
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Case studies in
omniparametric simulation

FREDRIK LUNDIN

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
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Abstract

In the field of particle systems and growths models simulation is an im-
portant tool. When explicit calculations are too complex or impossible
to perform we may use simulations instead. We adapt a new technique
here denoted omniparametric simulation, to the two-type Richardson,
Ising and Potts models. Omniparametric means simulating for all pa-
rameter values at the same time giving us something else than ordinary
samples, but by fixingthe parameter value we can always retrieve an
ordinary sample. We use only one dimensional parameters, so for the
random cluster and Potts models we fix q at some value and consider
it known. For the two-type Richardson model we use symmetry and
rescale time to eliminate one of the two parameters.

We study We study asymmetric simultaneous survival for the two-
type Richardson model using omniparametric simulations. The belief
is that if both types are equally strong the can survive for all times but
if one type is stronger than the other this can not happen. We do not
find any indication of the existence of so called exceptional values < 1
where simultaneous survival may be possible.. We develop a simple
test procedure to see how strong the indications against exceptional
values are and also which exceptional values tests may rule out, and
also consider how large subsets of Z

2 we must use.
For the Ising and Potts models we use omniparametric simulations

to find smooth estimates of functions for model characteristics such as
connection probabilities and susceptbility. The characteristics are then
used for parameter estimation, we construct both point estimate and
confidence intervals. Based on partial observations we develop three
methods, two using asymptotic theory, and on non-asymptotic. The
method for constructing point estimate are the same for all three ap-
proaches, the difference lies in ho we capture the variance of the statis-
tic. We perform extensive testing of the methods and elaborate some on
the difference between the model used in simulations and the experi-
enced from data.

iii



Keywords: growth model, Ising model, Markov chain, omnithermal
simulation, omniparametric simulation, percolation, Potts model, pa-
rameter estimation, partially observations, random cluster model, Richard-
son model, simulation driven parameter estimation, twp-type Richard-
son model

MSC 2000 subject classifications : 60C35, 60F05, 60J25, 62F10,
62F12, 62F25, 62F40, 62M05, 62M30, 65K35, 82B20, 82B27, 82B43,
82C22

iv



Preface

The thesis

My studies as a graduate student are mainly focused on simulations
and the technique for doing simulations for all parameter values of a
model at the same time, so called omniparametric simulation. This
thesis presents work from two projects. Project one concerns the om-
niparametric simulation for the two-type Richardson model and was
introduced to me around Christmas 2000. The second project, concern-
ing parameter estimation in the Ising and Potts models was presented to
me just before defending my licentiate thesis in late spring 2003. Both
projects originate from my supervisor, professor Olle Häggström.
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Part I

Omniparametric
simulation
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CHAPTER 1

Introduction

Stochastic models may be simple to formulate, and natural questions
may come easily to mind. Strikingly often these questions are, when
formulated into theorems, as hard to give an exact answer to as they
are easily formulated. Models in the field of statistical physics are a par-
ticular case in point, as are stochastic growth models. When analysing
these models we have at our disposal a number of theorems, often giv-
ing us information about the asymptotic case, when time, or space in
terms of finite regions, tends to infinity. In real world applications how-
ever, we deal with finite models and the asymptotic results have to be
complemented by such things as convergence rates and estimation of
approximation errors. When no results are available we may turn to
simulations trying to extract some behaviour from the output of our
computer programs.

When using simulation we traditionally fix all parameter values and
run the simulation. In most cases this is no problem, but if we are
studying phenomenons like phase transitions or probabilistic behaviour
at a certain critical parameter value we may be in trouble. Perhaps the
finite set of possible parameter values we can use in a simulation does
not cover the interesting parameter values of a certain model. A rather
new technique, omniparametric simulation, enables us to simulate a
model for all parameter values at the same time, even if the parameter
set is uncountable.
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CHAPTER 1. INTRODUCTION

Before introducing necessary terminology and notation, let us for a
while focus on the treatment of parameters and also on the more general
aspects of omniparametric simulation.

1.1 Fixed parameter simulation

A mathematical model has a number of parameters, for example
temperature or infection rate, or both. Traditionally the simulation is
done for fixed values of these parameters, and inference done based on
the simulation results. Results for such an analysis are valid for the
chosen parameters values only, and rough approximations be means
of interpolations between the chosen parameter values may or may not
be valid depending on the circumstances. In some cases the general
behaviour of the model is the same for all parameters values, in other
cases not. With this approach models with a continuous parameter
space can only be simulated for a finite number of parameter values.
Hopefully these parameter values are spread throughout the parameter
space, or at least over interesting regions.

The approach poses no problem if the model has a nice behaviour
over the represented parameter space, and if any interesting behaviour
can be detected by using parameter values in that set.

Let us for the moment focus on the simulation of particle systems
like independent bond percolation or the Ising and Potts models. These
models changes their behaviour if the parameter values are changed,
in some cases quite drastically. This dramatic change in behaviour is
called a phase transition, and the different regimes for the models are
called phases. Different phases have different probabilistic behaviour,
sometimes expressed by the existence of multiple probability measures.

The parameter range for different phases however small they are in
the parameter space, may consist of a continuous set of values, and can
then be detected by a proper choice of parameter values. However if the
model has a different phase for a single parameter value this can not
easily be detected. Let us call such values of the parameter exceptional
values. If this set of exceptional values is unknown it may or may not
be possible to detect by means of ordinary fixed parameter simulation.
For known exceptional values the problem is reduced to the problem of
representing these parameter values in the computer.

The problem with exceptional values occurs when they are not known,
and we want to use computer simulations to find them or indications of
their existence. We can not by increasing the set of simulated param-
eter values hope to find exceptional behaviour, since any continuous
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1.2. OMNIPARAMETRIC SIMULATION

parameter can only be simulated for a finite number of different values
and we will, with probability one, miss the interesting value. The solu-
tion to this problem is to simulate over the entire parameter space at
the same time, thus covering the behaviour of the model over the entire
parameter space in one single sample.

1.2 Omniparametric simulation

The basic idea behind omniparametric simulation is a coupling of
the model over all parameter values in the parameter space. We start
with the concept of coupling, elaborate some on the representation of
omniparametric models, and finish with some historic remarks.

Coupling of processes over the parameter space

This is a brief presentation of the subject, for a general description
of the coupling technique see [Lin92] .

Consider two stochastic processes, X and Y defined on probability
spaces (EX , EX , PX) and (EY , EY , PY ) respectively. A coupling of X and
Y is a probability measure µ on the measurable space (EX×EY , EX×EY )
such that

(i) PY = µ ◦ π−1
X

(ii) PY = µ ◦ π−1
Y

where πX : EX × EY → EX and πY : EX × EY → EY are projections.
This makes the coupling a probability measure on a product space with
prescribed marginals. This definition is given for a pair, but there is
nothing keeping us from performing a coupling of several, sometimes
even an uncountable number of processes simultaneously. Next we
consider a small generic example, stressing the importance of an effec-
tive representation.

Consider a set of 0/1-valued random variables parametrised by a
parameter θ ∈ [0, 1] such that

Xθ
D
= µθ

for all θ. A coupling of all these variables is a measure µ on the prod-
uct space {0, 1}[0,1] such that µθ = µ ◦ π−1

θ , for θ ∈ [0, 1], where πθ is
a projection from {0, 1}[0,1] to {0, 1}. When using the coupling for om-
niparametric simulation we simulate the probability measure µ on the
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CHAPTER 1. INTRODUCTION

space {0, 1}[0,1], and represent a configuration in this space by a parti-
tion (A0, A1) of [0, 1] such that

Xθ =

{
1, θ ∈ A1

0, θ ∈ A0

holds. If we manage to do the coupling in a nice way we can represent
the partition with a single number, a threshold θt , such that A0 = [0, θt]
and A1 = (θt, 1].

The complexity of the representation is especially important when
using an iterative simulation scheme such as the Gibbs sampler. If
we do not keep the complexity of the representation at a constant level
the needed amount of computer memory will exceed all realistic limits,
making the algorithm impossible to use.

1.2.1 Representation levels

Given a class of random variables X = {Xθ : θ ∈ [0, 1]} each having
distribution µθ and the omniparametric variable X and its measure µ
there are different ways of representing X in a simulation.

• Omniparametric measure Given an explicit expression for µ we can
calculate the probability for different values of X directly, and gen-

erate samples (at least in theory) by µ−1(u) where u
D
= U [0, 1].

• Omniparametric random variable Without an expression for µ we
may nevertheless have an algorithm, such as a Gibbs sampler, to
generate X according to the correct distribution. An example is
the omniparametric random cluster model in Section 8.1.

• Indirect representation We may not be able to represent the omni-
parametric variable directly, instead we have some representation
of it, making it possibility to calculate the fixed parameter variable
for any parameter value. An example is the omniparametric Potts
model presented in Section 8.2.

1.2.2 A brief history

The central tool for constructing omniparametric random variables
and simulation algorithms is the coupling. The concept of coupling was
first introduced by Doeblin [Doe38] just before the second world war.
Strassen was the first to introduce probability measures with prescribed
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1.3. BASIC NOTATION AND TERMINOLOGY

marginals in 1965 [Str65] , an important result regarding couplings.
Strassen’s result however involves only two measures which does not
suffice to construct omniparametric variables over infinite parameter
spaces.

To our knowledge the first construction resembling the omnipara-
metric coupling was done by Stepanov in 1970 [Ste70] to study con-
nectedness in Erdös-Renyi random graphs by coupling them over all
paremeter values. In 1991 Higuchi [Hig91] presents what he calls a
level set representation of the ferromagnetic Ising model. It is a coupling
of the Ising ferromagnet over all values of the external field, while the
interaction parameter is kept constant. Higuchi built his construction
on a coupling deviced by Holley [Hol74] a few years after Stepanov’s ar-
ticle. The purpose of Higuchi’s coupling is the study of the percolation
probability as a function of external field. In 1995 Grimmet [Gri95]
used the ideas of Higuchi to introduce a coupling of random cluster
processes for all values of the edge probability, while the parameter re-
lating to cluster size, q, is fixed above 1. Grimmett also makes two notes
about extending the model. The first is to couple the processes for all
parameter values of the two-dimensional parameter making it fully om-
niparametric. The other one is concerned with the fixed parameter q,
letting it take values below 1.

To our knowledge the level set representations of stochastic particle
systems was used for theoretical purposes only until 1996, when Propp
and Wilson published their work [PW96] on perfect simulation using
coupling from the past (CFTP ). They propose an omniparametric simu-
lation algorithm for the random cluster model with q held fixed at some
value ≥ 1 and p as the parameter over which domain simulations are
generated.

1.3 Basic notation and terminology

We treat models living on graphs L
d with vertex set Z

d, and edge set

E
d = {〈x, y〉 : x, y ∈ Z

d, |x − y| = 1}

where

|x| =

d∑

k=1

|xk |, x = (x1, ..., xd) ∈ Z
d

is the usual graph metric on the d-dimensional cubic lattice. When
studying parts of the lattice we will do this in finite boxes, emphasized
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CHAPTER 1. INTRODUCTION

by denoting boxes
B

d
n = (Zd

n, Ed
n)

where
Z

d
n = {x ∈ Z

d : |x| ≤ n}
and

E
d
n = {〈x, y〉 : x, y ∈ Z

d, |x − y| = 1}
is the vertex and edge set respectively. When the number of dimensions
are understood we will omit d from notation and simply write

Bn = (Zn, En)

instead. The boundary of a box Bn is defined as ∂Bn = Bn+1 − Bn.
Apart from this basic notation we introduce new symbols as we pro-

ceed. All used notation is listed in Appendix A starting on page 205.

1.4 Outline of the thesis

In Chapter 2 we present a small percolation exampel illustrating
some advatages of the omniparametric simulation technique when study-
ing connection probabilities. The rest of the thesis is divided into two
parts.

Part II, chapters 3-5, treat the a model for spatial growth and com-
petition known as two-type Richardson model. We introduce the nec-
essary models and construct a coupling for the omniparametric model.
The purpose of this part is to study simultaneous survival of both types
in the two-type Richardson model and the tool is simulations.

Part III, chapter 6-12 which the reader will note makes up the main
bulk of this thesis, treat applications of omniparametric simulation to
parameter estimation in two of the most well-known examples arising
in Gibbsian statistical mechanics: the Ising and Potts models.

For a more detailed description of each part see chapters 3 and 6 on
pages 21 and 57 respectively.
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CHAPTER 2

Percolation example

As a first concrete example, and a kind of warm-up for our more in-
volved simulation algorithms in later chapters, we here consider om-
niparametric simulation of a very simple stochastic system, so called
bond percolation on a special graph.

The idea is the following. We let each edge in the graph be open with
probability p and closed with probability 1− p and study the probability
that there exists a path of open edges between two vertices.

Consider independent bond percolation on the two-dimensional lat-
tice, L

2 = (Z2, E2),

E
2 = {〈x, y〉 : x, y ∈ Z

2, |x − y| = 1}

with parameter p. When the number of dimensions d is understood we
omit that from notation, writing E instead of E

d. Every edge is ”on” with
probability p and ”off” with probability 1−p, independently of each other.
Let Bn = (Zn, En) where

Zn = Z
2 ∩ [−n, n]2 , En = {〈x, y〉 ∈ E : x, y ∈ Zn}

be a finite subgraph of L
2, a so called box or box graph. Also let ∂Bn =

Bn+1 \ Bn be the boundary of Bn (see Figure 2.1).

9



CHAPTER 2. PERCOLATION EXAMPLE

Figure 2.1: The box B2 (white) with its boundary ∂B2 (black).

Generating a sample σσfix is normally carried out using the following
simple scheme.

1. Fix the parameter p ∈ [0, 1].

2. Generate independently for each edge e a random number ue uni-
formly distributed over [0, 1].

3. Assign edge e the value 1 (”on”) if ue ≤ p and 0 (”off”) otherwise. Do
this for all edges in En.

Implicit in this traditional approach is a more powerful idea: couple
the process for all p ∈ [0, 1].

1. Generate independently for each edge a random number ue, uni-
formly distributed over [0, 1], and assign this values to the edge.

This simple assignment give us the omniparametric sample σomni ∈ [0, 1]En.
To generate an ordinary configuration with 0’s and 1’s for a fixed p we
perform step 3 above for all edges.

Corresponding to each σomni is a subgraph of Bn having Zn as vertex
set and {e ∈ En : σfix(e) = 1}, the set of open edges as edge set. The
problem we study below is the connection properties of this subgraph
Bn for larger and larger n. Hopefully we get an estimate of the probability
that two vertices are connected as on Zn as n → ∞. We shall also
examine the difference between the two simulation approaches, both in
results and simulation execution time.

2.1 Connection probabilities

Given two vertices x, y ∈ Z
2 we let {x ↔ y} denote the event that there

is a path of open edges between the two vertices. In graph theoretic

10



2.1. CONNECTION PROBABILITIES

x

y

u v

Figure 2.2: A small rectangle of Z
2, where there is a path between vertices x and

y but not between u and v. When the rectangle is enlarged however there could
be an open path between u and v.

terms they are in the same connected component after we have removed
all ”off” edges from the original graph. The connection probabilities for
different pairs of vertices are often difficult or impossible to treat by
ordinary analysis so simulation is the tool to use. Let

fx,y(p) = Pp(x ↔ y)

be the connection probability for vertices x and y as a function of p. We
will try to estimate it using both omniparametric and fixed parameter
simulation, and see if we gain anything by using the omniparametric
approach. Note that the function is monotone so any estimate f̂x,y(p)
should also be monotone.

As seen in Figure 2.2 the connection probability for a vertex pair
could depend on a large, but finite, number of edges. To see why this is
the case we use the following argument, given any vertices x and y.

If {x ↔ y} happens then there is some finite path between these ver-
tices, on which the event {x ↔ y} depend, thus there exists M < ∞ such
that {x ↔ y} depends only on edges in BM . If {x ↔ y} does not hap-
pen then x and y are located in two disjoint connected components, of
which only one can be infinite since the infinite connected component is
unique (for a proof see [Gri99] ). The smaller one is finite and contained
in some finite box BM making the event {x ↔ y} depend only on edges
in BM . Note that the number M is a random variable depending of x, y
and σfix. From the argument above it follows that M is unbounded but
almost surely finite. During simulation we simulate larger and larger
boxes, and stop when reaching box BM . This process will then termi-
nate with probability one. Weather or not the available computer re-
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CHAPTER 2. PERCOLATION EXAMPLE

ed

e

Figure 2.3: A subset of the grid L
2 (solid) and its dual L

2
d (dashed). For every

edge e in the lattice there is one unique corresponding (and crossing) edge ed in
the dual. Whenever e is ”off” in L

2 its companion ed is ”off” if L
2
d.

sources is enough to simulate the model on BM is a different question,
important though in any application.

A special case

For most pairs we do not know how to calculate these connection
probabilities exactly, but there is one exception. For nearest neighbours
x and y we can, by using the dual L

2
d (see Figure 2.3) of L

2, calculate
P(x ↔ y) in the special case when p = 1/2. For any two vertices x, y ∈ Z

2

let ρ(x, y) denote a path between x and y not containing the edge (x, y),
and let {ρ(x, y) = 1} and {ρ(x, y) = 0} denote the events that this path is
open or closed respectively. Consider two nearest neighbour vertices x
and y, see Figure 2.4. If {x ↔ y} happens the edge (x, y) is either open
or if (x, y) is closed then some path ρ(x, y) is open. If {x 6↔ y} happens
then the edge (x, y) is closed and there exists some closed path ρ(u, v)
in the dual, keeping x and y apart (see Figure 2.4). We express this as
follows.

(i) Pp(x ↔ y) = Pp(e = 1) + Pp(e = 0)Pp( ∃ρ(x, y) : ρ(x, y) = 1 )
(ii) Pp(x 6↔ y) = Pp(ed = 0)Pp( ∃ρ(x, y) : ρ(u, v) = 1 )

For p = 1/2 we have

P1/2( ∃ρ(x, y) : ρ(x, y) = 1 ) = P1/2( ∃ρ(u, v) : ρ(u, v) = 0 )

giving P1/2(x ↔ y) = 3/4. The argument is well known but we have not
been able to trace its roots, and obviously it breaks down for p 6= 1/2.

12
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ed

ρ(x,y)

ρ(u,v)e

v

u

v
x

u
y

Figure 2.4: To the left the edge e is on and x and y are connected. In the right
diagram u and v are connected by a closed path not containing ed. Both e and
therefore ed is ”off” and if the path ρ(u, v) in the dual is closed so there can be no
open path in L

2 connecting x and y.

2.2 A fixed parameter simulation scheme

Let x and y be arbitrary vertices in Z
2. We start the simulation with

a rather small box Bn = [−n, n]2 and see if {x ↔ y} happens or not. If we
can not decide (see Figure 2.5 for an explanation) we increase the box
size and continues. For z ∈ Z

2 let C(z) be the cluster containing z. The
algorithm continues until C(x) = C(y) happens, or if C(x) 6= C(y) until

C(x) ⊆ Bn−1 or C(y) ⊆ Bn−1 , if C(x) 6= C(y)

happens.
Termination is a consequence of uniqueness of the infinite cluster in

the supercritical phase.

2.3 Omniparametric algorithm

The omniparametric simulation algorithm returns, instead of just a
”1” or ”0” for every edge, a threshold pt corresponding to σomni(e) = 1 if
p ≥ pt and σomni(e) = 0 otherwise.

The threshold for any path ρ between two vertices x and y has a
threshold denoted by pt(ρ), equal to the largest edge threshold among
its edges such that the path is open if pt(ρ) ≤ p and closed otherwise.
Let ∆n

x,y be the set of all paths between x and y contained within the
finite box Bn and let

pt(x, y) = inf

(
⋃

n∈N

{pt(ρ) : ρ ∈ ∆n
x,y }

)

13
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x y x y x y?

y

x x

y

x

y

Figure 2.5: On a finite box one out of three events will happen. In the first both
x and y are in the same cluster. In the middle x and y are in different connected
components of which at least one is fully contained in the box. To the right x
and y are contained in different components in the box, but we can not decide
weather or not these components will connect on a larger box, to do this we have
to increase the box size sufficiently.

be the smallest value p for which the event {x ↔ y} occur. For any finite
subset A ⊂ Z

2 we let

pt(x, A) = inf
⋃

y∈A

pt(x, y)

be the smallest p for which there is an open path between x and any of
the vertices in A.

We can now formulate the omniparametric simulation algorithm as
follows. Given x, y ∈ Z

2 we start with a small box Bn and compute
pt(x, y), pt(x, ∂Bn) and pt(y, ∂Bn). If

pt(x, y) ≤ max(pt(x, ∂Bn), pt(y, ∂Bn))

we stop and return pt(x, y), since for any p x and y are either connected
or at least one of them is disconnected from the boundary ∂Bn. If how-
ever

pt(x, y) > max(pt(x, ∂Bn), pt(y, ∂Bn))

we increase the box size with ∆n, recompute pt(x, y), pt(x, ∂Bn+∆n) and
pt(y, ∂Bn+∆n), and check again. This process continues until

pt(x, y) ≤ max(pt(x, ∂Bn+∆n), pt(y, ∂Bn+∆n)).

For fixed parameter simulation, termination is a consequence of
uniqueness of the infinite cluster in the supercritical phase. For the

14
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n
c

t
p (x,B  ) n

cp (y,B  )
t t

p (x,y)0

determined undetermined determined

1

Figure 2.6: The event {x ↔ y} is determined for p < pt(y, ∂Bn+1) since there is
no path between x and y, and at lest on of them is not connected to the boundary
by an open path. For p ≥ pt(x, y) there is an open path between x and y. For
p ∈ [pt(x, ∂Bn+1), pt(x, y)) there there are open paths between both x and y and
the boundary, but no path between them within the box. For p in this interval we
have to look at a larger box to determine the situation.

omniparametric algorithm we need something stronger, namely unique-
ness of the infinite cluster simultaneous for all values of p at the same
time, established by Alexander [Ale95] in 1995.

2.4 Simulation results

We study the probabilities for two connection events, {(0, 0) ↔ (1, 0)}
and {(0, 0) ↔ (5, 0)}. In Figure 2.7 we see the results, the estimated
connection probabilities for both methods.

As expected the curves originating from omniparametric simulations
are monotone, while the others are not. Using ordinary simulation there
is nothing in the algorithm suggesting that the result should be mono-
tone, each batch of simulations (one for each p) is carried out indepen-
dently of all others.

For a certain set of values for p say 0, 0.01, 0.02, ..., 0.99, 1.00 one could
perhaps achieve this by running more simulations, but the problem
itself remain. No matter how many simulations we do, there will always
be possible to find an estimate which is not monotone by dividing the
interval for p into finer and finer intervals.

The omniparametric simulation algorithm however has the mono-
tonicity built in. No matter how small the number of simulations is
the estimated function originating from omniparametric samples will
always be monotone.

There is a large difference in speed. The two simulation techniques
are used to generate 1000 samples for each p. The fixed parameter algo-
rithm does 1000 simulations for every value of p, while the omniparamet-
ric algorithm does a total of 1000 simulation, independent of the number
of values for p.

15
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Figure 2.7: Simulated connection probabilities for events {(0, 0) ↔ (0, 1)} and
{(0, 0) ↔ (0, 5)}. The solid curves are the probabilities estimated by ordinary
simulation (100000 simulations, 1000 for each p) and the dashed curves are es-
timates from omniparametric simulations (1000 simulations). In the left diagram
we see both curves closely approximate the probability P1/2(x ↔ y) = 3/4.
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Figure 2.8: The fixed parameter simulations both suffer from the upper limit of
the box. In some interval around p = 1/2 the curves are only approximated. The
solid line is the approximation when disregarding the aborted simulations. The
upper and lower dashed lines are estimates using all simulations, including the
aborted ones.
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There is a large difference in the total number of simulations we need
to run in order to generate our estimates. The fixed parameter scheme
used a total of 100000 simulations while we used only 1000 for the
omniparametric scheme.

The extra computation for the fixed parameter algorithm becomes
critical when p is in a small interval around its critical value, pc = 1/2.
In this interval we expect large clusters, making both algorithms slow.
Though there is no theoretical difference between the two approaches
there is a practical one. While the omniparametric algorithm may en-
counter large clusters in every simulation, with a certain probability,
the ordinary algorithm has the same probability of suffering from a
slowdown in 1000c simulations, where c is the number of p-values in
a small interval around pc.

Since there is a small probability for the simulations to use larger
boxes than the computer can handled we use a fixed largest box size,
in this case 500. If the event I{x↔y} is not yet determined when reach-
ing this upper limit the simulation is aborted and marked accordingly.
These aborted simulations are later used for getting upper and lower
estimates of the connection probability. None of the omniparametric
simulations did encounter any problems with this limit, while some of
the fixed parameter simulations did. In Figure 2.8 we see how this limit
affects the simulations.

In later chapters, when trying to estimate connection probabilities in
the Ising and Potts models, we will encounter this problem again (see
Section 10.1, page 131).
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The two type Richardson
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CHAPTER 3

Introduction

In this part of the thesis we will take into consideration a certain growth
model, the two-type Richardson model, and address the question re-
garding simultaneous survival as time tends to infinity. This question
has been partially answered so far, and today it is known that simul-
taneous survival can not happen when the infections are not equally
strong, for almost all parameter values. There is however a strong be-
lief that ”almost all” can be replaced by ”all” in this statement. What
remains is to rule out simultaneous survival for a countable set of pa-
rameter values. We use omniparametric simulation and see how far
towards an answer the simulations bring us.

The rest of this part is organised as follows. In Section 3.1 and 3.2
we briefly describe the growth models in use, the Richardson model and
its extension, the two-type Richardson model.

In Chapter 4 we properly introduce the two-type Richardson model
and give some results. We also introduces the omniparametric two-
type Richardson model and describe its relation to the ordinary fixed
parameter model.

Chapter 5 describe simulations. First a theoretical base is estab-
lished, then we do simulations, and finally perform the analysis.
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CHAPTER 3. INTRODUCTION

k inclusions k+1 inclusions
Start configuration Configuration after Configuration after

Figure 3.1: The Richardson model on the square tessellation

3.1 The Richardson model

The Richardson model [Ric73] is a stochastic growth model in d-
dimensions, where d is any finite number. We can think of the volume
on which the models grows as a volume divided into cells. From the
beginning all the cells have the same state, all but one which has a
certain interesting property, for example an infection. When time passes
this infection will spread, as infected cells affect uninfected ones.

In mathematical terms the Richardson model is a Markovian growth
process in continuous time. The infected area grows as infected cells
infect uninfected ones, one by one. The rate by which uninfected cells
are infected is proportional to the number of infected neighbours an
uninfected cell have. Let {Xt}t≥0 denote the state of the infection at
time t and let NR(t) denote the number of infected neighbour cells of
the cell R. For a certain cell R the probability for being infected during
a small time interval [t, t + h] is given by the following

P( R infected at time t + h |R not infected at time t ) = h(1 + o(1))NR(t)

as h ↓ 0 In Figure 3.1 we see a simple example of the Richardson growth
process on the square tessellation. The only difference between the
middle diagram and the right one is an extra infected cell. Instead of
studying the model in continuous space, one could use a graph, replac-
ing cells with nodes and each neighbour relation between two cells with
an edge.

In his article from 1973 Richardson studied and stated a theorem
regarding the shape of the infected region. The result states that as
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3.2. THE TWO-TYPE RICHARDSON MODEL

Figure 3.2: The two-type Richardson model on a small box in Z
2. Initial configu-

ration (left) and configuration after some time (right).

t → ∞ the shape of the infected area tends to some non-random shape.
The question regarding the exact shape remains unanswered.

3.2 The two-type Richardson model

The two-type Richardson model extends the Richardson model by
adding another type of infection. It was introduced by Häggström and
Pemantle [HP98] in 1998 and extended by the same authors [HP00] in
2000.

The process starts with every vertex in Z
d having type zero (white),

except for vertices in a region of type one (grey) and vertices in a region
of type two (black). For theoretical purposes it is enough to let the initial
configuration be the simple one in Figure 3.2 (left) and then study how
that configuration evolves through time.

As time passes each coloured (black or grey) vertex colour its un-
coloured (white) neighbours in a Poisson process with a colour depen-
dent intensity. After being coloured a vertex keeps its colour for all
times. See Section 4.1 for a more precise description of the model.
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CHAPTER 4

The two-type Richardson
model

4.1 Definition

The two-type Richardson model is a growth model on the lattice Z
d

introduced by Häggstrom and Pemantle [HP98] . In this extension of
the ordinary Richardson model [Ric73] two infections are competing
for space and each vertex is infected or not, if infected it has one of two
types.

The process starts at t = 0 with a certain initial configuration, that
is, two disjoint subsets ξ1 and ξ2 of Z

d where all vertices of ξ1 have type
one, and all vertices of ξ2 have type two. The rest of the lattice have type
zero. The model evolves through time as 0’s changes to 1’s or 2’s at
rates depending on the nearest neighbour configuration, while the 1’s
and 2’s do not change at all. Let type one and two have infection rates
λ1 and λ2 respectively. Due to time scaling and symmetry we only need
to study the case when λ1 = 1, and λ2 = λ ∈ [0, 1]. Let us now state this
in a precise manner.

We construct a graph with vertex set Z
d and edge set

E = {〈x, y〉 : x, y ∈ Z
d, |x − y| = 1}
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CHAPTER 4. THE TWO-TYPE RICHARDSON MODEL

Type 1

Type 2

Uninfected

Figure 4.1: The uninfected vertex in the middle changes to type 1 at rate λ1, and
to type 2 at rate 2λ2

where

|x| =

d∑

k=1

|xk|, x = (x1, ...xd) ∈ Z
d

is the metric in Z
d. An element {0, 1, 2}Z

d

is called a configuration and
is an assignment of state 0,1 or 2 to each vertex in Z

d, we denote it by
Ξλ(t). If Ξλ(t) is the configuration at time t with parameter λ we denote
the state of a vertex u ∈ Z

d by Ξλ
u(t). Also let ηλ

1 (t) and ηλ
2 (t) denote

the sets of edges having type one and two respectively. Let the initial
configuration ξ1, ξ2 be defined by

ξi = {v ∈ Z
d : Ξλ

v (0) = i}, i = 1, 2.

The pair (ξ1, ξ2) can be any pair of disjoint finite subsets of Z
d, but for

simplicity we will assume that both are connected subsets of the graph.
The evolution of the model is defined by the infection process. If a

vertex has type one or two it infects all its uninfected neighbours at a
certain type dependent rate, and the probability that such a neighbour
will be infected in a short time interval is proportional to the length of
the interval. If a type zero vertex has k1 type one neighbours and k2

type two neighbours it changes to type one at rate k1λ1, and to type two
at rate k2λ2. Since the parameters λ1 and λ2 do not change over time
we get two homogeneous Poisson processes of infection events for each
edge, one for each direction. We think of these as processes active for
all non-negative times, but events are only interesting when the source
vertex of the edge is infected and the target vertex is not.

