− exp{−λprκdE[(r + Y)d]}

E[(r + Y)d]
Fpr(dr).

Letting the intensity tend to infinity gives

lim
λpr→∞

ρ =

∫ ∞

0

rd

E[(r + Y)d]
Fpr(dr). (3.1)

If d = 1 the function r
r + EY

5



is concave and we can use Jensen’s inequality to deduce
∫ ∞

0

r
r + EY

Fpr(dr) ≤ EY
EY+ EY

=
1
2
.

We have equality above only if the radius is constant, since otherwise the function is
strictly convex.

If d = 2 the function

f (r) =
r2

r2 + 2rEY+ EY2

is not concave but it can be shown to lie below a tangent passing through the origin. Let
µ = EY andγ = EY2 and the equation for the tangent is

t(r) =
r

2(µ +
√
γ)
.

The difference between the tangent and the curve is

t(r) − f (r) =
r(r − √γ)2

2(µ +
√
γ)(r2 + 2rµ + γ)

.

Hencet(r) − f (r) ≥ 0 and

∫ ∞

0

r2

r2 + 2µr + γ
Fpr(dr) ≤

∫ ∞

0

r
2(µ +

√
γ)

Fpr(dr) =
µ

2(µ +
√
γ)
≤ 1

4
,

where in the last inequality we usedγ ≥ µ2. Since equality holds only for fixed radius,
the volume fraction is 1/4 only if that is the case.

We cannot prove that the upper bound of the volume fraction is1/2d for generald. In
fact the method used in the proof above gives an upper bound for the volume fraction in
d = 3 as 4/27. This can be seen by considering the function

f (r) =
r3

E[(r + Y)3]
.

SinceEY3 ≥ (EY)3 for Y ≥ 0 we have

f (r) ≤ r3

(r + EY)3
.

As before this function lies below a tangent that passes through the origin. The equation
of the tangent is

4r
27µ
.

Proposition 3.2 For a two point radius distribution and continuous weight distribution
independent of the radius inRd andλpr → ∞, the volume fraction is at most1/2d. The
upper bound is achieved only if the radius is fixed.
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Proof. Let the radius take value 1 with probabilityp and valuea with probability q =
1 − p. From (3.1) the volume fraction as the intensity of the Poisson process tends to
infinity is

ρ =
p

2dp+ (1+ a)dq
+

adq
(1+ a)dp+ 2dadq

.

Rewriting with a common divisor gives,

ρ =
(1+ a)dp2

+ 2d+1adpq+ (1+ a)dq2

(2dp+ (1+ a)dq)((1+ a)dp+ 2dadq)
.

By subtracting the volume fraction from 1/2d we have

1
2d
− ρ =

(

(1+ a)2d − 22dad)pq

(2dp+ (1+ a)dq)((1+ a)dp+ 2dadq)
.

It is easy to see thata = 1 is a root to (1+a)2d−22dad
= 0. It is actually a double root and

by some tedious manipulation using binomial expansions, wecan write

1
2d
− ρ =

(a− 1)2pq
(

∑d−1
j=0

∑ j
m=0

∑m
k=0

(

2d
k

)

a2d− j−2
+
∑d−2

j=0

∑ j
m=0

∑m
k=0

(

2d
k

)

aj
)

(2dp+ (1+ a)dq)((1+ a)dp+ 2dadq)
,

which is clearly 0 only fora = 1 and positive otherwise.

Proposition 3.2 gives an indication that Theorem 3.1 holds for anyd. Hence we state
the following conjecture.

Conjecture 3.3 If the weight distribution is continuous and independent of the radii and
λpr → ∞, then inRd for any d, the volume fraction is at most

1
2d
,

attained by spheres of equal radius.

4 Volume fraction if the weight distribution
depends on the radius

As can be seen in the Introduction, Gilbert [2], showed that the volume fraction can be
made arbitrarily close to one by choosing the right functionR(t). This is similar in our
view to let the weight distribution depend deterministically on the radius. We will make
an alternative proof of this fact. The idea is the same in our setting as in Gilberts, namely
letting the functionR(t) decrease in such a way that not much space is wasted. In Gilbert’s
caseR(t), see (1.1), is continuous while we have discrete radii.

Theorem 4.1 If the weight distribution is independent of the radius, it ispossible to
achieve a volume fraction arbitrarily close to 1 inRd for any d.
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Proof. The theorem will be proved by considering a model with spheres having discrete
radius distribution withk possible values. The weight will be proportional to the radius
of the sphere. The idea is to let each size of spheres have sufficiently low intensity so that
they do not overlap spheres of the same size and to let smallerspheres be so much smaller
that not much space is wasted if they overlap partially with alarger sphere.

Fix smallα > 0 andδ > 0. Below we will show that we can achieve a volume fraction
of at least

1− ακd(3d − 1)− 2δ. (4.1)

The volume fraction can be made arbitrarily close to one by picking α andδ small. Let
the radius of a sphere before thinning take valuer i = ǫ

i−1 with probability pi = λi/λpr, i =
1, . . . , k, whereλpr is the intensity of the Poisson process. Think ofǫ > 0 as being small
andk large. Let the weight of a sphere with radiusr i be uniform ((r i−1+r i)/2, (r i+r i+1)/2).
The intensity of spheres of radiusr i is λi before thinning.

The volume fraction after thinning is the same as the probability that the origin is
covered after thinning and can be written

ρ =1− P(The origin is not covered after thinning)

=1− P(The origin is not covered before thinning)

− P(All spheres covering the origin are deleted).

(4.2)

The number of spheres with radiusr i that covers the origin before thinning is Poisson
distributed with expectationλiκdrd

i and hence

E[# spheres covering the origin before thinning]=
k
∑

i

κdr
d
i λi .

