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Abstract

We consider three fferent non—overlapping germ—grain models, two of which are c
structed in a similar fashion. These two models are gesatains of Matérn’s hard—core
models. In both cases we start with a homogeneous Poissoaegsrand use the points as
centres of convex sets, grains, of the same shape. The priedbgned so that no grains
overlap. Two diferent thinning schemes result in the two models. The pairefation
functions and the mark—correlation functions for both medee derived. The models are
fitted to images of inclusions in cast iron.

For one of the models above, if the thinning is performed pashelently of the grain
sizes we show that the volume fraction is at mog29Ifor dimensiond = 1 or 2. If
the thinning is performed dependently of the grain sizes, possible to achieve volume
fraction arbitrarily close to one for any dimension.

The third non—overlapping germ—grain model is a Voronaédation. It is used as a
model for the grain structure of the surface of a metal. Asxample of this approach,
we study the influence of grain structure on fatigue life. Aakrgrowth model is applied
to simulated grain structures. The conclusion is that thigda life increases, compared
to a model with grains of equal size.

Keywords: Poisson process; Convex sets; Material fatigue; Voronoetiesmn; Germ-

grain process; Pair—correlation function; Mark—correlatfunction; Short cracks; Vol-
ume fraction
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1 Introduction

1 Introduction

Non-overlapping germ—grain models are important for modgstructures from a wide
range of subjects such as forestry, medicine, astronomyrexterial science. Properties
characterising germ—grain models are the intensity, thewe fraction and second—order
information such as the pair—correlation function and tlekscorrelation function. In
this thesis we will concentrate on finding theoretical chtastics of two closely related
models that will also be used for modelling a material. Aeotimaterial in another scale
will be modelled using a Voronoi tessellation, which camdle described as a germ—grain
model.

Non—overlapping germ—grain models are described in teeliire on stochastic ge-
ometry. We will not attempt to make a detailed reference liigt instead give [10] as an
excellent starting point. A survey on models of non—oveasiag spheres is given in [9]
and a survey on the applications of Voronoi tessellatiomsb@afound in [8]. Stochastic
models suitable for modelling materials are described]n [3

In the first paper, Paper A, appended to this thesis, we useandbtessellation on
Poisson points as the grain structure of a metal withoutateferhe influence of grain
structure on fatigue life is then studied by simulating sgcain structures and letting a
crack grow according to a deterministic crack growth model.

The second paper, Paper B, is more mathematical. Here twolsnotilaon—over-
lapping convex sets, called grains, are considered. Wegedeecond—order characteris-
tics, more precisely the pair—correlation function andrttegk—correlation function. The
pair—correlation can be used to compare the models to adPgisecess with the same in-
tensity, in the sense that the frequency of pairs of poinertain distance apart is smaller
or greater than in the Poisson process. The mark—cornelaiiaction is defined as the
expectation of the product of the marks, here the sizes, @piints given their locations
divided by the mean mark squared. The models are fitted tosleta as in Figure 1,
which is an image of inclusions, impurities, in cast iron.

In the third paper, Paper C, we consider the volume fractioonef of the models in
Paper B. The model is constructed by thinning a Poisson psaeiéls a convex set, grain,
and a weight associated to each point. A grain is kept onlyisf mot intersected by any
other grain with equal or higher weight. If the weights arggpendent of the grain sizes,
we give an upper bound for the volume fraction. If the weiglgpend on the grain sizes,
the volume fraction can be made arbitrarily close to one.

The outline of this thesis is as follows. Some backgroundHerappended papers is
given in Sections 2, 3 and 4. First, we give an introductiopdamt processes including
second—order measures, marked point processes, germagydels and theory on con-
vex sets, followed by a short description of fatigue and frebkection on the structures of
metals. In Sections 5, 6 and 7 there are summaries of PapBram C respectively. Note
that the word grain has fierent meanings in the papers. In Paper A a grain is a part of
the metal with equal orientation of the atom layers. In P&and C the non-overlapping
sets are called grains in accordance with such models baitfefdayerm-grain models.
Finally, some ideas for further work are given in Section 8.



2 Stochastic geometry
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Figure 1: A cut of cast iron with the black shapes being defects. The imagepvoduced by
Stefano Beretta.

2 Stochastic geometry

2.1 Definitions

We start with the definition of a point process and continu wome basic definitions
to make the notation clear. L&t be the family of all sequences, of points inRY such
thatg is locally finite, that is each bounded subseR8fcontains a finite number of points
of ¢. Usually ¢ is also required to be simple, that is all points¢ore distinct. IfB is
a subset oRY, denote the number of points gfin B by #(B). Let N be the smallest
o-algebra orlN such that all mappings — ¢(B) are measurable for any Borel &tThe
formal definition of apoint processb in RY is as a measurable mapping of a probability
space Q, ¥, P) into (N, N).

Thedistribution, P, of a point proces® is defined as

PY)=P(@eY)=PlweQ:dw)eY}), YeN.
Theexpectatiorof the number of points ab in a setB can be written

E[®(B)] = f $(B)P(dg) = E [Z 1B(x)].
N

Xed

A point processb is stationaryif its distribution is invariant under translation, that is
the processe® = {X,} and®, = {X, + x} have the same distribution for atl € RY.
Furthermore it igsotropicif its distribution is invariant under rotations about thegm.
Theintensity measurd of @ is defined as

A(B) = E[®(B)],

for B a Borel set. If it has density with respect to Lebesgue medkare\ can be written
in terms of anntensity functiom(x),

A(B) = fB/l(x)dx.

2



2 Stochastic geometry

If the process is stationary, the intensity function is peledent ofx and it becomes a
non-negative real constant, called théensity 1. Let the Lebesgue measure®{ be
denotedy and then for a stationary process

A(B) = Al4(B).

A useful theorem, which will be applied in more complicatedniis in Paper B, is the
Campbell theorem. For any non-negative measurable funétion

Zf(x)}: f D F()P(dg) = f f)A(DX).

Xe® XEP

E

In the stationary case the last expression is simplified to

/lf f(X)dx.

2.2 Second-order measures

The second-order measures of a point process correspomrdiances and covariances
of stochastic variables. One such measure isgdo®nd-order factorial moment measure
o, defined orR? x RY. If B, andB, are Borel sets an® is a point process oR? with
distributionP, o is defined as

CL’(Z)(B]_ X Bz) :E[#{(Xl, Xz) X EDPNBL,XedNBy, X1 # Xz}]

- f 3 16, (x1) 16, 00)P(CH).

X1,X2€¢

X1#X2
For a stationary Poisson process with intensitit is equal t012l4(By)lg(B,). If the
second-order factorial moment measuf@ has density with respect to the Lebesgue
measure, this density is called thecond-order product densipf?. An interpretation of
the second-order product density is th&t(x,, x,)dVidV; is the probability of having a
point in each of two infinitesimally small disjoint Borel sgtgth Lebesgue measurd¥/;
anddV,, wherex; andx, belong to one set each.

Thevarianceof the number of points in a Borel sBtcan be written in terms af®
as
Var(®(B)) = o'?(B x B) + A(B) — A(B).

If B, andB, are Borel sets, theovarianceof the number of points in these two sets is,

Cov(®(By), D(By) = aP(By x By) + A(By N By) — A(By)A(By).

2.3 Marked point processes and germ—grain models

A marked point procesi RY, ¥ = {X,, M,}, is a point process iiRY, with points X,,
each having a markl,, belonging to some space of marké, The marked process can be
interpreted as an ordinary point process on the spiceM. All definitions for ordinary
point processes can be repeated analogously for markedgs®x The only fference is
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2 Stochastic geometry

that a translation or rotation of a marked process usually acts on the points and not
on the marks.

Having introduced marked point processes we may be ingztestthe dependence
between marks. For that purpose thark—correlation functioms defined as

Eyy[MxM
kmm(X’y) = %a

whereE,,[MxM,] is the conditional expectation of the product of two markseg that
the locations of the points areandy andm is the mean mark. The mark—correlation
function tends to one g% — y| tends to infinity. If it is above one then the product of the
marks of points irk andy are on average larger than the mean mark squared. If it igbelo
one then the product of the marks are on average smallerhiban¢an mark squared.
From some marked point processes we can construct so—gated-grain models.
Suppose the marks are compact set®inthat is considefX,; S,}, whereX, € R% is
called a germ an8, € RYis called a grain. Ayerm—grain modeis defined as the union

Upe1{Xn + Sp).

Since grains arefiected by rotations, the usual convention for marked poiotgsses
that rotations only apply to the points is not reasonablg&m-—grain models.

A characteristic of a germ—grain model is thalume fraction i.e. the fraction of
space covered by grains. For a stationary germ—grain méaels-overlapping grains it
is simply

p=Av,
whereA is the intensity of the germs amnds the mean volume of the grains.

One example of a germ—grain model is the Voronoi tessefia#otessellatiorparti-
tions a Euclidean spacR?, into setsC;, with non-overlapping interior, that 8 = U;C;.
Let{p;} be a set of points. Each poiptin this set, from now on called nucleus, generates
a cell (or grain)C;. Let one grairC; consist of all points iflRY which hasp; as their nearest
nucleus,

Ci={xeR:|p-X<Ip—x,Ypi (1)

where| - | is the Euclidean distance. If the set of poiri{s}, is locally finite, i.e. any finite
region contains a finite number of points, iés are called a/oronoi tessellatiomndC;
a Voronoi cell.

See [10] for a general reference on point processes. A deeéeeence on the prop-
erties of Voronoi tessellations is [8] and a more matherabteference is [6].

2.4 Convex sets

In this section we will considek?, mostly ford = 2 or 3. We start with some set theoretic
definitions. The multiplication of a sét by scalar is denoted

CA={cx: xe Al
Thereflectionof Ais

A={-x:xeA

4



2 Stochastic geometry

and thetranslationof A by x is
Ai={X+y:yeAL
The Minkowski additiorof two setsA; andA is
ALd A = {X1+ X . X1 € A, % € Ay},

that can also be written 5
AldoA =X AN (Az)x #+ 0}.

A setC is convexf
aX+(1l-a)xeC VYxyeC, O<a<l

Minkowski addition of convex sets preserves the convexityPaper C, we are interested
in the addition of sets of the same shape. For two convexGetsdC, and scalars;
andx, the volume ofx;C; @ x,C, can be written as a sum in terms of th@xed volumes

Vi,d—i(Cl’ CZ) = V(Cl’ ooy Cla C27 ey CZ),
i d-i

as
d

d . ..
l4(x1C1 @ X%:C5) = Z (i )X'lxg_'vi,d—i(cl, C,).
i=1
For our purposes it is enough to know thra(Cy, C,) = 14(Cy), vo4(Cy, Co) = 14(C,) and
that for a convex set, 5
[,(C) < v(C,C) < 2,(C),
and 5
I3(C) < v(C,C,C) < 3I3(C).

The lower bounds are attained by centrally symmetric sedstlag upper bounds are at-
tained by triangles ifl = 2 and tetrahedrons @ = 3. For a convex sef; with a rotation
invariant distribution and an arbitrary convex §gtthegeneralised Steiner formulgives

B[l(C1 0 Cy)] = —

K

d
kd-kE[Vd-kk(C1, Ba)]vk d-k(Cz, Bq),
=0

o

whereBy is the unitd—dimensional ball with volumey. Ind = 2 andd = 3 this simplifies

to
E[S1(C1)]S1(Co)

E['z(cl &) CZ)] = E['Z(Cl)] + o

+12(C2)

and

E[B(C1)]S2(Ca) |, E[SACOIb(Cy)
2 2

whereSy_1(C) is the @ — 1)—-dimensional surface area ab(f) is the mean width of a
convex seC € RY. Letg be a line passing through the origin, thg{€) is the small-
est distance between two parallel hyperplanes suchChstbetween them and that are
perpendicular tg. Thenb(C) is the mean o0§(C) for all linesg.

A general reference on convex geometry is [2].

E[l3(Cy @ Cp)] = E[l3(Cy)] + +13(Cy),

5



4 Metal structure

3 Fatigue

Fatigue is the failure in a structure that occurs after thecsire has been subjected to a
repeated load. The term fatigue is used since the failuemaitcurs after a long period of
repeated stress, at a level considerably lower than thessteeded to break the structure
if it was applied only once. The standard example of fatigutoitake a paperclip and
notice that it breaks after repeatedly bending it back anith fat the same spot, although
it is virtually impossible to break it in one bending. When atahés subjected to a load,
it is possible that small cracks start to form in the metalrgramost often at the surface.
Cracks can also start growing in some defect already presdnbvhe metal. The cracks
then continue to grow, as more load cycles are applied, aictiick spans the entire object
and it breaks. Possibly cracks can stop or close, but thattisur concern here.

Laboratory tests can be performed to assess the fatigueniesof materials. lden-
tical test specimens are subjected to a cyclic load untisgeximens break or to a max-
imum number of load cycles. The procedure is repeated féerént load amplitudes.
Data are plotted in a Wohler curve, where the logarithm of tfael lamplitude is plotted
against the logarithm of the number of cycles to failure.e@fthere is a linear relation
between the load level and the fatigue life, the number oflesyto failure, for high loads.
For some materials there may be a fatigue limit, which isesstlevel below which failure
will never occur. In [1] there is a section on fatigue.

4 Metal structure

Metals are crystalline materials, that is the atoms are edligera three—dimensional pat-
tern. Common atomic arrangements in metals are the bodyeckntibic (BCC), the
face-centred cubic (FCC) and the hexagonal closed-packed)(Bti@Rtures. The last
two arrangements are the mogti@ent ways, in terms of occupied space, of stacking
equally sized spheres and because of this they are called-pkcked structures. One
way of illustrating the atomic structure is in terms of a ucall, which is the smallest
repetitive unit within the crystal, see Figure 2.

Figure 2. Unit cells of the face-centred cubic (to the left) and the bodyregrcubic atomic
structures. Two slip planes are shaded in the FCC cell and one in the BCC cell.

A slip plane, such as those shown in Figure 2, is a preferraaepbf atoms that will
move when a stress is applied. The number of unique nonkplestb planes depends on
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5 Summary of Paper A

the crystal structure. The FCC crystal has four slip plafesBCC has six and the HCP
has one. Each plane can slip in three directions in the FCC &@fel ¢tystals and in two
directions in the BCC crystal.

A crystalline material is usually composed of many crystdéisthe cooling process
of a melt of a crystalline material, small crystals, or gsaistart to form at many loca-
tions. As the melt cools each of the grains grows by incorpayaatoms from the liquid
surroundings. In the area where two grains meet, called i@ §oundary, the atoms
are not ordered since the two grains do not generally havedhe direction of their
atomic planes. If all grains have the same chemical compaosthe metal is said to have
one phase. More on metal structures can be found in textbooksierial science, for
example [1].

5 Summary of Paper A

Supposedly identical components made of metal often shdstantial diferences in
fatigue lives. The dferences are apparent even during controlled tests witHioaén
stress levels. One source of variation could k€edences in the structure of the metal.
The idea in Paper A is to use a simulated grain structure aply &lpe existing theory
of crack propagation to study the influence of grain striectom fatigue life. A short
crack growth model is used since the main part of the fatigeetcurs during the crack
initiation phase.

The crack growth model is adapted from Navarro-de los Rioseifma short crack
growth under uniaxial loading [7]. The crack is modelled be surface of the metal and
consequently the three-dimensional structure is disdaghrSince the point here is to use
a grain structure with grains of fiiérent sizes, the Navarro-de los Rios model, which is
described for grains of equal size, has to be modified to theiusituation.