To reduce the number of parameters in the model we use time scal-
ing. For infection rates λ1, λ2 suppose λ1 ≥ λ2 and rescale by using
rates

λ′
1 = 1 and λ′

2 =
λ2

λ1
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4.2. BEHAVIOUR AND RESULTS

instead.
Before proceeding with behaviour and results we present a repre-

sentation of the model making it easier to simulate. First we introduce
thinning of Poisson processes.

Consider a homogeneous Poisson process, with intensity λ. If we
let each event occur with probability p, independently of each other, it
is a straightforward calculation to show that the process of remaining
events also is a Poisson process, but with intensity λp. The remaining
process is called the thinned Poisson process.

Assign now independently to all edges two unit rate Poisson pro-
cesses, one for each direction of an infection event, and two sequences
of independent uniformly distributed [0, 1]-random variables. The evolu-
tion of the model is now determined by the sequences of Poisson events
along with the random numbers. At each event one vertex tries to in-
fect another along the common edge. Assume that such an event takes
place at time t, and let t+ be the time just after this event. Also let v
be the infecting vertex and w its victim. If v is infected and w is not the
following happens.

Ξw(t+) =







1, Ξv(t) = 1
2, Ξv(t) = 2, u ≤ λ
0, Ξv(t) = 2, u > λ

where u is the random number associated with this event. If w is in-
fected or v is not, nothing happens. Let P

λ
ξ1,ξ2 denote the probability

measure for the described process.

4.2 Behaviour and results

The remaining part of this chapter is devoted to the study of simulta-
neous survival, that is, the event that both infection types continues to
infect vertices for all times. First we consider the asymptotic behaviour,
then analyse the situation for finite boxes.

Asymptotic properties

Start the process with initial configuration, ξ1 = 0 = {(0, 0, .., 0)} and
ξ2 = 1 = { (1, 0, . . . , 0) }, and let it evolve for all times. There will always be
infected vertices having uninfected ones as neighbours, so the infected
area will get larger and larger and as time tends to infinity the infection
will spread to all vertices of Z

d, leaving no vertex uninfected.
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CHAPTER 4. THE TWO-TYPE RICHARDSON MODEL

We study Ξ(t) as t → ∞. Let G1 denote the event that type one sur-
vives as t → ∞, and define G2 accordingly. In the sequel we will consider
the model for a fixed but arbitrary λ. For simplicity we suppress λ in
notation. There are three possible scenarios.

1. Vertices of type one surrounds all type two vertices, and only type
one grows to infinity. Type one is said to strangle type two, denote
this event G1 \ G2.

2. Type two strangles type one, denoted G2 \ G1.

3. Neither type strangles the other, both types continues to infect
vertices as t → ∞, denoted G1 ∩ G2.

There is always a possibility for type one to strangle type two since it
is the stronger type, and before the region infected by type one has
become too large there is always a possibility for type two to strangle
type one. So both scenario one and two has positive probability as long
as λ > 0. The third scenario is more complicated. If both types survive
to infinity, this reflects some kind of power balance. For the case λ = 1
and d = 2 Häggstrom and Pemantle [HP98] showed that P

1,λ
0,1(G1∩G2) > 0.

During 2005 both Hoffman [Hof05] and Garet and Marchand [GM05]
have extended this result to d ≥ 3 The main theorem in [HP98] states
(Theorem 4.1 below) that for almost all λ we can not have simultaneous
survival of both types in the limit.

Theorem 4.1 Häggstrom-Pemantle
Consider the two-type Richardson model on Z

d, d ≥ 2. Then

P
λ,1
0,1(G1 ∩ G2) = 0

for all but at most countably many choices of λ.

The result is valid for all finite initial configurations where no type is
strangled by the other, see [HP00] . But it does not say anything about
the situation for any particular value of λ. For a fixed λ we can not use
this theorem and the same situation arises in traditional simulation.
We can not use fixed parameter simulation to rule out the existence of
some λe ∈ (0, 1) such that

P
λe,1
0,1 (G1 ∩ G2) > 0.
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Figure 4.2: A realisation of the model for two different values of λ. In the right
diagram both types seem to have survived in some kind of balance, but in the left
type 1 (black) is about to surround the weaker type 2. If conjecture 4.1 is correct,
then the apparent balance on the right is doomed to break down in the long run.

It should be easier to achieve simultaneous survival the closer to 1 λ
is implying that P

λe,1
0,1 (G1 ∩ G2) > 0 is monotone in λ.Thus Theorem 4.1

strongly suggests
P

λ,1
0,1(G1 ∩ G2) = 0

for all λ 6= 1. If such monotonicity actually hold the result follows for
all λ. There are however more general graphs where the monotonicity
does not hold, see Deijen and Häggstrom [DH05] . We now present the
conjecture from Häggstrom and Pemantle [HP00] , which is also the
starting point and main reason for this part of the thesis.

Conjecture 4.1
For the two-type Richardson model on Z

d, d ≥ 2, we have

P
λ1,λ2

0,1 (G1 ∩ G2) = 0

whenever λ1 6= λ2.

Another open question is the asymptotic shape of the infected area.
Already in his 1973 article [Ric73] Richardson stated the existence of
such an asymptotic shape. Some further results concerning it has been
published over the years, see [DL81] , but the question regarding exact
shape remains unanswered.
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CHAPTER 4. THE TWO-TYPE RICHARDSON MODEL

Finite boxes

Let us now consider the model on finite boxes. No matter how slowly
the weaker type infects its neighbours there is always a positive prob-
ability for it to strangle the stronger type. This event might happen at
any time, but is most likely to happen in the beginning before the area
infected by the stronger type has become too large. This also follows
from Proposition 4.1 in [HP00] , where it is proven that a small advan-
tage for the stronger type is asymptotically enough to ensure that it will
strangle the weaker type. This proposition is a crucial part of the proof
of Theorem 4.1, we state it below, adapted to our notation.

We need a definition of size of an infected area. Although the asymp-
totic shape B is unknown we can use it to define this measure of size,
| · |. On Z

2 B is of infinite size, but we can view B as a finite set on R
2

by letting the distance between each vertex (starting with distance 1)
shrink to zero as the finite boxes tend to infinity. For any set A ⊆ Z

d

let |A| = inf{t : A ⊆ tB}. For any two u, v ∈ R we define the set S(u, v) of
pairs of configurations as follows

S(u, v) = {(ξ1, ξ2) : |ξ1| ≤ u, |ξ2| ≥ v}

We will use this for u < v to denote subsets of pairs of configurations,
(ξ1, ξ2), where ξ1 always will be a little bit smaller than ξ2.

Proposition 4.1
Fix λ ∈ (0, 1) and let 1 < a < b. Then

lim
t→∞

sup
(ξ1,ξ2)∈S(ta,tb)

P
λ,1
ξ1,ξ2(G1) = 0

Let Gλ
i,n, i = 1, 2 be the event that type i survives as long as the set of

infected vertices are contained within Bn and define a function pn(λ) by
the following.

pn(λ) = P(Gλ
1,n ∩ Gλ

2,n)

We need to formulate and prove two properties of the sequence {pn}∞n=1.

Lemma 4.1
For each n, pn(λ) is continuous.

We defer the proof of Lemma 4.1 until all necessary notation has been
introduced, see page 39.
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Figure 4.3: The configuration ω in boxes B3 and B4.

Lemma 4.2
For any λ ∈ (0, 1] and any n, we have pn+1(λ) < pn(λ)

Proof :
If Gλ

1,n+1 ∩ Gλ
2,n+1 happens then both types has survived on Bn which is

enough to ensure Gλ
1,n ∩ Gλ

2,n. Let ω ∈ Ω be the outcome in fig. 4.3. The
set of type one, η1(t) is almost surrounded in the smaller box (B3), and
if vertex v is infected by the type two infection, then η2(t) surround η1(t)
in B4. So ω ∈ (Gλ

1,2 ∩ Gλ
2,2) \ (Gλ

1,3 ∩ Gλ
2,3). This can happen for each finite

n. Thus
(Gλ

1,n ∩ Gλ
2,n) \ (Gλ

1,n+1 ∩ Gλ
2,n+1) 6= ∅

for all n and the result follows.
2

4.3 Simulation, a simple scheme

Given the proposed model with intensities 1 and λ for types one and
two respectively, a simple simulation algorithm is proposed in Figure
4.4.

We think of the infection processes as unit rate Poisson processes,
because of this we can choose an infecting vertex u at random. The next
step is to choose a neighbour v to infect, also uniformly at random. If
u has type one and v type zero, vertex v gets infected with type one. If
u has type two and v has type zero we use thinning. With probability λ
we infect v with type two. If u has type zero or v does not have type zero
no infection takes place. The function computing the stop criteria can
be any function as long as it returns TRUE in finite time.
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graph G
graph G.setInitialConfig()
repeat

u = G.getRandomVertex()
v = G.getRandomNeighbour(u)
if u.type1 ≡ TRUE AND v.uninfected ≡ TRUE then

v.type = 1
end if
if u.type2 ≡ TRUE AND v.uninfected ≡ TRUE then

if rnd ≤ λ then
v.type = 2

end if
end if

until G.computeStopCriteria() ≡ TRUE

Figure 4.4: A simple simulation scheme for the two-type Richardson model.

4.4 The omniparametric two-type Richardson model

The omniparametric model is based on the ordinary two-type Richard-
son model. If we looked upon the ordinary model as a model for spread-
ing infections, the omniparametric model is about spreading informa-
tion. The information tell us for which parameter values each vertex is
uninfected or has one of two infection types.

We use the same graph, (Zd, E), and the same set of independent
Poisson processes for all edges in E, each equipped with a sequence of
i.i.d. uniformly distributed [0, 1]-random numbers. Let a configuration
Θ be an element of {[0, 1]× [0, 1]}Z

d

, and let

Θ(t) = {(av,t, bv,t) ∈ [0, 1] × [0, 1] : av,t ≤ bv,t, v ∈ Z
d}

denote the configuration at time t ≥ 0. The configuration for a vertex v
at time t is denoted Θv(t), and we let

ΩO = {(a, b) : a, b ∈ [0, 1], a ≤ b}Z
d

denote the sample space.
Given Θ(t) we can obtain the fixed parameter configuration Ξ(t) for

any λ ∈ [0, 1] in the following manner. We assign each vertex v type one
if λ ≤ av,t, type two if λ > bv,t and type zero if λ ∈ (av,t, bv,t] (see Figure
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a v,t bv,t0 1

type 2type 1 type 0 (uninfected)

Figure 4.5: Meaning of threshold representation in the omniparametric two-type
Richardson model

4.5). For this assignment to work we must have av,t ≤ bv,t for all t ≥ 0
since a vertex can have one infection type only. A initial configuration
is an assignment of threshold values to all vertices such that for each
λ ∈ (0, 1] we have a valid initial configuration in the ordinary model.

The evolution of the omniparametric model is more complicated than
for the fixed parameter model. Instead of propagating infection types
we propagate threshold values. Any vertex having type one or two for
some fixed but arbitrary λ can propagate this to any neighbour w if
λ ∈ (aw,t, bw,t]. The idea is the following. We consider the sequence of
Poisson events just as in the ordinary model. Assume that, at time t, a
vertex v tries to propagate its information to vertex w, and let t+ be the
time just after this event. Let Θw(t) = (aw,t, bw,t) be the state of vertex w
at time. This vertex is already infected for λ ∈ [0, aw,t] ∪ (bw,t, 1] so only
for λ ∈ (aw,t, bw,t] an infection can take place. For vertex v we have three
cases.

(i) For λ ∈ [0, av,t] v infects w if λ ∈ (aw,t, bw,t].

(ii) For λ ∈ (bv,t, 1] v infects w if λ ∈ (aw,t, bw,t].

(iii) For λ ∈ (av,t, bv,t] no infection occur.

Infections of type one are spread each time, so at time t+ we let aw,t+

be equal to max( aw,t, min(av,t, bw,t) ). For an illustration see Figure
4.6. Infections of type two spread with probability λ, accomplished by
using the random number u assigned to the Poisson event, and let the
type two infection spread whenever u ≤ λ. When changing the limit
bw,t we do this depending on max(u, bv,t) instead of just bv,t, thus bw,t+ =
min( bw,t, max(γ, aw,t) ), where γ = max(u, bv,t).
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Figure 4.6: An example of how information propagates from vertex v to vertex w.

Summary: If at time t vertex v tries to propagate information to
vertex w, having configurations Θv(t) = (av,t, bv,t) , Θw(t) = (aw,t, bw,t)
respectively, then

aw,t+ = max( aw,t, min(av,t, bw,t) )
bw,t+ = min( bw,t, max(γ, aw,t) )

is the updated configuration at w. Given ξ1, ξ2 ⊆ Z
d we define the initial

configuration as follows.

Definition 4.1 Initial configuration
For ξ1, ξ2 ∈ Z

d. Define Θ(0) by

Θv(0) =







(1, 1), v ∈ ξ1

(0, 0), v ∈ ξ2

(0, 1), otherwise
, v ∈ Z

d

where ξ1, ξ2 are two finite disjoint and connected subsets of Z
d.

Assume that a Poisson event happens at time t. Vertex v tries to
affect vertex w along the common edge. We now define the evolution
operator S.
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Definition 4.2 The evolution operator
Given an infection event at time t where vertex v tries to infect vertex w,

let u be a U [0, 1] random number and define the evolution operator S by
the following.

S(v, w, u, Θ(t)) = Θ(t+)

where Θz(t
+) = Θz(t) for any vertex z 6= w and

Θw(t+) = ( max( aw,t, min(av,t, bw,t) ) , min( bw,t, max(u, bv,t, aw,t) ) )

When there is a need to emphasise the evolution at a certain vertex
without focusing on the origin of the infection we denote this by S(Θv(t)).
Next step is to make sure that the threshold order is preserved during
evolution, otherwise the state of a vertex may not be unique for all λ ∈
[0, 1].

Lemma 4.3 The evolution operator preserves threshold order
If for any vertex w ∈ Z

d we have Θw(t) = (aw,t, bw,t) such that aw,t ≤ bw,t

then S(Θw(t)) = (aw,t+ , bw,t+) will satisfy aw,t+ ≤ bw,t+.

Proof :
We must establish that the order of the thresholds at w does not change
when applying the evolution operator. Let a Poisson event take place at
time t and suppose some vertex v is trying to infect w. Assume av,t ≤ bv,t

and aw,t ≤ bw,t. There are five different cases to analyse.

Case 1: Assume that av,t ≤ bv,t ≤ aw,t ≤ bw,t.
aw,t+ = max(aw,t, min(av,t, bw,t)) = aw,t

bw,t+ = min(bw,t, max(u, bv,t, aw,t)) ≥ aw,t

aw,t+ ≤ bw,t+

Case 2: Assume that av,t ≤ aw,t ≤ bv,t ≤ bw,t.
aw,t+ = max(aw,t, min(av,t, bw,t)) = aw,t

bw,t+ = min(bw,t, max(u, bv,t, aw,t)) ≥ bv,t

aw,t+ = av,t ≤ bv,t ≤ bw,t+

Case 3: Assume that aw,t ≤ av,t ≤ bv,t ≤ bw,t.
aw,t+ = max(aw,t, min(av,t, bw,t)) = av,t

bw,t+ = min(bw,t, max(u, bv,t, aw,t)) ≥ bv,t

aw,t+ = av,t ≤ bv,t ≤ bw,t+
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Case 4: Assume that aw,t ≤ av,t ≤ bw,t ≤ bv,t.
aw,t+ = max(aw,t, min(av,t, bw,t)) = aw,t

bw,t+ = min(bw,t, max(u, bv,t, aw,t)) = bw,t

aw,t+ = aw,t ≤ bw,t = bw,t+

Case 5: Assume that aw,t ≤ bw,t ≤ av,t ≤ bv,t.
aw,t+ = max(aw,t, min(av,t, bw,t)) = bw,t

bw,t+ = min(bw,t, max(u, bv,t, aw,t)) = bw,t

aw,t+ ≤ bw,t+

Since we have aw,t+ ≤ bw,t+ in all five cases, the result follows.

2

We are now ready to state the relation between the omniparametric
and the fixed parameter model.

4.5 Relation to the fixed parameter model

Given a configuration Θ(t) and some λ ∈ [0, 1] we may want to com-
pute the fixed parameter configuration Ξλ(t). We do this with a projec-
tion mapping πλ, defined as follows.

Definition 4.3 Projection mapping
Let πλ : ΩO → Ω for λ ∈ [0, 1] be the projection operator defined by

πλ(Θv(t)) =







1, λ ∈ [0, av,t]
0, λ ∈ (av,t, bv,t]
2, λ ∈ (bv,t, 1]

for each v ∈ Z
d.

We also need to establish

πλ(Θ(t))
D
= P

λ
ξ1,ξ2 , t ≥ 0

which is done in Theorem 4.2. The proof consists of proving two prop-
erties of the evolution operator. It must preserve the order of thresh-
old values (see Lemma 4.3), and mimic the dynamics of the two-type
Richardson model for any fixed λ ∈ [0, 1], that is, the operator has to
be consistent with the behaviour of the two-type Richardson model. We
establish the second property next.
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Lemma 4.4 The evolution operator S is consistent
Assume that a Poisson event takes place at time t. Let Θ(t) be a valid

omniparametric configuration for all times prior to t, that is,

πλ(Θ(s))
D
= P

λ
ξ1,ξ2

for all s ∈ [0, t] and all λ ∈ [0, 1]. Then

πλ( S( Θ(t) ) )
D
= P

λ
ξ1,ξ2

holds for all λ ∈ [0, 1]

Proof :
Let a Poisson event take place at time t and let Θ(t+) = S(Θ(t)) be the
configuration just after this event. We need to prove that the evolution
operator has the correct behaviour in every situation. Let λ ∈ [0, 1] be
arbitrary but fixed. There are nine cases to analyse.

Case 1: πλ(Θv(t)) = πλ(Θw(t)) = 0, implies av,t < λ ≤ bv,t, aw,t < λ ≤ bw,t

and
aw,t+ = max(aw,t, min(av,t, bw,t)

︸ ︷︷ ︸

=av,t

) < λ

bw,t+ = min(bw,t, max(γ, aw,t)
︸ ︷︷ ︸

≥λ

) ≥ λ

where γ = max(u, bv,t) ≥ λ.
Thus aw,t+ < λ ≤ bw,t+ implying πλ(S(Θw(t))) = 0

Case 2: πλ(Θv(t)) = 0, πλ(Θw(t)) = 1, implies av,t < λ ≤ bv,t, λ ≤ aw,t and

aw,t+ = max(aw,t, min(av,t, bw,t)
︸ ︷︷ ︸

=av,t

) = aw,t ≥ λ

Thus aw,t+ ≥ λ gives πλ(S(Θw(t+))) = 1

Case 3: πλ(Θv(t)) = 0, πλ(Θw(t)) = 2, implies av,t < λ ≤ bv,t, bw,t < λ and

bw,t+ = min(bw,t
︸︷︷︸

<λ

, max(γ, aw,t)) < λ

Thus πλ(S(Θw(t+))) = 2
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Case 4: πλ(Θv(t)) = 1, πλ(Θw(t)) = 0, implies λ ≤ av,t, aw,t < λ ≤ bw,t and

aw,t+ = max(aw,t, min(av,t, bw,t)
︸ ︷︷ ︸

≥λ

) ≥ λ

Thus aw,t+ ≥ λ gives πλ(S(Θw(t+))) = 1

Case 5: πλ(Θv(t)) = 1, πλ(Θw(t)) = 1, implying av,t ≥ λ and aw,t ≥ λ.

aw,t+ = max(aw,t, min(av,t, bw,t)) ≥ λ

Since aw,t+ ≥ λ we have πλ(S(Θw(t+))) = 1.

Case 6: πλ(Θv(t)) = 1, πλ(Θw(t)) = 2, implies av,t ≥ λ, bw,t < λ and

bw,t+ = min(bw,t
︸︷︷︸

<λ

, max(γ, aw,t)) < λ

Since bw,t+ < λ we have πλ(S(Θw(t+))) = 2.

Case 7: πλ(Θv(t)) = 2, πλ(Θw(t)) = 0, implies bv,t < λ, aw,t < λ ≤ aw,t and

aw,t+ = min(aw,t, min(av,t, bw,t)
︸ ︷︷ ︸

<λ

) < λ

bw,t+ = min(bw,t
︸︷︷︸

≥λ

, max(u, bv,t
︸︷︷︸

<λ

, aw,t
︸︷︷︸

<λ

))

{
< λ, if u < λ
≥ λ, if u ≥ λ

Thus πλ(S(Θw(t+))) = 2 with probability λ, and πλ(S(Θw(t+))) = 0
with probability 1 − λ.

Case 8: πλ(Θv(t)) = 2, πλ(Θw(t)) = 1, implies bv,t < λ, λ ≤ aw,t and

aw,t+ = max(aw,t, min(av,t, bw,t)
︸ ︷︷ ︸

<λ

) ≥ λ

Thus vertex w is left unchanged.

Case 9: πλ(Θv(t)) = 2, πλ(Θw(t)) = 2, implies bv,t < λ, bw,t < λ and

bw,t+ = min(bw,t
︸︷︷︸

<λ

, max(γ, aw,t)) < λ

With bw,t+ < λ vertex w is left unchanged.
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This can be done for any λ ∈ [0, 1]. Thus the evolution operator is con-
sistent.
2

By applying this evolution operator repeatedly at every Poisson event
the model evolves as time passes.

Theorem 4.2
Given an omniparametric sample Θ(t) we can calculate an ordinary sam-
ple by using the projection operator

πλ(Θ(t))
D
= P

λ
ξ1,ξ2

for λ ∈ [0, 1] and any t ≥ 0.

Proof:
Let Θ(0) be any initial configuration and λ ∈ [0, 1] fixed. We apply the
projection operator on this configuration vertex by vertex.

πλ(Θv(0)) =







1, λ ∈ [0, av,t]
0, λ ∈ (av,t, bv,t]
2, λ ∈ (bv,t, 1]

, v ∈ Z
d

Since each vertex v ∈ Z
d has Θv(0) ∈ {(1, 1) (0, 0) (0, 1)} according to

the definition of the initial configuration it follows that the projection
mapping applied to the initial configuration gives a proper configuration
in the fixed parameter model.

Even though time is continuous the model evolves only at each Pois-
son event. Let {tn}∞n=1 be the sequence of times for all the Poisson

events. Assume that πλ(Θ(tn))
D
= P

λ
ξ1,ξ2. Let t+n be the time just after

the next event. Since the evolution operator is consistent according to

Lemma 4.4 we automatically have πλ(Θ(t+n ))
D
= P

λ
ξ1,ξ2. The result now

follows by induction.
2

We are finally ready to prove Lemma 4.1 stated on page 30.

Proof of Lemma 4.1:
Fix some arbitrary n ∈ Z

+ Let Gλ
i,n be the event that type i survives until

reaching ∂Bn, i = 1, 2. If P(Gλ
1,n) and P(Gλ

2,n) are continuous continuity
follows for pn since . . .

pn(λ) = P(Gλ
1,n ∩ Gλ

2,n) = P(Gλ
1,n) − P(Gλ

1,n \ Gλ
2,n) = P(Gλ

1,n) − P((Gλ
2,n)c)
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Fix λ ∈ (0, 1) and a small ε > 0.
Is there a δ > 0 such that |P(Gλ

1,n) − P(Gλ+δ
1,n )| < ε ?

|P(Gλ
1,n) − P(Gλ+δ

1,n )| = P(Gλ
1,n \ Gλ+δ

1,n )
≤ P({av ∈ [λ, λ + δ) for some v ∈ ∂Bn})

where (av , bv) = Θv(t). Since ∂Bn is a finite set this shrinks to zero as δ ↓
0. Hence, there is some small enough δ satisfying |P(Gλ

1,n)−P(Gλ+δ
1,n )| < ε.

The same type of argument using the other threshold value, bv, yields
continuity for P(Gλ

2,n).

2
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CHAPTER 5

Simulation experiments

By using the proposed simulation algorithm to generate samples we can
study the behaviour of the two-type Richardson model on finite boxes
in Z

d. Although this is possible for any finite d the case studied here
is d = 2. The purpose of this chapter is to study the probability for
simultaneous survival on Bn as a function of λ.

According to Theorem 4.1 we have P
1,λ
0,1(G1 ∩ G2) = 0 for all but at

most countably many choices of λ ∈ (0, 1]. Let E ⊆ (0, 1) be this set of
exceptional values of λ. We have excluded 1 from E since it is already
known that P

1,1
0,1(G1 ∩ G2) > 0. We can formulate our knowledge of the

probability for simultaneous survival as follows

∀λ ∈ (0, 1) \ E : P
1,λ
0,1(G1 ∩ G2) = 0

Using simulations we will try to find some indications of the existence
of any value λe ∈ E, contradicting the general belief that it is empty.

5.1 Simultaneous unbounded growth in simulations

If E 6= ∅ this should manifest itself if we simulate on large enough
boxes. Let pn(λ) = P

1,λ
0,1(G

λ
1,n∩Gλ

2,n) and let p(λ) denote the probability for
simultaneous survival on Z

2. Then pn(λ) → p(λ) pointwise as n → ∞ .
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Figure 5.1: The functions pn(λ) and p(λ) when there is an exceptional value λe.

In the absence of exceptional values p(λ) will equal

p(λ) =

{
c, λ = 1
0, λ < 1

, λ ∈ (0, 1)

for some c > 0. Assume for the moment that E contains at least on ele-
ment, and pick λe ∈ E. Whenever λ = λe there is a positive probability
for simultaneous survival and the function p(λ) will not be increasing
any more. Since the pn’s converge pointwise to p they will not be increas-
ing either if n is large enough. We know from Theorem 4.1 that the E is
at most countable so an exceptional value λe will have non-exceptional
values to the right of it, and manifest itself as in Figure 5.1.

We use simulations to estimate functions pn, and do this for different
values of n. If we find that an estimate p̂n which is non-increasing it
indicates non-increasing pn, and also existence of exceptional values.
If pn is increasing for all large n then so is p(λ) which rules out the
existence of exceptional values. The question is now: When is n large?
Since we do not know simulations have been carried out for n as large
as possible. Later we will use the simulations to estimate how large
boxes we need to detect exceptional probabilities bounded from below
by some small constant.

5.2 The simulation algorithm

The simulation algorithm follows the omniparametric two-type Rich-
ardson model as described in Section 4.4, see Figure 5.2.

42



5.2. THE SIMULATION ALGORITHM

1: graph G
2: G.setInitialConfig()
3: repeat
4: u = G.randomVertex()
5: v = G.randomNeighbour(u)
6: u.propagateTo(v)
7: until G.calcStopCriteria() ≡ TRUE

Figure 5.2: A simulation scheme for the omniparametric two-type Richardson
model.

Initial configuration

The smallest possible initial configuration is used. Vertices 0 = (0, 0)
and 1 = (1, 0) are assigned thresholds (a0,0, b0,0) = (1, 1) and (a1,0, b1,0) =
(0, 0) respectively. All other vertices x ∈ Bn are assigned thresholds
(ax,0, bx,0) = (0, 1). For every λ ∈ (0, 1] this gives the origin type one, its
left neighbour type two and the rest of Bn type zero.

Stop criteria

The algorithm is executed until the first vertex on the boundary ∂Bn

is affected. The model is only defined on the box Bn so we have to abort
at this stage. If we continue after this the model will not evolve as the
two-type Richardson model prescribe.

Simulation setup

We perform simulations for n in

n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 750, 1250, 2500}

and for all but the largest box 1000 simulations are done. Since large
boxes take a long time to simulate, we were forced to limit the number
of simulations for n = 2500 to 100.

After running all simulations the functions pn are estimated point-
wise in the following manner. Each simulation generates threshold val-
ues for every vertex. Let Ti be the set of threshold values for a simulation
i, and assume we have done m simulations. Then T = ∪m

i=1Ti is the set
of values of λ where some vertex changes in the model. Order these
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Figure 5.3: The estimates of the functions pn(λ) for some values of n.

vales according size.

T = {λ(1), λ(2), ..., λ(|T |)}

For each λ(i) ∈ T we estimate pn(λ(i)) in the natural way.

5.3 Results

In Figure 5.3 we see the estimated functions p̂n(λ) for some of the
simulated boxes.

As expected the probability for simultaneous survival (for any fixed
λ) is decreasing as the box size increases, even though function p̂2500(λ)
breaks this monotone pattern. The more erratic behaviour of p̂2500 is
most likely due to the smaller number of samples. There is no indi-
cation of non-monotonicity like in Figure 5.1 in any of the estimated
functions. An open question is if the simulated boxes are large enough.
If there exists any exceptional value λe ≈ 1 with P

1,λe

0,1 (Gλe
1,n ∩ Gλe

2,n) ≈ 0 we
would probably need extremely large boxes to see this. No matter how
large boxes we simulate there will however always be possible to have
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Figure 5.4: Estimated and fitted function for boxes B100 and B250.

a sufficiently small exceptional probability at an exceptional value close
enough to 1.

5.4 Curve fitting

Let us fit a parametric curve to the estimated functions p̂n(λ), and
see if we can relate the parameters to box size. There are several rea-
sons for this analysis. First we can use the fitted curves and see how
they behave when n → ∞. As we shall see we get indications on ex-
pected behaviour, that is, no exceptional values. We may also extract
information on how large boxes we need to detect λe with small positive
exception probability, giving us a clue which exceptional values we may
rule out and which we can not say anything about.

When looking at the estimated curves it seems appropriate to fit
some s-shaped curve to data. We try with the following.

fn(λ) = αne−βn(1−λ)3

It is tempting to replace 3 in the exponent by a third parameter γn to get
a closer fit. This does not, however, decrease the difference between fn

and p̂n enough to motivate such an extension. We now have two param-
eters αn and βn to estimate from the function p̂n. The first parameter
αn is the probability for simultaneous survival when the infections are
equally strong , the second one is a shape parameter determining how
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steep the curve is.
There is no hope of course for this curve to be correct. Theoretically

we have pn(0) = P
1,0
0,1(G

0
1,n ∩ G0

2,n) = 0 since type two does not infect at
all with zero infection intensity, but αne−βn > 0 for all plausible values
of the estimated parameters. Even if there is no theoretical support for
this model it is interesting to see how closely we can approximate the
estimated functions. Curve fitting can also illustrate how pn(λ) behave
for λ ≈ 1 as n → ∞ , which is important when studying how fast
the stronger type strangle the weaker. With these remarks in mind we
proceed. In figures 5.4 and 5.5, we see the result of the procedure.