Lettingλi = α/rd
i the expectation becomeskκdα. Pickk large enough so that

P(The origin is not covered before thinning)= exp(−kκdα) ≤ δ. (4.3)

To obtain the probability that all spheres covering the origin are deleted we assume
that at least one sphere covers the origin before thinning. Let the largest of all such spheres
be denotedB. In case several spheres having the same radius cover the origin we letB be
the one with highest weight. IfB has radiusr i, a centre of a sphere with higher weight
thanB, having radiusr j ≥ r i, that intersectsB must be separated by at least a distance of
r j from the origin, otherwise we get a contradiction of the definition of B. On the other
hand, the centre ofB is at most a distancer i from the origin and hence the centre of a
sphere with radiusr j overlappingB cannot be further away from the origin than 2r i + r j.
Now we can get an upper bound for the probability that all spheres covering the origin are
deleted by

P(All spheres covering the origin are deleted)

≤ P(A sphere with radius larger than or equal tor i overlapsB)

≤ E[# spheres with radius larger than or equal tor i overlappingB]

≤
i
∑

j=1

E

[

# spheres with radiusr j and center at

distance betweenr j and 2r i + r j from the origin

]

.
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The number of spheres with radiusr j is Poisson distributed and

P(All spheres covering the origin are deleted)

=

i
∑

j=1

λ jκd
(

(2r i + r j)
d − rd

j

)

=

i
∑

j=1

ακd
(

(2ǫ i− j
+ 1)d − 1

)

= ακd(3
d − 1)+ ακd

i−1
∑

j=1

(

(1+ 2ǫ i− j)d − 1
)

.

(4.4)

We can choose a smallǫ such that, for alli simultaneously,

ακd

i−1
∑

j=1

(

(1+ 2ǫ i− j)d − 1
)

< δ.

Insert this estimation of (4.4) together with (4.3) in (4.2)and we have shown (4.1).

5 Convex grains

In our model we may replace the spheres with convex sets of different sizes. We introduce
a minimum of notation to prove a counterpart to Theorem 3.1 and refer to [5] for a more
detailed description.

We begin with some definitions. First,D(A), denotes the diameter of a set A, that is

D(A) = sup
x,y∈A
‖x− y‖.

We let half the diameter be called the size. LetCd be the set of all convex, compact sets
C in Rd such that the origin belongs toC andD(C)/2 = 1. Moreover letC(x, r) be the set
C translated byx and with half its diameter equal tor and letČ = {−x : x ∈ C} be the
reflection ofC in the origin. Finally we denote the Lebesgue measure ind dimensions by
ld.

In the following we will only considerR2 andC ∈ C2. Replacingκ2(r + y)2 in (2.2)
with l2({x : C(o, r) ∩C(x, y) , ∅}) gives the retention probability for convex sets with the
same shape and orientation asC. Let ν(C, Č) be the mixed volume ofC andČ, then

l2({x : C(o, r) ∩C(x, y) , ∅}) = (r2
+ y2)l2(C) + 2ryν(C, Č).

If the sets are uniformly rotated about the origin, thenκ2(r + y)2 should be replaced by
E[l2({x : C(o, r) ∩ mC(x, y) , ∅})], wherem is a rotation matrix, i.e. orthogonal with
determinant 1, and the expectation is taken with respect to an angle of rotation that is
uniform (0,2π). Let S1(C) be the perimeter ofC, then by the generalised Steiner formula

E[l2({x : C(o, r) ∩mC(x, y) , ∅})] = (r2
+ y2)l2(C) +

ryS1(C)2

2π
.

Just as in the spherical case the maximal volume fraction, atleast inR2, is given by
grains of equal size.
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Proposition 5.1 Let the grains be convex of the same shape as C∈ C2 and let the weight
distribution be continuous and independent of the size. Forgrains of the same orientation
and whenλpr → ∞, the volume fraction is at most

l2(C)

2(l2(C) + ν(C, Č))
.

For grains of random orientation and whenλpr → ∞, the volume fraction is at most

l2(C)
2l2(C) + S1(C)2/(2π)

.

In both cases the upper bound is attained if and only if all thegrains have the same size.

Proof. The volume fraction asλpr → ∞ is deduced similar to (3.1). For convex sets of
the same orientation we have volume fraction

ρ =

∫ ∞

0

r2l2(C)
∫ ∞

0

(

r2 + y2)l2(C) + 2ryν(C, Č)
)

Fpr(dy)
Fpr(dr),

and for uniformly rotated convex sets we have volume fraction

ρrot =

∫ ∞

0

r2l2(C)
∫ ∞

0

(

(r2 + y2)l2(C) + ryS1(C)2

2π

)

Fpr(dy)
Fpr(dr).

In both cases we take the expectation of a function that can bewritten as

r2

r2 + ar + b
,

for some positive constantsa andb. The result is shown exactly as for thed = 2 case in
the proof of Theorem 3.1.

In two dimensions it is well-known that for convexC

l2(C) ≤ ν(C, Č) ≤ 2l2(C)

with equality to the left if and only ifC is centrally symmetric and to the right if and only if
C is a triangle. No convex set has a larger perimeter relative to its area than a circle, more
preciselyS1(C)2 ≥ l2(C)4π. By these bounds and Proposition 5.1 it follows that among
all dead leaves models with convex grains of equal shape, fixed or uniformly distributed
orientations, and independent random radii, the highest volume fraction results for fixed-
sized centrally symmetric sets of equal orientation. In this case the volume fraction is 1/4
if d = 2 and we believe that the bound 1/2d holds in any dimension. Finally, we generalise
Conjecture 3.3 to hold among convex grains of fixed or random orientation and the upper
bound is achieved for centrally symmetric sets of fixed size.
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