In the simulations the metal grain structure is a Voronaeéation in two dimensions
of points generated from a Poisson process. The crack pahdetrmined and the
crack was allowed to grow to a maximum length of ten times tleamngrain size, with
possibility to stop before that. The crack growth rate asrection of crack length and
the number of cycles to failure were calculated for fifteeass levels, the latter resulting
in a Wohler curve for the short crack growth. Compared with #tegée life of a metal
with all grains equal in size, that is the original Navareids Rios model, the fatigue
lives in the simulations were longer. The fatigue life desed with increasing number of
grains, probably reflecting the fact that with increasingiber of grains there is a greater
probability of finding a large grain, where the crack is assdrno start. The standard
deviation of the logarithm of the life lengths conditional bnite life is in the order of
0.2-0.4.

As expected grain size variation gives rise to fatigue lép@hdent on component size.
However, only a part of the observed fatigue life variat®axplained by the varying grain
size according to the simulations.



6 Summary of Paper B

6 Summary of Paper B

We consider two models of non-overlapping convex grainsclvare generalisations of
Matérn’s two hard-core processes, see [5]. These modelsdes@ibed in [4] and are
constructed as follows. Convex sets, called grains, areglatpoints of a homogeneous
Poisson process and the process is thinned by tfierdnt procedures. The first thinning
scheme, called pairwise, gives independent weights tofitits in a pair with overlap-
ping grains and the point with strictly higher weight winsewweights are assigned in
every comparison. A point is kept only if it wins in all pairse comparisons. The sec-
ond scheme, called global, gives each point a weight oncédaaradl, and the point with
strictly higher weight is kept when comparing with weighfsogerlapping grains. The
weight may depend on the size of the grain in both cases.

The second-order product densities, defined in Section theohbove models are
derived when the grains have equal orientation. In the dgor of the product densities,
the thinning procedure can be thought of as a process givargsio the original Poisson
process. A point gets mark 0 if it is removed and mark 1 if iet@imed. The second-order
product density can then be written in terms of the intengitgf the Poisson process and
the two-point mark distributiomM,, , as

Q(Z)(Xl’ X2) = /lZMXLXz((l’ 1)) (2)

The two-point mark distribution is the distribution of the ks in x; and x, under the
condition that there are points 13 andx,. The main idea, when calculating the product
density, is then to find the probability that two pointsxnandx, both have marks 1. It
is equal to the probability that no points of the originalqigirocess win over them. The
number of points that win oveq; or X, is Poisson distributed and the essential step, when
deriving the product density, is to calculate the expeatatif this distribution.

As spheres are an important special case, the product ésnf@t the models are
stated both for spheres of equal radii in Theorems 2 and 3arspheres having a certain
radius distribution in Theorems 4 and 5. When the grains angecosets with the same
orientation, the product densities are stated in Theoreaml&’. Except for some special
cases, the product densities must be calculated by meansuof@rical integration.

In the case of spheres of equal size the pair-correlagiavhich is the product density
divided by the squared intensity, is compared to a Poissaeess with the same intensity,
see Figure 3 below and also Figure 5 in Paper B. The comparisanade in terms of
the frequency of pairs of points with certain interpointtdiges. For short distances, less
than two times the radius, the pair-correlation is 0, megthat two points cannot exist at
that distance. For a slightly larger distance, between imeg and four times the radius,
pairs of points occur more frequently than in a Poisson @®cEor even larger distances,
larger than four times the radius, the frequency of pointgiaithe same as in a Poisson
process. As the intensity of the original Poisson procasdstto infinity the frequency of
point pairs, at a distance between two and four times theisadi the global model gets
smaller, but is still slightly larger than for a Poisson gss. In the pairwise model on
the other hand the pair—correlation at this distance temddinity as the intensity of the
original Poisson process tends to infinity.

Next we consider the mark—correlation function for the ira@ibserve that we now
consider our processes to have two marks. One of the marksaisowe the 0-1 mark and

8



6 Summary of Paper B
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Figure 3: Pair-correlation function for the pairwise and the global model in two diroes with
the same intensity after thinningy, = 4, and radius of the sphergg= 0.1. The intensity before
thinning was 5.74 and 34.11 for the two pairwise models giving the sandéabelled low and
high respectively in the plot, and 5.56 for the global.

the other is the radius. Let the radius distribution befbierting be denote#r and let
the intensity before thinning be denotédThe conditional distribution of the 0—1 mark of
two points given their locationg andx; and their radik; andk, is denotedMy, i, x, k- A
new second-order measure is introduced for the radii mautkieh in the current setting
can be written,

0@(%0, %) = f f Miseraso(L 1))Fr(dko) Fr(dko).
0 0

We show that the mark—correlation function, defined in $&cf, can be expressed in
terms of this measure,

(2)
QS (Xl, X2)
kmm(X1, X2) = = ——.
0(X1, X2)

From examples, for instance with Rayleigh distributed radie Figure 4, we can see
that the mark—correlation behaves qualitatively like th@correlation in the sense that
the curves have similar shapes. If the mark—correlatioreievb one for some distance
between the two points then the product of the marks, radinase points are lower than
the mean radius squared. If the mark—correlation is abogerenproduct of the marks for
points that distance apart are larger than the mean markestju@bserve that in Figure
4 the correlation functions are shown for two pairwise medaid one global model,
all having the same intensity. One of the pairwise models tardglobal model have
pair—correlation and mark—correlation that coincide,adwse when at most two spheres
overlap, the result of global and pairwise thinning is samil

The models were constructed to describe inclusions in oaist see Figure 1. They
were fitted to such data in the case when the weight distabwtias independent of the

9



6 Summary of Paper B
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Figure 4. Pair—correlation function, above, and mark—correlation functidowbir models start-
ing with Rayleigh distributed radii with parameter 1 and weights independénéeo&dii. Both the
pair—correlation and the mark—correlation coincides for the global model andfdhe pairwise
models.
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7 Summary of Paper C

radius. The fit was made by estimating the intensity and tdeusadistribution. The
pair—correlation function was used as a measure of thetgualithe fit. Two images
of the same material were used. The fit to one of the imagesdibr imodels seemed
reasonable and the other one was not. The problem was thpaiheorrelation of the
images seemed higher than achievable with either of the Imdéessibly the fit could be
better either by letting the weights depend on the radiuy dhibning an inhomogeneous
Poisson process. In the later case some theoretical wodesed.

7 Summary of Paper C

The purpose of this paper is to study the volume fraction efglobal model in Paper B.

The model is defined as follows. Grains in the form of conves see placed at points
of a homogeneous Poisson process. The points are giventaéigih may depend on the
grain sizes. The process is thinned by only keeping thosagtiaat do not overlap with

any other grain with equal or higher weight.

By a coupling argument we can show that the process is inoigasthe intensity of
the Poisson process if the weights are continuous and indepé of the radii. This is
not necessarily the case if the weights are allowed to depenle radii or if they are not
continuous.

If the intensity of the Poisson process tends to infinity drelweight distribution is
independent of the grain sizes, then the volume fractiohnsost /29 if d = 1 ord = 2,
with equality for centrally symmetric grains of equal sikethis case our model is iden-
tical to considering the intact grains of the dead leavesahdebr simplicity we consider
spherical grains in the following. d = 1 we can show the result by Jensen’s inequality.
Let R be the radius before thinning and Jebe the mean radius before thinning. Then the
volume fraction can be written

]
V= .
R+ u
If d = 2 the volume fraction can be written
)
V=B—=-
RZ + 2uR+y /[

wherey = ER?, which can be shown to be less than or equal té. 1This is proved
by observing that the argument of the expectation of is beldwme which in turn has
expectation less than or equal t641 We can show that for a two point radius distribution
the volume fraction is at most/29 for anyd by straightforward calculations. This makes
it natural to conjecture that the volume fraction is at mggtTor all d.

If the weights are allowed to depend on the radii the volunaetion can be made
arbitrarily close to one. The idea is most easily descrilpettvd dimensions. The model
can be thought of as dropping discs on a plane. The discs appel in reversed weight
order. When all discs have been dropped the ones that cantb&/bkete from below are
the ones remaining after thinning. The achieved volumeiracan be made close to one
by dropping large discs first and then smaller and smallgrerright way.

11
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8 Future work

Common for all three papers appended to the thesis is that wewwarked with non—
overlapping germ—grain models. The models have been usbsbtwibe materials.

In the future, the ideas from Paper A could be applied to a nahfer which there is
real life data available. Then we could compare the variamt¢lee theoretical results to
the variance of the data and draw conclusions about the tarpoe of the variability of
grain sizes. Since the large grains in a grain structure sedra of importance it would
also be interesting to find the extreme value distributiotheflargest grain in a Voronoi
tessellation and compare to real data.

The models in Paper B were inspired by images of inclusiortagt iron, see Figure
1. The fit was not satisfactorily and one idea is to use weighending on the radius.
Another idea is to have an inhomogeneous Poisson processraisgsprocess. The last
approach would need some theoretical work before apphicatDther models could be
explored.

In Paper C we conjecture that the upper boup2! holds for any dimensiod, but
it remains to be proved fod > 3. To show this would probably involve some other
technique than the one used in the paper.

References

[1] Callister Jr, W.D. (1997)Materials, Science and Engineering: An Introduction
Wiley.

[2] Handbook of Convex Geometigitors Gruber, P.M, Wills, J.M., Elsevier Science
Publishers B.V. Amsterdam, 1993.

[3] Hermann, H. (1991)Stochastic Models of Heterogeneous MateridMsaterial Sci-
ence Forum, Vol. 78. Trans Tech Publications.

[4] Mansson, M., Rudemo, M. (2002Random patterns of nonoverlapping convex
grains Adv. Appl. Prob. 34, 718-738.

[5] Matérn, B. (1960)Spatial Variation Meddelanden Statens Skogsforskningsinst. 49.
Statens Skogsforskningsinstitut, Stockholm, SecondoediSpringer, Berlin, 1986.

[6] Mdller, J. (1994) Lecture Notes on Random Voronoi Tessellati@minger-Verlag.

[7] Navarro, A., de los Rios, E.R. (198&,microstructurally-short fatigue crack growth
equation Fatigue Fract. Eng. Mater. Struct. Vol. 11, pp 383-396.

[8] Okabe, A., Boots, B., Sugihara, K. (1998 patial Tessellations: Concepts and
Applications of Voronoi Diagramg/iley, 1992.

[9] Stoyan, D. (1998)Models of random systems of non—intersecting sphéesgue
Statistics '98, 543-547.

[10] Stoyan, D., Kendall, S.K., Mecke, J. (199%ochastic Geometry and its Applica-
tions 2nd edition. Wiley.

12



Paper A



ELSEVIER

Available online at www.sciencedirect.com

SCIENCE‘dDIRECT@

Infernational
Journal of
Fatigue

International Journal of Fatigue 27 (2005) 847-852
www.elsevier.com/locate/ijfatigue
The influence of grain size variation on metal fatigue
Jenny Andersson™
Department of Mathematical Statistics, Chalmers University of Technology, SE-412 96 Goteborg, Sweden
Received 21 July 2004; received in revised form 13 October 2004; accepted 18 November 2004
Abstract

The aim of the present study is to investigate the influence of the variation of metal grain sizes on fatigue lives. The grain structure is
simulated from a Poisson—Voronoi model and the short crack growth model of Navarro and de los Rios is applied. The resulting fatigue life
decreased with increasing component size, probably reflecting the fact that with increasing number of grains there is a larger probability of
finding a large grain where the crack starts. The standard deviation of the logarithm of the lives was in the order of 0.2-0.4, i.e. the variation in
grain size explains only part of the observed variance in real fatigue data.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Short crack; Grain structure; Voronoi tessellation

1. Introduction

Supposedly identical components made of metal often
show substantial differences in fatigue lives. The differences
are apparent even during controlled tests with identical
stress levels. Miller writes in [3] that the scatter in fatigue
data needs to be put in a perspective by for example detailed
studies of the effect of material structure on early crack
growth. One model of early (short) crack growth has been
developed by Navarro and de los Rios in [5-10]. The
purpose of this study is to investigate the effect of grain size
variation on fatigue life. Since the main part of the fatigue
life is explained by the crack initiation, the model of
Navarro—de los Rios will be used, as in [12], but modified to
handle grains of varying sizes. A stochastic grain structure
will be obtained by simulation. Similar ideas have been used
by Ahmadi and Zenner [1] in a study of the growth of
microcracks under the influence of cyclic loading. They
compared simulations of cracks in a two-dimensional
hexagonal lattice with experiments and the distribution of
cracks was claimed to be in quantitatively good agreement
between simulations and experiments. The main differences
in the ideas from the present paper is the deterministic grain

* Tel.: +41 772 82 94; fax: +31 772 35 08.
E-mail address: jennya@math.chalmers.se.

0142-1123/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijfatigue.2004.11.007

structure and our focus on scatter. A stochastic grain
structure, a Voronoi tessellation, is used by Meyer,
Briickner-Foit and Moslang [2] but focusing more on the
crack patterns when several cracks are allowed to grow.
Here also the results were found to be in good agreement
with experiments.

The grain model is introduced in Section 2.1 and the
Navarro—de los Rios model with modifications is described
in Section 2.2 along with some computational details. The
results are presented in Section 3 and analysed in Section 4.

2. Model
2.1. Grain structure

In the proposed model the metal grain structure is a
Voronoi tessellation in two or three dimensions of points
generated from a Poisson process (see Fig. 1). The reason
for using a Voronoi tessellation can be argued as follows. If,
in the crystallisation process of a one phase metal, all grains
begin to grow simultaneously and at the same rate the
resulting grain structure would be a Voronoi tessellation.
The tessellation could be modified by allowing the grains to
begin their growth at different times and by using a different
point process with more or less clustering of the points.

A tessellation partitions an Euclidean space (R") into
sets, (C;), with non-overlapping interior, that is R" = U,C;.
Let {p;} be a set of points. Each point p; in this set, from now
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Fig. 1. A Voronoi tessellation of points generated from a Poisson process.

on called nuclei, generates a cell (or grain) C;. One grain C;
consists of all points in R" which has p, as their nearest
nuclei

C; ={xeR": |lp; — xll < llp; — xI|,¥p;}, €))

where || - || is the Euclidean distance. If the set of points {p;}
is locally finite (any finite region contains a finite number of
points) the C;s are called a Voronoi tessellation and C;
a Voronoi cell. A general reference on the properties
of Voronoi tessellations is [11] and a more mathematical
one is [4].

The realisations of Voronoi tessellations were accom-
plished using MATLAB version 6.5.1. First points were
generated according to a Poisson process in two dimensions.
Secondly, the function ‘voronoin’ were used on these points
giving the Voronoi tessellation. To handle the effect of
edges, points were generated in a slightly larger area than
the one needed.

The metal simulated here is assumed to have a face-
centred cubic (FCC) atomic structure and one phase
(homogeneous in terms of chemical composition). In the
model each grain is given a random (uniformly distributed)
slip plane direction which determines the directions for the
other slip planes (Fig. 2).

2.2. Crack growth model

The crack growth model is adapted from Navarro—de los
Rios model for short crack growth under uniaxial loading
[5-10]. The crack is modelled on the surface of the metal
and consequently the three dimensional structure is
disregarded. Since the point here is to use a grain structure
with grains of different sizes, the Navarro—de los Rios

Fig. 2. Slip planes in a closed packed metal seen in two dimensions.

model, which is described for grains of equal size (as in
[12]), has to be modified to the current situation. In short, the
Navarro—de los Rios model considers the plastic slip
produced ahead of a crack to be represented by a continuous
distribution of dislocations. It is assumed that when slip is
initiated in a grain the entire grain undergoes slip and is only
blocked by the grain boundary, i.e. the front of the plastic
zone coincides with the grain boundary. Slip is initiated in
the next grain when the stress ahead of the plastic zone is
enough to move new dislocations. This stress only depends
on the position of the crack tip relative to the grain
boundary.