Note that fn does not fit the estimated functions well whenever λ is
small enough or close to 1. But there is a region, I1

n (see Figure 5.6),
when p̂n(λ) increases the most where fn(λ) fits quite well and perhaps
Perhaps fn(λ) captures the behaviour of p̂n in this region? Above this
interval (I2

n in Figure 5.6) simulations indicate p̂n(λ) ≤ fn(λ).
On all boxes the probability for simultaneous survival does not cha-

nge much when λ is close to 1, but decreases quite rapidly (at least for
larger boxes) when λ is below some threshold value λt,n. In Figure 5.6
we have λt,n somewhere in the middle of the interval I2

n. In the simulated
cases this threshold λt,n approaches 1 as n gets larger. Perhaps this
behaviour is the same for all finite boxes and λt,n → 1 as n → ∞ . In
that case the behaviour is consistent with the belief that the exceptional
set E is empty.

Dependence between parameter and box size

In trying to relate the parameters to box size we plot these as func-
tions of n. In Figure 5.7 there appears to be no strong correlation
between n and αn. Theory indicates that αn should be decreasing as
n gets larger, approaching the limit value P

λ
0,1(G1 ∩ G2) as n → ∞ .

It’s hard to say anything about how αn approaches its limit values,
the simulated data is too spread out and the limit value unknown.
Considering Figure 5.7 it seems reasonable however to conclude that
limn→∞ αn ∈ [0.80, 0.82]. The dependence of αn on n should not be linear
since we can not have negative values for αn. Perhaps some exponential
function is more appropriate to model the decay.

The situation for parameter β is different. This parameter models the
shape of the function. In Figure 5.7 we see that there is quite strong
linear dependence between n and βn, suggesting βn ≈ 0.40n. As the
finite boxes grows to infinity so does βn, resulting in the following limit
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Figure 5.5: Estimated and fitted function for boxes B500 (upper left), B750 (upper
right), B1250 (lower left) and B2500 (lower right). Simulated functions are drawn
with solid lines and fitted functions using dashed lines.
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n we have pn(λ) ≤ fn(λ). We can use the underestimation of the curve in I2

n to
get a upper bound for the rate of convergence at which pn → p.
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largest box, B2500, where we used 100 simulations instead om 1000.
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λe

p (  )n λ

pcritical λ
ε

10

Figure 5.8: Assuming the existence of λe ∈ (0, a] such that P
λ
0,1(G

λe
1,n∩Gλe

2,n) ≥ ε we
reject the null hypotheses in favour of the alternative if max{p̂n(λ) : λ ∈ (0, a]} ≤
pcritical.

function.

p∞(λ) = lim
n→∞

αne−cn(1−λ)3 =

{
α, λ = 1
0, λ < 1

, c = 0.40

where α = limn→∞ αn. This is also consistent with the belief that E is
empty. If this captures the dependence between n and βn we can see
how quickly the functions fn converges to δ(1−λ), and get an indication
of how the probability of simultaneous survival behave on finite boxes.

5.5 Statistical analysis

A test: Are there exceptional values in (0,0.7] ?

All simulation results indicate that the set E of exceptional values
for λ is empty, but how strong is the evidence against E 6= ∅. We fix
ε > 0 and test the hypothesis that there exists some λe ∈ (0, a], a < 1,
such that P

λ
0,1(Gλ

1,n ∩ Gλ
2,n) ≥ ε against the alternative that there is no

such exceptional values.
We perform the test for the largest box where we have m = 1000

simulations, that is B1250. Figure 5.5 indicates that E ∩ (0, 0.7] = ∅, so
we use a = 0.7. (Here we make the cardinal sin of looking at data before
deciding on the null hypothesis. We feel that this does not have very
severe consequences in this case, but the critical reader is invited to try
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Figure 5.9: p-values for the test expressed as a function of p(λe) = ε.

other values of a.) We now state the hypotheses

H0 : ∃λe ∈ [0, a], P
λ
0,1(Gλe

1,n ∩ Gλe
2,n) ≥ ε

H1 : ∀λ ∈ [0, a], P
λ
0,1(Gλ

1,n ∩ Gλ
2,n) < ε

Under the null hypothesis the Binomial distribution and the central
limit theorem give us a statistic

Z =
p̂(λe) − p(λe)

√

p(λe)(1 − p(λe))/m

D≈ N(0, 1)

provided that we have a candidate for λe (which we do not). Suppose
pn(λe) = ε. This suggests that we reject H0 in favour of H1 at significance
level α if

p̂n(λe) ≤ pcritical = ε − zα

√

ε(1 − ε)

m

We do not however know the value λe so we choose a conservative ap-
proach and reject H0 whenever pmax ≤ pcritical, where

pmax = max{p̂n(λ) : λ ∈ (0, a]}

As a consequence of the choice of a we have pmax = 0, and we can easily
calculate the p-values of the test as a function of ε, see Figure 5.9. With
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5.5. STATISTICAL ANALYSIS

α = 0.05 we can reject for ε ≥ 0.0027 and if we want α = 0.01 we can reject
whenever ε ≥ 0.0054.

Given simulations on larger boxes we can test the null hypothesis for
smaller and smaller values for ε and also do this for larger and larger
subsets of [0, 1].

The case P(Gλ
1,n ∩ G

λ
2,n) ≥ 1/2

We consider the case when the probability of having at simultaneous
survival is at least 1/2 and see how large λ must be if we let the box size
vary. From Figure 5.7 it seems reasonable to assume that

lim
n→∞

αn ∈ [0.8, 0.82]

We fix αn = 0.8 for all n consider λ such that P
λ
ξ1,ξ2(Gλ

1,n ∩Gλ
2,n) = 1/2 and

let λ1/2(n) denote this value, then

pn(λ1/2(n)) = αne−cn(1−λ1/2(n))3 =
1

2
⇔ λ1/2(n) = 1 −

(
ln(2αn)

cn

)1/3

where c = 0.40 (as before). If the probability for simultaneous survival
is monotone this is a threshold value for λ above which there is at
least probability 1/2 for simultaneous survival, see Figure 5.10. The
theoretical limit of λ1/2 as n → ∞ is of course 1. It is interesting to see
how slowly λ1/2 converges to its limiting value.

This is an indication of a small region for λ close to 1, where infec-
tions are almost equally strong, and in which it takes a very long time
for the stronger infection to strangle the weaker.

A conjecture: Lower bound for P(Gλ
1,n ∩ G

λ
2,n) when λ ≈ 1

We will now see what conclusions can be drawn from simulations
regarding the behaviour of P

λ
ξ1,ξ2(Gλ

1,n ∩ Gλ
2,n) when λ ≈ 1. As claimed

before there is a small interval [1−δ, 1] where it seems as if p̂n(λ) ≥ fn(λ),
see figures 5.4 and 5.5. Let us formulate this as a conjecture.

Conjecture 5.1
There exists a δ ∈ (0, 1) such that

P
λ
0,1(Gλ

1,n ∩ Gλ
2,n) ≥ αe−cn(1−λ)3 , c = 0.40 , α = lim

n→∞
αn

whenever λ ∈ [1 − δ, 1].
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Figure 5.10: The threshold value λ1/2(n) as a function n, illustrating how the
region for λ in [0, 1] where we have a reasonable probability for simultaneous
survival decreases as n grows.
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λe we can use the conjecture to get a lower bound on the box size we have to use
in simulations. In this case λe ≈ 0.999 while ε varies over [0, 0.1].
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If true, the conjecture sets an upper bound on the rate at which

P
λ
0,1(G

λ
1,n ∩ Gλ

2,n) → P
λ
0,1(Gλ

1 ∩ Gλ
2 )

and also give us an opportunity to determine how large boxes we must
use to detect λe ∈ E ∩ [1 − δ, 1] such that P

λ
0,1(Gλ

1 ∩ Gλ
2 ) ≥ ε for any ε > 0.

For example to detect λe ≈ 0.999 with exceptional probability ε ≤ 0.1, we
rewrite

n ≥
ln α − ln P

1,λ
0,1(Gλ

1,n ∩ Gλ
2,n)

n(1 − λ)3

and see how the lower bound on n behaves as a function of ε, see Figure
5.11.
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Part III

Estimation for the Ising
and Potts models
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CHAPTER 6

Introduction

We now turn our focus to parameter estimation in the Ising and Potts
models. The situation is the following. Suppose we have, not neces-
sarily complete, data from some finite region of Z

2. We make the fun-
damental assumption that data follows either the Ising or q-state Potts
model without any external field. The remaining, unknown, parameter
in both cases is the inverse temperature β. We explore omniparametric
simulation as a tool for make sensible estimates of β. The rest of Part
III is divided into seven chapters.

Chapter 7 introduces necessary notation and results for the models
we use, i.e. the random cluster, Ising and Potts models. We finish the
chapter with some historical notes.

Chapter 8 introduces omniparametric versions of the random cluster
and Potts models. As a special case of the Potts model the Ising model is
not treated. We elaborate some on the definition of the omniparametric
random cluster model since it is the base for our procedures.

Chapter 9 contains further definition of models used to model par-
tially observed data. By introducing a new process on the lattice, inde-
pendent of the observed data it is possible to model partially observed
as well as degraded data. We use a simple degradation process to model
partially observed data, and in turn manage to establish central limit
theorems, which to our knowledge is a new result.
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CHAPTER 6. INTRODUCTION

Chapter 10 focuses on using simulations to explore introduced mod-
els. In particular we study characteristics (such as susceptibility) we
need later, trying to estimate quantities for which there are no known
closed form. In the parameter estimation procedure we will regard these
quantities as known at their estimated values.

Chapters 11 and 12 treat parameter estimation. In Chapter 11 we
develop procedures, prove necessary results and present simulations
for estimating the inverse temperature in the Ising model. Chapter 12
repeat the agenda of Chapter 11 for the q-state Potts model. We estimate
the inverse temperature in the case of zero external field and assume q
to be known in advance.
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CHAPTER 7

Three models in statistical
mechanics

In this chapter we present some models from the field of statistical me-
chanics. Most of them can be defined on arbitrary graphs, but here we
will restrict ourselves to the d-dimensional lattice in Euclidean space.
We let L

d = (Zd, Ed) be the usual graph on Z
d with edges between ver-

tices at unit distance. We are primarily interested in these models living
on finite boxes in Z

d, but also treat the infinite case.

Let B
d
n be a finite subgraph of L

d with vertex set Z
d
n = Z

d ∩ [0, n − 1]d

and edge set E
d
n = {〈x, y〉 ∈ E

d : x, y ∈ Z
d
n}. The boundary of Bn is denoted

∂B
d
n and defined as ∂B

d
n = B

d
n+1 \ B

d
n. When the number of dimensions

are understood we suppress d in the notation, writing Bn, ∂Bn, Zn and
En.

The rest of the chapter is outlined as follows. We start by introducing
general concepts relating to stochastic domination on finite boxes. Here
we assume that the model lives on the vertex set but we could as easily
present the material as living on the edge set. We then present the ran-
dom cluster, Ising and Potts models on finite boxes and when required
also on the entire infinite lattice. For a more thorough treatment of the
subject see [GHM01] and references therein.
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7.1 General properties

Let n ≥ 1 and d ≥ 2 be arbitrary but fixed and let S be a linearly
ordered finite state space. A configuration is an assignment of values
in S to each vertex in the d-dimensional box Bn. Given a configuration
X ∈ SBn we let X{v} denote the corresponding configuration in SBn\{v}.

Definition 7.1 Irreducibility
Fix a probability measure ν on SBn. Let SBn

pos be the set of elements in
SBn having positive ν-probability. We say that ν is irreducible if given any
two X, X ′ ∈ SBn

pos we can make vertexwise transformations to X, changing
it one vertex at a time into X ′, such that all intermediate elements are in
SBn

pos.

Definition 7.2 A partial order
We define a partial order � on the set SBn by the following. For X, X ′ ∈

SBn we say that X ′ is larger than X and write X � X ′ if

X(v) ≤ X ′(v)

holds for every vertex v ∈ Bn.

Definition 7.3 Monotonicity
We say that ν is monotone, if given any v ∈ Bn, s ∈ S and X, Y ∈ SBn

such that X{v} � Y {v}, we have

ν(X(v) ≥ s|X{v}) ≤ ν(X(v) ≥ s|Y {v})

whenever X{v} and Y {v} both have positive probability.

Monotonicity means increased probability for an event when we in-
crease its surroundings according to the partial order �.

Let BI(S
Bn , R) be the set of all increasing (with respect to �) real

function on the space SBn.

Definition 7.4 Positive correlations
We say that ν have positive correlations if

∀f, g ∈ BI(S
Bn , R) :

∫

fg dν ≥
∫

f dν

∫

g dν

60



7.1. GENERAL PROPERTIES

Definition 7.5 Stochastic domination
Let ν1 and ν2 be two probability measures on R. We say that ν2 stochas-

tically dominates ν1, writing ν1 �D ν2 whenever

∀f ∈ BI(S
Bn , R) :

∫

f dν1 ≤
∫

f dν2

holds.

We can use the following theorem to conclude when we have positive
correlations by checking if the measure under investigation in mono-
tone.

Theorem 7.1 The FKG inequality
Let ν be irreducible measure assigning positive probability to the max-

imal element of SBn according to �. If ν is monotone it also has positive
correlations.

This was proved in [FKG71] , see [GHM01] for an introductory treat-
ment. A FKG system is a system of random variables satisfying the
FKG inequality [FKG71] . Many models in statistical mechanics have
this property, the Ising and random cluster (for certain regimes of the
parameter space) models are among them.

We also present a theorem by Holley [Hol74] stating sufficient con-
ditions for stochastic domination. For a proof see the original article
[Hol74] or [GHM01] .

Theorem 7.2 Holley’s theorem
Consider probability measures ν1 and ν2 defined on state space SBn . As-
sume that ν2 is irreducible and assigns positive probability to the maximal
element (according to �) of SBn . Suppose further that

ν1(X(v) ≥ a|X = ξ off v) ≤ ν2(X(v) ≥ a|X = η off v)

for any v ∈ Zn, a ∈ S, and ξ, η ∈ SBn such that ξ � η, ν1(X = ξ off v) > 0
and ν2(X = η off v) > 0. Then ν1 �D ν2.

Finally we introduce translation invariance for measures on SZ
d

.
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Definition 7.6 Translation invariance
Let ν be a measure on the infinite state space SZ

d

. We say that ν is
translation invariant if

ν( (Xv1 , ..., Xvn) ∈ A ) = ν( (Xv1+u, ..., Xvn+u) ∈ A )

holds for any n ≥ 1, any vertices v1, ..., vn ∈ Z
d, any u ∈ Z

d and for all
A ⊆ S{1,...,n}.

Translation invariance means that we can ”move around” (but not ro-
tate) events without changing their probability. One problem where this
property is important is the study of infinite clusters. If the measure un-
der observation is translation invariant every vertex will have the same
probability of being in an infinite cluster (as in Chapter 2), so studying
this probability for the origin is enough.

Long range order or not, a note on phase transition

On an infinite graph we have phenomenons not present on finite
graphs, for example phase transition. A phase transition manifests
itself in different ways, for some models the transition occur by the
development of an infinite component and for some models we have
non-uniqueness of measures. Regardless of the system under study a
change of phase does change the probabilistic behaviour of the system.

All models treated in this chapter are connected to the random clus-
ter model where phase transition manifests itself by the creation of an
infinite connected component. In the subcritical phase all connected
components are finite and therefore connection probabilities decay to-
wards zero as the distance between vertices increase to infinity. The su-
percritical phase is characterized by a connection probability bounded
away from zero regardless of the distance between vertices due to the
existence of an infinite component. We some times call the subcritical
phase the unordered phase, and the supercritical phase the ordered
phase to emphasize the long range order introduced by infinite compo-
nents.

For the Ising and Potts models phase transition is characterized by
the existence of multiple measures in the supercritical phase, while the
subcritical phase is governed by a unique probability measure.
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7.2 The random cluster model

The random cluster model is a two parameter family of models, living
on the edge set of the graph L

d. We first define the random cluster dis-
tribution on finite boxes Bn ⊂ L

d and then proceed with random cluster
measures on the whole L

d. We make a distinction between the finite
and infinite cases, writing probability distributions on {0, 1}Bn and prob-
ability measures on {0, 1}L

d

. This section is mostly based on [GHM01]
.

There are two different approaches to the construction of random
cluster measures and we treat both since they give rise to different sets
of measures. The careful treatment allow us see what kind of measures
we might encounter on infinite graphs and if they give rise to unex-
pected phenomenons on finite boxes.

We treat the random cluster model in some detail since it is the
main tool for analysing the correlation structure of the Ising and Potts
models. Establishing uniqueness of measure and determining a subset
of the unit interval for p where we have exponential decay of the cluster
size become especially important tasks.

Definition 7.7 The random cluster distribution
Given Bn the random cluster distribution on Bn is a two parameter family
of distributions φ

(n)
p,q , p ∈ [0, 1], q ∈ [0,∞), on the space {0, 1}En. An element

γ ∈ {0, 1}En is called a configuration, and we denote its value at a single
edge e by γ(e). The subgraph Bn(γ) = (Zn, En(γ)),

En(γ) = {e ∈ En : γ(e) = 1}

induced by a configuration γ is called the random cluster graph. A con-
figuration γ ∈ {0, 1}En is assigned probability

φ(n)
p,q (γ) =

qκ(γ)

Zp,q

∏

e∈En

pγ(e)(1 − p)1−γ(e)

where Zp,q is a normalizing constant, and κ(γ) is the number of connected
components in Bn(γ).

Next we establish the single-edge conditional probabilities. The proof
follows immediately from definitions.
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Figure 7.1: An example on boundary conditions for a small box (within dashed
lines) in the random cluster model. The right diagram contains all edges outside
the box, the so called wired boundary condition. To the left we see the other
extreme containing no edges outside of the box, the so called free boundary con-
dition.

Lemma 7.1 Single-edge conditional probabilities
Let X be distributed according to the random cluster distribution on the

graph Bn with parameters p and q. Let e be an arbitrary edge and let γ
be an arbitrary configuration on En \{e} having positive probability. Then
the following holds.

φ(n)
p,q (X(e) = 1|X{e} = γ) =







p, if {x ↔ y in X{e}}

p

p + q(1 − p)
, otherwise

When defining the random cluster distribution on finite boxes in Z
d

some boundary condition is necessary. Here we used of the free bound-
ary condition, meaning that no edges are present outside the box Bn, in
contrast to the wired boundary condition where all edges outside Bn are
present (see Figure 7.1).

The parameter p can be interpreted as the probability of assigning
an edge the value 1. This is only true whenever q = 1, when the random
cluster model is equivalent to the independent edge percolation model,
any other value of q introduces dependence between edges. Whenever
q < 1 the distribution favors configurations with a small number of
clusters, while q > 1 makes it favor configurations with a large number
of clusters. We will restrict ourselves to the case q ≥ 1, since that is
precisely the regime where the FKG inequality holds, and we will be
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7.2. THE RANDOM CLUSTER MODEL

able to simulate the random cluster model efficiently for all p ∈ [0, 1]
simultaneously.

Next we establish two facts about the random cluster model, first
monotonicity and then positive correlations .

Theorem 7.3 Monotonicity
The random cluster distribution φ

(n)
p,q is monotone.

Proof:
Let e ∈ E be any edge and let σ1, σ2 be two configurations on the graph
G{e} = (V, E \ {e}) such that σ1 � σ2. We have φ

(n)
p,q (X(e) ≥ 0|X{e} = ·) = 1

regardless of what we condition on, so we only need to consider the case
φ

(n)
p,q (X(e) = 1|X{e} = ·). For e = 〈x, y〉 let {x ↔ y in σ} denote the event

that there is a path of open edges between x and y in configuration σ,
and let {x 6↔ y in σ} denote its complement. There are three cases,

(i) {x 6↔ y|σ1} ∩ {x 6↔ y|σ2}

(ii) {x 6↔ y|σ1} ∩ {x ↔ y|σ2}

(iii) {x ↔ y|σ1} ∩ {x ↔ y|σ2}

and in all three the result is a consequence of Lemma 7.1.
2

It is now an easy task to establish positive correlations.

Theorem 7.4 Positive correlations
The random cluster distribution φ

(n)
p,q on Bn has positive correlations for

any q ≥ 1 and any p ∈ [0, 1].

Proof:
If φ

(n)
p,q is irreducible and monotone the result follows from Theorem 7.1.

Since the underlying graph is finite all random cluster configurations
has positive probability and the corresponding measure is irreducible.
Monotonicity is established in Theorem 7.3 and we are done.
2

Next we establish stochastic ordering for the random cluster model.
The result is partly taken from [GHM01, Corollary 6.7] . For a proof
of statement (i), (ii) and (iii) see [GHM01] . Statement (iv) is a conse-
quence of Holley’s theorem (page 61) and Lemma 7.1.
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Theorem 7.5 Stochastic domination
For the graph Bn, p, p′ ∈ [0, 1], q, q′ ≥ 1 such that p ≤ p′ and q ≤ q′ we

have the following for the random cluster distribution.

(i) φ
(n)
p,q �D φ

(n)
p,1

(ii) φ
(n)
p,q �D φ

(n)
p,p(p+(1−p)q)−1

(iii) φ
(n)
p,q �D φ

(n)
p′,q

(iv) φ
(n)
p,q′ �D φ

(n)
p′,q

Infinite volume measures

On L
d there are two different methods for constructing the random

cluster measure, both use the definition of random cluster distributions
defined on finite boxes.

The DLR method, after Dobrushin, Lanford and Ruelle [Dob68,
LR69] defines a measure as of random cluster type if it follows the
random cluster distribution on finite regions Λ given the configuration
on Z

d \ Λ, i.e., if its conditional distribution on finite sets agrees with
those arising in the finite graph random cluster model. Let Rp,q be the
set of all such measures for parameters p and q.

The weak limit construction uses a sequence of finite regions {Λn}∞n=1

such that Λn → Z
d as n → ∞ . Without loss of generality we can think

of the Λn’s as finite boxes. The random cluster measure is defined as
the weak limit of random cluster distributions on Λn, as n → ∞ . Let
Wp,q be the set of all such measures for parameters p and q.

The two approaches to infinite volume measures does not in general
produce the same set of measures. For p and q let Pp,q = Rp,q ∪ Wp,q

denote the set of random cluster measures. The question regarding
uniqueness, that is, if |Pp,q| = 1 or not, is to a large extent still open.
The general result is the following, quoted from [Gri03] .

Theorem 7.6
For q ≥ 1 there exists a countable subset Dq ⊂ [0, 1] such that |Pp,q| = 1

whenever p 6= Dq.

It has been conjectured that Dq is empty for small q and a singleton
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7.2. THE RANDOM CLUSTER MODEL

(consisting of the critical value) when q is large. In two dimensions it is
known that Dq is either the empty set or {√q(1 +

√
q)−1}. More informa-

tion on the sets Rp,q and Wp,q can be found in [Gri95] and [GHM01] .
The translation invariant measures φ0

p,q and φ1
p,q defined as weak limits

of random cluster distributions with free and wired boundary condi-
tions (see Figure 7.1, page 64) respectively, are in both sets, and are
extremal in the stochastic ordering sense,

∀φ ∈ Rp,q ∪ Wp,q : φ0
p,q �D φ �D φ1

p,q .

Whenever we have non-uniqueness of measures we do have access to
these extremal measures. In subsequent chapters the parameter esti-
mation procedure is simulation driven. Suppose we have a data set X
measured at some locations in a finite region Λ ⊂ L

d. For some n we
will have Λ ⊆ Bn so we can regard the data as having distribution φ

(n)
p,q .

This distribution arises as a conditional distribution from some infinite
volume measure, there exists φ such that

φ(n)
p,q (·) = φ(·|TLd\Bd

n
)

where TZd\Bd
n

is the σ-field of events defined on vertices outside B
d
n. In

simulations we assume that φ = φ0
p,q. For almost all parameter values,

p ∈ [0, 1]\Dq, this is a correct approach, but on Dq it is not. For a further
discussion of non-uniqueness and its implications see page 202.

Phase transition

Phase transition for the random cluster model manifests itself as the
creation of an infinite connected component. Given a random cluster
random variable X distributed according to φp,q , q ≥ 1, p ∈ [0, 1] we let
L

d(X) denote the random cluster graph induced by X. The question is:

Does L
d(X) have a infinite connected component?

To answer this question we let C(x) = {y ∈ Z
d : x ↔ y} denote the

connected component containing vertex x. Suppose φp,q is translation
invariant and as a consequence the size of C(x) is independent of x. In
the sequel let 0 ∈ Z

d be the origin, also let

C0 = {y ∈ Z
d : 0 ↔ y}

be the connected component at the origin. We answer the above ques-
tion by analyzing the following probability.

φp,q(|C0| = ∞)
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The event {|C0| = ∞} does not depend on the state of any finite collection
of edges, so by Kolmogorov’s 0-1 law in the q = 1 case and by ergodicity
for q 6= 1 it is either 0 or 1. By using stochastic domination and the fact
that {|C0| = ∞} is an increasing event we can show the existence of a pc

such that

φp,q(|C0| = ∞) =

{
0, p < pc

1, p > pc

with pc depending on q and d. The subcritical phase (p < pc) means
that all connected components are finite, while the supercritical phase
(p > pc) implies the a.s. existence of an infinite connected component.
To which phase pc belong is generally an open question.

On the square lattice L
2 the situation is more complete. We know for

example that

pc(q) =

√
q

1 +
√

q
, q ∈ {1, 2} ∪ [25.72,∞)

holds [Gri03] . For q = 1 (percolation) we have the famous result by
Kesten [Kes80] , pc(1) = 1/2, and for the Ising model we have the corre-
sponding critical inverse temperature

βc(2) =
1

2
ln(1 +

√
2).

The value of the critical temperature for the Ising model was computed
by Onsager in 1944 [Ons44] , much earlier than the theoretical foun-
dations for Gibbs measures which was established in the late 1960’s.
The connection between the computed value by Onsager and the proper
theoretical foundations was made in 1973 by Abraham and Martin-Löf
[AML73] .

The result for q ≥ 25.72 was established in [LMR86, LMMS+91] .
The general statement

pc(q) =

√
q

1 +
√

q
, q ≥ 1

remains to our knowledge open.

Connection probabilities

Given a configuration X according to the random cluster measure
the connectivity function

fp,q(x, y) = φp,q(x ↔ y) , x, y ∈ Z
d
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describes the probability that two vertices are in the same connected
component in L

d(X). Our goal is to find a set Rmix ⊆ [0, 1] such that if
p ∈ Rmix there exists C, α ∈ (0,∞) such that

fp,q(x, y) ≤ Ce−α|x−y|

This implies strong mixing for the random cluster model so let us call
Rmix the strong mixing regime. The strategy is the following: We define
an alternative critical point pg(q), in such a way that for p < pg(q), we
have exponential decay of the cluster size at the origin, and exponential
decay of the connection function follows.

For general d ≥ 2, q ≥ 1 little is known about the decay of the con-
nectivity function as |x − y| → ∞. In the subcritical regime we do not
have infinite clusters so

lim
|x−y|→∞

fp,q(x, y) = 0

but we can not say much about the convergence rate. Grimmett and
Piza [GP97] have shown that for sufficiently fast polynomial decay we
automatically have exponential decay of fp,q. For this purpose we define
an alternative critical point.

Definition 7.8 Alternative critical point
Let

Y (p, q) = lim sup
n→∞

nd−1φp,q(0 ↔ ∂Bn)

for any p ∈ [0, 1] and q ≥ 1. The alternative critical point pg(q) is defined
as pg(q) = sup{p : Y (p, q) < ∞}.

We have pg(q) ≤ pc(q) and it is believed that equality holds for q ≥ 1, see
[GP97] . For the special case q = 2 equality is known to hold (according
to Grimmett and Piza, [GP97, page 2] ). Below pq(q) we have sufficiently
fast polynomial decay to imply exponential decay, and consequently the
central limit theorems are applicable. We do not, however, know pg(q).

Theorem 7.7 Grimmett-Piza
Let q ≥ 1, d ≥ 2, p < pg(q). Then there exists γ > 0 depending on p and q

such that
φp,q(0 ↔ ∂Bn) ≤ e−γn

for all large n.
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We continue with a lemma stating that even though the pg(q)’s are
unknown for general q they are monotone. It is a simple consequence
of monotonicity (Theorem 7.3) for the random cluster distributions.

Lemma 7.2 Monotone alternative critical point
Let q1, q2 ∈ R be such that q1 ≤ q2, and let pg(q) be the alternative critical

point in the random cluster model with parameter q. Then pg(q1) ≤ pg(q2)
holds.

Proof :
Let q1 and q2 be as in the statement. Consider the event {0 ↔ ∂Bn} that
there is a path of open edges between the origin and the boundary of
the box Bn. Since {0 ↔ ∂Bn} is an increasing event we have

φp,q2(0 ↔ ∂Bn) ≤ φp,q1 (0 ↔ ∂Bn)

for any p ∈ [0, 1] due to Theorem 7.5. Suppose p ≤ pg(q1), then Theorem
7.7 and the inequality above allow us to conclude

φp,q2 (0 ↔ ∂Bn) ≤ Ce−γn

for some C, γ ∈ (0,∞). This implies p ≤ pg(q2) and we are done.
2

We finish with treating cluster size and prove that the distribution of
d(C0) has exponentially decaying tail if p < pg(q), a simple consequence
of Theorem 7.7.

Definition 7.9 Cluster diameter
Let C be a connected component in a random cluster sample. We denote

its diameter by d(C) and define it as

d(C) = sup
x,y∈C

|x − y|

where | · | is the metric on Z
d.

Corollary 7.1 Exponentially decaying cluster size
Let φp,q be the random cluster measure for q ≥ 1 and p < pg(q). Then the

distribution of d(C0) has exponentially decaying tail.

70



7.3. THE POTTS MODEL

1 1

1

1 1

2 5 2 2

55

5

8 8 9

3

3 3

3

3 3

3

3

3

Figure 7.2: An example of a small Potts configuration for some unknown inverse
temperature β and some q ≥ 9.

Proof:
If d(C0) > n there exists at least one y ∈ ∂Bn such that 0 ↔ y, thus
{d(C0) > n} ⊆ {0 ↔ Bn}.The result now follows from Theorem 7.7 since

φp,q(d(C0) > n) ≤ φp,q(0 ↔ Bn) ≤ Ce−γn/2

for some C, γ > 0.
2

7.3 The Potts model

The Potts model is a two parameter family of models living on the
vertex set of a graph G = (V, E). We start by treating finite boxes B

d
n ⊂ Z

d

and expand to the infinite case when needed. We have two parameters,
the inverse temperature β and q, the number of states a vertex can have.

Definition 7.10 The Potts distribution
Given the graph Ln = (Zn, En) the Potts distribution is a two param-

eter family of distributions µ
(n)
q,β , β ∈ [0,∞), q ∈ {2, 3, ...}, on the space

{1, ..., q}Zn. An element σ ∈ {1, ..., q}Zn is called a configuration, and we
denote the configuration of a single vertex x ∈ Z

d
n by σ(x). A configuration

σ ∈ {1, ..., q}Zn is assigned probability

µq,β(σ) =
1

Zβ,q
exp



−2β
∑

e=〈x,y〉∈En

I{σ(x)6=σ(y)}(e)





where Zβ,q is a normalising constant. For q = 2 we get the famous Ising
model (see Section 7.4).
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Relation to the random cluster model

There is an interesting relation between the random cluster and
Potts models. For the box Bn = (Zn, En), consider the following mea-
sure living on the set {0, 1}En × {1, ..., q}Zn,

ρp,q((γ, ω)) ∝
∏

e=〈ex,ey〉∈E

(

pγ(e)(1 − p)1−γ(e) I{(ω(ex)−ω(ey))γ(e)=0}
)

for any (γ, ω) ∈ {0, 1}En ×{1, ..., q}Zn. This is the Edwards-Sokal measure,
introduced by Swendsen and Wang [SW87] and made more explicit by
Edwards and Sokal [ES88] .

Theorem 7.8
Let ρvertex

p,q and ρedge
p,q be the probability measures obtained by projecting

ρp,q on {1, ..., q}V and {0, 1}E respectively. Then

ρvertex
p,q = µq,β , ρedge

p,q = φp,q

where β =
1

2
ln(1 − p).

A consequence of this result is Corollary 7.2, giving us a method of
generating Potts samples from random cluster samples. The method
requires that the spins 1, ..., q are considered equivalent, so when as-
signing spins we must assign them uniformly at random from {1, ..., q}.

Definition 7.11 Random cluster to Potts mapping
Suppose λp,q ∈ {0, 1}En is an arbitrary random cluster configuration. Let
H : {0, 1}En → {1, ..., q}Zn be the mapping transforming a random cluster
sample into a Potts sample in the following manner. For each connected
component C in the graph G(λp,q) pick a spin uniformly at random from
the set 1, ..., q and assign it to every vertex in C. Do this independently
for each connected component. Return the given spin configuration ωβ,q,
where p and β are related as p = 1 − e−2β.

Note that the mapping H defined above is random. For a random
cluster configuration γ there are no less than qκ(γ) corresponding Potts
configurations. The mapping chooses one uniformly at random from
this set.
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Figure 7.3: An example of the result of the mapping from the random cluster
model to the Potts model. In this case q = 9.

Corollary 7.2
Let p = 1 − e−2β, and pick a random spin configuration Ω ∈ {1, ..., q}Zn as

follows

1. Pick Γ ∈ {0, 1}E
d

according to the random cluster measure φp,g.

2. Let Ω = H(Γ)

Then Ω is distributed according to the Potts measure, Ω
D
= µq,β.

We omit the proofs of Theorem 7.8 and Corollary 7.2, they can both
be found in [GHM01] .

Infinite volume limits and phase transition

Let {Bn}∞n=1 be a sequence of boxes such that Bn → L
d, and let ξ be

some fixed but arbitrary configuration in {1, ..., q}Z
d

with positive proba-
bility. On each box we define the Potts distributions with parameters q
and β as follows.

µ
(n),ξ
q,β (X) = µξ

q,β(X |X = ξ on Z
d \ B

d
n) , X ∈ {1, ..., q}Z

d

Taking the limit as n → ∞ we get

µξ
q,β = lim

n→∞
µ

(n),ξ
q,β
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where µξ
q,β is called the Potts measure on L

d with parameters q, β and
boundary conditions ξ. The Potts model exhibits a phase transition,
and there exists a critical value βc, possibly infinite, such that for β < βc

(subcritical phase) we have one unique measure, and for β > βc (super-
critical phase) there exists multiple measures. The multiplicity of mea-
sures in the supercritical phase means that there exists q distinct mea-
sures, originating from limit construction having boundary conditions
ξ ≡ k, k ∈ {1, ..., q}, we denote these measures µk

q,β. The phase transition
is closely related to the creation of an infinite connected component in
the corresponding random cluster measure φ1−e−2β ,q. The infinite con-
nected components introduces long range dependence between vertices,
making the boundary affect the configuration at the origin. Since each
µk

q,β is translation invariant the effect is the same for every vertex.
On finite boxes we let

µ
(n),k
q,β (X) = µk

q,β(X |X ≡ k on Z
d \ B

d
n) , X ∈ {1, ..., q}Z

d

for k ∈ {1, ..., q}. On Bn we experience a finite version of the phase
transition, it is not sharp as in the infinite case but ”smeared out” over
a small interval [α1, α2] around βc. The length of the interval depends in
n, and the larger n we take the smaller the interval becomes.

Uniqueness of measures is known to hold at the critical value on
Z

d whenever d = 2 or d ≥ 4, while the three-dimensional case remains
open.

Correlations

Let l1, l2, l3, l4 be vertices in L
d, also let σ be an Potts configuration

chosen according to the Potts distribution µ
(n)
q,β. Let ω be the correspond-

ing random cluster configuration according to φ
(n)
p,q . The distributions

are related through p and β as p = 1 − e−2β.
We start with an important characteristic and continue with correla-

tions.

Definition 7.12 Susceptibility
Let X be distributed according to the Potts model on Z

d with parameters
β and q. The susceptibility for X, denoted by σ2

X (β) (or simply σ2
X ) at

inverse temperature β is defined as

σ2
X (β) =

∑

v∈Zd

Covβ [X(0), X(v)].
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We now proceed with the basic theorem giving us expected values,
variances and correlations.

Lemma 7.3
Let X be distributed according to the Potts distribution µ

(n)
q,β, and let l and

l′ be two distinct vertices in Z
d. Let φ

(n)
p,q be the corresponding random

cluster distribution with p = 1 − e−2β, then the following holds.

(i) E[X(l)] =
q + 1

2

(ii) Var[X(l)] =
q2 − 1

12

(iii) Cov[X(l), X(l′)] =
q2 − 1

12
φ(n)

p,q (l ↔ l′)

(iv) Corr[X(l), X(l′)] = φ(n)
p,q (l ↔ l′)

(v) E[X(l)X(l′)] =

(
q + 1

2

)2

+ φ(n)
p,q (l ↔ l′)

q2 − 1

12

Proof :
Straightforward calculations and some assembly gives the result. First
the expected value

E[X(l)] =
1

q

q
∑

k=1

k =
q + 1

2

the second moment

E[X(l)2] =
1

q

q
∑

k=1

k2 =
(q + 1)(2q + 1)

6

and the variance follows by straightforward calculations.

Var[X(l)] =
(q + 1)(2q + 1)

6
−
(

q + 1

2

)2

=
q2 − 1

12
.

Then also the covariance

Cov[X(l), X(l′)] = E[X(l)X(l′)] − E[X(l)]E[X(l′)] = φ(n)
p,q (l ↔ l′)

q2 − 1

12

75



CHAPTER 7. THREE MODELS IN STATISTICAL MECHANICS

and the correlation

Corr[X(l), X(l′)] =
Cov[X(l), X(l′)]

√

Var[X(l)]
√

Var[X(l′)]

=

(

φ(n)
p,q (l ↔ l′)

q2 − 1

12

)(
q2 − 1

12

)−1/2(
q2 − 1

12

)−1/2

= φ
(n)
p,q (l ↔ l′)

follows since

E[X(l)X(l′)] = E[X(l)X(l′)|l ↔ l′]P(l ↔ l′) + E[X(l)X(l′)|l 6↔ l′]P(l 6↔ l′)

= φp,q(l ↔ l′)
1

q

q
∑

k=1

k2 + φp,q(l 6↔ l′)

(
q + 1

2

)2

= φp,q(l ↔ l′)
(q + 1)(2q + 1)

6
+ φp,q(l 6↔ l′)

(
q + 1

2

)2

=

(
q + 1

2

)2

− φp,q(l ↔ l′)
q2 − 1

12

and we are done.
2

In the subcritical phase the absence of an infinite cluster implies

Cov[X(u), X(v)] =

(
q2 − 1

12

)

φp,q(u ↔ v) → 0,

as the distance between u and v increases. Note that we need not ex-
plicitly know the decay rate, exponential decay suffice in order to make
the susceptibility

σ2
X =

∑

v∈Zd

Cov[X(u), X(v)]

finite.
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7.4 The Ising model

The Ising model is one of the oldest models in statistical mechanics,
it dates back to the 1920’s. In this section we define the Ising distribu-
tion on finite boxes, Bn, and the Ising measure on Z

d. The Ising model is
a special case of the Potts model for q = 2 where the states are denoted
−1 and +1 instead of 1 and 2.

Definition 7.13 The Ising distribution
Given the graph Ln = (Zn, En) in on or more dimensions, the Ising dis-

tribution is a one parameter family of distributions µ
(n)
β , β ∈ [0,∞), on

the space {−1, 1}Zn. An element σ ∈ {−1, 1}Zn is called a configuration,
and we denote the configuration of a single vertex x ∈ Z

d
n by σ(x). A

configuration σ ∈ {−1, 1}Zn is assigned probability

µ
(n)
β (σ) =

1

Zβ
exp



−2β
∑

e=〈x,y〉∈Ed
n

I{σ(x)6=σ(y)}(e)





where Zβ is a normalizing constant.

The definition is for an arbitrary number d of dimensions, but in
the sequel we will restrict ourself to study the cases d = 2, 3. Due to
certain properties of planar graphs, such as L

2, the theory for the two-
dimensional case is better understood than the three-dimensional case.

Infinite volume limits and phase transition

Constructing the Ising measure µβ as a limit of Ising distributions

µ
(n),ξ
β (X) = µξ

β(X |X = ξ on Z
d \ B

d
n) , X ∈ {−1, +1}Z

d

with suitable boundary conditions ξ, follow the same lines as for the
Potts measure (see page 73).

Since the Ising model is a special case of the Potts model (just set q =
2) the phase transition is of the same type, but better understood. As for
the Potts model we know that in the subcritical phase, β < βc we have
a unique measure and that the supercritical phase, β > βc, we have
exactly two measures originating from the two boundary conditions (all
+/− outside the Bn’s). These are the so called pure phases consisting of
a vast ocean of −/+ spins (see Figure 7.4 below), with small islands of
the other spin type.
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Figure 7.4: An example on boundary conditions for a small box (within dashed
lines) in the Ising model. In the right diagram we have all +-spins outside the
box, and on the left we see the − boundary condition.

Correlations

As a preparation for point estimation we prove some results regard-
ing correlation, variance and expectation of the configuration at single
vertices. Let l1, l2, l3, l4 be vertices in Ln, also let σ be an Ising configura-
tion chosen according to the Ising distribution µ

(n)
β on box Bn. Let ω be

the corresponding random cluster configuration according to φ
(n)
p,q . The

distributions are related through p and β as p = 1 − e−2β.

Lemma 7.4 Two-point correlation
Let X be distributed according to the Ising measure µ

(n)
β , and let l and

l′ be two distinct locations in Zn. Let φ
(n)
p,2 be the corresponding random

cluster measure with p = 1 − e−2β. Then the following holds.

(i) E[X(l)] = 0

(ii) Var[X(l)] = 1

(iii) Corr[X(l), X(l′)] = φ
(n)
p,2 (l ↔ l′)

(iv) E[X(l)X(l′)] = φ
(n)
p,2 (l ↔ l′)

(v) Var[X(l)X(l′)] = 1 − φ
(n)
p,2 (l ↔ l′)2
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Proof :
The result follows using the same type of calculations as in Lemma 7.3.
2

Lemma 7.5 Four-point correlation
Let X be distributed according to the Ising measure µ

(n)
β , and let l1, l2

and l3, l4 be four distinct locations in Zn. Then X(l1)X(l2) and X(l3)X(l4)
are positively correlated with covariance

Cov[X(l1)X(l2), X(l3)X(l4)] = φ
(n)
p,2 ({l1 ↔ l2} ∩ {l3 ↔ l4})

−φ
(n)
p,2 (l1 ↔ l2)φ

(n)
p,2 (l3 ↔ l4)

+φ
(n)
p,2 ({l1 ↔ l3 6↔ l2 ↔ l4})

+φ
(n)
p,2 ({l1 ↔ l4 6↔ l2 ↔ l3}).

Proof :
Let l1, l2, l3, l4 be chosen as in the statement, also let X be a configuration
chosen according to the Ising measure µ

(n)
β .

Cov[X(l1)X(l2), X(l3)X(l4)] = E[X(l1)X(l2)X(l3)X(l4)]

−E[X(l1)X(l2)]E[X(l3)X(l4)]

The second term is given by Lemma 7.4, while for the first term we
make the following observation. Given the event I that vertices l1, l2, l3
and l4 are located in distinct connected components, in the underlying
random cluster configuration, their spin is independent of each other
and

E[X(l1)X(l2)X(l3)X(l4)|I ] =

4∏

k=1

E[X(lk)|I ] = 0.

The same holds as long as at least one of the vertices is located in
a component different from where the other three are. Whenever the
vertices are located pairwise in the same connected components the
expectation becomes 1. We define events for these cases.

{l1 ↔ l2 6↔ l3 ↔ l4} Vertices l1, l2 is located in one connected components
and that l3, l4 are located in another connected component.

79



CHAPTER 7. THREE MODELS IN STATISTICAL MECHANICS

{l1 ↔ l2 ↔ l3 ↔ l4} All four vertices are located in the same connected
component.

{isolated} At least one of the four vertices is located in a connected com-
ponents separate from the others.

Just for notation let X = X(l1)X(l2)X(l3)X(l4).

E[X ] = E[X |{isolated}]φ(n)
p,2({isolated})

+E[X |{l1 ↔ l2 6↔ l3 ↔ l4}] φ
(n)
p,2 ({l1 ↔ l2 6↔ l3 ↔ l4})

+E[X |{l1 ↔ l3 6↔ l2 ↔ l4}] φ
(n)
p,2 ({l1 ↔ l3 6↔ l2 ↔ l4})

+E[X |{l1 ↔ l4 6↔ l2 ↔ l3}] φ
(n)
p,2 ({l1 ↔ l4 6↔ l2 ↔ l3})

+E[X |{l1 ↔ l2 ↔ l3 ↔ l4}] φ
(n)
p,2 ({l1 ↔ l2 ↔ l3 ↔ l4})

= φ
(n)
p,2 ({l1 ↔ l2} ∩ {l3 ↔ l4}) + φ

(n)
p,2 ({l1 ↔ l3 6↔ l2 ↔ l4})

+φ
(n)
p,2 ({l1 ↔ l4 6↔ l2 ↔ l3})

We proceed with the covariance.

Cov
µ

(n)

β

[X(l1)X(l2), X(l3)X(l4)] = φ
(n)
p,2 ({l1 ↔ l2} ∩ {l3 ↔ l4})

−φ
(n)
p,2 (l1 ↔ l2)φ

(n)
p,2 (l3 ↔ l4)

+φ
(n)
p,2 ({l1 ↔ l3 6↔ l2 ↔ l4})

+φ
(n)
p,2 ({l1 ↔ l4 6↔ l2 ↔ l3})

The random cluster measure φp,2 is monotone and therefore has positive
correlations, see [GHM01] , implying that

φ
(n)
p,2 ({l1 ↔ l2} ∩ {l3 ↔ l4}) ≥ φ

(n)
p,2 (l1 ↔ l2)φ

(n)
p,2 (l3 ↔ l4)

since {l1 ↔ l2} and {l3 ↔ l4} both are increasing events, and we are
done.
2
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7.5 Some natural extensions

The are many ways to extend the presented models, we present a few
of the here.

For the Ising and Potts models one way is to introduce random in-
teraction parameters. Instead of letting all interaction have the same
strength we introduce a class of random variables

{J(〈x, y〉)}〈x,y〉∈En

representing the strength of the interaction between neighbouring ver-
tices. Different distributions of the interactions lead to different char-
acteristics, and the ordinary mode is a special where the distribution
assigns all probability to a single point in the underlying space. We
could also remove certain bonds or vertices and study the model on the
remaining graph, this method is called (bond or site) dilution and has
been studied intensively over the years for both the Ising and Potts mod-
els. There is also a version of the q-state Potts model, called the Potts
lattice gas, having q + 1 possible states (possible states are {0, 1, ..., q})
where state 0 represent as vacant site. There are also the fuzzy models,
such as the fuzzy Potts model introduced by Maes and Vande Velde in
1995, [MV95] . It is an example of a hidden Markov model where we
simple hide some of the spins in a ordinary Potts realisation.

There are also variants of the random cluster model. We have the
asymmetric random cluster model introduced by Alexander [Ale01]
2001, a variant suitable for studying the Potts lattice gas. Another
example is the partial random cluster model where a fraction of the non
singleton clusters are removed from the random cluster model.

7.6 Historical notes

We treat only briefly the history and development of the Ising, Potts
and random cluster models. For more complete historical notes see for
example [GHM01] , [Gri03] , [Gri95] and references therein.

7.6.1 The Ising model

The Ising model was developed in the 1920’s to study phase transi-
tion in one dimension. The first articles was published by Lenz [Len20]
in 1920 and by Ising [Isi25] in 1925. It quickly became clear that the
Ising model on Z does not exhibit a phase transition, but it was not un-
til 1936 when Peirls [Pei36] introduced his contour argument that the
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existence of a phase transition was proved for d ≥ 2. In 1944 Onsager
[Ons44] computed the value of the critical inverse temperature on Z

2,
see comments on page 68.

The critical value divides the domain for the inverse temperature in
two phases, the subcritical (β < βc) and the supercritical (β > βc). The
nature of the phases we partially established in 1972 when Gallavotti
and Miracle-Sole [GMS72] proved that the Ising model with periodic
boundary on Z

d with d arbitrary have exactly two pure phases for large
enough β. The full result was established in 1975 by Messager and
Miracle-Sole [MMS75] proving the corresponding result in two dimen-
sions for β > βc. The concept of pure phases is emphasized in three
dimensions where there, in addition to two pure phases, also exists
measures expressing the coexistence of pure phases [Dob72] . The co-
existence is such that one half of the space have a majority of − spins
and the other half a majority of + spins. The two halves are separated
by a sharp interface.

The concept of dilution is together with the introduction of random
interactions natural extensions of the Ising model and has as such been
intensively studied over the years. For some results see for example
[ACCN87] , [Boc83] for the Ising model and [Wu80] , [Wu81] for the
Potts model.

In statistical applications of the Ising model we regard the inverse
temperature as the unknown parameter and use observations to com-
pute point estimates and confidence intervals. we could construct con-
fidence intervals by direct methods if we know the distribution of some
appropriate statistic, or we could use asymptotic theory and the normal
distribution through some central limit theorem. There are in the field
many central limit theorems regarding different characteristics of the
Ising model but here we are only interested in those directly relating
the inverse temperature to some entity computed from observed data,
fully observed or not.

In 1976 Pickard states a central limit theorem [Pic76] regarding
the sample correlation between nearest neighbours in the Ising model.
Based on an exact characterisation of the partition function (by Kauf-
mann [Kau49] in 1949) he proves the result for the fully observed Ising
model on a torus in the subcritical regime. In later articles [Pic77] and
[Pic79] he extends the results allowing different vertical and horizontal
interactions, non-zero magnetic field and supercritical inverse temper-
ature, still assuming a fully observed model.

In 1982 Bolthusen gives a central limit theorem for stationary mix-
ing random fields regarding the mean over bounded regions. The result
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is valid for models fulfilling the requirements for strong or ρ-mixing.
Bolthausen’s result is rather general, allowing us to introduce new mod-
els based on the Ising and Potts models and still have a central limit
theorem for the asymptotic distribution of relevant statistics.

In 1992 and 1993 Comets and Gidas [CG92, Gid93] present results
regarding parameter estimation for the Ising and Potts models for fully
and partially observed data. The article treating fully observed data
[Gid93] states consistency of ML estimators and also asymptotic nor-
mality under suitable conditions. The treatment of partially observed
data in [CG92] uses data from Gibbs models not directly observed, but
observed through another independent lattice process. This extra pro-
cess can be used to add noise or remove observations at some sites.
Consistency for ML estimators are stated and proved, there is however
no result regarding asymptotic normality.

7.6.2 The Potts model

As a natural extension of the Ising model the q-state Potts model was
introduced by R.B. Potts in 1952 [Pot52] , an extension of the four state
Ashkin-Teller model from 1943 [AT43] . Since the 1970’s much effort
has been made to explore the model, its properties and relation to other
models. Among mathematicians and physicists the phase transition
which is more complex than that of the Ising model has been extensively
studied. Today many problems are solved, for example the structure of
phase transition on the cubic d-dimensional lattice, due to Aizenman,
Chayes, Chayes and Newman in 1988 [ACCN88] . Another important
result by Kotečky and Schlosman in 1982 [KS82] is that there are
multiple measures also at the critical value, which is not the case for
the Ising model.

Other questions remain, to our knowledge, open, for example the
value for the critical inverse temperature. It in known through Onsager
[Ons44] that in the Ising case (q = 2) the critical value is

βc =
1

2
log(1 +

√
q)

and it is believed to hold for general q in Z
2, but has only been proved

for q sufficiently large [LMMS+91] .
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7.6.3 The random cluster model

After observing similarities in electrical networks, percolation and
the Ising/Potts models Kastelyn and Fortuin introduced the random
cluster in a series of articles [FK72] , [For72a] and [For72b] in the early
1970’s. As a two parameter model on the edge set of a graph it can be
applied in connection with many spin-systems. For the Potts model cor-
relations transfers to connections in the random cluster model, making
is possible to study dependence through stochastic geometry. The ran-
dom cluster model also experiences a phase transition enabling us to
study phase transition in a wider class of spin-models simultaneously.
We mention a few of the important articles published over the years.

Aizenman, Chayes, Chayes and Newman studied magnetization in
one-dimensional 1/|x−y|2 Ising and Potts models [ACCN88] in 1988, the
purpose of the article in two-fold and they demonstrate how to use the
random cluster model when relating the phase structure of the Ising,
Potts and percolation models.

Another important contribution is the coupling between the Potts
models and the random cluster model, the Edwards-Sokal coupling
[ES88] after the inventors. The coupling makes it possible to generate
Potts and Ising samples from random cluster data, and vice versa. An
important application is the Edwards-Sokal-Swendsen-Wang algorithm
making it possible to simulate the Potts model efficiently for each in-
verse temperature. Also the omniparametric algorithm extensively used
in this thesis is, via the important article by Propp and Wilson [PW96]
, a consequence of this coupling.

In 1998 Häggström [Häg98] presented the random cluster model as
an important tool for studying phase transitions in percolation, Ising
and Potts models, see also [GHM01] by Georgii, Häggström and Maes.

Other examples of applications of the random cluster model are
Bouabci and Carneiro’s article [BC00] where a representation of the
Blume-Capel model is presented, and [MM04] where Mossel and Steel
study phase transition on a phylogenetic tree. We also have Pfister and
Velenik’s article [PV97] on the random cluster representation of the
Ashkin-Teller model and many more . . .
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Omniparametric models

In this chapter we present omniparametric versions of the random clus-
ter and Potts models. The Ising model is covered as a special case of the
Potts model. We present omniparametric versions and projection oper-
ators for retrieving the ordinary fixed parameter models. The rest of the
chapter is organized as follows. We begin by describing how to couple
two random cluster variables in a special way and proceed with the def-
inition of the omniparametric random cluster model and a projection
mapping. We repeat the process for the Potts model. For simplicity we
present the material for a finite graph G = (V, E).

8.1 The random-cluster case

Let {Γp,q}p∈[0,1],q≥1 be a class of random cluster variables in {0, 1}E.
For each fixed q0 ≥ 1 we have a subclass {Γp,q0}p∈[0,1] which we will rep-
resent by a single random variable, the omniparametric random cluster
variable Γq0 taking values in [0, 1]E. The omniparametric variable is a
coupling of the Γp,q ’s over all p ∈ [0, 1] for a fixed q. We couple them
in such a way that Γp1,q ≤ Γp2,q a.s. whenever p1 ≤ p2. This makes it
possible to represent the behaviour of the whole class at a single edge e
by a threshold value in [0, 1]. Saving threshold values for all edges give
us a simple description of the behaviour of {Γp,q}p∈[0,1] and we denote
the collection of thresholds by Γq, the omniparametric random cluster
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variable.
We start by describing the coupling and a certain Markov chain. We

define the omniparametric random cluster distribution as the station-
ary distribution of this chain. Some effort is made to ensure existence
of, and convergence to, the stationary distribution and we will adopt
the techniques of Propp and Wilson [PW96] . Finally we define a pro-
jection operator from [0, 1]E to {0, 1}E and prove that the variable in
{0, 1}E emerging by projection follows the fixed parameter random clus-
ter model.

The coupling

For fixed parameter simulation we use the Gibbs sampler and marginal
probabilities described in Section 7.2. We define the coupling of the
variables {Γp,q}p∈[0,1] by letting the Gibbs sampler run Markov chains
{γ(n)

p1,q}∞n=0 and {γ(n)
p2,q}∞n=0 on {0, 1}E for fixed arbitrary p1, p2 ∈ [0, 1] such

that p1 ≤ p2. Let γ
(0)
p1,q and γ

(0)
p2,q be two arbitrary elements in {0, 1}E such

that γ
(0)
p1,q � γ

(0)
p2,q. Given configurations γ

(n)
p1,q and γ

(n)
p2,q we update them

to γ
(n+1)
p1,q and γ

(n+1)
p2,q in the following manner, using the same random

number for both variables.

1. Choose an edge e ∈ E uniformly at random.

2. Let u
D
= U [0, 1].

3. Update the configurations at e.

γ(n+1)
p1,q (e) =

{

1, u ≤ φp1,q(γ
(n)
p1,q(e) = 1| γ

(n),{e}
p1,q )

0, otherwise

γ(n+1)
p2,q (e) =

{

1, u ≤ φp2,q(γp2,q(e) = 1| γ
(n),{e}
p2,q )

0, otherwise

4. Let γ
(n+1)
p1,q (f) = γ

(n)
p1,q(f) and γ

(n+1)
p2,q (f) = γ

(n)
p2,q(f) for f 6= e.

Since γ
(n)
p1,q � γ

(n)
p2,q and the random cluster measure is monotone we

have
φp1,q(γ

(n)
p1,q(e) = 1| γ(n),{e}

p1,q ) ≤ φp2,q(γ
(n)
p2,q(e) = 1| γ(n),{e}

p2,q )

ensuring us that γ
(n+1)
p1,q � γ

(n+1)
p2,q whenever q ≥ 1. Asymptotically we have

γ(n)
p1,q

D−→ γp1,q, γ(n)
p2,q

D−→ γp2,q
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as n → ∞ , where γq,1
D
= φp1,q and γp2,q

D
= φp2,q. Since we do not have

an infinite amount of time we use the coupling from the past (CFTP)
algorithm by Propp and Wilson [PW96] . We include in this scheme the
Markov chains {γ(n)

p,q }∞n=0 for all p ∈ [0, 1] and repeat (at least in theory)
the procedure. Due to monotonicity of the coupling there will for every
edge e be a unique threshold pt(e) such that

γp,q(e) =

{
1, p ≥ pt(e)
0, otherwise

We save the threshold values for all edges in a new configuration de-
noted γq, the omniparametric configuration.

A projection operator

We can not treat the omniparametric random cluster model without
relating it to the fixed parameter model. For this purpose we define a
projection mapping, P

RC
p .

Definition 8.1 Random cluster projection mapping
Given p ∈ [0, 1] we define the projection mapping P

RC
p : [0, 1]E → {0, 1}E

edgewise in the following manner

P
RC
p (γo(e)) =

{
0, if γo(e) < p
1, otherwise.

Note that the definition itself has nothing to do with the random cluster
measure, it is simply a mapping from one space to another. For an
illustration see Figure 8.1

A Markov chain

We define a Markov chain, {Xn}∞n=0 on [0, 1]E with parameter q ≥
1. Our goal is to prove existence of and convergence to a stationary
distribution. Let the initial element, X (0), follow any distribution on
[0, 1]E. The update procedure is the following. Given X (n) we construct
X(n+1) by choosing an edge e = 〈x, y〉 ∈ E uniformly at random. Let
(X(n)){e} be the configuration on G{e} = (V, E \ {e}) which is equal to
X(n) on every edge except e. We let

pt = min{p ∈ [0, 1] : x ↔ y in P
RC
p ((X(n)){e})}.
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Figure 8.1: An example of how the projection mapping works.

be the smallest p such that x and y is connected by an open path in
P

RC
p ((X(n)){e}). Let fpt,q(p) be the probability of X(n+1)(e) = 1 as a func-

tion of p. We get

fpt,q(p) =

{
p(p + q(1 − p))−1, p < pt

p, otherwise

according to the single-edge conditional probabilities (Lemma 7.1). Some-
times when q is understood we simple write fpt(p).

It is important that f(p) is monotone, otherwise we loose the nice
representation of the omniparametric state. This is why we can not
treat the random cluster model for q < 1, as seen in Figure 8.2. We also
define a version of its inverse.

f−1
pt,q(t) =







qt(1 − t(q + 1))−1, t < pt(pt + q(1 − pt))
−1

pt, pt(pt + q(1 − pt))
−1 ≤ t ≤ pt

t, t > pt

Note that if p1 ≤ p2 then f−1
p1,q ≤ f−1

p2,q as seen in Figure 8.3.
We define the update function φq : [0, 1]×E × [0, 1]E → [0, 1]E edgewise

in the following manner.

φq(u, e, X(n))(f) =

{
f−1

pt,q(u), f = e

X(n)(f), f 6= e

for all f ∈ E and u ∈ [0, 1].
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Figure 8.2: Two examples of marginal probability fpt,q(p) = φp,q(X(e) = 1|X{e})
for the random cluster model. In both cases we have pt = 1/2. In the left diagram
we used q = 3 and in the right q = 0.3.
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Figure 8.3: An example of how the update function behaves when we couple the
update for two chains by using the same random number. Suppose X(e) ≤ Y (e)
for all e ∈ E, X(e) = 0.4 and Y (e) = 0.6. We see that the coupled update preserves
that order
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Definition 8.2 The omniparametric random cluster Markov chain
Let {en}∞n=0 be a random sequence of edges, all selected independently

and uniformly at random from the edge set E. Also let {Un}∞n=0 be a se-
quence of independent U [0, 1] random numbers. Let {Xn}∞n=0 be a Markov
chain on [0, 1]E defined by the following.