The crack is initiated in the centre of a large grain with a slip
plane close to the plane of maximum shear stress, that is the
angle between the slip plane and the load direction is close to
45°. In making a decision in which grain to start, acompromise
is made between size and direction of slip planes. If / is the
length of the grain along a slip plain going through the centre
of the grain and @ is the angle between the slip plane and the
plane of maximum shear stress, a new length is calculated by
I.=1 cos 20 (this is repeated for the three slip planes through
the centre of the grain). This calculation reflects the fact that
the sheer is zero both perpendicular and parallel to the main
load direction. The grain selected for the crack to start in is
the one with maximal /.. The crack is supposed to grow along
a slip plane at all times.

The crack growth rate is determined by

da

o =/ @)
where a is half the surface crack length, N the number of
load cycles, frepresents the fraction of dislocations ahead of
the crack that participates in the crack growth process and
depends on the applied stress and the material and ¢ is the
plastic displacement of the crack-tip given by

2(1 — »)V1 —n?
= 0a

un

¢ , 3)
where ¢ is the applied load, u the shear modulus and »
Poisson’s ratio. Here, n=al/c is a dimensionless parameter, ¢
the length of half the crack and half the plastic zone
(see Fig. 3).

The slip band is blocked by the grain boundary and the
crack will grow at a decreasing rate as it approaches



J. Andersson / International Journal of Fatigue 27 (2005) 847-852 849

Fig. 3. Illustration of the parameters ¢ and a.

the boundary until slip can be transfered to the next grain.
This happens at a critical value of n equal to

n’C = cos <TC 7= aLi) R 4)

2 O comp

where comp 1 the resistance to plastic deformation of the
crack tip. Consecutive grains are numbered i=1,23,....
When ¢ is smaller than oy; the stress is not enough to
overcome the boundary and the crack stops. The minimum
stress required for slip propagation is given by

o = UFL}T — )

where c; is the length of half the crack plus half the plastic
zone when the crack grows in grain i, d; is the mean of the
length the crack has grown in each grain, o is the fatigue
stress and

) 2 1.86
Mo 4207 <; arctan(0.522(i — 1)2)) . (6)

my

is the ratio of grain orientations.

When a new slip band is initiated in the next grain and the
plastic zone is supposed to span the entire new grain, and
therefore, n decreases to

nit =, ™)
Cit1
which is a rescaling of the old value of n by the new value of
c. According to the model, the crack will grow along that
slip plane in the new grain that is closest to the plane of
maximum shear stress (the angle between this plane and the
loading direction is 45°), regardless of which direction the
slip plane takes in the third dimension under the surface.
The growth rate Eq. (2) can be integrated over a grain
(or over parts of a grain) to give the number of cycles spent
in that grain

u

AN = e

(arcsin nf: — arcsin n:) ()

Table 1

Parameter values for commercially pure aluminium

Parameter Value

I 25.0 GPa
o’comp 50.0 MPa
OpL 42.5 MPa
v 0.33

The total number of cycles is then obtained by summing
over all grains.

In the Navarro—de los Rios model all the grains are
assumed to be equal in size and because of the symmetry in
that case it is enough to do calculations on half the crack.
Here, however, the crack may not grow at the same rate at
both directions after the first grain. Practically, this is solved
by considering the two growth directions separately. As an
approximation of the total cracklength after, say, N cycles,
we can calculate how long the crack is in both directions
separately, by using Eq. (8). The total cracklength after N
cycles is then obtained by adding the cracklengths in the two
directions. The growth rate at N cycles is approximated by
adding the growth rates for the two directions at N cycles.

The values of the parameters used in the calculations
are the same as in [12] for commercially pure aluminium.
These are shown in Table 1. They used f=6.16X10"">
(2(0-0p)* ",

3. Results

Simulations were made of two-dimensional Voronoi
tessellations where the number of nuclei were taken from a
Poisson distribution with expectation (denoted AA) 2000,
4000 and 9000, which corresponds to looking at

Fig. 4. A simulated crack and grain structure.
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Fig. 5. Logarithmic crack growth rate plots for the original Navarro—de los Rios model to the left and for the Voronoi tessellation model to the right.

components of increasing size. More specifically, squares of
sides 2, 4 and 6 giving the area A to be 4, 16 and 36,
respectively, were used with an intensity, A, of points per
unit area as 250. The unit of the area is not important since
the grain size is only included implicitly in the Navarro—de
los Rios models, i.e. in the material constants. These choices
gave a mean intercept length of the grains in the
tessellations as approximately 0.050 calculated from the
simulations. The crack path was determined as described in
Section 2.2 and the crack was allowed to grow to a
maximum (it could stop before, if ¢ <oy; in Eq. (4)) length
of 10 times the mean grain size. The crack growth rate as a
function of crack length and the number of cycles to failure
were calculated, the latter resulting in a Wohler curve for
the short crack growth. For each value of the expectation the
simulation was repeated 1000 times.

Fig. 4 shows an example of a simulated crack, not
showing the entire simulated square, and Fig. 5 the crack
growth rate as a function of crack length for this crack. In
the latter figure, there is also the corresponding plot for a
grain structure with equal grain sizes. The growth rate
decreases when the crack get close to a boundary, then
increases sharply as the crack resumes its growth in the next
grain. Fig. 6 shows a Wohler curve for the initial crack
growth for expectation in the Poisson distribution equal to
9000. As a comparison the results from using a model
without grain size variation is plotted in the same figure. A
regression was made on the lives for Ag ranging from 94 to
100 MPa to N=a(Ac)? with the values of the coefficients in
Table 2 as the result, i.e. the life decreases with AA or
equivalently component size.

The observations at N=10% are of cracks that have
stopped before they were 10 times the mean grain size long.
The variation conditional on finite fatigue life of the number
of cycles to failure first increases with the applied load and
the decreases (plot in Fig. 7). Fig. 8 shows the percentage of
cracks that stopped, i.e. the fatigue life is infinite.

It is often claimed that the intercept lengths of the grains
in metals with unimodal distribution of grains is

approximately lognormal. In Fig. 9 is a quantile plot of
the logarithm of the intercept lengths in a simulation. The
points are supposed to follow a straight line if the lognormal
distribution is appropriate.

4. Discussion

The discussion following is purely qualitative because of
lack of real data. There is no evaluation of the Voronoi
model as a grain structure apart form the comparison of

A A =9000

501

49}

48]

47+

46|

45| —o—
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44 o —
43+ - D —

421 N=1.2- 10%44. 5236

104 105 106 107 108
N Number of cycles to failure

Fig. 6. Wohler curve for the initial crack growth. The unfilled rings
corresponds to life lengths calculated from the model with equal grain sizes.

Table 2

Coefficients in N=a(Ac)”, when Ag is in MPa

Expectation (AA) ax10* b

1000 1.91 —23.7
4000 1.75 —23.7
9000 1.24 —23.6
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Fig. 7. The standard deviation conditional on finite fatigue life of the
number of cycles in Fig. 6 as a function of the load.

the intercepts with the lognormal distribution. The agree-
ment is not very good since the observations are not on a
straight line. In this context, however, this is not the crucial
thing to compare but rather the distribution of large grains
which is more important for the crack growth. Probably the
common knowledge of the intercept lengths being lognor-
mal is not always accurate so the best way to do a good
comparison would be to use a real material.

The calculated fatigue lives should be seen as an example
of what is possible to do with this modelling approach. The
crack growth model of Navarro—de los Rios is used only
in the form of grains of equal sizes as a first approximation.
For future simulations the results for unequal grain
sizes in Vallellano, Navarro and Dominguez [13] can be
used instead. The reason for not using it here was

A A =9000

The percentage of cracks that stopped
3

* *

0 L L L L * " *
43 44 45 46 47 48 49 50

6 Amplitude (MPa)

Fig. 8. The percentage of cracks that stopped in Fig. 6, i.e. the number of
observations at N=10° cycles.
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Fig. 9. A normal quantile plot of the logarithm of 110 intercept lengths in a
two-dimensional Voronoi tessellation.

the extra complexity in programming. Our belief is that
the approximation does not change the results qualitatively
and other approximations made have probably a larger
impact.

Comparing the simulations to a computation with equal
grain sizes show that the crack growth rate curve is more
irregular. The advantage of using a grain structure with
varying grain sizes as opposed to one with equal grains is
that the crack can stop and that it is possible to calculate the
variance of the fatigue lives.

There are many simulations with infinite life even for
higher loads which is not observed in real data. The
explanation is that if a crack stops in a real material there
may be a crack that can continue somewhere else in the
structure. If a crack stops here there is no other crack that
starts at another location. In principle it is possible to
simulate that situation, however, then a decision have to be
made when to stop creating new cracks.

The standard deviation of the lives conditional on finite
life first increases with the load and then decreases as
expected from observations. The increase in the beginning
is due to the censored data which really have large fatigue
lives and hence would increase the standard deviation if
they were accounted for.

The fatigue life decreased with increasing number of
grains, probably reflecting the fact that with increasing
number of grains there is a larger probability of finding a
large grain (where the crack is assumed to start). The
standard deviation of the logarithm of the lives conditional
on finite life is in the order of 0.2—-0.4 depending on the load.

Grain size variation gives rise to a longer fatigue life
compared with a structure with equal grains. One possible
explanation is that even if the crack starts in a large grain
and grows fast there, the next grains is probably smaller than
in a structure of equally sized grains, and therefore, it grows
slower in the second grain. The fatigue life decreases, as
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expected with component size, i.e. the size of the area
simulated. However, only a part of fatigue life variation
observed in doing experiments is explained by the varying
grain size according to the simulations.
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Product densities and mark—correlations of two
models of non-overlapping grains

Jenny Andersson

Abstract

We consider two models of non-overlapping convex grains, which arergkn
sations of Matérn’s two hard-core processes. Grains are placeth&s pba homo-
geneous Poisson process and the process is thinned byffex@dt procedures. The
second-order product density and the mark—correlation function isedefor the
point process with convex grains of equal orientation. As spheresnaraportant
special case, the product densities for the models are stated both foesphequal
radii and for spheres having a certain radius distribution. The models aretétted
data of inclusions in cast iron.

Keywords:Second-order product density, Poisson process, Pair-correlatiokeiia
point process, Convex set
AMS 2000 Subiject Classification: Primary 60D05, Secondary 60G55

1 Introduction

A point process where the points cannot be closer than a fixeinal distance is called

a hard-core point process. Matérn [5] introduced two sucltgs®es. In the first one
he considers a Poisson process and excludes every poinawdistance to its nearest
neighbour less than a fixed numir> 0. In the second model each point is given a
weight, uniformly distributed on (@) and independent of the weights of other points.
Points are then retained if there are no other points witistadceR with lower weight
and removed otherwise. These models can be thought of asvsysff non-overlapping
spheres with radir/2. A survey of random systems of non-intersecting spherksiisd

in [11]. Hard-core models are used, for example in foregppliaations, see [13].

Another example of hard-core models is the simple sequentidition model, SSI,
which is also called the random sequential adsorption mé&teh, used in physical and
biological sciences. Spheres are placed randomly and sgajlein a bounded region.
A sphere is rejected if it intersects a previously placecesphOther items than spheres
could be used. For a survey on RSA models, see for example [17].

The Stienen model and a generalisation, the lily-pond matbsicribe sets of spheres
with random radii. Points are generated according to aostaty Poisson process. In the
Stienen model, each Poisson point is the centre of a sphéneavdiameter equal to the
distance to its nearest neighbour. See [10] and pages 21838nd [12] for more on the
Stienen model, for example the pair-correlation functiomthe lily-pond model spheres
are grown radially, at the same time and at the same rate, thlerRoisson points. Each



sphere grows until it meets another sphere. In [1] there amesecent results and an
overview of previous results for the lily-pond model.

Some hard-core models are examples of Gibbs processed) afg@lso studied in
the literature on physics. An accessible mathematicalrtreat can be found in [6].

A model which is closely related to Matérn’s second model ishdeon’s dead leaves
model, see [3] and [14]. In two dimensions, discs are drogeedientially according to a
Poisson process on the plane. Parts of a new disc that ioteise old disc are invisible,
that is we watch the discs from below. In a finite area, theggscan be stopped once all
the surface is covered by discs, since new discs droppedtdofluence the distribution
of the intact discs. The centres of the intact discs cormedfo the points that are not
removed in Matérns second model when the intensity of thesBoiprocess tends to
infinity, according to [14].

Mansson and Rudemo [4] describe two models of non-overlappiaigs, which are
generalisatations of Matérn’s models. The processes aagebtby thinning a stationary
Poisson process. A convex compact set, called grain, isiassd with each point. In
the simplest case the grains are spheres with equal radiitsReith overlapping grains
are either removed or kept, according to twdfetient procedures, in a way that leaves
points with non-overlapping grains. The first thinning soiee called pairwise, gives
independent weights to both points in a pair with overlagmrains, and the point with
strictly higher weight wins. New weights are assigned inngwmparison. A point is
kept only if it wins in all pairwise comparisons. The secooteme, called global, gives
each point a weight once and for all and the point with siribtgher weight is kept when
comparing with weights of overlapping grains. The weightyrdapend on the size of
the grain in both cases. Figure 1 shows realisations of tmegkels for spheres of equal
sizes. The models in [4] were originally inspired by inctuss in steel and nodular cast
iron, which are important for the fatigue strength of thessarials.

Similar to the models in [4] are the generalisations of Mdsé&sacond model in [15].
In the first generalisation the weights may have some digtab that is not uniform and
which is independent of the radius. As in Matérn’s model, apioi x is removed if there
is another point in the ball of radil® centred inx with lower weight tharx. This gives
exactly the same point process after thinning as the glolmaleinabove with the same
weight distribution and all radii equal #&/2. In the second generalisation, the radii of
the points are not constant but follow some distributioat th a pointx gets radiusy. A
point in x is now removed if there is no other point with lower weight e tsphere with
radiusry centred ak. This is not a model of non-overlapping spheres as the globdel
of [4]. For example, it is possible to have one sphere corajylébside another. In [15]
thinning intensities, product-densities and mark—catrehs for both models are derived.

In [4], the thinning probabilities, the relation betweer thoint processes before and
after thinning, the volume fraction and the size distribos after thinning are considered.
To further characterise these models we are interesteddyisig second-order character-
istics. Once a second-order measure and the first momentumeesa® known, variances
and covariances can be calculated. Furthermore, the sexdedproperties can be used
to compare the models, for example to a stationary Poissmreps. For studying the de-
pendence of the sizes of spheres we are also interestednmattke-correlation function.

In Section 2, we give a description of the pairwise and globadlels. We define the
product density and derive an expression for calculatiegptioduct density in terms of a
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Figure 1: Realisation of pairwise and global thinning of a Poisson process imihsquare oR?
with intensityd = 100, where all the spheres have an equal radius 0.05.

two-point mark probability in Section 3. This expressiors Ipaeviously been used in [8]
and [9]. In Section 4 we calculate the second-order prodewsity for spherical grains
with fixed radii for the two thinning procedures. This may eesomewhat superfluous
as the same calculations for general radius distributiencarried out in Section 5, but
we think it is worthwhile to present the ideas of the proofaimeasier setting. Section
6 states the product densities for convex, compact graitis ttwve same orientation. A
general discussion of conditional mark distributions foimnp processes with two types
of marks is given in Section 7. This material is needed ini8ed@ where the mark—
correlation functions for the pairwise and the global moale stated. As the models
were inspired by inclusions in cast iron, we fit them to sudadaSection 9. Comments
and indications of future work are given in Section 10.