(i) X0
D
= ρ

(ii) Xn+1 = φq(Un, en, Xn)

where ρ is an arbitrary distribution on the state space [0, 1]E. Then
{Xn}∞n=0 is called the omniparametric random cluster Markov chain .

In order to adopt the techniques of Propp and Wilson we need a
partial order on the state space, see Definition 7.2 on page 60.

We will run two chains, {Xn}∞n=0 and {Yn}∞n=0, simultaneously and
couple them by using the same random numbers for both chains. At an
update we choose an edge e ∈ E uniformly at random and update Xn(e)
and Yn(e) by using the random number U . We call this procedure the
coupled update .

Xn+1 = φq(U, e, Xn) , Yn+1 = φq(U, e, Yn)

We want Xn � Yn to imply Xn+1 � Yn+1. It is a simple consequence of of
the definition of the update function φq.

Lemma 8.1 Coupled update preserves order
Let X, Y ∈ [0, 1]E such that X � Y , and let U

D
= U [0, 1]. Then

φq(U, e, X) � φq(U, e, Y )

for any e ∈ E.

Proof :
Let X and Y be any elements in [0, 1]E such that X ≺ Y , and let e ∈ E
be arbitrary. Then X(e) ≤ Y (e) and as a consequence f−1

X(e) ≤ f−1
Y (e) on

[0, 1] (see Figure 8.3). The result now follows from the definition of the
update function.
2

Suppose that X0 is the all ”1” state, and that Y0 is the all ”0” state,
that is,

∀e ∈ E : X(e) = 0, Y (e) = 1.
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We run the two chains forward, generating {Xn}∞n=0 and {Yn}∞n=0 by us-
ing the coupled update. The question is now: Is there some finite posi-
tive M such that Xn = Yn for n ≥ M?

To answer this question we begin with the definition of a coupled ver-
sion of the omniparametric random cluster Markov chain. It is the main
tool when proving existence of and convergence to a unique stationary
distribution for the omniparametric random cluster Markov chain. The
usefulness come from the fact that any other initial configuration X ′

is squeezed in between the initial configurations of the coupled chains,
X̃0 � X ′ � Ỹ0, and the coupled update preserves this order if all three
chains are coupled.

Definition 8.3 A coupled Markov chain
Let {en}∞n=0 is a random sequence of edges, all selected uniformly at ran-
dom and independently of each other. Also let {Un}∞n=0 be a sequence of
independent U [0, 1] random numbers. Let {X̃n, Ỹn}∞n=0 be a Markov chain
on [0, 1]E defined by the following.

(i) ∀e ∈ E : X̃0(e) = 0

(ii) X̃n+1 = φq(Un, en, X̃n)

(i′) ∀e ∈ E : Ỹ0(e) = 1

(ii′) Ỹn+1 = φq(Un, en, Ỹn)

Then {X̃n, Ỹn}∞n=0 is called the coupled omniparametric random cluster
Markov chain .

Lemma 8.2 Coalescence in finite time
Let {X̃n, Ỹn}∞n=0 be a coupled omniparametric random cluster Markov

chain. Then there exists a random time M < ∞ such that X̃n = Ỹn when-
ever n ≥ M .

Proof :
We consider finite subchains of {X̃n, Ỹn}2|E|

n=1 of {X̃n, Ỹn}∞n=0, such that

P(X̃2|E| = Ỹ2|E|) > 0.

By writing the original chain as a sequence of such subchains we will
eventually have coalescence with probability one.

Consider the sequences of random edges {en}∞n=0 and random num-
bers {Un}∞n=0. Fix a, b ∈ (0, 1) such that a < b. With positive probability
there is a subsequence of indices l, ..., l + 2k − 1, k = |E|, such that

{el, ..., el+k−1} = {el+k, ..., el+2k−1} = E,

91



CHAPTER 8. OMNIPARAMETRIC MODELS

Um < a for m = l, ..., l + k − 1, and Um > b for m = l + k, ..., l + 2k − 1 such
that

Ul+k < Ul+k+1 < ... < Ul+2k−1.

Consider the subchain {X̃n, Ỹn}l+k−1
n=l . Regardless of (X̃l, Ỹl) we can choose

a sufficiently small, making X̃l+k(e) < 0.1 and Ỹl+k(e) < 0.1 for all e ∈ E.
Now consider the subchain {X̃n, Ỹn}l+2k−1

n=l+k . At every update we will
use a random number Un such that X̃n(e) < Un and Ỹn(e) < Un for
n = l + k, ..., l + 2k − 1 since the sequence Ul+k, ..., Ul+2k−1 is strictly in-
reasing. The update function will choose the same value for both chains

φq(Un, e, X̃n)(e) = φq(Un, e, Ỹn)(e), n = l + k, ..., l + 2k − 1

since the thresholds in X̃n and Ỹn are smaller than Un regardless of the
choice of e. Since {el+k, ..., el+2k−1} = E we will have X̃l+2k−1 = Ỹl+2k−1

and we say that the chains have coalesced. We can now regard the
chain {X̃n, Ỹn}∞n=0 as a sequence of subchains

{X̃n, Ỹn}L−1
n=0 , {X̃n, Ỹn}2L−1

n=L , ..., {X̃n, Ỹn}mL−1
n=(m−1)L, ... ,

all on length L = 2k. With probability one some of these subchains will
eventually result in coalescence. Suppose this happens for subchain m
and let M = mL. For n = ML we have X̃n = Ỹn and since the coupled
updates for subsequent pairs of X̃n’s and Ỹn’s will result in the same
updated value regardless en and Un we have X̃n = Ỹn for all n ≥ M and
we are done.
2

We are now ready to prove existence of the stationary distribution for
the omniparametric random cluster Markov chain.

Theorem 8.1 Existence theorem
Let {Xn}∞n=0 be an omniparametric random cluster Markov chain. Then

there exists a distribution µ such that

lim
n→∞

Xn
D
= µ.

Proof:
We follow along the same lines as the proof of the main theorem in Propp
and Wilsons article [PW96] from 1996. The idea is the following. We
involve another two chains and couple them all. The two extra chains
has the property that one is a version if the other shifted one time step.
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Since they all coalesce eventually one of the two extra chains will follow
a distribution having all necessary properties of a stationary distribu-
tion. Also as a consequence of coalescence all four chains follow the
same distribution at time t = 0. Now to the details.

Consider the coupled omniparametric random cluster Markov chain
{X̃n, Ỹn}0

n=−M started at time −M and stopped at n = 0. For this we
use the random edge sequence {en}0

n=−M and random number sequence
{Un}0

n=−M . According to Lemma 8.2 we can choose M < ∞ large enough
such that X̃n = Ỹn, n ≥ M , with probability 1.
Let us now involve another two chains {Zn}0

n=−M and {Wn}0
n=−M where

W−M = Z−M+1 =. Then
Wn

D
= Zn+1

for any n ≥ −M . We couple the Wn’s and the Zn’s with X̃n and Ỹn as
described in Definition 8.3 now with four chains instead of two. Regard-
less of the initial states (W−M , Z−M ) we will have W0 = Z0 since X̃0 = Ỹ0

and either
X̃n � Zn � Wn � Ỹn or X̃n � Wn � Zn � Ỹn

holds. We now let M → ∞ and consider the chains {Zn}0
n=−∞ and

{Wn}0
n=−∞. We now have W0

D
= Z0 since W0 = Z0 a.s. and since W0

D
= Z−1

we also have Z−1
D
= Z0. Remember that Z0 was constructed from Z−1 by

executing the update function once so

Z−1
D
= φq(U−1, e−1, Z−1)

making the distribution of Z0 stationary for the {Zn}0
n=−∞ chain. The

probabilistic behaviour of {Zn}0
n=−∞ is the same as for the original chain

{Xn}∞n=0 making them share the same stationary distribution, and we
are done.
2

In order to show convergence towards a stationary distribution we
need to measure the distance between distributions. We use the total
variation distance.

Definition 8.4 Total variation distance
Let ν1, ν2 be two measures on a measurable space (Ω, F). We define the

total variation distance between ν1 and ν2 as

dTV(ν1, ν2) = 2 sup
A∈F

|ν1(A) − ν2(A)|.
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Theorem 8.2 Convergence theorem
Let {Xn}∞n=0 be an omniparametric random cluster Markov chain with

stationary distribution µ. Let X0 follow some arbitrary initial distribution
ρ and let ρ(n) denote the distribution of Xn. Then

lim
n→∞

dTV(ρ
(n), µ) = 0

where dTV(·, ·) is the total variation distance.

Proof:
Let {X̃n, Ỹn}∞n=0 be the coupled omniparametric random cluster Markov

chain. Let X0
D
= ρ and let the chain {Yn}∞n=0 start in the stationary

distribution µ. Then Yn
D
= µ for all n ≥ 0. We couple all four chains

as in Definition 8.3. We bound the total variation distance between the
measures of Xn and Yn by using the coupling inequality [Lin92] in the
following way

dTV(Xn, Yn) ≤ 2P(Xn 6= Yn) ≤ 2P(X̃n 6= Ỹn)

since either X̃n � Xn � Yn � Ỹn or X̃n � Yn � Xn � Ỹn. Then, due to
Lemma 8.2 (page 91) we have

lim
n→∞

dTV(Xn, Yn) ≤ lim
n→∞

2P(X̃n 6= Ỹn) = 0

and the result follows.
2

A consequence of the convergence theorem is uniqueness of the sta-
tionary distribution. If two different chains converge to something, they
eventually coalesce according to Lemma 8.2, and therefore must con-
verge to the same distribution.

Theorem 8.3 Uniqueness theorem
The stationary distribution of the omniparametric random cluster Markov
chain is unique.

Proof:
Suppose there are two omniparametric random cluster Markov chains

{Xn}∞n=0 , {Yn}∞n=0
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and two distinct stationary distributions µ and µ′ such that

Xn
D−→ µ and X ′

n
D−→ µ′

as n → ∞ . Since µ and µ′ are distinct there exists ε > 0 such that
dTV(µ, µ′) ≥ ε. Now let {X̃n, Ỹn}∞n=0 by the coupled omniparametric ran-
dom cluster Markov chain in Definition 8.3. Couple {X̃n, Xn, Yn, Ỹn}∞n=0

in the same way as in Theorem 8.1. Since either

X̃n � Xn � Yn � Ỹn or X̃n � Yn � Xn � Ỹn

holds we will eventually have Xn = Yn according to Lemma 8.2. This is
a contradiction since

0 < ε ≤ dTV(µ, µ′) ≤ lim
n→∞

2P(Xn 6= X ′
n) = 0

and we are done.
2

We are now finally ready for the definition of the omniparametric
random cluster model. We say that an element in γ ∈ [0, 1]E is a valid
omniparametric configuration if P

RC
p (γ) is a valid random cluster config-

uration for all p ∈ [0, 1]. The random cluster distribution assigns positive
probability to any element in {0, 1}E (as long as E is finite) and thus any
element in [0, 1]E is a valid omniparametric configuration.

Definition 8.5 The omniparametric random cluster distribution
Let {Xn}∞n=0 be an omniparametric random cluster Markov chain accord-

ing to Definition 8.2 on a graph G = (V, E). We define the omiparametric
random cluster distribution, denoted by φq, as the unique stationary dis-
tribution of {Xn}∞n=0.

In order for this definition to make sense the projected variable must
have the correct distribution. We need

X
D
= φq ⇒ P

RC
p (X)

D
= φp,q .

Before stating and prove the necessary theorem we introduce a result
giving requirements to ensure convergence towards the stationary dis-
tribution for the fixed parameter random cluster Markov chain. The
following result, here slightly reformulated, is taken from Norris’ book
on Markov chains [Nor97, Theorem 1.8.3] .

95



CHAPTER 8. OMNIPARAMETRIC MODELS

Lemma 8.3
Let {Xn}∞n=0 be an irreducible and aperiodic Markov chain with station-

ary distribution µ and initial distribution ρ. Then

dTV(ρ
(n), µ) → 0

as n → ∞ , where ρ(n) is the distribution of Xn.

Theorem 8.4 Projection theorem

X
D
= φq ⇒ P

RC
p (X)

D
= φp,q

Proof:
Let {Xn}∞n=0 be an omniparametric random cluster Markov chain ac-
cording to Definition 8.2. Fix an arbitrary q ≥ 1. If for each p ∈ [0, 1] the
projected chain

{Yn}∞n=0, Yn = P
RC
p (Xn)

has the correct stationary distribution and

lim
n→∞

Yn
D
= φp,q

holds, we are done.
Fix arbitrary p ∈ [0, 1] and n ≥ 0. Suppose Xn is such that P

RC
p (Xn)

D
=

φp,q. We update at the randomly selected edge e. We calculate pt and
use a random number generator to retrieve u, uniformly distributed over
[0, 1], and update the omniparametric configuration

Xn+1(e) = f−1
pt

(u)

at e. Note that p 6= pt a.s. so we only need to consider two cases for Yn+1.
Case p < pt: Let

Yn+1(e) =

{
1, u < fpt(p)
0, u > fpt(p)

where u < fpt(p) ⇔ p > f−1
pt

(u) and u ≥ fpt(p) ⇒ p ≤ f−1
pt

(u).
Case p > pt: Let

Yn+1(e) =

{
1, u < fpt(p)
0, u > fpt(p)

96



8.2. THE POTTS CASE

where u < fpt(p) ⇒ f−1
pt

(u) ≤ p and u > fpt(p) ⇒ f−1
pt

(u) > p.
This is exactly the result we get when assigning f−1

pt
(u) to Xn+1(e)

and apply the projection mapping P
RC
p . Thus

P
RC
p (Xn+1)

D
= φp,q

implying that φp,q is a stationary distribution for the projected chains.
If {PRC

p (Xn)}∞n=0 is irreducible and aperiodic then

dTV(ρ
(n), φp,q) → 0

follows from Lemma 8.3.
Let ξ1 and ξ2 be two arbitrary elements in {0, 1}E. Suppose that

P
RC
p (Xn) = ξ1 and let ξo

1 be one of the corresponding omniparametric
states of ξ1. Then

ξ1(e) = 0 ⇒ ξo
1(e) > p and ξ1(e) = 1 ⇒ ξo

1(e) ≤ p

for all edges e ∈ E. With positive probability we can find a sequence of
edges e1, ..., em covering E and a sequence of number u1, ..., um such that
if

Xn+k = φq(uk, ek, Xn+k−1), k = 1, ..., m

then
ξ2(e) = 0 ⇒ Xn+m(e) > p and ξ2(e) = 1 ⇒ Xn+m(e) ≤ p

for every edge e ∈ E. Thus the projected chain is irreducible.
Consider P

RC
p (Xn) and let ξ be one of the corresponding omnipara-

metric states, that is, Xn = ξ. When updating Xn to Xn+1 it happens
with positive probability that U ∈ [pt(pt + q(1 − pt))

−1, pt], making ξ and
P

RC
p (Xn) aperiodic states. Aperiodicity for the {PRC

p (Xn)}∞n=0 chain now
follows from irreducibility and we can apply Lemma 8.3.
2

8.2 The Potts case

The Potts model, as we saw, is a two parameter family of mod-
els, having measure µβ,q, where β is the inverse temperature and q
is the number of possible states for each vertex. The omniparamet-
ric Potts variable Ωq is a coupling of the fixed parameter Potts variables,
{Ωβ,q}β∈[0,∞), for all values of the inverse temperature, for fixed q. For
the random cluster model we were able to construct the omniparametric
random variable directly due to a monotonicity property in the random
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cluster model. For the Potts model we will not construct the omni-
parametric random variable, instead we construct a sequence of fixed
parameter variables covering the behavior for all β ∈ [0,∞), a sort of
weak representation.

The idea is the following. We use the connection between the ran-
dom cluster and Potts models and start with the omniparametric ran-
dom cluster variable, Γq. It is only at these threshold values in Γq that
something actually changes. Let us denote them P = {p1, ...p|E|}. So for
each k ∈ {1, ..., |E| − 1} we have

Γp,q = Γp′,q

for all p, p′ ∈ [pk, pk+1), making the sequence {Γpk,q}|E|
k=1 completely cap-

ture the behaviour of the model for all p ∈ [0, 1]. It is this built in dis-
creteness together with finite graphs that makes it possible to represent
the behaviour of an uncountable class with a finite sequence.

We create our Potts random variable by assigning to each connected
components in the random cluster graph a uniformly chosen spin, and
do this independently for different components. Repeating this proce-
dure for every inverse temperature, βk = − log(1 − pk)/2, we get random
variables with correct distributions. If we fix a vertex v the spin of v
could change with every change in inverse temperature, and this is not
what we want. We would like the spin of vertices to change only when
their connected components are affected by a change in the correspond-
ing random cluster variable.

When constructing the coupling of the Potts model for different tem-
peratures we start at a very high temperature when the vertices are
virtually independent. As the temperature decreases and dependence
between vertices are introduced (as edges in the random cluster model
are added) we merge connected components pairwise into new compo-
nents. When a new components is formed it takes on the spin of the
larger subcomponent. We hope by using this method to eliminate ex-
tra fluctuations coming from the extra source of randomness in the H

mapping, introduced in Definition 7.11 (page 72).
The result of the procedure is a sequence of Potts variables describ-

ing the behavior of a system as the inverse temperature runs from zero
to infinity.

The coupling

The coupling is rather involved. We need to keep track of two se-
quences of random variables. One sequence representing the evolution
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of the fixed parameter random cluster model as p changes from zero to
one, and one sequence for the corresponding Potts variables. The rea-
son for keeping track of both sequences will be clear when we describe
the procedure.

Let G = (V, E) be a graph on which we generate an omniparametric
random cluster sample γq. We start by constructing a sequence of fixed
parameter random cluster variables

γpk,q = P
rc
pk

(γq)

where pk = X(ek) for edges ek, k ∈ {1, ..., |E|}. We will now construct a
sequence of elements

{(ωβk,q, γpk ,q)}|E|
k=1

in {1, ..., q}V ×{0, 1}E where every ωβk,q is Potts variable corresponding to
the random cluster variable γpk,q. For each k we let γpk,q = P

RC
pk

(Γq), and
construct ωβk+1,q recursively using operator U.

Definition 8.6 Update operator
Let U : {1, ..., q}V ×{0, 1}E ×{0, 1}E → {1, ..., q}V ×{0, 1}E be the following

mapping
U(ωk, γk, γk+1) = (ωk+1, γk+1)

where the Potts configuration ωk+1 is constructed as follows.

1. If κ(γk+1) < κ(γk) two connected components C1, C2 has merged and
we proceed with step 2. Otherwise let ∀v ∈ V : ωk+1(v) = ωk(v), and
stop.

2. If |C1| 6= |C2| let Cmax = max{C1, C2} and Cmin = min{C1, C2}. If
|C1| = |C2| let some predefined method decide which component is
largest. Finally let a = ω(u) for some u ∈ Cmax.

3. Let

ωk+1(v) =

{
a, v ∈ Cmin

ωk(v), otherwise

The method for determining which component is largest in step two
has to be predefined to ensure that U is a deterministic mapping. We
are now ready to construct the sequence {(Ωβk,q, Γpk ,q)}|E|

k=1.

Start: (Ωβ1,q, Γp1,q) = ( H(Γp1,q), P
RC
p1

(Ωq) )
Recursive step : (Ωβk+1,q, Γpk+1,q) = U(Ωβk ,q, Γpk,q , Γpk+1,q) , k ≥ 1
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Theorem 8.5
Let {(Ωβk,q , Γpk,q)}|E|

k=1 be the sequence constructed above, and let pk =
1 − e−2βk . Then for each k = 1, ..., |E|, the following holds.

(i) Γpk,q
D
= φpk ,q

(ii) Ωβk,q
D
= µβk,q

Proof:
Claim (i) follows directly from the definition of the omniparametric ran-
dom cluster model. Claim (ii) follows if

Ωβk,q
D
= H(Γpk,q) , k = 1, .., |E|

by Corollary 7.2, page 73.

We use induction over k to prove Ωβk,q
D
= H(Γpk,q). For k = 1 the

statement follows by definition since Ωβ1,q = H(Γp1,q). For k ≥ 2 let us

consider the Potts random variable H(Γpk,q), suppose Ωβk,q
D
= µβk,q. We

must show that the spins of the connected components in Ωβk+1,q are
independent and uniformly distributed over {1, ..., q}. If the underlying
graph Ωβk,q has the same number of connected components as Ωβk+1,q

then Ωβk,q = Ωβk+1,q and we are done. If not two components are merged
and vertices in the smaller component is (deterministically) assigned
the spin of the larger component. The spin of the larger component
in Ωβk,q follows the uniform distribution over the spin set. Thus the
distribution of the spin of the newly formed component also has uniform
distribution, and we are done.
2
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CHAPTER 9

Models for incomplete data

We define versions of the Ising and Potts models related to the parame-
ter estimation procedures used in subsequent chapters. The basic idea
is that given Ising or Potts data we estimate the random cluster connec-
tion probability between the origin and one of its neighbours. Given an
estimate of the connection probability it is easy to calculate an estimate
of the inverse temperature.

We need to define properly what we mean with ”data at locations
in a finite set”. One approach is to choose the finite set with some
strategy in mind and use all points contained therein, or choose a finite
region and then use only a subset of the implicated vertices. We would
like a theory allowing us to freely choose a subset of any finite region,
compute parameter estimates and construct confidence intervals. We
take the first step towards such a theory and use boxes as our finite
regions, and within these we choose our subset of vertices uniformly at
random. This approach allow us to use available theory to construct
both estimates and confidence intervals.

In order to capture the variance we use a central limit theorem by
Bolthausen [Bol82] . This requires finite regions {Λn}∞n=0 such that

Λn ⊆ Λn+1, Λn → Z
d and

|Λn|
|∂Λn|

→ 0

as n → ∞ , making any vertex v ∈ Z
d belong to all but finitely many Λn.
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We are however free to choose the shape of the Λn’s as we like, and our
sequence of boxes {Bn}∞n=0 fulfills these requirements.

The rest of the chapter is outlined as follows. We begin with a simple
procedure for randomly selecting vertices in Z

d in Section 9.1. In Sec-
tion 9.2 we focus on simple pairwise interactions between neighbouring
vertices, developing theory both for the Ising and Potts models includ-
ing central limit theorems. We continue with more general interactions
in Section 9.3 and develop theory along the same lines. We finish with
Section 9.4 with comments regarding strong mixing and central limit
theorems.

9.1 Random point selection in Z
d

We present here a simple method of generating sets of marked points.
The idea is to generate these sets independently of the lattice process
and then use them to define marked versions of the lattice process, in
this case marked interaction versions of the Ising and Potts models.

Definition 9.1 Marked points
To all vertices in Z

d we associate independent and identically distributed
Bernoulli(ps) random variables, M(Zd) = {M(v), v ∈ Z

d}. We let

M1(Z
d) = {v : M(v) = 1}

be the set of marked points. We call ps the selection probability. When the
underlying vertex set is understood we write M for the class of random
variables and M1 for the set of marked points. We let PM denote the
probability distribution for M(Zd).

9.2 Pairwise interactions

9.2.1 The Ising case

When estimating the parameter in the Ising model we will base our
estimate on pairwise interactions in a sample and for this purpose we
define a version of the Ising model, the marked Ising interaction model.

It is relatively easy to compute point estimates, it is just a matter
of estimating the expected value of the model at the origin as a func-
tion for all values of β and use its inverse. We would like to be able to
construct confidence intervals also, but then we also need the distri-
bution and variance of the observable which we don not have. Instead
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state and prove a central limit theorem, which is only possible when the
underlying Ising process is subcritical.

Definition 9.2 The marked Ising interaction model
Let X be distributed according to the Ising distribution µ

(n)
β on Bn at

some inverse temperature β and let M = {M(v) : v ∈ Zn} be a set of
marked points according to Definition 9.1 with selection probability ps.
Let R = {R(v) : v ∈ Z

d} be a class of independent identically U{1, ..., d}
distributed random variables. The marked Ising interaction model Y is
defined vertex wise as

∀v ∈ Zn : Y (v) = M(v)X(v)

d∑

k=1

I{R(v)=k}(k)X(v + ek)

where ek is a unit vector with zero in every position except in position
k. The distribution for this model is denoted by µ

mark,(n)
β,ps

. We define the
marked Ising interaction measure as a weak limit of distributions

µmark
β,ps

= lim
n→∞

µ
mark,(n)
β,ps

.

For questions regarding the limit construction of µmark
β,ps

see [GHM01]
where the subject is treated for the ordinary Ising and Potts models.
Similar arguments give the existence of µmark

β,ps
.

The Potts, Ising and random cluster models on Z
d are all symmetric

with respect to rearrangements of directions, meaning that

P((x1..., xk, ..., xl, ..., xd) ↔ (x1, ..., xk + 1, ..., xl, ..., xd))

= P((x1, ..., xk , ...., xl, ..., xd) ↔ (x1, ..., xk, ...., xl + 1, ..., xd))

for any k, l ∈ {1, ..., d}. This directional invariance allow us to use e1 =
(1, 0, ..., 0) as our preferred direction when considering connection prob-
abilities between neighbours.

In an application the natural way to proceed is to first construct a
set of marked points M1 ⊆ Zn, and a set of directions R. We observe
the Ising model at sites in M ′

1 = M1 ∪ {v + eR(v) : v ∈ M1} and write
XM (v) = X(v) if v ∈ M ′

1 and XM (v) = 0 otherwise. For completeness let
M0 = Zn\M ′

1 denote the set of vertices where we do not observe the Ising
configuration.
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What remains is to establish a few simple facts about the marked
Ising interaction model.

Theorem 9.1
Let Y follow the marked Ising interaction distribution, µ

mark,(n)
β,ps

, and let
l, l′ ∈ Bn be arbitrary but distinct vertices such that |l − l′| > 1. Also let
φ

(n)

1−e−2β ,2
be the corresponding random cluster distribution. Then

(i) E[Y (l)] = psφp,2(l ↔ l + e1)

(ii) Var[Y (l)] = ps − p2
sφp,2(l ↔ l + e1)

2

(iii) Cov[Y (l), Y (l′)]=
p2

s

d2

d∑

k=1

d∑

m=1

( φp,2({l ↔ l + ek} ∩ {l′ ↔ l′ + em})

φp,2(l ↔ l′ 6↔ l + ek ↔ l′ + em)

φp,2(l ↔ l′ + em 6↔ l + ek ↔ l′) )

− p2
s φp,2(0 ↔ 1)2

and for l, l′ such that |l − l′| = 1 we have l′ = l + en for some n ∈ {1, ..., d}
and

(iv) Cov[Y (l), Y (l′)] =
p2

s

d2

d∑

m=1

φp,2(l ↔ l′ + em)

+
p2

s

d2

∑

k 6=n

d∑

m=1

( φp,2({l ↔ l + ek} ∩ {l′ ↔ l′ + em})

φp,2(l ↔ l′ 6↔ l + ek ↔ l′ + em)

φp,2(l ↔ l′ + em 6↔ l + ek ↔ l′) )

− p2
s φp,2(0 ↔ 1)2

follows.
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Proof:
Straightforward calculations give us the result for the expectation

E[Y (l)] = E

[

M(v)

d∑

k=1

I{R(v)=k}X(v)X(v + ek)

]

= E[M(l)]

d∑

k=1

E[I{R(v)=k}] E[X(v)X(v + ek)]

= psφp,2(l ↔ l + e1)

and the variance.

Var[Y (l)] = E



M(l)2

(
d∑

k=1

I{R(v)=k}X(v)X(v + ek)

)2


− E[Y (l)]2

= ps E

[(
d∑

k=1

I{R(v)=k}X(v)2X(v + ek)2

)]

− E[Y (l)]2

= ps

d∑

k=1

E[I{R(v)=k}] E[X(v)2X(v + ek)2] − E[Y (l)]2

= ps
1

d

d∑

k=1

E[X(v)2X(v + ek)2] − E[Y (l)]2

= ps − p2
sφp,2(l ↔ l + e1)

2

The covariance

Cov[Y (l), Y (l′)] =
p2

s

d2

d∑

k=1

d∑

m=1

Cov[X(l)X(l + ek), X(l′)X(l′ + em)]
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=
p2

s

d2

d∑

k=1

d∑

m=1

(

φ
(n)
p,2 ({l ↔ l + ek} ∩ {l′ ↔ l′ + em})

+φ
(n)
p,2 ({l ↔ l′ 6↔ l + ek ↔ l′ + em})

+φ
(n)
p,2 ({l ↔ l′ + em 6↔ l + ek ↔ l′})

)

− p2
s φ

(n)
p,2 (0 ↔ 1)2

follows from Lemma 7.5 and since φ
(n)
p,2 (l ↔ l + ek) = φ

(n)
p,2 (0 ↔ 1) for any

l and any k. Also if |l′ − l| = 1, we have l′ = l + en for some n ∈ {1, ..., d})
and

Cov[Y (l), Y (l′)] =
p2

s

d2

d∑

k=1

d∑

m=1

Cov[X(l)X(l + ek), X(l′)X(l′ + em)]

=
p2

s

d2

(
d∑

m=1

Cov[X(l)X(l + en), X(l′)X(l′ + em)]

+
∑

k 6=n

d∑

m=1

Cov[X(l)X(l + ek), X(l′)X(l′ + em)]





=
p2

s

d2

d∑

m=1

φp,2(l ↔ l′ + em)

+
p2

s

d2

∑

k 6=n

d∑

m=1

( φp,2({l ↔ l + ek} ∩ {l′ ↔ l′ + em})

φp,2(l ↔ l′ 6↔ l + ek ↔ l′ + em)

φp,2(l ↔ l′ + em 6↔ l + ek ↔ l′) )

− p2
s φp,2(0 ↔ 1)2

follows, and we are done.
2
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9.2.2 The Potts case

We now generalize to the Potts model. Instead of using pairwise
products as in the Ising model we use the indicator function for the
event that the colors at two sites are the same.

Definition 9.3 The marked Potts interaction model
Let X be distributed according to the Potts distribution µ

(n)
β,q at some in-

verse temperature β and q ≥ 1. Let M be a set of marked points according
to Definition 9.1 with selection probability ps. Let {R(v) : v ∈ Z

d} be a
class of independent identically distributed U{1, ..., d} random variables.
The marked Potts interaction model Y is defined as

∀v ∈ Zn. Y (v) = M(v)

d∑

k=1

I{R(v)=k}(2I{X(v)=X(v+ek)} − 1)

where ek is a unit vector in Z
d with a zero in every position except in

position k. The distribution for the model is denoted by µ
mark,(n)
β,q,ps

. We define
the marked Potts interaction measure as a weak limit of distributions

µmark
β,q,ps

= lim
n→∞

µ
mark,(n)
β,q,ps

.