2 Description of the models

Consider a Poisson point process with constant intensityR?. On each point a sphere,
or some other convex set, in general called grain, is centfdx radius of the sphere
associated with a point has distributibg, which is independent of the point process and
of the radii of other points. The process is thinned so thelare no intersecting spheres,
according to two dterent schemes:

(P) Pairwise assignment of weights. For each pair of poiritls imtersecting spheres
both points get weights independent of each other and thet poih the lower
weight is removed. In the case of equal weights both are rechoA point will
only be retained if it wins in each of the pairwise compargsdfor example, if three
points have intersecting spheres it is possible that adktimoints will be removed.

(G) Global assignment of weights. The points get i.i.d. wesgince and for all. As
before, points with intersecting spheres compete and tkewotn strictly higher
weight is retained.

Both in the global and pairwise case the weight may dependeretiius, but not on the
point process. Denote the weight distribution for a sphetie idiusr by Fyy.

The thinning procedure can be thought of as giving marks ¢oattginal Poisson
process. A point gets mark 1 if it is kept and O if it is removébhw we have a marked
processd = {[X,; My]} with points{X,} constituting a stationary Poisson process with
intensity A in RY and to eactX, an associated maity, taking values irM = {0, 1}.

The intensity is an important characteristic of a point ps®c For the current models
it can be expressed in terms lafr), the retention probability, i.e. the probability that a
point with radiusr will be retained, see [4], as

A=A fo ~ h(r)Fa(dr). 2.1)

Let W, (r) and W;(y) be two independent weights with distribution functidfg, and
Fwy, andkg the volume of the unit sphere thdimensions. The retention probability for
the pairwise case is

he(r) = exp{—ﬂkd j; i P(Wa(r) < Wa(y))(r + y)dFR(dy)}- (2.2)

For a random variablX with distribution functionF let F_(x) = P(X > x). The retention
probability for the global case is

ha(r) = f mexp{—m f WF‘w.y(wxwy)dFR(dy)} Fure (cW). (2.3)

A further characteristic of these models is the radius iistion after thinning. In
general it is not the same as the distribution before thmnbut the right tail of the
distribution can be preserved, if large spheres are keptenthinning. See [4] for a
discussion of the radius distribution.



3 The second-order product density

As mentioned in the Introduction, we want to study functitimst describe the second-
order behaviour of these models. One such function is thenskorder product density
0@, Itis the density with respect to the Lebesgue measure adehend-order factorial

moment measure(PZ) onRY x RY. If B, andB, are Borel sets an# is a point process on

RY with distributionPy, @ is defined as

a/g)(Bl X Bz) :E[#{(X]_, X2) X EVYNBL,XePYNBy, X1 # X2}]

= | D 18,00)1e,(%)Pu(cy). (3.1)
X1, X264
X1#X2

An interpretation of the second-order product density & th
Qg)(xla X2)dVidV,

is the probability of having a point in each of two infinitesity small disjoint Borel
sets, with Lebesgue measui¢, anddV,, wherex andy belong to one set each. The
following result will be used in the calculation of the sedesrder product density for the
thinned processes defined above.

Lemma 3.1 Let ® = {[X,; M,]} be a simple marked point processid with marks in
M = {0, 1}, where the associated point procd3s} is a stationary Poisson process with
intensityd. Then the second-order product den@@ for the process consisting of points
with marks 1 can be written as

0P (X1, %) = A2 My (1, 1)), (3.2)

whereM,, 4, is the two-point mark distribution, defined dfix M. If the process consist-
ing of points with marks 1 is stationary and isotropic the proddensity will only depend
on the distancéx, — x| between the two points, aeff’(x;, %) is simplified to

of(r) = P Mor((1, 1)), (33)
for one point at the origin and one point in locatiorat distance r from the origin.

The two-point mark distributionM,, x, describes the marks ix; andx, under the con-
dition that there are points ir, andx,, see [7]. It can be thought of as a two-fold Palm
distribution.

The proof of Lemma 3.1, which is given below, is rather techhand may be skipped
without dtecting the reading of further sections. We need a modificatioTheorem
2.3 from [7] with the assumption of the stationarity and iepir of the marked process
removed. The proof of this modification can essentially hatbin [7], but is not stated in
atheorem. The theorem below, which states the modificatemmbe called the “two-point
Campbell theorem”.



Theorem 3.2 Let ® = {[X,; My]} be a simple marked point processid with marks
in M = {0,1} and distribution P. The set of all outcomes®dfis denoted by N. Let
{My.x, : X1, %2 € RY} be the family of corresponding two-point mark distributicarsd
let a2y be the second-order factorial moment measur¢>@f. For every measurable
f:RIXMxRIxM — R,

f (X1, My, X2, M) P(dyp)

N umilee
[x2;mplep
X1#£X2

- f f £ (Xe, M. X, M) Mo (0. M) )ere (A0 X0).

RAXRY MxM
Now we are ready to prove Lemma 3.1 with the aid of Theorem 3.2.

Proof of Lemma 3.1. For a thinned process with distributidt, the second-order fac-
torial moment measure is

a’grz])(Bl X Bz) = f Z 151()(1)182()(2) Pth(d‘p)

X1€p, X2€@
X1#X2

This expression can be rewritten in terms of the originalkedproces® with distribu-
tion P. Let 1;,,(my, my) be the indicator function of the event that bothand x, are
retained when thinning. By summing over all pointslirthat are retained in the thinning
procedure we get

aﬁﬁ)(Bl x By) =f Z 1g, (X1)1B,(%2) Lijxqzy (Ma, M) P(dyp).

[x1;my]ep
[x2;mp]ep
X1#EX2

By Theorem 3.2,
aP(B1 x By)

- f f Ly (M M) M (AT, M) ®(d (0, %))

B1x By MxM

1 1
= f Z Z 11 (M, M) Moo (AT, M2))a®(d (X4, X2))

BixB; my =0 my=0

- fMXLXZ((l’ 1))a(2)(d(X1, X2))-

BlX Bz

For a homogeneous Poisson process with intensitile second-order factorial moment
measurer®(B, x By) = 1214(B1)l4(B,), see for example [12]. Since the product density of
the thinned process is the densityxﬁﬁ) with respect to Lebesgue measure we get (32).



4 Spheres with fixed radii

4.1 Second-order product densities

In this section we derive the second-order product densitihie two point processes with
spheres of radiug, and continuous weight distribution. The following notatis used.
Let By(x,r) = {y € RY : |x—y| < r} be thed-dimensional sphere centredxwith radius
r and letly be the Lebesgue measurelifi. Moreover, lety = 14(B(X, 1)), the volume of
the unitd-dimensional sphere, so tha(B(x,r)) = «qr®. Quantities in the pairwise case
and the global case are indexed by P and G, respectively.

From equations (2.1), (2.2) and (2.3), the intensities efthinned processes are

1
Anp = A exp{—z/lkd(Zro)d}
for the pairwise model and

1- exp{—/lkd(Zro)d}

thG = ,
Kkg(2rg)d

for the global model, when the intensity of the Poisson psed®efore thinning ig.

Theorem 4.1 Let V = «q4(2ro)? and (r) = l4(Bg(0, 2ro) N By(r, 2rg))*, with|o—r| = r. For
the pairwise model with spherical grains of fixed size, theséawder product density is

0 ifr <2rg
0@(r) =1 AZexp{-A(V - 2q(r)} if 2ro <1 < 4rg (4.1)
A2 exp{-1V} if r > 4r,.

Figure 2: Two spheres at distancia 2-d.

1See Appendix A for calculations in two and three dimensions.
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Proof. We use (3.3) to calculate the product density, i.e. we neggd((1, 1)), the two-
point mark probability that two points at distanceoth have marks 1, that is the proba-
bility of retaining two points at distanae Given one point at the origim, and one point

at distance from the origin located im, see Figure 2, the probability that both points are
retained is zero if < 2ry, since then their spheres intersect and at least one of thesh m
be removed and hencel,((1,1)) = 0. Forr > 2r, the two-point mark probability can
be rewritten as

Mo ((L, 1)) = P({# of points that win ovewo or r} = 0). (4.2)

The points that win oveo or r constitute an inhomogeneous Poisson process with inten-
sity function 2,(X). When is the intensity of the Poisson process before thinning, the
mean number of points iRY of this inhomogeneous process can be written

f Ap(X)dx = f AP(A point in X wins overo or r)dx.
d

R Rd
Forr > 2ry points that belongs to the union &;(o, 2ro) and By(r, 2ro) are possible
candidates for winning over eitheror r or both. More precisely points iB4(0, 2ro) \
Bq4(r, 2rg) can beab, but notr, points inBy(r, 2rg) \ By(0, 2rg) can beat, but noto and
points inBgy(0, 2ro) N By(r, 2rp) can beab or r. If W, is the weight ofo, W, is the weight
of r, Wy, Iis the weight ofx when competing witto and W, is the weight ofx when
competing withr, then

fd ﬂb(X)dX =1 fd [1{Bd(0,2fo)\Bd(r,2ro)}(X)P(le > Wo)

R R
+ LBy (r 2r0)\Ba(0.2r0) ()P (Waa > W) (4.3)
+ Lpy(r.2ro)nBa(0.2ro)) (VP(Wia = Wo U Wi > Wr)]dx

since the sets are disjoint. Further simplification gives,

1
f Ap(X)dx = 1 f [1{Bd(o,2ro)\Bd(r,2ro)}(x)5
Rd Rd

+ 1{Bd(r,2ro>\Bd(o,2ro>;(X)% + 1{Bd<r,2ro)an<o,2ro)}(X)g]dx )
A B1a(Bu(0,20) \ Bor. 2000 + Ba(Bu(r. 20\ Bufo.2r0)
+ Zld(Bd(r,Zro) N By(0, 2r0)) .
Recalling (4.2) we get
Mor((1.1)) = exp{ - fR d Ap(X)dlx}. (4.5)

Equations (4.4) and (4.5) combined with (3.3), using
la(Ba(0, 2ro) \ By(r, 2ro)) = la(Ba(r, 2ro) \ Ba(0, 2ro))
= ka(2ro)" — 14(Bu(0, 2ro) N By(r, 2r0))

concludes the proof. Observe thgit) = y4(r, 2ro) = 14(Bg(0, 2rg) N By(r, 2rp)) = O for
r > 4rg. [



Theorem 4.2 Let V = ky(2ro)® and qr) = 14(Bg(0, 2r¢) N By(r, 2ro))?, with|o - r| = r.For
the global model with spherical grains of fixed radii, the sed@rder product density is

0 ifr <2rg

5 { 1 ~ eV
V(2V-q(r) V(V-q(r))
Q(Z)(r) - e A(2V-q(r))

TV g @V — o)
_IV\ 2
(1_\? V) if r > 4ry.

Remark: This formula can be found on page 164 in [12]. The proof giverehs very
similar to that of Theorem 4.1.

(4.6)

} if 2ro <r <4rg

Proof. Conditioning on the probability that a point @has weightwv, and a point irr, at
distance from the origin, has weight/,, the probability that both points are retained can
be found as in the proof of Theorem 4.1 above. Denote a poirtiaving radiugy by

[X; ry]. For simplicity’s sake we take the weight distribution t® tniform, but it could be
any continuous distribution. Instead of (4.2) we get

Mo,r((l’ 1))
1,1
= ffP({# of points that win overd; wo] or [r; w,]} = 0)dw,dw;.
0J0

Another diference from the proof of Theorem 4.1 is that in (4.3)
1

P(W,, > W) is replaced byP(Wy > W) = | dw =1 — w,,
Wo
1
P(Wy > W,) is replaced bp(Wy > w;) = | dw=1-w,;
Wr
and similarly

P(Wy > W, UW,, > W,) is replaced by
1
P(Wy > min(w,, W;)) = f dw = 1 — min(Wo, W;).

min(wo, W)
This leads to
Mo ((1,1))
1 1
= [ exp{ = (1 - wo)wa(ero)” = Io(Bufo. 210) 1 Bu(r 2r) “n

+ (1= W) (ka(2ro)® — 1a(Ba(0, 2ro) N By(r, 2ro)))

+ (1 — min(w,, Wo))lq(Bg(0, 2rg) N By(r, 2r0))]}dwodwr.
Evaluating (4.7) and multiplying by? gives (4.6). |

2See Appendix A for calculations in two and three dimensions.
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4.2 Behaviour of the models

According to [4] the intensities after thinning behave quliterently for the two models,
see Figure 3. For the pairwise cagg — 0 asd — o~ and it has a maximum iy, =
2/(ka(2ro)%e) for A = 2/(kq(2ro)%). On the other hand, for the global casg,is increasing
in 2and ast — oo, Ay, — 1/(kq(2ro)%).

9 T T T T T T T T

— pairwise
— — global

)\th - intensity after thinning

0 10 20 30 40 50 60 70 80 90 100
A — intensity before thinning

Figure 3: The intensity after thinning for the pairwise and the global models in imergions
for spheres of equal raeiD.1.

When comparing product densities of the global model and #wvse model it is
clearer to consider the pair-correlation function instda defined as

o(r) = 0@(r)/ 23,

giving
0 if r <2rg
gr(r) = { exp{adyq(r.2ro)} if2ro<r < 4rg
1 if r > 4rg
and
0 if r <2rg
2 { 1 ~ gV
e V@V —q(r))  V(V-q(r)
go(r) = .
e 1V-a() } o .
+ if 2ro <r < 4r
(V—qa(r)(2V -a(r)) ° °
1 if r> 4r,

10



for the two models. For a Poisson procggs = 1,r > 0, see [12]. Whem < 2rq, the
pair-correlation is 0 and there can be no pair of points sgpdrby such distances. The
pair-correlation is 1 for both models when> 4r,, meaning that the frequency of point
pairs at distances larger thamy4s the same as in a Poisson process.

For the pairwise model and@< r < 4ro, the pair-correlation is increasing i that
Is whend — oo the process has a higher frequency of pairs of points atatistabetween
2ro and 4, than a homogeneous Poisson process even though the iptaftsitthinning
tends to zero at the same time. On the other hand, wigoes to infinity for the global
model,gs tends to (&)/(2V - q(r)), for 2ry < r < 4rg, which is between 1 and 1.1 &7,
since 0< q(r)/V < 2/3 - V3/x. In RY an upper bound fog(2ro) is 1/2, implying that
(2V)/(2V — q(r)) is never greater than/3 This means that the global process has almost
the same pair-correlation as a Poisson process excepefbiatial cores.

If we compare the pair-correlation functions for the sameeaf the intensity after
thinning we get three étierent behaviours since the pairwise model can have the $ame
for two different, as can be seen in Figure 3. Figure 4 and Figure 5 show a plbeof t
pairwise and the global pair-correlation function in tweneinsions.

T
16 — — pairwise-low []
— - pairwise—high
—— global

151

13

g(n)

\
|
|
|
14 LA g
|
|
|
|
|
|
|
|

1.1F N B

0.9 bl

0.8 I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6

r

Figure 4: Pair-correlation function for the pairwise and the global model in two difoes with
the same intensity after thinningy, = 4, and radius of the sphergg= 0.1. The intensity before
thinning was 5.74 and 34.11 for the two pairwise models giving the sanéabelled low and
high respectively in the plot, and 5.56 for the global.