We finish this section by establishing a few simple facts about marked
Potts interaction model.

Theorem 9.2
Let Y follow the marked Potts interaction distribution, let X be distributed
according to the Potts distribution and let l and l′ be two arbitrary but
distinct vertices in Bn such that |l − l′| > 1. Also let φ

(n)

1−e−2β ,q
be the corre-

sponding random cluster distribution. Then

(i) E[Y (l)] = ps

(
2

q
+ 2

(

1 − 1

q

)

φp,q(l ↔ l + e1) − 1

)

(ii) Var[Y (l)] = ps − p2
s

(
2

q
+ 2

(

1 − 1

q

)

φp,q(l ↔ l + e1) − 1

)2
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(iii) Cov[Y (l), Y (l′)] =
4p2

s

d2

d∑

k=1

d∑

m=1

µ(n)
p,q (X(l, k) ∩ X(l′, m))

− p2
s

(
1

q
+ 2

(

1 − 1

q

)

φp,q(0 ↔ 1) − 1

)2

and for l, l′ such that |l − l′| = 1 we have l′ = l + en for some n ∈ {1, ..., d}
and

(iv) Cov[Y (l), Y (l′)] =
4p2

s

d2

(
d∑

m=1

(
1

q
+ 2

(

1 − 1

q

)

φp,q(l ↔ l′ + em) − 1

)

+
∑

k 6=n

d∑

m=1

µ(n)
p,q (X(l, k) ∩ X(l′, m))





− p2
s

(
1

q
+ 2

(

1 − 1

q

)

φp,q(0 ↔ 1) − 1

)2

where X(l, k) = {X(l) = X(l + ek)} and X(l, l′, k) = {X(l) = X(l′ + ek)}.

Proof:
We start with an observation regarding the probability of equal config-
uration at two different sites. Remember the connection between the
Potts and random cluster models, we may obtain a Potts sample by
simply colour connected components in a random cluster sample at
random.

P(X(v) = X(v + ek)) = φp,q(v ↔ v + ek) +
1

q
φp,q(v 6↔ v + ek)

=
1

q
+

(

1 − 1

q

)

φp,q(v ↔ v + ek)
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Now, the expected value at a location l follows.

E[Y (l)] = E

[

M(v)

d∑

k=1

I{R(v)=k}(2I{X(v)=X(v+ek)} − 1)

]

= E[M(l)]

d∑

k=1

E[I{R(v)=k} ] (2P(X(v) = X(v + ek)) − 1)

=
ps

d

d∑

k=1

(

2

(
1

q
+

(

1 − 1

q

)

φp,q(v ↔ v + ek)

)

− 1

)

= ps

(
2

q
+ 2

(

1 − 1

q

)

φp,q(v ↔ v + e1) − 1

)

Preparing for the variance . . .

E[Y (l)2] = E





(

M(v)

d∑

k=1

I{R(v)=k}(2I{X(v)=X(v+ek)} − 1)

)2




= E[M(v)2] E






d∑

k=1

I{R(v)=k} (2I{X(v)=X(v+ek)} − 1)2
︸ ︷︷ ︸

=1






= E[M(v)]

= ps

. . . calculating the variance . . .

Var[Y (l)] = ps − p2
s

(
2

q
+ 2

(

1 − 1

q

)

φp,q(v ↔ v + e1) − 1

)2

. . . finally the covariance . . .

Cov[Y (l), Y (l′)] =
p2

s

d2

d∑

k=1

d∑

m=1

Cov[2IX(l,k) − 1, 2IX(l′,m) − 1]
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=
4p2

s

d2

d∑

k=1

d∑

m=1

Cov[IX(l,k), IX(l′,m)]

=
4p2

s

d2

d∑

k=1

d∑

m=1

(

µ(n)
p,q (X(l, k) ∩ X(l′, m))

− µ(n)
p,q (X(l) = X(l + ek))P(X(l′) = X(l′ + em))

)

=
4p2

s

d2

d∑

k=1

d∑

m=1

µ(n)
p,q (X(l, k) ∩ X(l′, m))

− p2
s

(
1

q
+ 2

(

1 − 1

q

)

φp,q(0 ↔ 1) − 1

)2

and if |l′ − l| we have l′ = l + en for some n ∈ {1, ..., d} and

µ(n)
p,q (X(l, k) ∩ X(l′, m)}) = µ(n)

p,q (X(l, l′, m)) =
1

q
+

(

1− 1

q

)

φp,q(l ↔ l′ + em)

follows, and as a consequence we also have

Cov[Y (l), Y (l′)] =
4p2

s

d2

d∑

k=1

d∑

m=1

µ(n)
p,q (X(l, k) ∩ X(l′, m))

− p2
s

(
1

q
+ 2

(

1 − 1

q

)

φp,q(0 ↔ 1) − 1

)2

=
4p2

s

d2

(
d∑

m=1

µ(n)
p,q (X(l, l′, m))

+
∑

k 6=n

d∑

m=1

µ(n)
p,q (X(l, n) ∩ X(l′, m))





− p2
s

(
1

q
+ 2

(

1 − 1

q

)

φp,q(0 ↔ 1) − 1

)2
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=
4p2

s

d2

(
d∑

m=1

p2
s

(
1

q
+ 2

(

1 − 1

q

)

φp,q(l ↔ l′ + em) − 1

)2

+
∑

k 6=n

d∑

m=1

µ(n)
p,q (X(l, n) ∩ X(l′, m))





− p2
s

(
1

q
+ 2

(

1− 1

q

)

φp,q(0 ↔ 1) − 1

)2

and finally we are done.
2

9.2.3 Central limit theorems

Next we present the central limit theorem by Bolthausen [Bol82]
we use for the marked interaction models. First some definitions. Let
{Λn}∞n=1 be a sequence of subsets in Z

d such that

lim
n→∞

Λn = Z
d and lim

n→∞
|∂Λn|
|Λn|

= 0.

For Λ ⊆ Z
d let FΛ = σ({X(v) : v ∈ Λ}) be the σ-algebra of events on Λ. We

defined the distance function between sets as

d(A, B) = inf
x∈A,y∈B

|x − y|

for any two A, B ∈ Z
d. Also let L2(FΛ) be the set of FΛ measurable

random variables with finite second moments. The mixing coefficients,
αk,l(m) and ρ(m), used when defining so called strong mixing and ρ-

mixing respectively, are defined as follows.

αk,l(m) = sup







Ai ∈ FΛi , i = 1, 2,
|P(A1 ∩ A2) − P(A1)P(A2)| : |Λ1| ≤ k, |Λ2| ≤ l,

d(Λ1, Λ2) ≥ m







ρ(m) = sup{|Cov[Y1, Y2]| : Yi ∈ L2(F{vi}), E[|Yi|2] ≤ 1, i = 1, 2, d(v1, v2) ≥ m}

We proceed with the theorem.
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Theorem 9.3 Bolthausen’s central limit theorem
Let {X(v) : v ∈ Z

d} be a real valued stationary random field with shift
invariant joint laws such that E[|X(v)|2] < ∞ for all v ∈ Z

d. Also let
{Λn}∞n=1 be the sequence of subsets of Z

d defined above. If

∞∑

m=1

md−1αk,l(m) < ∞

for k + l ≤ 4, α1,∞(m) = o(m−d) and if either (a) or (b) as defined below

(a)

∞∑

m=1

md−1ρ(m) < ∞

(b) ∃δ > 0 such that v ∈ Z
d : E[|X(v)|2+δ ] < ∞

and
∞∑

m=1

md−1α1,1(m)δ/(2+δ) < ∞

is satisfied then we have

σ2
X =

∑

v∈Zd

Cov[X(0), X(v)] < ∞

and
∑

v∈Λn

(X(v) − E[X(v)])

σX |Λn|1/2

D−→ Z

where Z
D
= N(0, 1).

Next we use Bolthausen’s theorem to prove similar central limit the-
orems for the marked Ising and marked Potts interaction models.

Theorem 9.4 Marked Ising interaction CLT
Let Y be distributed according to the marked Ising interaction measure

with parameter β. Suppose the selection probability is ps. Let {Λn}∞n=1 be
the sequence of finite boxes such that Λn → Z

d. If the underlying Ising
measure is subcritical then

∑

v∈Λn

(Y (v) − E[Y (v)])

σY |Λn|1/2

D−→ Z
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1

2Λ

Λ

Figure 9.1: An illustration of vertex sets Λ1 and Λ2 in Theorem 9.4.

where Z
D
= N(0, 1) and

σ2
Y =

∑

v∈Zd

Cov[Y (0), Y (v)]

Proof:
Consider the mixing coefficient for strong mixing, αk,l(m) for any finite k
and l. Let the Ising configuration X we based Y on be generated using
the random cluster measure φ1−e−2β ,q, and let W be the corresponding
random cluster sample.

Suppose that X is subcritical, and as a consequence the underlying
random cluster variable is also subcritical. Let Λ1, Λ2 be two arbitrary
but fixed finite subsets in Z

d such that d(Λ1, Λ2) ≥ m. If Λ1 has diameter
d1 then event A1 depends on vertices in a set with diameter at most d1+2
since we are using pairwise interactions between neighbours. Now let
D be the event that there exists a cluster B such that Λ1 ∩ B 6= ∅ and
Λ2 ∩ B 6= ∅, then B has diameter at least d(Λ1, Λ2) − 2, see Figure 9.1.
Note that P(D) > 0 for any finite distance between Λ1 and Λ2, and also

P(D) ≤ Ce−γ(m−2), C, γ > 0
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for some C, γ ∈ (0,∞) according to Grimmet and Piza [GP97, page 2] .
Then for any Ai ∈ FΛi , i ∈ {1, 2}, we have

|P(A1 ∩ A2) − P(A1)P(A2)|

= |P(A1 ∩ A2 ∩ D) + P(A1 ∩ A2 ∩ Dc)
− (P(A1 ∩ D) + P(A1 ∩ Dc))(P(A2 ∩ D)
+ P(A2 ∩ Dc))|

= |P(A1 ∩ A2 ∩ D) + P(A1 ∩ A2 ∩ Dc)
− P(A1 ∩ D)P(A2 ∩ D) − P(A1 ∩ Dc)P(A2 ∩ Dc)
− P(A1 ∩ D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ D)|

≤ |P(A1 ∩ A2 ∩ D) − P(A1 ∩ D)P(A2 ∩ D)|
+ |P(A1 ∩ A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ Dc)|
+ |P(A1 ∩ D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ D)|

(∗)
= |P(A1 ∩ A2 ∩ D) − P(A1 ∩ D)P(A2 ∩ D)|

+ |P(A1 ∩ D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ D)|

= P(D) ( |P(A1 ∩ A2|D) − P(A1|D)P(A2 ∩ D)|
+ |P(A1|D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2|D)| )

≤ 2P(D) = 2φp,2(D) ≤ Ce−γm

for some C, γ > 0, where the equality at (∗) comes from the fact that
on Dc the events A1 and A2 are independent. Since the bound is inde-
pendent of the sets Λ1, Λ2 it also holds for the supremum over all such
pairs, and we have αk,l(m) ≤ Ce−γm. Let l → ∞ and define αk,∞(m) as

αk,∞(m) = lim
l→∞

αk,l(m) ≤ Ce−γm.

Let Λ1 = {v} for arbitrary but fixed v ∈ Z
d. We use the same argument

as for finite l to establish that αk,∞(m) ≤ Ce−γm. It now follows that

∞∑

m=1

md−1αk,l(m) ≤ C

∞∑

m=1

md−1e−γm < ∞

and α1,∞(m) = o(m−d) from αk,∞(m) ≤ Ce−γm for k < ∞. For requirement
(b) note that for any δ > 0 we have

E[|X(v)|2+δ ] < ∞
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since Y (v) ∈ {−1, 0, +1} for all v ∈ Z
d. Also

∞∑

m=1

md−1α1,1(m)δ/(2+δ) ≤ C

∞∑

m=1

md−1e−γδm/(2+δ) < ∞

holds since γδ/(2 + δ) > 0. The result now follows from Bolthausen’s
theorem and we are done.
2

The central limit theorems only work if correlations in the under-
lying Ising model decay exponentially. For the Ising models this hap-
pens throughout the subcritical phase (according to Grimmett and Piza
[GP97] ), when

β < βc =
1

2
log(1 +

√
2),

corresponding to a critical p-value

pc =

√
2

1 +
√

2

in the random cluster model.
For the q-state Potts model we do not know if correlations decay ex-

ponentially whenever β < βc, but we do know that if correlations decay
sufficiently fast then exponential decay follows. In the same spirit as
Grimmett and Piza [GP97] we define an alternative critial point

βg(q) = −1

2
log(1 − pg(q))

for β where pg(q) is according to Definition 7.8. For β < βg(q) we have,
due to Theorem 7.7, exponential decay for correlations. Due to the spe-
cial connection between the Ising/Potts model and the random cluster
model we can express Ising and Potts correlations using random cluster
connection probabilities. The proof of Theorem 9.4 is based entirely on
this connection and the exponential decay of correlations. We therefore
state a version of Theorem 9.4 for the Potts model without proof, the
extension is tedious but straightforward.

First a note on susceptibility. There is no explicit expression for it,
instead we use simulation to make estimates. The same holds for the
susceptibility in the marked Potts interaction model. For both charac-
teristics see Definition 7.12 (page 74) and simulation results in Section
10.2 (page 137).
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Theorem 9.5 Marked Potts interaction CLT
Let Y be distributed according to the marked Potts interaction measure

with parameters β and q. Suppose the selection probability is ps. Let
{Λn}∞n=1 be the sequence of finite boxes such that Λn → Z

d. If

β < ln

√

1 +
1√
2

then
∑

v∈Λn

(Y (v) − E[Y (v)])

σY |Λn|1/2

D−→ Z

where Z
D
= N(0, 1) and

σ2
Y =

∑

v∈Zd

Cov[Y (0), Y (v)]

9.3 General interactions

Consider the Ising or Potts model on the lattice Z
d, and let X be

distributed according to µβ or µβ,q. Suppose we have a sequence of
measurements around certain vertices, lk, k = 1, ..., n. We do some com-
putation based on measurements around each of the lk’s and assign
the value, denoted Yk = Y (lk) to lk. The computed values, Y1, ..., Yn, then
serves as a base for further analysis.

We start with defining the so called measurement method, and its
two parts, the measurement configuration and the measurement func-
tion. We proceed with the definitions of the general Ising and Potts
interaction models along with central limit theorems. We finish this
section with an example of general interactions, so called box interac-
tions, using all available interactions within a small box.

Definition 9.4 Measurement configuration
Let BR ⊂ R

d be a finite convex set containing the origin in its interior such
that

sup
u,v∈BR

d(u, v) ≤ L

for some L ∈ (0,∞). A measurement configuration B is the set of integer
points in BR, and we say that it has range L.
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the
origin

B

Figure 9.2: An example of a measurement configuration around the origin. The
value at the origin is calculated based on the values at vertices u1, ..., u7. The
measurement configurations around other vertices are just translations of the set
B and its vertices u1, ..., u7.

Definition 9.5 Measurement function
Let f : R

m → R be a bounded function, and let {X(v) : v ∈ Z
d} be a

random field. We say that f is a measurement function if its domain is
{X(v) : v ∈ B} for some measurement configuration B.

When we write ”we have a measurement method” we mean that
both the measurement configuration and the measurement function
are fixed. Let (B, f) denote the measurement method. We finish this
section with definitions of the two models.

Definition 9.6 The general Ising interaction model
Let X be distributed according to the Ising measure µβ at inverse temper-
ature β. Let (B, f) be a range L measurement method on Bn and suppose
that M is a set of marked points according to Definition 9.1 with selection
probability ps. The general Ising interaction model Y is defined as

Y (v) = M(v)f(v), v ∈ Z
d.

The distribution for the model is denoted by µg,(n)
β,f,M,ps

. We define the gen-
eral Ising interaction measure as the weak limit of distributions

µg

β,f,M,ps
= lim

n→∞
µg,(n)

β,f,M,ps
.
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Definition 9.7 The general Potts interaction model
Let X be distributed according to the Potts measure µβ,q at inverse tem-

perature β and some q ≥ 1. Let (B, f) be a range L measurement config-
uration on Bn and suppose that M is a set of marked points according to
Definition 9.1 with selection probability ps. The general Potts interaction
model Y is defined as

Y (v) = M(v)f(v), v ∈ Z
d.

The distribution for the model is denoted by µg,(n)

β,q,f,L,ps
. We define the

general Potts interaction measure as the weak limit of distributions

µg
β,f,M,ps,= lim

n→∞
µg,(n)

β,f,M,ps,.

9.3.1 Central limit theorems

The conclusion in central limit theorem by Bolthausen is based on
mixing conditions. By a slight modification of the proof of Theorem
9.4 we are able to adapt the central limit theorems for the pairwise
interaction models to the general interaction case. The requirement is
that all interactions are of finite range.

Theorem 9.6 General Ising interaction CLT
Let Y be distributed according to the general Ising interaction measure,

µg

β,f,M,ps
. Let {Λn}∞n=1 be the sequence of finite boxes such that Λn → Z

d.
If the underlying Ising measure is subcritical then

∑

v∈Λn

(Y (v) − E[Y (v)])

σY |Λn|1/2

D−→ Z

where Z
D
= N(0, 1) and

σ2
Y =

∑

v∈Zd

Cov[Y (0), Y (v)]

Proof:
Consider the mixing coefficient for strong mixing, αk,l(m) for any finite k
and l. Let the Ising configuration X we based Y on be generated using
the random cluster measure φ1−e−2β ,q, and let W be the corresponding
random cluster sample.
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Suppose that X is subcritical, and as a consequence the underlying
random cluster variable is subcritical. Let Λ1, Λ2 be two arbitrary but
fixed finite subsets in Z

d such that d(Λ1, Λ2) ≥ m. If Λ1 has diameter
d1 then event A1 depends on vertices in a set with diameter at most
d1 + M . Now let D be the event that there exists a cluster B such that
Λ1 ∩ B 6= ∅ and Λ2 ∩ B 6= ∅, then B has diameter at least d(Λ1, Λ2) − 2M .
Note that P(D) > 0 for any finite distance between Λ1 and Λ2, and P(D) ≤
Ce−γ(m−2M), C, γ > 0 according to Grimmett and Piza [GP97] (page 2).
Then for any Ai ∈ FΛi , i ∈ {1, 2}, we have the following.

|P(A1 ∩ A2) − P(A1)P(A2)|

= |P(A1 ∩ A2 ∩ D) + P(A1 ∩ A2 ∩ Dc)
−(P(A1 ∩ D) + P(A1 ∩ Dc))(P(A2 ∩ D)
+P(A2 ∩ Dc))|

= |P(A1 ∩ A2 ∩ D) + P(A1 ∩ A2 ∩ Dc)
−P(A1 ∩ D)P(A2 ∩ D) − P(A1 ∩ Dc)P(A2 ∩ Dc)
−P(A1 ∩ D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ D)|

≤ |P(A1 ∩ A2 ∩ D) − P(A1 ∩ D)P(A2 ∩ D)|
+|P(A1 ∩ A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ Dc)|
+|P(A1 ∩ D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ D)|

(∗)
= |P(A1 ∩ A2 ∩ D) − P(A1 ∩ D)P(A2 ∩ D)|

+|P(A1 ∩ D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2 ∩ D)|

= P(D) ( |P(A1 ∩ A2|D) − P(A1|D)P(A2 ∩ D)|
+|P(A1|D)P(A2 ∩ Dc) − P(A1 ∩ Dc)P(A2|D)| )

≤ 2P(D) = 2φp,2(D) ≤ Ce−γ(m−2M)

for some C, γ > 0, where the equality at (∗) comes from the fact that
on Dc the events A1 and A2 are independent. Since the bound is inde-
pendent of the sets Λ1, Λ2, it also holds for the supremum over all such
pairs, and we have αk,l(m) ≤ Ce−γ(m−2M).

Let l → ∞ and define αk,∞(m) as

αk,∞(m) = lim
l→∞

αk,l(m) ≤ Ce−γ(m−2M).

Let Λ1 = {v} for arbitrary but fixed v ∈ Z
d. Then we can use the same

argument as for finite l to establish that αk,∞(m) ≤ Ce−γ(m−2M). It now
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follows that
∞∑

m=1

md−1αk,l(m) ≤ C

∞∑

m=1

md−1e−γ(m−2M) < ∞

and α1,∞(m) = o(m−d) from αk,∞(m) ≤ Ce−γ(m−2M) for k < ∞. For the
last requirement (b) note that for any δ > 0 we have

E[|X(v)|2+δ ] < ∞

since the measurement function is bounded and
∞∑

m=1

md−1α1,1(m)δ/(2+δ) ≤ C

∞∑

m=1

md−1e−γδ(m−2M)/(2+δ) < ∞

since γδ/(2 + δ) > 0. The result now follows from Bolthausen’s theorem,
and we are done.
2

We state corresponding theorem for the Potts case without proof, the
extension is as before, tedious but straightforward.

Theorem 9.7 General Potts interaction CLT
Let Y be distributed according to the general Potts interaction measure,

µg

q,β,f,M,ps
. Let {Λn}∞n=1 be the sequence of finite boxes such that Λn → Z

d.
If

β < ln

√

1 +
1√
2

then
∑

v∈Λn

(Y (v) − E[Y (v)])

σY |Λn|1/2

D−→ Z

where Z
D
= N(0, 1) and

σ2
Y =

∑

v∈Zd

Cov[Y (0), Y (v)]

9.3.2 An example: box interactions

There are a many possibilities when defining general interaction mod-
els. In this thesis we restrict ourselves to study one of them, here
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v

Figure 9.3: An example of the measurement configuration B(v) (within the
dashed line) around a vertex v. Here we use a = 3 and b = 5.

denoted box integrations. Instead of using pairwise neighbour inter-
actions we use pairwise interactions between vertices within a box or
rectangle at some vertex v. For an example of the measurement config-
uration see Figure 9.3. The corresponding measurement function is a
simple average of pairwise interactions within the a × b-box.

We are now ready to define the models for the Ising and Potts cases
respectively, and prove basic results.

The Ising case

First the definition is the same spririt as in previous chapters.

Definition 9.8 The marked Ising box interaction model
Let X be distributed according to the Ising distribution µ

(n)
β on Bn at

inverse temperature β. Fix arbitrary but finite a, b ∈ Z
+. For measurement

configuration B = ([0, a]×[0, b])∩Z
2 and v ∈ Bn we let B(v) = {u+v : u ∈ B}

and defined the measurement function as

f(v) =
1

|E(v)|
∑

e∈E(v)

X(e)

where E(v) = {〈l, l′〉 ∈ B(v)2 : l 6= l′}. We define the marked Ising box
interaction model as

Y (v) = M(v)f(v) , v ∈ Bn
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where M is a set of marked points according to Definition 9.1 with selec-
tion probability ps. The corresponding distribution is denoted by µ

box,(n)
β,ps

.
We define the Ising box interaction measure as a weak limit of distri-

butions
µbox

β,ps
= lim

n→∞
µ

box,(n)
β,ps

as n → ∞ .

We state the basic theorem with expected values, variance and covari-
ance.

Theorem 9.8
Let Y be distributed according to the marked Ising box interaction model,
and let X be distributed according to the corresponding Ising distribution.
Then for distinct vertices v, w ∈ Bn such that |v − w| > max(a, b) we have
the following.

E[Y (v)] =
ps

|E(v)|
∑

〈l,l′〉∈E(v)

φp,q(l ↔ l′)

Var[Y (v)] =
ps

|E(v)|2
∑

〈l,l′〉∈E(v)

∑

〈l̃,l̃′〉∈E(v)

( E[X(l, l′)X(l̃, l̃′)]

−ps E[X(l, l′)]E[X(l̃, l̃′)] )

Cov[Y (v), Y (w)] =
p2

s

|E(v)|2
∑

〈l,l′〉∈E(v)

∑

〈l̃,l̃′〉∈E(w)

Cov[X(l, l′), X(l̃, l̃′)]

where X(l, l′) = X(l)X(l′) for unordered pairs 〈l, l′〉 ∈ E(v).

Proof:
Let X and Y be defined as in the statement, and let v, w ∈ Bn be distinct.
Then the expected value

E[Y (v)] =
E[M(v)]

|E(v)|
∑

〈l,l′〉∈E(v)

E[X(l, l′)] =
ps

|E(v)|
∑

〈l,l′〉∈E(v)

φp,q(l ↔ l′)
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the variance

Var[Y (v)]

= E









M(v)

|E(v)|
∑

〈l,l′〉∈E(v)

X(l, l′)





2



− E




M(v)

|E(v)|
∑

〈l,l′〉∈E(v)

X(l, l′)





2

=
ps

|E(v)|2
∑

〈l,l′〉∈E(v)

∑

〈l̃,l̃′〉∈E(v)

( E[X(l, l′)X(l̃, l̃′)] − ps E[X(l, l′)]E[X(l̃, l̃′)] )

and the covariance

Cov[Y (v), Y (w)]

= E








M(v)

|E(v)|
∑

〈l,l′〉∈E(v)

X(l, l′)








M(w)

|E(v)|
∑

〈l̃,l̃′〉∈E(w)

X(l̃, l̃′)









− E




M(v)

|E(v)|
∑

〈l,l′〉∈E(v)

X(l, l′)



 E




M(w)

|E(v)|
∑

〈l̃,l̃′〉∈E(v)

X(l̃, l̃′)





=
p2

s

|E(v)|2
∑

〈l,l′〉∈E(v)

∑

〈l̃,l̃′〉∈E(w)

Cov[X(l, l′), X(l̃, l̃′)]

follows by straightforward calculations, and we are done.
2

The Potts case

We extend the defintion for the Ising model to general q using indica-
tor function instead of products. A consequence is that the basic the-
orem will give us much more complicated expressions for the expected
value, variance and covariance compared to the Ising case. It will affect
the estimation of susceptibility in Chapter 10, where we will use omni-
parametric Potts instead of omniparametric random cluster data. It will
have a surprisingly positive effect on the estimated function.
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Definition 9.9 The marked Potts box interaction model
Let X be distributed according to the Potts distribution µ

(n)
β,q on Bn for some

fixed q ≥ 2 at inverse temperature β. Fix arbitrary but finite a, b ∈ Z
+. For

measurement configuration B = ([0, a] × [0, b]) ∩ Z
2 and v ∈ Bn we let

B(v) = {u + v : u ∈ B} and defined the measurement function as

f(v) =
1

|E(v)|
∑

〈l,l′〉∈E(v)

(2I{X(l)=X(l′)} − 1)

where E(v) = {〈l, l′〉 ∈ B(v)2 : l 6= l′}. The marked Potts box interaction
model is defined as

Y (v) = M(v)f(v) , v ∈ Bn

where M is a set of marked points according to Definition 9.1 with selec-
tion probability ps. The corresponding distribution is denoted by µ

box,(n)
β,q,ps

.
We define the Potts box interaction measure as a weak limit of distri-

butions
µbox

β,q,ps
= lim

n→∞
µ

box,(n)
β,q,ps

as n → ∞ .

Now the basic theorem with its lengthy calculations.

Theorem 9.9
Let Y be distributed according to the marked Potts box interaction model

with parameters q ≥ 2, β and ps. Let X follow the corresponding Potts
distribution on box Bn. For simplicity let ev denote the edge 〈v, v′〉. Then
for distinct vertices v, w ∈ Bn such that |v − w| > max(a, b) we have

E[Y (v)] = ps

(
2

q
− 1 + 2

q − 1

q
Ap,q

)

Var[Y (v)] = 4ps(Bp,q(0) − Ap,q) − p2
s

(
1

q
+ 2

q − 1

q
Ap,q

)2

+ 1

Cov[Y (v), Y (w)] = 4p2
s(Bp,q(v − w) − Ap,q) − p2

s

(
1

q
+ 2

q − 1

q
Ap,q

)2

where
Ap,q =

1

|E(v)|
∑

el∈E(0)

φp,q(l ↔ l′)
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and

Bp,q(v) =
1

|E(v)|2
∑

el∈E(0)

∑

eu∈E(v)

µ
(n)
β,q({X(l) = X(l′)} ∩ {X(u) = X(u′)}).

Proof:
Let Y and X be distributed as in the statement. For distinct v, w ∈ Bn

we get the following. For simplicity of notation let L(eu) denote the event
{X(u) = X(u′)}. Also define Ap,q(v) and Bp,q(v, w) as follows.

Ap,q(v) =
1

|E(v)|
∑

el∈E(v)

φp,q(l ↔ l′)

Bp,q(v, w) =
1

|E(v)|2
∑

el∈E(v)

∑

eu∈E(w)

µ
(n)
β,q(L(el) ∩ L(eu))

Translation invariance for the Potts and random cluster measures imply
Ap,q(v) = Ap,q(0) = Ap,q and Bp,q(v, w) = Bp,q(0, w−v) = Bp,q(w−v) for any
pair of vertices w, v ∈ Bn. Now the result follows for the expectation,

E[Y (v)] =
E[M(v)]

|E(v)|
∑

el∈E(v)

(2IL(el) − 1)

=
ps

|E(v)|
∑

el∈E(v)

(
2

q
+ 2

q − 1

q
φp,q(l ↔ l′) − 1

)

= ps




2

q
− 1 +

q − 1

q|E(v)|
∑

el∈E(v)

φp,q(l ↔ l′)





= ps

(
2

q
− 1 + 2

q − 1

q
Ap,q

)
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the variance,

Var[Y (v)] = E









M(v)

|E(v)|
∑

el∈E(v)

(2IL(el) − 1)





2



− E[Y (v)]2

=
ps

|E(v)|2
∑

el∈E(v)

∑

eu∈E(v)

4µ
(n)
β,q(L(el) ∩ L(eu))

− ps

|E(v)|2
∑

el∈E(v)

∑

eu∈E(v)

2( µ
(n)
β,q(L(el)) + µ

(n)
β,q(L(eu)) )

+1 − p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q

)2

= 4ps Bp,q(v, v) + 1 − p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q

)2

−2
ps

|E(v)|




∑

el∈E(v)

µ
(n)
β,q(L(el)) +

∑

eu∈E(v)

µ
(n)
β,q(L(eu))





= 4ps Bp,q(v, v) + 1 − p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q

)2

− 4psAp,q(v)

= 4ps(Bp,q(v) − Ap,q) − p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q

)2

+ 1

and finally the covariance

Cov[Y (v), Y (w)]

= E








M(v)

|E(v)|
∑

el∈E(v)

(2IL(el) − 1)








M(w)

|E(v)|
∑

el∈E(w)

(2IL(eu) − 1)









−E[Y (v)]E[Y (w)]
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=
ps

|E(v)|2
∑

el∈E(v)

∑

eu∈E(w)

4µ
(n)
β,q(L(el) ∩ L(eu)) + 1

− ps

|E(v)|2
∑

el∈E(v)

∑

eu∈E(w)

2( µ
(n)
β,q(L(el)) + µ

(n)
β,q(L(eu)) )

−p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q(v)

)(
2

q
− 1 + 2

q − 1

q
Ap,q(w)

)

= 4ps Bp,q(v, w) + 1

−p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q(v)

)(
2

q
− 1 + 2

q − 1

q
Ap,q(w)

)

−2
ps

|E(v)|




∑

el∈E(v)

µ
(n)
β,q(L(el)) +

∑

eu∈E(w)

µ
(n)
β,q(L(eu))





= 4psBp,q(w − v) + 1 − p2
s

(
2

q
− 1 + 2

q − 1

q
Ap,q

)2

− 4psAp,q

and we are done.
2

9.4 Strong mixing and central limit theorems

The central limit theorems presented in this chapter are only ap-
plicable if correlations are decaying sufficiently fast (see mixing coeffi-
cients in and before Theorem 9.3, page 112). Correlations in the Ising
and Potts models are closely related to connection probabilities in the
corresponding random cluster models. If we have exponentially decay-
ing connection probabilities in the random cluster model exponentially
decaying correlations follows in the Ising and Potts models.