5 Spheres with general radius and weight distributions
Now we turn to a more general case than above, where the spiagliehave some non-

degenerate distribution. Let the spheres have radiushiison Fg and the weights have
distributionFyw, which may depend on the radius.

11
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Figure 5: Pair-correlation function for the pairwise and the global model in two diroes with
the same intensity after thinningy, = 2/(kq(2ro)%€) = 5.86, and radius of the spheres= 0.1.
The intensity before thinning was 15.92 for the pairwise model and 10.59%gidbal. Compared
with Figure 4 there is only one pairwise model singeis chosen as the maximum in Figure 3.

Theorem 5.1 Letdy(r, r1, rz) = lg(Bg(0, r1) N By(r, r2)) with jo—r| = r and let W(x) have
distribution Ryx. For the pairwise model with spherical grains, the secondeoptoduct

density is
r r—ro 00
0@(r) = 22 f f exp[—/l f
0 0 0

| (ka0 + Tw)® = 84(1, To + Tws It + TW))P(Wa(To) < Wa(t)
+ (ka(Tr + Tw)® = Ga(r, To + T Tr + ) B(Wa(rr) < Wi(ry) 5.1)
+ 5d(r» lo+Tw, Iy + rW)P(Wl(ro) < Wz(rw) U WS(rr) < W4(rw))]

Fr(dra)}Fr(dr,)Fa(dr,).

Proof. Consider two points, one at the origio,, and the other at a distancdrom the
origin, in locationr. As before, useéM,((1, 1)) in (3.3) and condition on the sphereaat
having radius, and the sphere athaving radiug,. Denote a point irx having radius

by [x;ry]. If the distance betweea andr is less than the sum of their radii, both of the
points cannot be retained, hence we integrate over all sadh that > ro, +r,

Morl@ )= [ [ Loy
0 Jo (5.2)
P({# points that win overd; ro] or [r; r,]} = O)Fgr(dr,)Fgr(dr,).

As before, the points that win ovew;[r,] or [r; r,] constitute an inhomogeneous Poisson
process with intensity function,(x). WhenA is the intensity of the stationary Poisson

12



process, the mean number of point®fof this inhomogeneous process can be written

f/lb(x)dx = f/lP(A point in x wins over p; ro] or [r;r])dx

Rd Rd

o (5.3)
= Aﬁ[‘]; P(A pointin [x; ry] wins over [o; ro] or [r; r,]) Fr(dry,)dX.

A point with radiusr,, is a possible candidate for winning oweif it belongs to the set
{x € RY: By(0, o) N By(X, rw) # 0} = By(0, o + '),

and similarly it is a candidate for winning overif it belongs toBy(r,ry + ry). Points in
By(0, ro + ry) N By(r, ryw+ry) can win over botlo andr. These three sets can be made into
three disjoint sets, and letting(x) have distributiorFy, we get

f Ap(X)dx

Rd
[ [ Lo s (PO > We(ro)
0
Rd

+1By(r.r+rw)\Ba(oro+rw)l (OP(Wha(rw) = Wi (r())
+1{Bd(r,rr+rw)de(o,r0+rW)}(X)P(le(rw) 2 Wo(ro) U WXZ(rW) 2 Wr(rr))]
Fr(dry)dx.

The weights do not depend onthus giving,

f Ap(X)dx

Rd

-1 f [14(Ba0 To + 1) \ Ba(r Tr + M) B(Waa(ru) = Wo(ro))

(5.4)
+ 1a(By(r, re +1y) \ By(0, ro + 1)) P(Wha(rw) = Wi(ry))

+ 1g(Bg(r, ry + ry) N Bg(0, 1o + I'y))
P(Wia(rw) = Wo(ro) U Wia(rw) = Wi (r))|Fr(dry).
The probability in (5.2) is

P({# of points that win overd; r,] or [r;r,]} = 0)
= exp{ - f Ap(X)dlx}. (5.5)

Rd

Insert (5.4) and (5.5) in (5.2), multiply by and the proof is complete. |
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Theorem 5.2 Let 64(r, r1,r2) = 14(Bg(0,r1) N By(r,rz)) with o — r| = r. For the global
model with spherical grains, the second-order product dgnsi

o) =4 forfor_ro ffexp{—/lf

[ f (ka(Fo + Tw)® = 8a(Ts To + Fus T + Fw)) i, (W)
S R ST C R D
Wr

+ f 5d(r, lo+Tw I+ rW) FerW(dW)]
m

in(Wo,wy)

FR(er)} FWII’O (dWo) FWII'r (dWr) FR(drr) FR(dro).

Proof. A point in x with its associated radius and weight is denotedXyy,f wy]. The
ideas of the proof are the same as for the proof of Theorembbitlgondition also on
the weights of the two typical points mandr beingw, andw, respectively, i.e. (5.2)

becomes
Mor@ )= [ [ [ Lo
0 0

P({# of points that win overd; ro; Wo] or [r; ry; W]} = 0) (5.7)
FW|ro(dW0)FW|rr(dWr)FR(dro)FR(drr).

Furthermore, to calculate the expectation of the numbeoiitp that bead or r, we must
also condition on the radius and the weightxof

Rdf Ap(X)dx

= f/UP(A point in X wins over pP; ro; Wo] or [r; ry; wy])dx

Rd
=4 f f [LB4(0.ro+ru)\Batr.re+ru) () Lywszwe)
Rd

+ LiBy(r.re+ru)\Ba(oror )l () Lwowi )
+ Ly(r.rr+rw)nBa(0ro+ 1)) (X) Liwszminguwi wo)]
FW\rW (dWX) FR(er)dX.

The last steps are the same as those in the proof of Theorem 5.1 ]

Remark: If the weight distribution is continuous and independenthaf radius it does
not matter which form it has.

To evaluate the product density for special cases it is lysnatessary to do the inte-
gration numerically. Below there is one simple example whe® possible to calculate
the product density exactly and another example when neala@ntegration is necessary.
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Example 5.1. Consider a model ilR? with two spheres of radius andr, and letp; be
the probability of a sphere having radiys before thinning. Let the weight distribution
be uniform and independent of the radius. An expressioaAorr; + ry, rj + ry), the area
of the intersection of two discs with radii+ r, andr; + r at distance, can be found in
Appendix A. Then, for the pairwise model, the intensity aftenning is

2
1
Anp = /12 pi exp{—/lzyr((ri +r1)%p+ (i + fz)zpz)},
i1

by (2.1) and (2.2). By (5.1), the product density is

2 2 2
T
o) =% ) D L en @B = ) [ (1 + 1) + (1 + 1))
k=1

i=1 j=1

1
- Z5z(r, r+rr+ rk)]pk} PjBi.

LetV; = Y2, pur(ri + r)? andg;(r) = Y2, peda(r, 1i + I, 1 + ). From (2.1), (2.3)
and (5.6), the corresponding quantities for the global madel

Zzl 1- exp —Am Y2 (r + rJ)ZpJ}
Ath
" i=1 ﬂzj 1(rl + rJ) p]

and

2 2
oM =" Laryenf(V = GOV = G (MY + V)
i1 j=1
+ ViVj(Vi + Vj — 2q;;(r)) exp[-A(Vi + Vj — g j(r))]
= Vi(Vi + Vj — gi,j(N)(V; — q.j(r)) exp[-AV|]

= Vj(Vi + Vj = Gii(N)(Vi — G,5(r)) expl-AVi]}
JVIVI(V = )V = G (D) + V) = g (n) e

The pair—correlation functiong; 2)//lth, for both models with parameters = 0.2, 1, =
0.1, p; = 0.5andp, = 0.5, are shown in Figure 6. The intensities before thinninganlér
in the pairwise case and 4.4 in the global case, giving i85 for both models after
thinning. In the global model after thinning, the probakilhat a sphere has radius
is approximately 0.42. In the pairwise model after thinnithgg probability that a sphere
has radiug is approximately 0.28. The calculations of these probédslican be done
using Theorem 3.2 in [4]. The jump at= 0.2 occurs because the spheres must have a
radius which is at least 0.1 and consequently the points bruseparated by at least 0.2.
The next jump at = 0.3 occurs because two spheres with radii which are 0.1 and 0.2,
respectively, cannot be closer than 0.3. The final jump=a0.4 is explained in the same
way.

m|
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Figure 6: Pair-correlation function for the pairwise and the global model fogrgghof two sizes
with the same intensity after thinningy, = 2.5.

Example 5.2. Consider the pairwise and global modelstifi Let the radii be Rayleigh
distributed with parameter 1, that is mean radius is abd§i,Jand take the weight dis-
tribution independent of the radii. In Figure 7 there is at pibthe pair—correlations for
two versions of the pairwise model and one version of theallotodel, all with the same
intensity after thinning, 0.017. The intensities befonaimg were 0.021 for one of the
pairwise models and the global model while it was 0.4 for ttreeopairwise model. The
mean radius after thinning was 1.18 for the pairwise modetisg with low intensity,
for the other pairwise model it was 0.593 and finally for thebgll model it was 1.19.
Pairwise and global models starting with= 0.021 behave almost identically in terms of
pair-correlation. When only two spheres overlap, there idifference between the global
model and the pairwise model, hence the similarity of parredations for low starting
intensity. In Figure 8 there are simulations of these moutedssquare of side 50 together
with the simulation before thinning.

As we have seen before, the intensity after thinning as aifumof the intensity before
thinning has a maximum for the pairwise model. In this exanpbccurs ford = 0.115
giving Ay, = 0.0373. In that case the pair-correlation can be found in Ei§ualong with
a realisation.

The intensity after thinning of the global model tends toBB® asi tends to infinity.
TakingA = 0.5 givesdy, = 0.0558 and the resulting pair—correlation and a simulation is
found in Figure 10.

|
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Pairwise-A=0.40
— — — Pairwise-A=0.021

Global-A=0.021

Figure 7: Pair—correlation function for models starting with Rayleigh distributedwatttiiparam-
eter 1 and weights independent of the radii. See Example 5.2 for further details

6 Convex, compact grains

Let us instead of spherical grains consider grains with #messhape and orientation as
a convex, compact set iR?. To describe such a set some notation is needed. For a set
A C RY, the translation oA by x € RY is defined as

Ar={xX+y:yeA}

the reflection ofA is defined as 3
A={-X:XxeA}

and the Minkowski-addition oA andB c RY is defined as
AeoB={x+y:xeAyeB].
Another useful way to write the Minkowski-addition is
A®B={x:An (B), # 0}. (6.1)

Define the size of a sét € RY as half its diameter, to have the size of a sphere equal to its
radius, i.e. the size is defined as,

- suplx -y
2 X,yeA .

The family of convex, compact se® in RY having size 1 and containing the origin is
denoted byCY. ForC € CY, letC(r) = {ry : y € C}, that is a set of the same shape and
orientation asC but of sizer > 0. By Theorem 4.1 in [4], (2.2) and (2.3) are valid if

17
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Figure 8: Realisations of pairwise and global models with the same intensity aftanthior017,
see Example 5.2, starting with Rayleigh(1) distributed radii. The squares ig&/8G The pair-
wise realisation in (b) was obtained by thinning (a) and the pairwise and giedédations in (d)
and (e) respectively were obtained by thinning (e).
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Figure 9: Pair—correlation and a simulation for the pairwise model with Rayleiglgtr)bdited

radii and intensity before thinning 0.115, giving maximal intensity after thinfirgg73. See
Example 5.2.
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Figure 10: Pair—correlation and a simulation for the global model with Rayleigh¢irjtdited

radii and intensity before thinning 0.5, giving close to maximal intensity aftenth@) 0.0558.
See Example 5.2.
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ka(r +y)® is replaced by(x : 14{C(r) N C(y)x # 0}, or equivalentlyl4(C(r) & C(y)). Take
the example where all grains have the same jzéhe intensity of the Poisson process
before thinning ist and the weight distribution is independent of size. In thedecthe
intensities for the thinned processes are for the pairwiseet

Ainp = A4 exp{—%/lld (C(ro) ® é(ro))}

and for the global model,

1- exp{—/lld (C(ro) ® C(ro))}
la (C(ro) @ C(ro)) .
The main diference from spheres is that the second-order product dexasihot be
written in terms of a distance anymore since the thinnedge®ds not isotropic. How-

ever, the process is stationary, meaning that it is enouglotsidero®(o, y). _The fol-
lowing notation is used in the theorems below. K&{u,r,,r) = I4(C(ry), @ C(r)) and

Su(0,To, Y. Ty, 1) = 1a((C(ro) ® C(r) N (C(ry)y ® C(1)))-

Theorem 6.1 For the pairwise model with convex grains of the same shape gadta-
tion as Ce CY, the second-order product density is

Q(Z)(O, y) = /lzf f 1{ro,ry:C(ro)ﬂC(ry)y:®} eXF{—/lf
0 0 0

|(Qu(0. o 1) = Su(0, To, ¥, Ty, F)P(WA(ro) < Wa(1))
+ (QulY. 1y 1) = Su(0. o, ¥ Ty, I)B(Wa(ry) < Wi(r)) (6.2)
+ Sa(0, o, ¥ Ty, NP(WA(Fo) < Wa(r) U Wa(ry) < Wy(r)|

Fr(dr)}Fr(dro)Fr(dry).

Athg =

Proof. The proof is similar to that of Theorem 5.1. We consider oniatpat the origin
and one point iry and want to findM,((1, 1)). The integration corresponding to (5.2) is
only performed for sizes of the grains@é&ndy such that these grains are not overlapping,
hence the indicator function in (5.2) is changed {9 lc¢.)nc(,),=0-

The only other diference compared with spherical grains is the sets wheréspman
win overo ory. A point with a grain of size is a possible candidate for winning over
if it belongs to the set

{x e RY: C(ro) NC(r)y £ 0} = C(ro) & C(r),

where the equality comes from (6.1). Similarly a pointQ(ry), @ C(r) can win over
y. Points common to both these sets can win over either pbiat,is points in C(ro) @
C(n) n (C(ry)y & C(r)).

The remaining steps are the same as those in Theorem 5.1. ]
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Theorem 6.2 For the global model with convex grains of the same shape aiedi@tion
as Ce CY, the second-order product density is

o?(0.y) =2? f f f f Ly ClranClr -0, €XP Af

[ [ (Qu(0.70:T) = Su(0,Tor Y, Ty 1) s (c)

Wo

+f(%&w0—&&mmwﬂww@m

y

+ f Sd(o» o, Y, ry, r)FW“'(dW)]
m

in(Wo,Wr)

FR(dr)} FW||—0 (dWO) Fery (dWy) FR(dro) FR(dry) .

Proof. Apply exactly the same modifications as in the proof abovéegaroof of Theo-
rem5.2.
]

For ellipses and squares of equal sizeBInexpressions for the Lebesgue measures
needed in this section are stated in Appendix A.

Example 6.3. For squares of equal size, itf, the pair-correlation function is shown in
Figure 11. As in Section 4.2 there are two pairwise modelsherintensity after thinning.
A discussion of the behaviour of the two models can be caoigah the same manner as
in Section 4.2. O

21



(a) Pairwise - low intensity before thinning (b) Pairwise - high intensity before thinning

1.6
15
14
13
12

11

(c) Global

Figure 11: The pair-correlation function for squares of si#2, that is side of length 2, in two
dimensions. The intensity after thinning is 0.03 for all three models. There argaimwise

models for one intensity after thinning, since the intensity after thinning belssvasFigure 3.