As a consequence of monotonicity of the alternative critical point
(Definition 7.8 and Lemma 7.2, pages 69 and 70) we have exponential
decay of random cluster connection probabilities whenever

p < pg(2) =

√
2

1 +
√

2

and there is a corresponding limit for the inverse temperature β in the
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Ising and Potts model. We define the strong mixing region as follows.

Definition 9.10 Strong mixing regime
Let Rp

mix and Rβ
mix defined as

Rp
mix =

[

0,

√
2

1 +
√

2

]

, Rβ
mix =

[

0, ln

√

1 +
1√
2

]

be the regimes of strong mixing for p and β respectively.

When using a central limit theorem to construct a confidence interval
for the inverse temperature β we sometimes do not know for sure that
β ∈ Rβ

mix, and if not the central limit theorem does not hold. If however
β ∈ Rβ

mix we say that the confidence interval is reliable. We will elaborate
more on this in chapters 11 and 12.
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CHAPTER 10

Exploring theory: simulation
studies

In this chapter we study two important characteristics, connection prob-
abilities and susceptibility, for the models defined in Chapter 9. Since
all parameter estimation is carried out in two dimensions we restrict to
this case here also.

10.1 Connection probabilities

In subsequent chapters we need an estimate of the connection prob-
ability between nearest neighbours in the random cluster representa-
tion. We use omniparametric simulation to estimate

φ(n)
p,q (0 ↔ 1) , p ∈ [0, 1]

for q = 2 (Ising case) and q = 4 where 0 = (0, 0) and 1 = (1, 0). Due to
translation and rotation invariance of the random cluster distributions
the event {0 ↔ 1} is sufficient.

The procedure is the following. We generate omniparametric random
cluster samples X1, ..., Xm. In each sample we calculate the smallest p
for which 0 and 1 is connected by open edges, and denote it by

Xk = inf{p̃ : 0 ↔ 1 in P
RC
p̃ (Γq)}, k = 1, ..., m
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where Γq is the omniparametric random cluster variable and P
RC
p̃ is the

projection operator (Definition 8.1, page 87). Then φ
(n)
p,q (0 ↔ 1) is the

distribution function of Xk since

φ(n)
p,q (0 ↔ 1) = P({γo : 0 ↔ 1 in P

rc
p γo}) = P(Xk ≤ p)

and we write F (q)(p) for φ
(n)
p,q (0 ↔ 1). We estimate F (q) by its empirical

counterpart

F̂ (q)
m (p) =

1

m

m∑

k=1

I{Xk<p}(p).

The Glivenko-Cantelli theorem [Dur96] gives us uniform convergence
of F̂

(q)
m to F (q),

sup
p∈[0,1]

|F̂ (q)
m (p) − F (q)(p)| a.s.−→ 0,

as m → ∞. Next we introduce the Kolmogorov-Smirnov distribution
[Smi48] which help us construct confidence intervals for the remaining
discrepancy.

Definition 10.1 The Kolmogorov-Smirnov distribution
The Kolmogorov-Smirnov distribution on the positive real line is the dis-

tribution having

F∆(x) = 1 − 2

∞∑

k=1

(−1)k−1e−k2x2

as distribution function.

For an illustration of the density of the Kolmogorov-Smirnov distribu-
tion see Figure 10.2. The following theorem (here slightly reformulated)
from Feller [Fel48] give the distribution for the difference between a
distribution function and its empirical counterpart.

Theorem 10.1
Suppose that F (x) is continuous distribution function and let F̂m be the

empirical distribution. If Dm is defined as follows

Dm = sup
x∈R

|F (x) − F̂m(x)|,

then for every fixed x ≥ 0

P(
√

m Dn ≤ x) → F∆(x)

as n → ∞ , where F∆(x) is the Kolmogorov-Smirnov distribution function.
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Figure 10.1: To the left we see the result of estimating F (2), the Ising case, by
using m = 10000 omniparametric samples. To the right we see the corresponding
result for F (4)

With m = 10000, as in Figure 10.2, we get for all p ∈ [0, 1] simultane-
ously, a level α confidence interval for F (q)(p),

F (q)(x) ∈ [F̂ (q)
m (p) − D, F̂ (q)

m (p) + D] (α)

where D is according to Table 10.1.

α 0.95 0.975 0.99 0.995 0.9990 0.9995 0.9999
D 0.0136 0.0148 0.0165 0.0175 0.0195 0.0204 0.0247

Table 10.1: Percentiles on the Kolmogorov-Smirnov distribution.

In Figure 10.1 we see the results for the Ising case, q = 2 (left), and
for q = 4 (right).

Mixed connection probabilities

Next we study the sum of connection probabilities emerging in the
box interaction models, see Section 9.3.2 (page 120).

Let Y be distributed according to the marked Ising box interaction
model, using a, b ≥ 1. Let B = ([0, a] × [0, b]) ∩ Z

2 be a rectangle in Z
2 and

let
E = {〈l, l′〉 ∈ B2 : l 6= l′ }
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Figure 10.2: The Kolmogorov-Smirnov distribution, for the scaled deviation√
mD = 100D.

be the set of unordered pairs of vertices in B. Suppose we choose a pair
〈l, l′〉 uniformly at random from E and let

Y (l, l′) = inf{p̃ : l ↔ l′ in P
RC
p̃ (Γq)}.

be the threshold value of that pair, then

P(Y (l, l′) ≤ p) =
∑

〈l̃,l̃′〉∈E

P(Y (l̃, l̃′) ≤ p| choose l̃, l̃′)P( choose l̃, l̃′)

=
1

|E|
∑

〈l̃,l̃′〉∈E

P(X(l̃, l̃′) ≤ p)

=
1

|E|
∑

〈l̃,l̃′〉∈E

φ
(n)
p,2 (l̃ ↔ l̃′)

is a mixture of distribution functions, and we proceed along the same
lines as in the last section. In Figure 10.3 we see the results for the Ising
model and Figure 10.4 display the results for the 4-state Potts model.
Note that if we use larger a and b we get a steeper curve which result in
different characteristics of our estimation of β depending on how sharp
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Figure 10.3: Some examples of the mixed connection probability fa,b
avg(p) for the

marked Ising box interaction model using a × b-boxes. In this case we have a =
b = 2 (left) and a = b = 3 (right).

our estimate of the connection probability is. We do not explore this
further, instead we use a = b = 2 in later chapters.

10.1.1 Estimation of connection probabilities

In Chapter 2 we treated an omniparametric approach for estimating
connection probabilities between neighbouring sites in the bond perco-
lation model on Z

2. According to Figure 2.8 there is an interval for p
around its critical value pc where we have difficulties getting a proper
answer, some simulations simply could not give an answer weather two
sites are connected or not since there could be a connecting path of
open edges reaching outside the simulated area. The problem is the
same when simulating estimating connection probabilities in the ran-
dom cluster model.

The simulations presented in this chapter are set up so that we only
mark vertices as connected based on data from finite regions. That is,
vertices are marked as connected if they are connected by a path of
open edges within the simulated box, and since

P(u ↔ v on Bn) < P(u ↔ v on Z
2)

we get an under estimation of the connection probabilities. This is a
choice we have made in order to get manageable execution times for our
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Figure 10.4: Some examples of the mixed connection probability fa,b
avg(p) for the

marked Potts box interaction model with q = 4, using a × b-boxes. In this case we
have a = b = 2 (left) and a = b = 3 (right).

simulation programs. To what extent we deviate from the true value is
hard to say. We can only use as large boxes as possible and hope for
the best.

The problem remains if we try to estimate connection probabilities
from omniparametric Ising or Potts data since we use the component
structure in the omniparametric random cluster samples for their gen-
eration.

10.2 Susceptibility

The marked Ising interaction model

Let Y follow the marked Ising interaction measure on Z
2. In this

section we use simulation to estimate the susceptibility

σ2
Y =

∑

v∈Z2

Cov[Y (0), Y (v)].

From Theorem 9.1 (page 104) we get an expression for the covariance
Cov[Y (0), Y (v)] when |v| > 1. For the four points in {w : |w| = 1} the
covariance is slightly more complicated and we do not treat it explicitly.
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In subsequent chapters we will use the central limit theorems (Theo-
rems 9.4, 9.5, 9.6 and 9.7) to capture the asymptotic variation of certain
statistics. A vital part of these theorems is the susceptibility, therefore
a careful study is motivated.

We cannot study the proper susceptibility so we have to be content
with the truncated version, the box susceptibility

σ2
Y,n,β =

∑

v∈Bn

Cov[Y (0), Y (v)].

We study σ2
Y,n,β for β ∈ [0, βc) since otherwise the susceptibility is infinite

and no central limit theorems are available. The idea is to simulate
the model on sufficiently large boxes Bn and hopefully get a reasonable
estimate of σ2

Y,n,β. Due to limited computer resources we limit ourself to
the box B50.

The simulation algorithm is based on estimation of connection prob-
abilities in the random cluster model according to Lemma 7.5 (page 79).
We believe it is more accurate since we do not use the extra randomness
involved in generating omniparametric Ising samples. For simulation
results see Figure 10.5.

As expected we see the truncated susceptibility grow larger and larger
for β ≈ βc. Somewhat unexpected is that the susceptibility decays for
β > βc a plausible explanation is the following. Fix v ∈ Z

2 \ {0}, then the
covariance

Cov[Y (0), Y (v)] =
p2

s

4

2∑

k=1

2∑

m=1

( φp,2({0 ↔ ek} ∩ {v ↔ v + em})

+φp,2(0 ↔ v 6↔ ek ↔ v + em)

+φp,2(0 ↔ v + em 6↔ ek ↔ v)

− φp,2(0 ↔ 1)2
)

may approach p2
s as p → 1 (β → ∞) since the probabilities

φp,2({0 ↔ ek} ∩ {v ↔ v + em}) and φp,2(0 ↔ 1)2

both approach 1 while the events

{0 ↔ v 6↔ ek ↔ v + em}
and

{0 ↔ v + em 6↔ ek ↔ v}
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Figure 10.5: An estimation of the susceptibility σ2
Y,50,p in the marked Ising in-

teraction model on the box B50 for ps = 0.1 (lower curve), ps = 0.3 (middle) and
ps = 0.5 (upper curve), using 100 000 omniparametric samples.

become more and more unlikely. The last two events depend on existing
open paths between vertices at some distance and the non-existence of
open paths between neighbouring vertices. We end up with a situation
where covariances between the state at different vertices decrease due
to less variation while the dependence increase.

We would expect something smoother from an estimation procedure
using so many simulations but instead we get something rather crude.
The most likely explanation is the estimation of probabilities for unlikely
events in the expression for Var[Y (0), Y (v)] when the origin and v are far
apart. For example, the event {0 ↔ v 6↔ ek ↔ v + em} where the origin
is connected to v and ek is connected to v + em, but neither 0 nor v are
connected to their neighbours ek and v + em respectively. This is highly
unlikely and require massive simulation to generate a smooth curve for
its probability.

The marked Potts interaction model

We repeat the estimation procedure for the marked Potts interac-
tion model using q = 4. The procedure is completely analogous to the
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Figure 10.6: An estimation of the susceptibility σ2
Y,n,β in the marked Potts inter-

action model with q = 4 on box B10 (right) and B20 (left) for ps = 0.1 (lower curve),
ps = 0.2, 0.3, 0.4 and ps = 0.5 (upper curve). The difference between the two are
small, |σ2

Y,20,β − σ2
Y,10,β | ≤ 0.0015 regardless of β.

previous section, and we present the results in Figure 10.6.
Instead of estimate the susceptibility through omniparametric ran-

dom cluster samples we use omniparametric Potts samples, generated
according to Section 8.2 (page 97). The reason is that the expression
for the marked Potts interaction covariance is too complex, it is much
simpler to estimate it directly from the omniparametric Potts samples.
As we see in Figure 10.7 the curves are much smoother than the cor-
responding ones for the Ising model. The approach has a negative side,
computer time. It is much more demanding than just simulating the
random cluster model, as a consequence we have to limit the simulated
area further. Instead of using box B50 as for the Ising model we use B20.
When using the estimate later we will, as before, treat the susceptibility
as known at its estimated value. We will also generate Potts samples on
larger boxes than B20 and hope that the difference between σ2

Y,20,β and
σ2

Y,50,β is negligible for β small enough.

The marked Ising box interaction model

We generate omniparametric Ising samples and calculate the trun-
cated susceptibility σ2

n,m,k for the marked Ising box interaction model.
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Figure 10.7: An estimation of the susceptibility in the marked Ising box inter-
action model, σ2

2,2,10,β (left) and σ2
2,2,20,β (right), on boxes B10 and B20 respec-

tively, for ps ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The curves are in increasing order re-
garding selection probability. Again the difference between the two are small,
|σ2

2,2,20,β − σ2
2,2,10,β | ≤ 0.000375 regardless of β.

Due to limited computer resources and limited time we manage boxes
B10 and B20, using a = b = 2. We see the result in Figure 10.7. As
expected the susceptibility becomes larger around the critical value.

The marked Potts box interaction model

By using omniparametric Potts samples we estimate the truncated
susceptibility for the marked Potts box interaction model. We see the
results in Figure 10.8

The results are similar to the corresponding results for the Ising
model, and there is also a rather small difference between σ2

2,2,10,β and
σ2

2,2,20,β indicating that the sum of covariance terms for v ∈ B20 \ B10 is
negligible.

Final remarks

As we have seen the difference between the estimated susceptibility
based on data from different box sizes are small, perhaps negligible. In
Table 10.2 we see the respective differences. The marked Ising inter-
action model is excluded since we used another estimation technique.
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Figure 10.8: An estimation of the susceptibility in the marked Potts box inter-
action model with q = 4, σ2

2,2,10,β (left) and σ2
2,2,20,β (right), on boxes B10 and B20

respectively, for ps ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The curves are in increasing order
regarding selection probability, ps = 0.1 in the bottom and ps = 0.5 on top. Again
the difference between the two are small, |σ2

2,2,20,β −σ2
2,2,10,β | ≤ 0.00030 regardless

of β.

Since the differences are so small we will try to use the estimated sus-
ceptibilities on box sizes larger than 20 for all three models. The val-
idation procedure will show that this give us reasonable results, see
chapters 11 and 12.

Model Absolute difference
×10−4

marked Potts interaction 15
marked Ising box interaction 3.7441
marked Potts box interaction 2.9816

Table 10.2: We see how much the estimated susceptibilities deviate between
data from B10 and B20.
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CHAPTER 11

Parameter estimation in the
Ising model

11.1 Introduction

We present three different approaches to parameter estimation in the
Ising model, based on incomplete data. All methods are carried out on
the two-dimensional lattice.

The first method is based on pairwise interactions and asymptotic
theory. We estimate the probability of an open connection between
two neighbouring vertices in the random cluster model from Ising data.
From omniparametric random cluster samples we estimate the connec-
tion probability as a function of p = 1 − e−2β. The estimated function
together with our statistic result in a point estimate of p corresponding
to a point estimate of inverse temperature β. We capture the variance
by using a central limit theorem and establish confidence intervals.

The second method is a generalization of method one, based on gen-
eral interactions instead of pairwise. By using more general interactions
we may extract more information out of a given data set and we hope to
get sharper estimates. Apart from the extension to general interactions
method one and two are identical.

The third approach is more direct and not based on asymptotic the-
ory. Given data X we calculate a statistic T (X). We now view T (X) as
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a function of the parameter β, and estimate it using omniparametric
simulations. The simulation step results in a mean value curve for the
function T (X)(β) and also empirical percentiles from order statistics.
Using these characteristics we can easily compute point estimates and
confidence intervals for β.

The rest of the chapter is outlined as follows. Next we introduce
necessary notation and present methods. Sections 11.3 and 11.4 treat
method one. Sections 11.5 and 11.6 present the corresponding material
for method two and in sections 11.7 and 11.8 we treat the third, non-
asymptotic, method.

11.2 Analysing simulations, method and comments

For all three methods we perform validation and analyse precision
and reliability. The analysis is carried out for data on B10, B20, B30,
B40 and B50 for selection probabilities ps = 0.10, 0.20, also for ps =
0.4, 0.6, 0.8 and ps = 1.0 on B20.

• In the validation procedure we estimate the confidence level from
data, and compare it with the desired one.

• By precision we mean the width of the confidence interval. For
a fixed confidence level we analyse how much data is required to
achieve a certain precision.

• For the asymptotic methods a confidence interval is valid if the
central limit theorem is applicable, and that happens when β < βc

for the Ising model. We can of course not know if that is the case
from the start. We assume β < βg(q), compute the confidence
interval [βlow, βup], and if

[βlow, βup] ⊂ Rβ
mix

(Definition 9.10, page 128) then we say that the interval is reliable,
otherwise we mark it as unreliable. The approach is conservative
in the sense that for some β close to βc we will make an error and
mark the confidence intervals as unreliable. The non-asymptotic
method does not have this limitation.

• By phase determination we mean the probability of being able to
determine in which phase the system is in. For values of the in-
verse temperature far from the critical value there are no problems,
but for β ≈ βc we run into difficulties. We look at the region where
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we have a reasonably high probability of being able to separate the
subcritical phase from the supercritical. For the non-asymptotic
this approach works for all β, while for the asymptotic methods we
can only make a decision in the subcritical phase.

We generate n omniparametric samples, X1, ..., Xn, and calculate the
statistic S(X1), ..., S(Xn), each a function of p ∈ [0, 1]. Based on these
functions we calculate confidence intervals, estimate confidence levels
for validation, average width, the probability that the confidence interval
does not contain βc (reliability), and analyse phase determination.

We now introduce necessary notation. Let the two-dimensional ran-
dom variable

(Bn,α,ps
low (ω), Bn,α,ps

up (ω))

represent the bounds of a level α confidence interval based on data ω
within box Bn using selection probability ps. Let

Wn,α,ps(ω) = Bn,α,ps
up (ω) − Bn,α,ps

low (ω)

be the length of the interval, and let

V = {ω : βc 6∈ [Bn,α,ps
low (ω), Bn,α,ps

up (ω)]}

be the event that the confidence interval does not cover the critical
value. We estimate the confidence level by

α̂ =
1

n

n∑

k=1

I[Bk
low ,Bk

up]
(β)

for β ∈ (0,∞).
There is always a chance of getting a confidence interval of infinite

length, a one-sided interval. Any confidence interval for p close enough
to 1 or including 1 results in an interval for β approaching infinity.
When analysing the interval width we condition on finite confidence
intervals for β whenever there are infinite ones.

11.3 Pairwise interactions

Our first approach is to use a simple measurement configuration,
B = {(0, 0), (1, 0)}, and a measurement function f(a, b) = ab. This method
makes measurements follow the marked Ising interaction model if we
choose our the vertices where we make measurements uniformly at ran-
dom. Our goal is to estimate the inverse temperature and our main tool

143



CHAPTER 11. PARAMETER ESTIMATION IN THE ISING MODEL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1
S

n
(Y)=0.95

p

p
low

p
up

Figure 11.1: An illustration of how the construction of confidence intervals may
produce infinite or one-sided intervals. A confidence interval for p containing 1
results in a one-sided interval for β. A consequence is that we can not say much
about the precision of our estimate of β.
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Figure 11.2: We start with data collected in pairs. The idea is to estimate the
probability that there is an edge between the two vertices in the underlying ran-
dom cluster sample. In this case the data consists of the three values for the
edges e1, e2 and e3, X(L) = (−1, +1, +1).
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the random cluster distribution. We start with point estimation and
continue with the more complicated interval estimation.

Given a randomly chosen set of locations in the form of edges

L = {ek : k = 1, ..., n} , ek = (lk, l′k)

and measurements X at each end vertex, see Figure 11.2. Suppose X
follow the Ising model at some inverse temperature β0. We calculate
Y (lk), k = 1, ..., n with the measurement function,

Y (lk) = f( X(lk), X(l′k) ) = X(lk)X(l′k).

Next we introduce the statistic, establish unbiasedness and under
subcriticality also a central limit theorem and consistency.

Definition 11.1 The statistic
Let Bn be a box in Z

2 and suppose we have data Y distributed according
to the marked Ising interaction distribution on Bn. We define the statistic
Sn(Y ) as

Sn(Y ) =
1

ps|Bn|
∑

v∈Bn

Y (v).

It might appear as if

S′
n(Y ) =

1

N

∑

v∈Bn

Y (v) , N = |{v ∈ Bn : Y (v) 6= 0}|

is a more natural choice of statistic, but since N = 0 with positive prob-
ability S′

n(Y ) has infinite mean. Choosing S ′
n(Y ) instead of Sn(Y ) will

also complicate the weak convergence towards a normal distribution in
the central limit theorem stated below.

Theorem 11.1
Let Y be distributed according to the marked Ising interaction model,

and let φp,2 be the corresponding random cluster measure. Let Sn(Y ) be
defined as in Definition 11.1. Then Sn(Y ) is unbiased and consistent as
an estimator of φp,2(0 ↔ 1). If the underlying Ising process is subcritical
Sn(Y ) is consistent and we have

σY

ps|Bn|1/2
( Sn(Y ) − φp,2(0 ↔ 1) )

D−→ Z

where Z
D
= N(0, 1).

145
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Proof:
Let Sn(Y ) be as defined above. It is indeed unbiased,

E[Sn(Y )] = E

[

1

ps|Bn|
∑

v∈Bn

Y (v)

]

=
1

ps|Bn|
∑

v∈Bn

E[Y (v)] = φp,2(0 ↔ 1)

and consistence follows from unbiasedness since

Var[Sn(Y )] =
1

p2
s|Bn|2

∑

v∈Bn

(ps − p2
sφp,q(0 ↔ 1)2) =

1 − psφp,q(0 ↔ 1)2

ps|Bn|
→ 0

as n → ∞ . From Bolthausen’s central limit theorem we have
∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2

D−→ Z0

where Z0 follows the standard normal distribution. Considering this
expression we make the following rearrangements.

∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2
=

1

σY |Bn|1/2

(
∑

v∈Bn

Y (v) − ps|Bn|φ(n)
p,2 (0 ↔ 1)

)

=
(ps|Bn|)−1

∑

v∈Bn
Y (v) − φ

(n)
p,2 (0 ↔ 1)

σY p−1
s |Bn|−1/2

=
Sn(Y ) − φ

(n)
p,2 (0 ↔ 1)

σY p−1
s |Bn|−1/2

It follows that
σY

ps|Bn|1/2
( Sn(Y ) − φ

(n)
p,2 (0 ↔ 1) )

D−→ Z

where Z
D
= N(0, 1). Now

|Sn(Y ) − φ
(n)
p,2 (0 ↔ 1)| P−→ 0,

and as a consequence also consistency follows from the above together
with unbiasedness, and we are done.
2

Note that consistency only follows if we expand the region from which
we take our data, increasing ps in order to use more data within a given
region is not enough.
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The point estimator

From data we calculate our statistic Sn(Y ). Through simulation we
estimate

F (p) = φ
(n)
p,2 (0 ↔ 1)

by the empirical distribution function F̂m(p) (Section 10.1, page 129).
Our estimate of p is p̂ = F̂−1

m ( Sn(Y ) ). The relation between p and β give
us an estimate of β.

Summing up: Given the statistic Sn(Y ) our estimate of β is

β̂ = − 1

2
log( 1 − F̂−1

m ( Sn(Y ) ) )

The interval estimator

Under the assumption of subcriticality we compute a level α confi-
dence interval [βlow, βup] for β. We later verify if this assumption is sup-
ported by data or not. The variance of β̂ has two sources. The statistic
Sn(Y ) may vary and the estimated function F̂m also has some variation,
and we have to make two choices regarding confidence levels.

• αS, for φ
(n)
p,2 (0 ↔ 1) based on Sn(Y ).

• αF , for Fm based on F̂m.

We construct level αS and level αF confidence intervals respectively,
making the confidence interval for β have level α = αSαF . For simplicity
we let αS = αF =

√
α.

In any application we may of course estimate F (p) to arbitrary preci-
sion, assume F (p) = F̂m(p) and set ε = 0 (see Figure 11.3). This not only
removes the extra variation from estimating F (p) but also allow us to
use a slightly smaller percentile, zα instead of z√α, in the computations
below.

When computing the confidence interval the selection parameter and
the measurement region are both given. We have data X from some
finite region Λ = Bn in the Ising model, and compute marked Ising
interaction data Y . The statistic Sn(Y ) is our estimate of F (p) for some
unknown p and

F (p) = Sn(Y ) ± z(1+
√

α)/2

σY

ps|Bn|1/2

is a level
√

α confidence interval for F (p), where z(1+α)/2 is the two-sided
α-quantile of the standard normal distribution.
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Figure 11.3: An illustration of how a confidence interval of p around p̂ is re-
lated to the corresponding confidence interval of Sn(Y ) and F̂n(p). We can cal-
culate ζ through the relationship F̂n(p − ζ) + ε = Sn(Y ) − δ, where Sn(Y ), ε =
m−1/2D√

α, δ = z(1+
√

α)/2 σY p−1
s |Bn|−1/2 and F̂n are known through data and

simulations.

We use the estimate of F (p) and the maximum deviation

sup
p∈[0,1]

|F̂m(p) − F (p)| ≤
D√

α√
m

according to the Kolmogorov-Smirnov distribution, where Dα is the α-
quantile and m is the number of omniparametric samples used to con-
struct F̂m(p).

For simplicity let ε = D√
α/

√
m. For an illustration of how the confi-

dence interval and confidence band affect the variation of p̂ see Figure
11.3. Let p1 = p − ζ and p2 = p + ζ. We then find p1, p2 by solving the
following two equations.

Fn(p1) + ε = Sn(Y ) − δ , Fn(p2) − ε = Sn(Y ) + δ

The estimates

p̂1 = F̂−1
n ( Sn(Y ) − δ − ε ) and p̂2 = F̂−1

n ( Sn(Y ) + δ + ε )

follows. The interval for p depends heavily on the variation of Sn(Y ).
If the variation is too large the confidence interval will not give us any
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information at all, so keeping the variation of Sn(Y ) small becomes im-
portant. Finally we transform the confidence interval for p to an interval
for β by letting

βlow = −1

2
log(1 − p̂1) and βup = −1

2
log(1 − p̂2).

We summarize the above in a theorem.

Theorem 11.2 Confidence interval for the inverse temperature
Let Y be distributed according to the marked Ising interaction model on

a finite box Bn at inverse temperature β and let βc be the critical temper-
ature. Let Sn(Y ) and F̂m be defined as above. Then [βlow, βup] is a level α
confidence interval for the inverse temperature β. The bounds are given
by

βlow = −1

2
log

(

1 − F̂−1
m

(

Sn(Y ) − z(
√

α+1)/2

σY

ps|Bn|1/2
− D√

α√
m

))

and

βup = −1

2
log

(

1 − F̂−1
m

(

Sn(Y ) + z(
√

α+1)/2

σY

ps|Bn|1/2
+

D√
α√

m

))

where zα and Dα are quantiles from the standard normal distribution and
the Kolmogorov-Smirnov distribution respectively. The confidence interval
is valid if βc 6∈ [βlow, βup].

Note that not only the location but also the width of a confidence
interval is a random variable. The width depends on Sn(Y ) through
F̂m(p), see Figure 11.3.

11.4 Simulation study: pairwise interactions

We simulate the statistic Sn for boxes B10, B20, B30, B40 and B50 using
selection probabilities, ps = 0.1, 0.2. Extra simulations are generated on
B20 for ps ∈ {0.40, 0.60, 0.80, 1.00}. For each combination (Bn, ps) we
generate 1000 simulations.

Validation

In Figure 11.4 and B.1 (pages 150, 210) we see the result of the
procedure for ps = 0.10 and ps = 0.20 for α = 0.95 and all box sizes. The
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Figure 11.4: Estimated confidence levels on boxes B10 (upper left), B20 (upper
right), B30 (middle left), B40 (middle right), and B50 (lower). The desired confidence
level is α = 0.95. The results are given for ps = 0.10. For corresponding results
with ps = 0.20 see Figure B.1 (page 210).
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validity of the confidence intervals are good on all five box sizes. We
get an estimated confidence level of 1 or almost 1 despite the used level
α = 0.95, indicating an overestimation of the variance of Sn(Y ).

In Figure 11.5 we see a deviation of the estimated confidence level
for large values of ps. The estimated level never reaches below 0.95 but
the deviation is systematic and grows larger as ps increases. A plau-
sible explanation for the deviation is an error in the estimation of the
susceptibility σ2

Y,β by its truncated counterpart σ2
Y,n,β (see Section 10.2).

For values of β close to the critical the sum of covariance terms for all
v ∈ Z

2 \ Bn may not be negligible. Another plausible explanation is the
following. Since the statistic is an estimate of the connection probability
we expect to have

E[Sn(Y )] ≈ φp,2(0 ↔ 1)

with only a small random deviation. In Figure 11.6 we see that the de-
viation (between sample mean and expected) is almost zero except for
β ≥ 0.3. With such smooth estimates we would expect no or almost
no deviation at all between the two curves. In the case ps = 0.1 the
deviation is negligible relative to the expected deviation (according to
Theorem 11.2), but for ps = 0.8 the deviation is substantial, resulting in
a systematically lower estimated confidence level. According to Section
10.2 this deviation may depend on the way we implemented the valida-
tion procedure and not on the estimation itself, see Figure 11.7 (page
153) where we have simulated the statistic on B20 using a much wider
margin than before.