The pair-correlation is 0 for2 < x < 2 and-2 <y < 2.
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7 Second-order measures of a point process with
two types of marks

This section is a preparation for Section 8, where the mankefations for the two
thinned processes are obtained. We will consider a poimgsowith two types of marks,
later to be thought of as a radius and a 0-1 variable tellingtiadr a point is kept or not
when thinning. The global and the pairwise models can beribestin this setting. Sev-
eral second—order factorial moment measures and thetroresawill be discussed with
the objective to find relations such as (7.7) and to state fBmed.1. This section follows
[7] rather closely, the dierence being that we treat the two marks as being separate in-
stead of possibly having a mark vector. Since one type of snailkbe used to distinguish
between kept and deleted points it is impractical to haverthes in vector form.

Consider® = {X,; K,; My}, a simple stationary point processif with two types of
marks in the measurable mark spadéssf] and [M, 9] respectively. Let

Num = {¢ = {Xn; Kn; h) © %o € R4 Ky € K, my € M, ¢(B) < oo for boundedB C RY)

be the set of all locally finite point configurations and M, be the corresponding—
algebra. Denote the distribution & on [Ny, Nu] by P. In the following, B, B; and B,
are Borel sets oY, Ky, K, € &, andM;, M, € M.

The second-order factorial moment measure for a point geoegthout marks is de-
fined in (3.1). With the setting of a marked point process sd\arcond—order factorial
moment measure can be defined either in terms of points orsnmargoints and marks.
The second—order factorial moment measure for the poirdsbath sorts of marks is
defined as

a@(B; x K1 X My X By X Ky x My)
= Z 1, (X1) 1, (%2) 1k, (K1) 1k, (K2) Im, (M) 1y, (M) P(d). (7.1)

Ny akimleg
[x2;k2;mp]eg
X1#X2
Expressed in words this is the expectation of the numberio$ padistinct points where
one is inB; having marks belonging to the seéfs and M; and the other one is iB,
having marks belonging td, and M.

We will go on to introduce more factorial moment measureswhihbe used later on.
Exploiting the relations between these measures, disivifsiwill arise that can be inter-
preted as conditional distributions given for example ppat certain locations. The next
second—order factorial moment measure to be introducdresdy defined in (3.1). This
factorial moment measure concerns the points and disregaedmarks of the process,
and we can restate it here as

a®(By x By) = a®(By x K x M x By x K x M)

= D, 1a(x)ls(x)P(d). (7.2)
[x1:kiim]eg

M Ixarkaimpleg
X1#X2
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For all K1, Ko, My andM,, a®@(- x Ki x My X - X Ky X M) is absolutely continuous
with respect tax?, sincea®(- x Ky x My x - x Ky x My) is zero wheneven? is zero.
Hence by the Radon—Nikodym theorem

a@(By x Ky x My x By X Ky X My)
= f f K My o (Ka X My X Kz x Ma)a@(d(xa, X2)), (7.3)

B1 B

where for fixedKy, Ky, M; and M, KMy, x,(Ki X M1 X K, X My) is a density. If we
instead consider fixe®;, X, € RY, x; # X, it turns out thatk' M, , is a distribution on
[K2 x M?, 82 x 9?] and it can be interpreted as the conditional distributibthe marks
given points ai; andx,. The last result can for example be found in [2].

Another second—order factorial moment measure is obtdipednsidering the points
and one type of marks, that is,

a@(By x Ky x By X Kp) = a®@(By x Ky x M x B, x Ky x M)

= Z 1, (X1) 18, (X2) 1k, (K1) 1k, (K2) P(d@). (7.4)
[x1;ki:my]eg
M Ixarkoimpleg
X1#X2

Similarly as before, for alM; andM,, (- x - x My x - X - x M) is absolutely continuous
with respect tar\? and we get

a@(B; x K; x My x B, X Ky x My)

- f f f f My kg xo k(M1 X Mz)a(,\ﬁ)(d(xl,kl,xz,kz)), (7.5)

B1 By Ki Ky

whereM,, k. x.k, iS a distribution onifi2, 9i2] for fixed x, X, € RY, X; # %o andky, k; € K.
The interpretation is as above as the distribution of thersgtype of marks given points
at x; andx, with marksk; andk, respectively.

By the definitions given in (7.2) and (7.4) we can see ﬂﬁiﬁs absolutely continuous
with respect tar?). Via the Radon-Nikodym theorem another conditional distidn,
Kyxo» Arises. For fixedky, X, € RY, x; # Xy, it is a distribution on k2, }2] with the
interpretation as the conditional distribution of tKe-marks given points irx; and x,
that is,

a@(By x Ky x By x Ky) = ffq(XLXz(Kl x K2)a2(d(xe, X)) (7.6)
B:1 By
Rewriting (7.5) and (7.6) in form of densities and combininggye¢

a?(d(Xe, Ki, My, Xo, Ko, My))
= Mxl,kl,xz,kz(d(ml’ m2))(]<X1,X2(d(k1’ kz))a’sz)(d()(l, Xz))'

It is now possible to state the following theorem, which is anPhell type theorem,
as in [7] with the notation given above. The theorem can bevahxy first showing that it
holds for indicator functions, using (7.1) and (7.7), thieattit holds for simple functions
and finally that it holds for positive functions.

7.7)
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Theorem 7.1 For every measurable fRI x K x M x RY x K x M — R,

f (X1, k1, My, Xo, ko, Mp) P(dp)
Ny LDakimileg

M [xeikaimpled
X1#X2

- f f f F (¥, e, M, Yo, Koy ) Mo koo (AT, 1)

RIxRA KxK MxM

- Ky o (A(Ka, ko)) (d (0, X))

The following simplifications will be useful later. If the darlying point process is
Poisson distributed with constant intensityand theK—marks has distributiofr which
Is independent of the point process and also independerdifi@rent points we get
a@(d(xe, X2)) = A2dx, A%, K, x,(d(ke, ko)) = F(dks)F (dk,) and hence

Z f (X1, Kg, My, X2, ko, Mp) P(dg)

[x1.k1.m]egp
[x2.k2,mp] €0
X1#EX2

=22 f f f f (X1, K1, My, X2, Ko, M) My, ks 0.k (DM, MR))

(Rd)Z K2 M2

- F(dky) F (dkz)dx; dxs.

(7.8)

8 Athinned point process and the mark-correlation func-
tion

The goal of this section is to find the mark—correlation fiorctfor the pairwise and
the global models in the case of spherical grains. With treegttons of Propositions
8.2 and 8.3 the results are valid for any thinned process dutgebe limitations that
the marks are independent and that the point pattern isd?uéssbefore thinning. The
mark—correlation is a measure of the mean of the productmfiarks at certain locations
divided by the mean mark squared. If the mark—correlatidarger than one, calculated
at some locations of points, there is an indication that mafkpoints at those locations,
are on average larger than the mean mark, or really the pradube marks at those
locations are on average larger than the mean mark squéieds below one the marks

are on average smaller than the mean mark. Rebe the mark distribution, then the
meanK—mark can be written as

k= | kFg(dK). (8.1)
/

Let K1, K, be marks of points irx; and x, respectively. The formal definition of the
mark—correlation function for a marked process is

Exl,xz[_Kl Kz]

Kmm(X1, X2) = 2 ,

(8.2)
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whereE,, , is the expectation with respect t#, x,, the conditional distribution of two
marks given points irx; andx,, that is

Exx[Ki1Kz] = f f K koK x, (A (Ka, K2)). (8.3)
K JK

The following description of the thinned processes will sediwhen deriving their
mark—correlation function. Start with a homogeneous Poiggocess with intensity
and marks that can be thought of as radii of spheres. In tmaitig procedure each
point is given a second type of mark that is one if the pointeptkand zero otherwise.
With notation as in Section 7 we hadd = {0,1} andK = R*. The radii are taken
independently and according to distributibp independently of the Poisson process. Let
Dy, = [X,; K] be the process withi—marks all ones and let its distribution be dendegd
Then depending on how the thinning is perforniggcan be either the pairwise process
or the global process. We do not need this description yeesime formulas leading up to
Lemma 8.1 only uses the fact that we start with a Poisson psotiest one type of mark is
positive and independent of marks of other points and tlebther type of mark is either
Oorl.

The mark—correlation for the thinned process is defined imgeof the conditional
distribution after thinning of the radii of two spheres giveheir location and the mean
radii after thinning as in (8.2). The conditional distritaurt after thinning of the radii of
two points can be identified with the conditional distriloutiof the radii in the process
with two types of marks given the location of the points anat tiheM—marks are both
one. This results in the mark—correlation for the thinneatpss as,

kk?(l dk,k
kmmtr(xl,Xz):ff 1n2 X’];(_ZZJ( (1 2))’

with Ky, m, x,m, defined asM is in (7.5), but with the roles oM—marks andK—marks
reversed.
By a similar reversion in (7.7),

a2(d(Xe, K1, My, Xo, Ko, My))

(8.4)

@ (8.5)
= Ka.mxo.m (A(Ka, K2)) My x, (A (Mg, mp)) a5 (d(Xe, X2)).
This and (7.7) gives
My, ke xo.ko (A (MY, Ky xo(d Ky, k
Ky (A(Ke, ko)) = = ke (AT M) R (Al 2)) (8.6)

My x(d(my, my))

Since the radii are taken independently with distributignwe can make a further sim-

plification and get,

My, k. xo. ko (A (Mg, Mp)) Fr(dky) Fr(dkz)
My x(d(my, my)) '

By using this expression and thé®(xy, X2) = 2My, x,(1, 1) from Lemma 3.1, the mark—
correlation becomes

K xo.my (d(Ke, K2)) = (8.7)

I Kake Mig i sk (1, 1)Fr(dke) Fr(ckz)
i, 22) = ML 2

2 [ Kako Mo s k(1 1)Fr(dke) Fr(dke)

) oD%, X)K2 '

(8.8)
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This is really all we need to compute the mark—correlatiantiie pairwise and the
global processes, but the numerator can be identified witthan second—order factorial
moment measure giving a nicer looking expression. To beifspeverything will be
expressed for the thinned process, but the definitions haldnore general situations
also. For a process with non—negative marks it is possibdefioe a mark—sum measure,
see [7],

Psi(B) = ), Klg(X). (8.9)
[XiK]eDtn
that is the sum of all marks of points belonging to theBefhe second—order factorial
moment measure fabsy, is defined as

o8B B = [ ka6 1a,0)Pu(do). (8.10)

[X1;k1]€p
[x2;ko]€op
X1#EX2

We now express this in terms of the original marked point @ss® with distributionP,

a(sth(Bl X Bp) = f Z kiko1g, (X1) 18, (X2) M mpP(dg). (8.11)

[x1;k1;mp]€g
[X2;ko;mp]€gp
X1#X2

Observe that a term in the sum is zero wheneweandm, are not both one. Witiaz(szt)h
written in this way we can apply (7.8) with

f (%1, ki, My, X2, ko, Mp) = kiko1g, (X1)1s, (X2)Mumy
giving,
aZ)(B1 x By)
=2 f f kika1g, (X1)1e, (X2) My by %0,k (1, 1) (8.12)

(RI)? (R*)?

- Fr(dky) Fr(dko)dx; dxs.

Differentiating with respect to the 2—dimensional Lebesguesoreagives thesecond—
order product densitjor the mark—sum measure

0Ehxa, %) = 42 f Keko Mo ke oo (1 1)Fr(dke) Fr(dko). (8.13)

Rt*XR*
By identifying o) (1, %) with the numerator in (8.8) we can state the following Lemma

Lemma 8.1 The mark—correlation function for the pairwise or the globabdel can be

expressed as,

2
Q(S t)h(xl, XZ)

m ’ = —= - 8.14
km tf‘(Xl XZ) Qgrz])(Xl’ Xz)ktzh ( )
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In fact Lemma 8.1 holds for any marked process with positiveksyagee [7]. If the point
processby, is stationary and isotropic we adopt the usual (abuse oftioot and write
the mark—correlation in terms of a distarrceetween two points,
2
05r)
KenrntF) = 37 (8.15)
O (N,

Now we move on to the specific cases, but choose to @@fﬁdnstead of the mark—
correlation itself, sincel®) is given in Section 5.

Proposition 8.2 For the pairwise model with spherical grains, general weightl aa-
dius distributions and notations as Ttheorem 5.1he product—density for the mark—sum
measure is

I Ao 00
QSth(z)(r) = ﬂzf f Fol'y exdl_/lf
0 0 0

|(ka(ro + rw)® = 8a(r, To + s Tt + Fu)P(WA(ro) < Wa(rw)
+ (ka(rr + Tw)® = 8a(f, To + My Tr + 1) P(Wa(rr) < Wa(ru))
+ 84(F. To + T Tr + Tw)P(WA(ro) < Wa(ry) U Wa(r,) < Wa(ry)]

Fr(dra)}Fr(dr,)Fr(dr,).

Proof. This expression is very similar to the product density in dreen 5.1 and the
proof follows closely that of Theorem 5.1. By (8.13) we ne®(d,,,,((1,1)), that is the
probability that both points of a pair are retained if onenpdocated at the origin and the
other at distance from the origin with radiir, andr,. This is equal to the probability that
no other points will win over those two, provided they aredapugh apart so that their
spheres do not overlap. That is

(8.16)

Mororr (1, 1)) = Lisr+r, ) P({# points that win overd; ro] or [r; 1]} = 0), (8.17)

where the right hand side is found in (5.2). An expressionMtr, ,r, (1, 1)) now follows
exactly as in the proof of Theorem 5.1 and inserting in (8cI8jcludes the proof. =

Proposition 8.3 For the global model with spherical grains, general weight aadius
distribution and notations as itheorem 5.2the product—density for the mark—sum mea-

sure is
, r r—ro )
o2 (r) =/12ff rorrffexp{—/lf
0 JO 0

| | (koo +rw)® = 8a(r. 1o + M Tr + ) Fu, (W)

Wo

+ f (ka(rr + rw)d = 64(r, To + T, Ir + 1)) Fuyr, (AW) (8.18)
Wr

m

in(Wo,wr)

FR(dr ) | Fwir (GWo) Fuy, (Wi ) Fr(dr ) Fr(dro).
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Proof. What we need to find id,, (r,(1,1). It can be expressed as in (8.17) but to get
anything useful we must condition on the weights and hence

Mororr (1, 1))
= ff Lirsr,+r P({# Of points that win overd; ro; Wo] or [r; rr; W]} = 0) (8.19)
Fwir, (AWo) Fwyr, (dwy).

The result follows from the proof of Theorem 5.2. ]

The proofs of the theorems in Section 6 can be used in a simigamer to find the
second-order product density for the mark—sum measureeqgidhiwise and global mod-
els for convex, compact grains.

Finally, we need the mean radius for the pairwise and theajjlmiodels. For spherical
grains, general radius distribution and continuous weidggttibution, the mean radius can
be found in [4],

— /l 00
=== [ K. (8.20)
th Jo
with the retaining probabilityl, and intensity after thinningly,, as in Section 2.

Example 8.4. Continuation of Example 5.1. Starting with spheres of radii &d 0.2
with equal probability, intensity 10 for the pairwise modeld intensity 4.4 for the global
model gives the mark—correlation function in Figure 12s Kimilar to the pair—correlation
function discussed in Example 5.1. At small distances betwmints, less than 0.4, the
pair—correlation is less than 1. This means that those poimaverage have smaller radii
than the mean radius. When the pair—correlation is greaa@rththe points tend to have
larger radii than on average. For larger distances tharh@r@ is no dependence between
the radii. Two spheres of radius 0.2 have no potential pomtommon that may win
over them in the thinning and hence their radii are independeor distances below 0.2,
the mark—correlation is undefined since there cannot be aimyspat such distances.

]

Example 8.5. Continuation of Example 5.2. In Figure 13 is the mark—cotieteof the
three versions of thinning procedures when starting witi that are Rayleigh distributed
with parameter 1 and intensities before thinning givingshme intensity after thinning
equal to 0.017. The pairwise model with high starting intgneas mark—correlation
above one for distances approximately between 2 and 5, mgéme sizes of spheres at
those distances are on average larger than the mean sizathAthevpair-correlation the
mark—correlation is virtually identical for the pairwiseodel and the global model when
both have the same low starting intensity.

In Figure 14 there is a plot of the mark—correlation for thewise model with the
same radius distribution as above but with maximal intgrediter thinning. The global
model with intensity 0.5 before thinning giving intensitftea thinning 0.0558 has its
pair—correlation in Figure 15.

|
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Figure 12: Mark—correlation function for the pairwise and the global modedgheres with radii
0.1 and 0.2 with the same intensity after thinniag,= 2.5. It is undefined for less than 0.2.
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Figure 13: Mark—correlation function for models starting with Rayleigh distributed veith
parameter 1 and weights independent of the radii. See Example 8.5 for fdetiads.
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Figure 14: Mark—correlation for the pairwise model with Rayleigh(1) distribuaeli and inten-
sity before thinning 0.115. See Example 8.5.
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Figure 15: Mark—correlation for the global model with Rayleigh(1) distribugetiimand intensity
before thinning 0.5. See Example 8.5.
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9 Inclusions in cast iron

The models were originally inspired by images of inclusimnsast iron such as the image
in Figure 16 by Stefano Beretta (private communication). fithef the models will be
examined by using the estimated intensity after thinnirgyestimated radius distribution
after thinning to find the intensity and radius distributiogfore thinning in the models
and then checking if the pair—correlation looks similar floe images and the models.
Inclusions are important in metal fatigue and in partictiber metal is weak were several
inclusions occur close, therefore it is reasonable to useé#r—correlation or the mark—
correlation as a judge of the model fit.
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Figure 16: Image of cast iron.

The data set consists of about 1200 images of size appraiynd260 times 950
microns corresponding to 768 times 576 pixels. They arenmgeneous and it is not
realistic to fit one stationary model to them all. Examiningufe 16 there seems to be a
region across the image consisting of large inclusionsosuded by smaller inclusions.
Furthermore, Figure 17 shows a histogram of the number oftpanr 61 images of sepa-
rate areas of the same sample. As a comparison the 5th pkyeard 95 percentile of a
Poisson process with mean 241, the mean of the histograrigisrd 267 respectively,
which strengthens the inhomogeneities observed by the Bgeause of the inhomo-
geneities we only pick two of the images, fit the models to essgarately and see if the
models are good. The inclusions are assumed to be circudaniim this idealisation the
two images chosen look as in Figure 18. The estimated paielation is shown in Figure
19. The estimator we used for the pair—correlation, seexamgle [16] or [6], is

(T — 1% — ;1)
a(r) = nmzzz W AW |

i=1 j=i+1
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Figure 17: Histogram of the number of points in 61 equally sized images of omgesa

where is the intensity estimateq, ..., X, are the centre points of the inclusioNs, is
the sample window translated yandk; is the Epanéikov kernel

ko(U) = {4% (1— (E)z) if u/b < 1,

0 otherwise

The bandwidthb was 0.2 divided by the intensity. The left sample in Figures@¢@ms
to have pair—correlation over 1 for quite short distances.nave seen similar behaviour
in both the global and the pairwise model, but more pronodiricethe pairwise model,
suggesting that it will fit better.

From the images the intensity and the radius distributiorevestimated. The radius
distribution were assumed to be of gamma type since it is &feedistribution and gave
a quite good fit according to a quantile plot with the only rgagon that the minimal
radius in the images were determined by the resolution. elémeradius distribution in
the images did not start at zero but at 2.95 microns. Thislenolis not thought to have a
large impact on the estimation. Once the radius distriloudilod intensity were estimated,
the intensity before thinning and the radius distributi@fidoe thinning were calculated
by an iteration procedure described in [4], with the assionghat the weight distribution
is independent of the radii. The intensity after thinningha left image in Figure 18 was
1.61- 10* and the calculated intensity before thinning wa312 10~* for the pairwise
model and 215- 10~* for the global model. The intensity after thinning in thehtigmage
in Figure 18 was A1- 10* and the calculated intensity before thinning wa493 10-*
for the pairwise model and®4- 10~ for the global model. Previously we have seen that
the pairwise model have twoftierent behaviours for the same starting intensity. It does
not seem to be the case that we can get tvii@dint behaviours when calculating in the
other direction.
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Figure 18: Two examples of inclusions in cast iron when the inclusions anenasisto be circular.

AN
e
¢
§

o
3 [
T

Pair—correlation
o
o

0.4

0.2

100 150
Distance

0 50

(@)

200

250

Pair-correlation

50

100

Distance

(b)

150

200 250

Figure 19: The estimated pair—correlation of the examples in Figure 18.

Now it is possible to numerically compute the theoreticat-parrelations for the fit-
ted models, but due to the fluctuations in the estimated airelation function it might
be more informative to simulate and estimate the pair—tadrom from simulations. Sim-
ulations of both models were made using the estimated imyesusd radius distribution
before thinning. From each of 1000 simulations the pairetation was estimated and
for each value of the distance the 97.5 percentile and thp&&entile were estimated.
Figure 20 shows the estimated pair—correlation for the anagng with a 95% enve-
lope from simulations of the pairwise model. Figure 21 isiEmbut the envelopes are
computed for the global model.

For the left image the pair-correlation is well outside timgedope for both the pair-
wise and the global model. For the right image the pair—¢tatios is within the envelopes
which might indicate that at least in terms of the pair—datren function the models are
appropriate. Both models seem to behave alike in this cantElxé possibility for the
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Figure 20: Estimated pair—correlation for the images in Figure 18 with approxim#teagelopes
from 1000 simulations of the pairwise model.

[
T
-

Pair-correlation
o o o
S (=] ©
: T T

o
)
T

Pair-correlation

o
o

o

o

o
IS

o
N

H
5
;
~ N ‘\\‘
D]
,/
L
\ r\\
) ! (
C
J /)
-~
‘\\\
|
Il
|
-
5
)
1
]
{
1
\
1
)
1
1
1
\
1
il
1

o
o

. . . . . . . .
50 100 150 200 250 0 50 100 150 200 250
Distance Distance

o

(a) (b)
Figure 21: Estimated pair—correlation for the images in Figure 18 with approxim#te&gelopes
from 1000 simulations of the global model.

pairwise model to have pair—correlation clearly above aresbme distances does not
show here, possibly since that phenomenon shows for spaisegatterns. The conclu-
sion is that the two models are not flexible enough to be ableatalle all the images
of the inclusions. There might be some hope in using the nsoaih weight distribu-
tion depending on radius, but it seems hard to choose a rablsodependence. More
promising is probably to use an inhomogeneous Poisson gsdoe the points before
thinning since the images are clearly inhomogeneous. Thpd&—correlation in Figure
19 have several humps which might be due to inhomogenettibe &ind that inclusions
of roughly the same size occur in the same region. One cofigtrithat we applied is the
use of the gamma distribution for the radius. Instead ailigion free estimation could
be performed, but it would probably not influence the resulish. The mark—correlation
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could have been an additional tool in assessing the fit, boedhe pair-correlation did
not show a good fit, it was not used at this point.

10 Concluding remarks

We have considered the second-order product density anddhe-correlation function
for two models of non-overlapping grains. In simple casas fiossible to get explicit
results and in general we get integrals that need to be esdchumerically. It is an ad-
vantage of these models that they allow easy computatidregitoduct density compared
to many other models of non-overlapping grains found inditiere. Other measures, es-
pecially the K—function is commonly used to describe th@admrder behaviour of point
processes. It is possible to calculate the K—function fromgair—correlation function.
The mark—correlation and the pair—correlation looks varylar for these two models but
that is generally not the case for other marked point pr&sess

The models are used in an example with inclusion data whappiéared that the data
was too inhomogeneous for a good fit. It would be interestinggyt using an inhomo-
geneous Poisson process as the point process before thirinithat case the results for
the pairwise and global models would need to be recalculéttethy also be worthwhile
to study the behaviour of the models withtdrent kinds of dependence of the weights
on the radii. The most general result in this paper concesngex grains with the same
orientation. It is not hard to generalise further to allowrfandom orientations.
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A Areas and volumes for some convex sets

A.1 Sphere

d | la(Ba(x.r))  la(Ba(x, h) N By(x+r,h))
nr? 2h? arccoszrﬁ - % 4h2 —r2
3| 438 4/37rr3(1 -3 ()

92(r, r1,12) = 12(Ba(X, r1) N Ba(X +1,12))

2 2 2 2 2 2

r2+r2—r r2+r2—r

= rarccod ———2| + raarccoy ——>—1
2rry 2115

1
- 2p2 2¢2 2¢2 _ ph_ ¢4 _ 4
2\/Zr rT+2rr; +2r7r5 —r4—ry—r;

A.2 Ellipse

e
——

cr) = {(x, E ()F()z s (%)z <1,0<q< 1}

12(C(r)) = 7qr?

1,(C(r) @ C(r)) = 1,(C(2r)) = 4rqr?

The area of the intersection of two ellipses where the cesftthe second ellipse is
translated bys = (Xs, Ys) from the centre of the first is

12(C(r) N C(r)s) = ql2(Ba(X, 1) N Ba(X+ /32 + (Ys/Q)% 1))

L([C(r) ® C(r)] N [C(r)s® C(N)])
= q 12(B2(x, 2r) N Ba(X + /X4 + (ys/0)2 2r))
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A.3 Square

c(r) = {(x,y) o1/ V2<xy< r/\/i}.

The area of the intersection of two squares where the cefhtleesecond square is
translated bys = (Xs, ys) from the centre of the firstis

|2(C(r) N C(r)s) = |\/§r - Xs| : | \/ér - ys|-

L(IC(r) @ C(N] N [Cs(r) @ C(1)]) = 12V2r — x4 -[2V2r -y
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The volume fraction of a non—overlapping
germ—grain model

Jenny Andersson, Olle Haggstrom and Marianne Mansson

Abstract

We discuss the volume fraction of a model of non—overlapping convex giains
is obtained from thinning a Poisson process where each point has a \ae)hd
the centre of a grain, by removing any grain that is overlapped by oneggrlar
equal weight. In the limit as the intensity of the Poisson process tends to infinity, the
model can be identified with the intact grains in the dead leaves model if the weights
are independent of the grain sizes. In this case we can show that tmeevfylction
is at most 129 for d = 1 or 2 if the shape is fixed, but the size and the orientation
are random. The upper bound is achieved for centrally symmetric sets séhe
size and orientation. For generhve can show the upper bound;2t, for spherical
grains with two—point radius distribution. If dependence between weightae is
allowed, it is possible to achieve a volume fraction arbitrarily close to one.

1 Introduction

The model considered in this paper is a nhon—overlapping -ggm@mn model, which is a
generalisation of one of Matérns hard—core models in [6].d$ wroposed by Mansson
and Rudemo in [5]. The model is constructed by generating ssBoiprocess iR and
letting each point be the centre of a grain. The sizes anchtatiens of the grains are
random and each grain is given a weight which may depend miziis The process is
thinned by rejecting any grain that intersects with anotirain that has equal or higher
weight. In [5] the intensity and size distribution of the ijaafter thinning for this model
were given. Furthermore, the asymptotic value of the voldiraetion as the intensity
before thinning tends to infinity was derived in the case addisized grains. One result
is that centrally symmetric sets of equal size give the vadiraction 729

The aim of the present paper is to study the asymptotic volireration, namely if
fixed-sized grains give the highest volume fraction in theecehere the weights are
independent of the grain size and if it is possible to choosmghts so that the volume
fraction can become arbitrarily close to 1. We believe thaf 1s an upper limit for the
volume fraction irR® for anyd if the weights are independent of the grain sizes. However
we can only show it in general fat = 1 or 2 and for spherical grains with two—point
distribution for anyd. Furthermore, we show that it is possible to achieve a volume
fraction arbitrarily close to one by a particular choice aflius distribution and weights
depending on the radii.

If the weight distribution is continuous and the intensiynds to infinity, the grains
kept in our model are the same as the intact grains in Mathesad leaves model,



[7]. It can be defined as follows. Consider a stationary Paiggocesg(x;, t;)} with unit
intensity inRY x (—c0,0]. Interprett; as the arrival time of the point € RY. Let d—
dimensional, possibly random, compact grains be implaatede pointsg sequentially
in time, so that a new grain deletes portions of the “olde@snAt timet = 0 the space
RY is completely occupied, and the grains which are not corapyieteleted constitute a
tessellation oRY.

The grains which are intact, that is not intersected by at®r Igrains, constitute a
model of non-intersecting grains. The intact grains can bks considered as the limit
of the generalisation of Matérn’s hard-core model underysheate. Let the weights be
continuously distributed on-o, 0], independent of each other and of the radii. Then the
weights can be identified with the time coordinate in the dpson of the dead leaves
model given above. The connection between Matérn’s hared-oaydel and the dead
leaves model in the case of fixed-sized spheres was notedoggrSand Schlater [10].
The dead leaves model and generalisations of it, for instéme colour dead leaves, are
studied in a number of papers by Jeulin, see e.g. [4]. Resnlth@intensity and size
distribution of the intact grains can be found in [3].

When the intensity of the Poisson process tends to infinitytlaadrains are spherical
an alternative formulation of our model, which is relatedhe description of the dead
leaves model above, can be found in [2]. Consided & {)—dimensional spade® x R*
whereR* is a time dimension. Each pointin a Poisson process in thisesis the centre of
a sphere irRY which is tried to be added to the model and the final coordirepieesents
the time of the trial. A sphere has radiid&) at timet. A sphere is not added if it overlaps
with any sphere with smaller value bfegardless of whether this sphere was rejected or
not. The only diference from the formulation in [5] is that the sizes of theesph are not
random. Large times corresponds to small weights in our irenate the functiorR(t) is
similar to weights depending deterministically on the uadi

Obviously volume fraction one is impossible to achieve. ldeer, Gilbert, [2], proves
that the volume fraction can be made arbitrarily close tolpnehoosing the functioR(t)
carefully. One choice is

R(t) = (1 + —a(d'A* t

wherea andA > 0 are constants and < 1. Volume fractions close to one are achievable
if A and|al are small. Ifais negative, in additior\/|a] needs to be large. Here we will
give an alternative proof of the achievability of volumedtians close to one, based on
a “separation of size” argument somewhat reminiscent ofctirestruction of Meester,
Roy and Sarkar, [8], to demonstrate the nonuniversalityit€af volume fractions in the
so—called Boolean model of continuum percolation.

The paper is outlined as follows. In Section 2 we give a dediadlescription of the
model with spherical grains and show that it is stochagyitatreasing in the intensity of
the Poisson process if the weight distribution is indepahdgthe radius. In Section 3 we
discuss the volume fraction when the intensity of the Poigsocess tends to infinity and
the weight distribution is independent of the radius. Oteraktive proof that the volume
fraction can be made arbitratily close to one if the weighbtrihution is dependent of the
radius is given in Section 4. The use of more general convexisglace of spheres is
considered in Section 5.

1/(d+a)
), (1.2)



2 Model

For simplicity we give the description of the model for spbakgrains, but the generali-
sation to convex grains is obvious. In Section 5 we give thatarpart to (2.2) for convex
grains. The model is constructed by thinning a marked Poigsocess, also known as
a Boolean model, with proposal intensity, in R%. Each point in the Poisson process is
given two marks. One of the marks is the radius of a sphereextat the point and the
other mark is a weight that is allowed to depend on the radfasnts are assigned radii
independently and according to a proposal radius distabu,,. The radii are indepen-
dent of the point process. Weights are also assigned indepéy of the point process
but to stress the possible dependence on radius, the wasgfitbation is denotedry,. A
point is kept in the thinning only if its sphere is not intert® by any other sphere with
equal or higher weight. Note that the radii of the spheresiar®nger independent after
thinning. One way of quantifying the dependence is by thekraorrelation function, see
[1]. Some further notation is needed. Lgtbe the volume of the unit sphere tf and
defineF(x) = P(X > x) for a random variabl&X with distribution functionF.

In Sections 3 and 4 we will need some properties of the modiehgpily the volume
fractionp. For a stationary model with intensifiyand non-overlapping grains of random
size it can be written as the intensity times the mean voluhaetypical grainv, that is

p = AV (2.2)

One useful property is the probability that a randomly cihgseint with radiug is kept
when thinning, henceforth called the retention probabiithich from [5] is

o(r) = fo exp{—aprkd fo F‘W.y(w)(r+y)der(dy)} o (). (2.2)

Also from [5] the intensity after thinning is

A=Ay fom g(r)Fpr(dr) (2.3)

and the distribution function of the radius of a randomly stosphere after thinning is

Aor [
F(r):l—Tpfr 9(9F pr(ds). (2.4)

In the following we will mostly be concerned with the case witke intensity of the
Poisson process tends to infinity. When the weight distrouis independent of radius,
the intensity and the volume fraction after thinning aréc#yr increasing as functions
of the intensity before thinning. In fact the process is @aging in the intensity before
thinning as can be seen in the following theorem.

Theorem 2.1 Consider the model with continuous weight distribution inaejeat of the
radii and letd; < A,. Let X be the union of the resulting spherestgr= 1, and let Y be
the union of the resulting spheres fo, = A,. Then X is stochastically dominated by Y.



Proof. We prove the theorem by a coupling argument. Take a Poissmes ifRY with
intensityA, and give each point independently a radius with distrilbuig,. Furthermore
give each point a weight that is uniform,(@). Let Y consist of the spheres that are
left when the thinning is performed. This process has theesdistribution asy. In the
Poisson process, consider only those spheres that havete/gighe interval {o — A1, 15).
The intensity of this process.s and the radius distribution is st because the weights
are independent of the radii. Carry out the thinning and ¢l resulting process of
sphere«. It has the same distribution s A sphere before thinning with weight greater
than or equal tol, — A; will belong to Y if and only if it belongs toX. A sphere with
weight 1, — 2; will only be contained iY. We have shown

XcY
and henceX is stochastically dominated by ]

The condition that the weight distribution is continuousnecessary in the argument
above.

Example 2.1. Let the spheres have equal radiiand let the weights be constant. Then
all spheres will be removed except those that do not intevgiélec any other sphere. The
intensity after thinning is by using (2.2) and (2.3)

The intensity after thinning is at most(kq29rde) for A, = 1/(k42%r¢) and it tends to zero
asAp tends to infinity. |

If the weights are continuous but depend on the radii, thegs® is not necessarily in-
creasing.

Example 2.2. Let the radii take value 1 aa with probabilitiesp andq = 1 — p respec-
tively. Let the weight distribution be uniform in (@) given radius 1 and let it be uniform
in (1, 2) given radius. Then the intensity, by (2.2) and (2.3), is

1 - exp( — Aprka2%a’q)
ad '

1
~d exp( — /lerd(l + a)dq)(l - eXp(—/lerdZd p) +
Kd2

When A, tends to infinityA tends to ¥(xs2%a). Letd = 2,a = 2 andp = q = 1/2,
then numerical inspection shows that the intensity has maxi approximately 027 for
Apr = 0.088. The value oft asa,, tends to infinity is 1(16r) ~ 0.020. |

Theorem 2.1 implies that the process exists in the limifi@stends to infinity. If the
weights are allowed to depend on the radii, the limit procksss not necessarily exist.

Example 2.3. Suppose we have a model with twdfdrent radii of the spheres, 1 and 2,
with probabilities 2 each. LeiN be large,N = 100 say, and let the weight of a sphere

of radius 1 be uniform in
© N2i -1 N2i+1 -1
U( N2 ° N2+ )

i=0




and let the weight of a sphere of radius 2 be uniform in

© N2i+1 -1 N2i+2 -1
U( N2i+1 ’ N2i+2 )
i=0

The limit process is not well defined since s — oo the process will fluctuate between
consisting mostly of spheres of radius 1 and consisting Ino§spheres of radius 2.0

3 Volume fraction for the spherical case if the
weight distribution is independent of the radius

In this section we will consider the case where the weightibigion is continuous and
independent of the radii antl, — co. As noted earlier the model then coincides with
the intact grains of the dead leaves model. We will show tiatdrgest volume fraction
achievable is that of the process with all radii being equrethat case the volume fraction,
as shown in [5], is Z.

Theorem 3.1 If the weight distribution is continuous and independenthaf tadii and
Apr — oo, then, forRY with d = 1 or 2, the volume fraction is at most

1
?a

with equality if and only if the spheres have equal radii.

Proof. First we need to find an expression for the volume fractiooni=¢2.2) the reten-
tion probability for fixedr, whenA,, is the intensity of the Poisson process, is

1- exﬂ_/lerdE[(r + Y)d]}
ﬁerdE[(r + Y)d] ’

a(r) =
whereY has distributior,. By (2.4), the expectation ¢ is

BIR =2 [ g

and hence the volume fraction is by (2.1),

o1 _ d
o= f g1 — expl—=ApkqE[(r +Y) ]}Fpr(dr).
0

E[(r + Y)9]

Letting the intensity tend to infinity gives

. 0 rd
A!)lrr_(‘oop=f0 mer(df) (3.1)

r
r+EY

If d = 1 the function




Is concave and we can use Jensen’s inequality to deduce

N ¢ EY 1
—Fp(dr) £ =——— ==.
_ﬁ ey S ETEY T2
We have equality above only if the radius is constant, sirtberavise the function is
strictly convex.
If d = 2 the function ,
r
f(r) =
") r2+ 2rEY + EY?
IS not concave but it can be shown to lie below a tangent pgsksnough the origin. Let
u = EY andy = EY? and the equation for the tangent is

r
t(r) = —20” Nk

The diference between the tangent and the curve is

((r — V9
2+ V(2 +2ru+y)

t(r)— f(r) =

Hencet(r) — f(r) > 0 and

jo‘ mer(dr) = fc; mer(dr) = m < r

where in the last inequality we used> u2. Since equality holds only for fixed radius,
the volume fraction is M only if that is the case. ]

We cannot prove that the upper bound of the volume fractidria$ for generald. In
fact the method used in the proof above gives an upper bourttidosolume fraction in
d = 3 as 427. This can be seen by considering the function

r3
"= v
SinceEY? > (EY)? for Y > 0 we have
r3
f(r) < m

As before this function lies below a tangent that passesugirahe origin. The equation

of the tangent is
4r

2%
Proposition 3.2 For a two point radius distribution and continuous weight distition

independent of the radius ik? and Apr — oo, the volume fraction is at mogy2¢. The
upper bound is achieved only if the radius is fixed.



Proof. Let the radius take value 1 with probabilityand valuea with probability q =
1 - p. From (3.1) the volume fraction as the intensity of the Paigsmcess tends to
infinity is
_ p a'q
P = 2p+ (1+a)dq " (1+a)p+ 29aq
Rewriting with a common divisor gives,

_ (1+a)%p? + 2% alpg + (1 + a)%c?
P~ @p+ (1+a)ig)((1+a)0p+ 2atg)’

By subtracting the volume fraction frony2 we have

1 ~ (1 +a)® - 229a%)pq
20 P T 2dp+ (1+a)dg)(1+ a)p + 29adqg)’

It is easy to see that = 1 is a root to (& a)>? — 229a¢ = 0. It is actually a double root and
by some tedious manipulation using binomial expansions;amewrite

1 (@ 2Ppa S Th o S (F)a P + £ S0 S (F)a)

2d (29p + (1 + a)9g)((1 + a)dp + 29adq) ’

which is clearly O only fola = 1 and positive otherwise. ]

Proposition 3.2 gives an indication that Theorem 3.1 holdsifiyd. Hence we state
the following conjecture.

Conjecture 3.3 If the weight distribution is continuous and independenthefriadii and
Apr = o0, then inRY for any d, the volume fraction is at most

2d°

attained by spheres of equal radius.

4 Volume fraction if the weight distribution
depends on the radius

As can be seen in the Introduction, Gilbert [2], showed thatwolume fraction can be
made arbitrarily close to one by choosing the right functrft). This is similar in our
view to let the weight distribution depend deterministigan the radius. We will make
an alternative proof of this fact. The idea is the same in ettirg) as in Gilberts, namely
letting the functiorR(t) decrease in such a way that not much space is wasted. InrGilbe
caseR(t), see (1.1), is continuous while we have discrete radii.

Theorem 4.1 If the weight distribution is independent of the radius, itpisssible to
achieve a volume fraction arbitrarily close to 11tf for any d.



Proof. The theorem will be proved by considering a model with sphéiring discrete
radius distribution withk possible values. The weight will be proportional to the uadi
of the sphere. The idea is to let each size of spheres héveiantly low intensity so that
they do not overlap spheres of the same size and to let srapheres be so much smaller
that not much space is wasted if they overlap partially wikarger sphere.

Fix smalla > 0 ands > 0. Below we will show that we can achieve a volume fraction
of at least

1 - axg(3? - 1) - 26. (4.2)

The volume fraction can be made arbitrarily close to one lakipg @ andé small. Let
the radius of a sphere before thinning take value €~ with probability p; = Ai/Apr, 1 =
1,...,k, whereA, is the intensity of the Poisson process. Thinkof 0 as being small
andk large. Let the weight of a sphere with radiube uniform (¢_1+r;)/2, (ri +ri;1)/2).
The intensity of spheres of radiusis A; before thinning.

The volume fraction after thinning is the same as the prdibalthat the origin is
covered after thinning and can be written

p =1—P(The origin is not covered after thinning)
=1 - P(The origin is not covered before thinning) (4.2)
— P(All spheres covering the origin are deleted)

The number of spheres with radiyghat covers the origin before thinning is Poisson
distributed with expectationikdrid and hence

k
E[# spheres covering the origin before thinniﬁg]Z: Kar9A;.
i

Letting 4 = «/r? the expectation becomésya. Pickk large enough so that
P(The origin is not covered before thinning)exp(-kkqa) < 6. (4.3)

To obtain the probability that all spheres covering the ioraye deleted we assume
that at least one sphere covers the origin before thinniegthe largest of all such spheres
be denoted. In case several spheres having the same radius cover gjire we letB be
the one with highest weight. B has radiug;, a centre of a sphere with higher weight
thanB, having radius; > r;, that intersect® must be separated by at least a distance of
rj from the origin, otherwise we get a contradiction of the deén of B. On the other
hand, the centre dB is at most a distance from the origin and hence the centre of a
sphere with radius; overlappingB cannot be further away from the origin than 2 r;.
Now we can get an upper bound for the probability that all spheovering the origin are
deleted by

P(All spheres covering the origin are deleted)
< P(A sphere with radius larger than or equalt@verlapsB)
< E[# spheres with radius larger than or equat;toverlappingB]

< ZE
=1

# spheres with radiug and center at
distance between) and 2; + r; from the origin '
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The number of spheres with radiusis Poisson distributed and
P(All spheres covering the origin are deleted)
i i
=) Ajka((@ri + )7 = 1) = 3" akg((267 + 1) - 1)
j=1 j=1
i-1

= akg(3* — 1) + akg Z (L+ 26714 - 1).
=1

(4.4)

We can choose a smalisuch that, for all simultaneously,
Ky Z (L+2€71)-1) <.
ji=1

Insert this estimation of (4.4) together with (4.3) in (4a2d we have shown (4.1). =

5 Convex grains

In our model we may replace the spheres with convex setdtefent sizes. We introduce
a minimum of notation to prove a counterpart to Theorem 3dLrafer to [5] for a more
detailed description.

We begin with some definitions. Firdd(A), denotes the diameter of a set A, that is

D(A) = supl|x -yl

X,yeA

We let half the diameter be called the size. Cétbe the set of all convex, compact sets
C in RY such that the origin belongs @andD(C)/2 = 1. Moreover letC(x, r) be the set
C translated by and with half its diameter equal toand letC = {-x : x € C} be the
reflection ofC in the origin. Finally we denote the Lebesgue measurkdimensions by
lg.

In the following we will only consideiR? andC € C?. Replacinge(r + y)? in (2.2)
with I,({x : C(o,r) N C(x,y) # 0}) gives the retention probability for convex sets with the
same shape and orientation@sLet v(C, C) be the mixed volume of andC, then

L({x: C(0,r) N C(x,y) £ 0}) = (r> + Y)I5(C) + 2ryv(C, C).

If the sets are uniformly rotated about the origin, the@ + y)? should be replaced by
E[l,({x : C(o,r) n mC(x,y) # 0})], wherem is a rotation matrix, i.e. orthogonal with
determinant 1, and the expectation is taken with respechtangle of rotation that is
uniform (Q 2r). Let S;(C) be the perimeter o, then by the generalised Steiner formula

ryS:(C)>?

E[l,({x : C(0,r) n mC(x,y) # 0})] = (r*> + y?)I-(C) + T

Just as in the spherical case the maximal volume fractioleaat inR?, is given by
grains of equal size.



Proposition 5.1 Let the grains be convex of the same shape a2 and let the weight
distribution be continuous and independent of the size gFains of the same orientation
and whem, — oo, the volume fraction is at most

12(C)
2(2(C) +v(C,C))

For grains of random orientation and whel, — oo, the volume fraction is at most

12(C)
205(C) + S1(C)?/(2n)

In both cases the upper bound is attained if and only if alldgregns have the same size.

Proof. The volume fraction ad,, — o is deduced similar to (3.1). For convex sets of
the same orientation we have volume fraction

- r2l,(C)
_ Fpr(dr),
p j; fow (r2 +Y?)I5(C) + 2ryv(C, CE))':pr(dY) 0

and for uniformly rotated convex sets we have volume fractio

* r2l,(C)
rot = 2 F r d .
P L fooo ((r2 +y2)I,(C) + %)Fpr(dy) il

In both cases we take the expectation of a function that cavritten as
r2
r’+ar+b’

for some positive constangsandb. The result is shown exactly as for the= 2 case in
the proof of Theorem 3.1. ]

In two dimensions it is well-known that for convéx
1,(C) < ¥(C,C) < 21,(C)

with equality to the left if and only i€ is centrally symmetric and to the right if and only if
Cis atriangle. No convex set has a larger perimeter relabivis area than a circle, more
preciselyS;(C)? > 1,(C)4r. By these bounds and Proposition 5.1 it follows that among
all dead leaves models with convex grains of equal shapel Gxeniformly distributed
orientations, and independent random radii, the highdsnwe fraction results for fixed-
sized centrally symmetric sets of equal orientation. Is tase the volume fraction ig4

if d = 2 and we believe that the boung?t holds in any dimension. Finally, we generalise
Conjecture 3.3 to hold among convex grains of fixed or randoentation and the upper
bound is achieved for centrally symmetric sets of fixed size.
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