Precision

The question is how much data is needed to attain a certain preci-
sion? We study this question for α = 0.95.

Consider the width Wα,n,ps of a confidence interval. We estimate
E[Wn,α,ps ] and the truncated expected width, E[Wn,α,ps |Wn,α,ps < ∞]. See
Figure 11.8 for results. Using the smallest box size, B10 and ps = 0.1,
we use 44 data points and we achieve confidence intervals having width
between 0.2 and 0.6 depending on the true value of β. We even suffer a
risk of only getting a one-sided interval if β > 0.05 (see Figure 11.8, up-
per left diagram). By using twice as many data points within the same
area we get a slightly more narrow interval, but there is still a possibility
of getting a one-sided interval now for β ≥ 0.14.

For β . 0.23 on B20 using the same selection probability there is
a large chance of getting two-sided intervals while for β ≥ 0.23 we get
one-sided intervals with high probability.
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on data within box B20, for different choices of selections probabilities, ps =
0.2, 0.4, 0.6, 0.8, 1.0.
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Figure 11.6: In the left diagram we see the mean value of the statistic S (solid
line) and confidence bands for the true value using the central limit theorem (The-
orem 9.6) and confidence level α = 0.95 for ps = 0.1 on B20. The curves for E[Sn(Y )]
as a function of β are dashed. The left diagram shows the corresponding infor-
mation for ps = 0.8, also on B20.
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Figure 11.7: Running simulation on box B20 with larger margins, using only a
B20 box on B70 gives another result when comparing the mean sample value for
the statistic with its expected value. The systematic deviation seen in Figure 11.6
is gone and instead we see a more random deviation. The full diagram is on the
left and a magnified version on the right.

If we want to reduce the risk of getting one-sided intervals we have
to use complete data on box B20 or at least ps = 0.2 on box B50 corre-
sponding to 2040 data points. To achieve an expected precision of ≈ 0.1
or less we have to use selection probability ps = 0.2 on boxes B40 and
B50, or ps ≥ 0.6 on B20, equivalent to around 1100 data points, or more
(see Table 11.1).

Our sharpest estimate comes from simulation on box B20 with com-
plete data (ps = 1), and there we have used 1681 data points. Suppose
we spread out these observations over a larger area, assuming we get
the same precision, we can then use ps ≈ 0.46 on box B30, ps ≈ 0.26 on
box B40 or ps ≈ 0.17 on box B50.

Reliability

We estimate P (V ) from data on boxes B10, B20, B30, B40 and B50, see
Figure 11.9. By using large enough boxes (for ps = 0.2) we can almost
remove the probability for unreliable confidence intervals for β < 0.35,
using on average 2040 data points. The shape of the curves in Figure
11.9 suggests that the closer the actual value of β is to βc the amount of
extra data required, to get a reliable confidence interval, is substantial.
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Figure 11.8: The width of level 0.95 confidence intervals for different boxes, using
ps = 0.1 (upper left), ps = 0.2 (middle left) for boxes B10, B20, B30, B40 and B50.
Below (also left) we see the corresponding curves on box B20 for ps = 0.2, ps = 0.4,
ps = 0.6, ps = 0.8 and ps = 1.0. Solid lines for E[Wn,α,ps ] and dashed lines for
E[Wn,α,ps |Wn,α,ps < ∞]. The right diagrams show us P(Wn,α,ps < ∞) for the
corresponding data sets.
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Figure 11.9: Estimations of P(V ) on all boxes using ps = 0.1 (left), ps = 0.2 (right)
and for ps = 0.2, 0.4, 0.6, 0.8 and 1.0 on B20 (lower). Desired level is α = 0.95.
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ps B10 B20 B30 B40 B50

0.1 44 168 372 656 1020
0.2 88 336 744 1312 2040
0.4 − 672 − − −
0.6 − 1086 − − −
0.8 − 1344 − − −
0.2 − 1681 − − −

Table 11.1: The expected amount of data points, ps|Bn| = ps(2n + 1)2, used on
average on boxes of different sizes for the considered selection probabilities. Note
that each data point may require two measurements

11.5 Box interactions

We now consider a more general form of interactions. Let the mea-
surement region B(v) be an a × b-box in Z

2 having its lower left corner
at vertex v, and let E(v) be the set of unordered pairs of vertices in B.
We define the measurement function

fa,b(v) =
1

|E(v)|
∑

〈l,l′〉∈E(v)

X(l, l′)

where X(l, l′) = X(l)X(l′) and X follows the Ising distribution. Let M be
a set of marked points according to Section 9.1. By letting

Y (v) = M(v)fa,b(v)

the data {Y (v) : v ∈ Z
2} follows the marked Ising box interaction distri-

bution. We repeat the procedure from the last two sections, using an
average of connection probabilities instead of the pairwise connection
probability.

We begin with the necessary definitions, the statistic and average
connection probabilities.

Definition 11.2 The box statistic
Let Bn be a box in Z

2 and suppose we have data Y distributed according
to the marked Ising box interaction distribution on Bn. We define the
statistic Sn(Y ) as

Sn(Y ) =
1

ps|Bn|
∑

v∈Bn

Y (v).
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Instead of the random cluster connection probability between neigh-
bours we use an average of connection probabilities over all pairs of
vertices in E(v). The estimation procedure was presented in Section
10.1.

Definition 11.3 Average connection probability
Let B be a box in Z

2 and suppose we have data Y distributed according
to the marked Ising box interaction distribution on Bn. We define the
average connection probability fa,b

avg as

fa,b
avg (p) =

1

|E(0)|
∑

〈l,l′〉∈B(0)2

φ
(n)
p,2 (l ↔ l′)

We are now ready to state and prove unbiasedness (straightforward
calculation) and conditional consistency (Theorem 9.6, page 118) for
Sn(Y ).

Theorem 11.3
Let Y be distributed according to the marked Ising box interaction model,
and let φ1−e−2β ,2 be the corresponding random cluster measure. Let Sn(Y )
be defined as in Definition 11.2. Then Sn(Y ) is an unbiased estimator of
fa,b

avg (0). If the underlying Ising process is subcritical then

σY

ps|Bn|1/2
( Sn(Y ) − fa,b

avg (0) )
D−→ Z

where Z
D
= N(0, 1), and Sn(Y ) is consistent.

Proof:
Let Sn(Y ) be as defined above. It is indeed unbiased.

E[Sn(Y )] = E




1

ps|Bn|
∑

v∈Bn

1

|E(v)|
∑

〈l,l′〉∈B(v)2

Y (l, l′)





=
1

ps|Bn||E(v)|
∑

v∈Bn

∑

〈l,l′〉∈B(v)2

E[Y (l, l′)]

=
|Bn|

ps|E(v)||Bn|
∑

〈l,l′〉∈B(v)2

psφ
(n)
p,2 (l ↔ l′)

= fa,b
avg (p)
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From Bolthausen’s central limit theorem we have

∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2

D−→ Z0

where Z0 follows the standard normal distribution. We make the follow-
ing rearrangements,

∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2
=

1

σY |Bn|1/2

(
∑

v∈Bn

Y (v) − ps|Bn|fa,b
avg (0)

)

=
(ps|Bn|)−1

∑

v∈Bn
Y (v) − fa,b

avg (0)

σY p−1
s |Bn|−1/2

=
Sn(Y ) − fa,b

avg (0)

σY p−1
s |Bn|−1/2

and
σY

ps|Bn|1/2
( Sn(Y ) − fa,b

avg (0) )
D−→ Z (∗)

where Z
D
= N(0, 1). Consistency now follows since

|Sn(Y ) − fa,b
avg (0)| P−→ 0

is implied by unbiasedness and (∗).
2

We estimate fa,b
avg with f̂a,b

avg by using m = 10000 simulations and use it
to produce a point and interval estimations for β. Apart from using an-
other function the method in this section is identical to the one used for
the marked Ising interaction model in Section 11.3. We restate slightly
reformulated versions here.

Point and interval estimators

Given the statistic Sn(Y ) our estimate of β is

β̂ = − 1

2
log( 1 − (f̂a,b

avg )−1( Sn(Y ) ) )

The confidence interval in given by the following result.
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11.6. SIMULATION STUDY: BOX INTERACTIONS

Theorem 11.4 Confidence interval for the inverse temperature
Let Y be distributed according to the marked Ising box interaction model

on a finite box Bn at inverse temperature β and let βc be the critical tem-
perature. Let Sn(Y ) and f̂a,b

avg be defined as above. Then [βlow, βup] is a level
α confidence interval for the inverse temperature β. The bounds are given
by

βlow = −1

2
log

(

1 − (fa,b
avg )−1

(

Sn(Y ) − z(
√

α+1)/2

σY

ps|Bn|1/2
−

D√
α√

m

))

and

βupp = −1

2
log

(

1 − (fa,b
avg )−1

(

Sn(Y ) + z(
√

α+1)/2

σY

ps|Bn|1/2
+

D√
α√

m

))

where zα and Dα are quantiles from the standard normal distribution and
the Kolmogorov-Smirnov distribution respectively. The confidence interval
is valid if βc 6∈ [βlow, βup].

As for a proof, see Section 11.3 and the discussion before Theorem 11.2.

11.6 Simulation study: box interactions

We simulate the statistic S for boxes B10 and B20 using a = b = 2 and
selection probabilities, ps = 0.1, 0.2. We generate 100 omniparametric
samples Yk for each box size, calculate statistics

Sn(Y1), ..., Sn(Y100)

and then proceed as before with validation, precision and reliability, see
Section 11.4 for a detailed description of the procedure.

Validation

In Figure 11.11 and 11.10 we see the simulation results regarding
estimated confidence level.

As in Section 11.4 the confidence levels are met for ps = 0.1, 0.2 on
all box sizes, but there is a difference for more closely spaced observa-
tions on B20, when we use ps > 0.2. In Figure 11.10 we see a drop in
estimated confidence level from expected 0.95 to ≈ 0.7. This deviation is
consistent with the behaviour of the sample mean related to expected
sample mean in Figure 11.12. We see that for relatively sparse data
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Figure 11.10: Estimated confidence levels α̂ for confidence intervals based
on data within box B20, for different choices of selections probabilities, ps =
0.2, 0.4, 0.6, 0.8 and ps = 1.0.

(ps = 0.1) the deviation is small compared to the width of the confidence
interval, while for ps = 0.8 the deviation is of the same magnitude as the
allowed deviation according to Theorem 11.4.

Precision

We study both expected width of the confidence intervals, E[Wn,α,ps ]
and its truncated counterpart, E[Wn,α,ps |Wn,α,ps < ∞], see Figure 11.13
for simulation results. As expected we achieve more accurate estimates
on box B20 than on B10 regardless of selection probability.

In order to achieve expected precision E[Wn,α,ps ] ≤ 0.1 we need at
least selection probability ps = 0.2 on B20 which is equivalent to using
336 data points on average. Note that a data point in this case is based
on no less than four measurements, so we actually need more than 1300
measurements for the wanted precision.

There is also a risk for unbounded, or one-sided intervals. On the
smaller box we have that risk for β ≥ 0.25 using ps = 0.1 and for β ≥ 0.30
using ps = 0.2. On the larger box that the risk is limited to β larger than
≈ 0.32. In Figure 11.13 (right column) we see how the probability for
bounded interval width (two-sided intervals) varies with the true value
of β.

160



11.6. SIMULATION STUDY: BOX INTERACTIONS

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

Figure 11.11: Estimated confidence levels for the confidence interval for β on
boxes B10 (upper left), B20 (upper right), B30 (middle left), B40 (middle right), and B50

(lower). Desired confidence level is α = 0.95. The results are given for ps = 0.10.
For corresponding results using ps = 0.20 see Figure B.2 on page 211.
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Figure 11.12: In the left diagram we see the mean value of the statistic Sn(Y )
(solid line) and confidence bands for the true value using the central limit theorem
(Theorem 9.6) and confidence level α = 0.95 for ps = 0.1 on B20. The curves for
E[Sn(Y )] as a functions of β are dashed. The left diagram shows the correspond-
ing information for ps = 0.8, also on B20.

Reliability

We naturally want the probability of a non-valid confidence interval
to be as small as possible, hopefully close to zero, but it is only possible
for sufficiently small β, see Figure 11.14 for results. More data give
narrower confidence intervals, and as a consequence we get reliable
results for larger values of β. On the smaller box we can, by using
ps = 0.2, get reliable results with large probability for β ≤ 0.25, and on
the larger box the same holds for β ≤ 0.33.

162



11.6. SIMULATION STUDY: BOX INTERACTIONS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

β

B
10

B
20

B
30

B
40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

B
10

B
20

B
30

B
40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

β

B
10

B
20

B
30

B
40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

B
10

B
20

B
30

B
40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

β

p
s
=0.2 p

s
=0.4

p
s
=0.6

p
s
=0.8

p
s
=1.0

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

p
s
=0.2

p
s
=0.4

p
s
=0.6

p
s
=0.8

p
s
=1.0

Figure 11.13: Width of level 0.95 confidence intervals for different boxes, using
ps = 0.1 (upper left) and ps = 0.2 (middle left) on B10 and B20. In the lower left
diagram we see the corresponding information for ps = 0.2, = 0.4, 0.6, 0.8 and ps =
1.0 on B50. Solid lines represent E[Wn,α,ps ], and dashed lines E[Wn,α,ps |Wn,α,ps <
∞]. The right column shows P(Wn,α,ps < ∞) in the corresponding situations.
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Figure 11.14: Estimations of P(V c) as functions of β for boxes B10, B20 using
ps = 0.1 (left) and ps = 0.2 (right), both for α = 0.95.
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11.7. A NON-ASYMPTOTIC METHOD

11.7 A non-asymptotic method

Instead of using central limit theorems to capture the variance of a
statistic we use simulations. The idea is the following: Given a statistic
T we generate omniparametric random cluster samples X1, ..., Xn and
calculate T as a function

fT
k (p) = T ( P

Ising
p (Xk) ) , k = 1, ..., n

of p = 1 − e−2β. We make inference for p since it varies over the unit
interval and is easier to handle than β which varies over the positive
real line. This approach works for all values of p, regardless of phase.
Given point and interval estimates of p it is easy to convert them into
corresponding estimates of β. We are free to choose the statistic T , as
long as

f(p) = Ep[T (X)]

is reasonable as a function of p and of course as long as it is indepen-
dent of data. We will use pairwise interactions as our T since it is a
convenient way to compare this direct approach to parameter estima-
tion to methods using asymptotic theory.

From simulations we get a sequence of functions,

fT
1 , fT

2 , ..., fT
n ,

and for each p ∈ [0, 1] we order the values fT
1 (p), ..., fT

n (p) in increasing
order, denoting the ordered sequence by

fT
(1)(p), ..., fT

(n)(p).

Suppose we want a level α confidence interval. We use the empirical
1 − α/2- and (1 + α)/2-quantiles,

fT
(bn(1−α/2)c)(p) and fT

(dn(1+α)/2e)(p)

as bounds for the confidence interval, giving us a confidence band with
upper and lower limits

fα,low(p) = fT
(bn(1−α/2)c)(p), and fα,up(p) = fT

(dn(1+α)/2)e)(p)

respectively. We also construct a mean value curve

favg(p) =
1

n

n∑

k=1

fT
k (p) , p ∈ [0, 1]

for calculating point estimates.
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Figure 11.15: An example of how method three works. Note that if the curves
flow and fup defines a level α confidence band for f(p) = Ep[T (X)] the interval
[plow, pup] is a level α confidence interval for p.

11.7.1 The point and interval estimators

Given data X and the calculated statistic T (X) we let

β̂ = − 1

2
log( 1 − f−1

avg ( T (X) ) )

be our point estimate of β. A level α conservative confidence interval for
β is [βlow, βup] as described below.

Theorem 11.5 Confidence interval for the inverse temperature
Let Y be distributed according to the Ising model on a finite box Bn at

inverse temperature β and let βc be the critical temperature. Let T be any
statistic with finite first and second moments. Generate omniparamet-
ric Ising samples X1, ..., Xn and calculate quantile functions f1−α,low and
f1−α,up as described above. Then [βlow, βup] is a level α confidence interval
for the inverse temperature β, with bounds as follows.

βlow = − 1

2
log(1 − plow), plow = min{p : fα,up(p) = T (X)}

βup = − 1

2
log(1 − pup), pup = max{p : fα,low(p) = T (X)}

Proof:
Suppose we have a confidence interval [a, b] for β constructed accord-
ing to the statement with intended coverage probability α. Consider the
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corresponding interval [pa, pb] for p where pa = 1− e−2a, pb = 1− e−2b. Let
fup and flow be the percentile functions based on n omniparametric Ising
samples. If the samples are distributed according to the omniparamet-
ric Ising distribution then

P ( ∀p ∈ [0, 1] : Ep[T (X)] ∈ [flow(p), fup(p)] ) ≈ α

where Ep[·] is the expectation under the assumption that p is the correct
parameter value. Then

{p : T (X) ∈ [flow(p), fup(p)]}

is a level α confidence set for p (see Figure 11.15). This set may or may
not be an interval, depending on how smooth the quantile estimate are.
So by making a conservative choice and letting

plow = min{p : T (X) ∈ [flow(p), fup(p)]}

and
pup = max{p : T (X) ∈ [flow(p), fup(p)]}

be boundaries of the set we get a confidence interval. These are the
exact boundaries we get by using the expressions in the statement, and
we are done.
2

The interval is conservative since functions fα,low, fα,up may not be
monotone. This happens especially when we base the statistic on a
small number of observations.

11.7.2 Generating percentile functions

Given a fixed measurement configuration we generate omniparamet-
ric Ising samples X1, ..., Xn and calculate the percentile functions. The
question is how large we should make n? By choosing a larger n our
percentile estimates become better and better, but it will not reduce the
band width,

f1−α,up(β) − f1−α,low(β),

in order to do so, we have to use more data, that is, extend the mea-
surement region, increase the selection probability, or both.

Unfortunately there are, to our knowledge, no available asymptotic
theory for order statistics with discrete parent distribution. Without
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Figure 11.16: We see the percentile functions fα,low and fα,up for boxes B10 and
B50 both using selection probability 0.05. The extra data used on box B50 com-
prises of measurements at another 505 locations, compared to the 24 locations
used on B10.

any estimate of the precision of the sample percentiles we use 1000
omniparametric simulations and for each inverse temperature we use

βlow = X(bn(1−α)/2c)

βup = X(bn(1+α)/2c)]

as bounds for our level α confidence interval, see Figure 11.16.

11.8 Simulation study: the non-asymptotic method

We generate for each box size and each selection probability 100
omniparametric samples and study validation, precision and phase de-
termination. We test the procedure on the previously used pairwise
interactions. There is an important difference however. In this setting
we view the measurement function and the randomly selected locations
together as a statistic. When generating the 100 samples we use the
locations as fixed and only the underlying values of the random field
are varied. By generating the locations at random as before we could
view them as a part of the randomization and for each simulation not
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just generate the underlying data but also the locations. Our approach
however give us the possibility to choose the locations more freely.

Validation

The simulation results are on display in figures 11.17 and B.3 (page
170,212). The estimated confidence levels are fulfilled on all box sizes
and all selection probabilities. We can also use complete or almost com-
plete data and still get confidence intervals with expected confidence
level, see fig B.4 (page 213).

Precision

We study precision for ps = 0.1, 0.2 on boxes B10, B20, B30, B40 and B50,
and also for ps = 0.4, 0.6, ..., 1.0 on B20. The results are shown in Figure
11.18.

Suppose we want a confidence interval of width 0.1 or less. We see
that on box B30 using at least ps = 0.1 we almost have an average width
of less than 0.1. For that alternative we use on average 360 data points.
The combinations B40, ps = 0.05 and B50, ps = 0.05 also has average width
around 0.1, using 320 and 500 data points respectively. If we are content
with an interval width around 0.2 we only need approximately 80 data
points, using combinations B10, ps = 0.20 and B20, ps = 0.05.

Phase determination

We consider data on the usual boxes, results are given in Figure
11.19 (page 172).

Given enough data we can, for certain intervals of the inverse tem-
perature, determine which phase the system is in. On box B10 we can
only hope to establish subcriticality, for β < 0.2 if we use ps ≥ 0.2. On
box B20 we can for ps ≥ 0.10 determine both phases if β are sufficiently
small or sufficiently large. By using box size B50 there is only a small
interval around βc where we can not determine the phase of the under-
lying system. Using selection probability ps ≥ 0.2 we can now determine
the phase for β ≤ 0.4 or β ≥ 0.51.
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Figure 11.18: Width of level 0.95 confidence intervals for different boxes, using
ps = 0.1 (upper left) and ps = 0.2 (middle left) for boxes B10, B20, B30, B40 and
B50 and for ps ∈ {0.2, 0.4, 0.6, 0.8, 1.0} on B20 (lower left). Solid lines represent
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P(Wn,α,ps < ∞) for the corresponding data sets.
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Figure 11.19: We see how P(βc 6∈ [βlow, βup]) vary in the different situations for
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CHAPTER 12

Parameter estimation in the
Potts model

12.1 Introduction

We now turn our focus to the Potts model. The Potts model has
two parameters, the inverse temperature β, and the number of types q
a vertex can assume. Throughout the chapter we will assume that q
is known and fixed at some value. We adjust and apply the methods
from Chapter 11 regarding the Ising model, two asymptotic methods
and one non-asymptotic. The presentation is kept short, only material
essentially different from the chapter regarding the Ising model will be
presented. For a full description of all details see Chapter 11.

When using central limit theorems we must ensure that the correla-
tions are decaying exponentially and we can only do that if β < βI

c where
βI

c is the critical inverse temperature for the Ising model. See Definition
7.8, Theorem 7.7 and Lemma 7.2 on pages 69 and 70.

There is one exception from Chapter 11. The section regarding phase
determination for the non-asymptotic method is left out due to the sim-
ple fact that βc(q) is unknown for q = 4 and that βI

c has no meaning in
this case.

173



CHAPTER 12. PARAMETER ESTIMATION IN THE POTTS MODEL

12.2 Pairwise interactions

We define the appropriate statistic Sn(Y ) for data observed within
finite boxes, establish unbiasedness and consistency. With Theorem
9.2 in mind we make the following definition

Definition 12.1 The statistic
Let Bn be a box in Z

2 and suppose we have data Y distributed according
to the marked Potts interaction distribution on Bn. We define the statistic
Sn(Y ) as

Sn(Y ) =

(
q

q − 1

)(

1

2 ps |Bn|
∑

v∈Bn

Y (v) +
1

2
− 1

q

)

.

Now to the Potts version of Theorem 11.1.

Theorem 12.1
Let Y be distributed according to the marked Potts interaction model, and
let φp,q be the corresponding random cluster measure. Let the statistic
Sn(Y ) be as defined in Definition 12.1. Then Sn(Y ) is unbiased as an
estimator of φp,q(0 ↔ 1). If β < βI

c then Sn(Y ) is consistent and we have

(
q σY

2ps|Bn|1/2(q − 1)

)−1

( Sn(Y ) − φp,q(0 ↔ 1) )
D−→ Z

where Z
D
= N(0, 1).

Proof:
Let Sn(Y ) be as defined above and let for simplicity A = q(q − 1)−1. Then
it is indeed unbiased.

E[Sn(Y )] = A

(

1

2 ps |Bn|
∑

v∈Bn

E[Y (v)] +
1

2
− 1

q

)

= A

(

1

2 ps |Bn|
∑

v∈Bn

ps

(
2

q
+

2

A
φp,q(0 ↔ e1) − 1

)

+
1

2
− 1

q

)
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= A

((
1

q
+

1

A
φp,q(0 ↔ e1) −

1

2

)

+
1

2
− 1

q

)

= φp,q(0 ↔ e1)

From Bolthausen’s central limit theorem we have
∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2

D−→ Z0

where Z0 follows the standard normal distribution. We make the follow-
ing rearrangements.

∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2

=
1

σY |Bn|1/2

(
∑

v∈Bn

Y (v) − |Bn|ps

(
2

q
+

2

A
φ(n)

p,q (0 ↔ 1) − 1

))

=
2ps|Bn|1/2

σY

(

1

2ps|Bn|
∑

v∈Bn

Y (v) − 1

q
− 1

A
φ(n)

p,q (0 ↔ 1) +
1

2

)

=
1

A

2ps|Bn|1/2

σY

(

A

(

1

2ps|Bn|
∑

v∈Bn

Y (v) +
1

2
− 1

q

)

− φ(n)
p,q (0 ↔ 1)

)

=
1

A

2ps|Bn|1/2

σY

(

Sn(Y ) − φ(n)
p,q (0 ↔ 1)

)

It follows that
(

q − 1

q

)
2ps|Bn|1/2

σY

(

Sn(Y ) − φ(n)
p,q (0 ↔ 1)

)
D−→ Z

where Z
D
= N(0, 1). Now

|Sn(Y ) − φ(n)
p,q (0 ↔ 1)| P−→ 0,

and as a consequence also consistency follows from the above together
with unbiasedness, and we are done.
2

Next we establish point and interval estimators.
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The point estimator

The statistic Sn(Y ) is our estimate of the connection probability, and
our point estimate for the inverse temperature becomes

β̂ = − 1

2
log( 1 − F̂−1

m ( Sn(Y ) )

The interval estimator

Constructing the confidence interval is done in the same manner as
in Section 11.3 with one difference, we use the standard deviation of
Theorem 12.1.

Theorem 12.2 Confidence interval for the inverse temperature
Consider the Potts model on a finite box Bn at inverse temperature β for

some q ≥ 2 and let βI
c be the critical temperature for the Ising model. Let

Sn(Y ) and F̂m be defined as above. Then [βlow, βup] is a level α2 confidence
interval for the inverse temperature β. The bounds are given by

βlower = −1

2
log

(

1 − F̂−1
m

(

Sn(Y ) − zα
q σY

2ps|Bn|1/2(q − 1)
+

Dα√
m

))

and

βupper = −1

2
log

(

1 − F̂−1
m

(

Sn(Y ) + zα
q σY

2ps|Bn|1/2(q − 1)
− Dα√

m

))

where zα and Dα are quantiles from the standard normal distribution and
the Kolmogorov-Smirnov distribution respectively. The confidence interval
is valid if βI

c 6∈ [βlow, βup].

12.3 Simulation study: pairwise interactions

We simulate the statistic Sn for boxes B10, B20, B30, B40 and B50 using
selection probabilities, ps = 0.1, 0.2. Extra simulations are generated
on B20 for ps ∈ {0.40, 0.60, ..., 1.00}. For each combination (Bn, ps) we
generate 1000 simulations.
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Validation

In Figure 12.1 and B.5 (pages 178, 214) we see the result of the
procedure for ps = 0.10 and ps = 0.20 for α = 0.95 and all box sizes.

The validity of the confidence intervals are good. As for the Ising
model we get an estimated confidence level of ≈ 1, again indicating
an overestimation of the variance of Sn(Y ). In Figure 12.2 we see a
deviation of the estimated confidence level for large values of ps. The
estimated level becomes as low as ≈ 0.8. An explanation is the failure
of Sn(Y ) as an unbiased estimator of φp,q(0 ↔ 1) for some values of
β. In Figure 12.3 we see that the mean of Sn(Y ) deviate slightly from
its expected value when using ps = 0.1 on B20 and more when we use
ps = 0.8. Compared to the width of the confidence band the deviation in
the ps = 0.8 case is substantial. A possible reason for this deviation is
the same as in the Ising case, see Section 11.4.

Precision

We study how much data we need to attain a certain precision of
our estimates for confidence level α = 0.95. For simulation results see
Figure 12.4.

Using the smallest box size, B10 and ps = 0.1, we use 44 data points
and we achieve confidence intervals having width between 0.2 and ≈ 0.37
depending on the true value of β. We also suffer a risk of getting a one-
sided interval for β > 0.23 (see Figure 12.4, upper left diagram). By
using twice as many data points within the same area we get a slightly
more narrow interval (0.1 ≤ W ≤ 0.35), but there is still a possibility of
getting a one-sided interval, now for β ≥ 0.29. If we want to reduce the
risk of getting one-sided intervals we have to use complete or almost
complete data (ps = 0.8, 1.0) on box B20 or at least ps = 0.2 on box B40

corresponding to 1312 data points (see Table 11.1 on page 156). To
achieve an expected precision of ≈ 0.1 or less we have to use selection
probability ps = 0.2 on boxes B30, B40 and B50, or ps ≥ 0.4 on B20. The
expected amount of data, ps|Bn|, we have used is given in Table 11.1.

Our sharpest estimate comes from simulation on box B50 using ps =
0.2 resulting in estimated expected width between 0.04 and 0.06 for β ≤
0.4, and for this we have used 2040 data points. Suppose we spread
out these observations over a larger area, assuming we get the same
precision, we can then use ps ≈ 0.46 on box B30, ps ≈ 0.26 on box B40 or
ps ≈ 0.17 on box B50.

177



CHAPTER 12. PARAMETER ESTIMATION IN THE POTTS MODEL

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

Figure 12.1: Estimated confidence level on boxes B10 (upper left), B20 (upper
right), B30 (middle left), B40 (middle right), and B50 (lower). The desired confidence
level is α = 0.95. The results are given for selection probability ps = 0.10. For
corresponding results with ps = 0.20 see Figure B.5 (page 214).
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orem 9.6) and confidence level α = 0.95 for ps = 0.1 on B20. The right diagram
shows the corresponding information for ps = 0.8, also on B20.
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Figure 12.4: The width of level 0.95 confidence intervals for different boxes, using
ps = 0.1 (upper left), ps = 0.2 (middle left) on boxes B10, B20, B30, B40 and B50. Be-
low (left) we see the corresponding curves for box B20 for ps = 0.2, 0.4, 0.6, 0.8 and
ps = 1.0. Solid lines represent E[Wn,α,ps ] and dashed lines E[Wn,α,ps |Wn,α,ps < ∞].
The diagrams in the right column show P(Wn,α,ps < ∞) for the corresponding data
sets.
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Figure 12.5: Estimation of P(V ), the probability of getting a valid confidence
interval, as functions of β for boxes B10, B20, B30, B40 and B50 using selection
probabilities ps = 0.1 (upper left) and ps = 0.2 (upper right) and confidence level
α = 0.95. Below we see the corresponding probability for ps = 0.2, 0.4, 0.6, 0.8, 1.0.
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Reliability

We estimate P (V ) from data on boxes B10, B20, B30, B40 and B50, for
results see Figure 12.5. By using large enough boxes (for ps = 0.2)
we can almost remove the probability for faulty confidence intervals for
β < 0.35, this approach requires on average 2040 data points (see Table
11.1). The shape of the curves in Figure 12.5 suggests that the closer
the actual value of β is to βc the amount of extra data required to be
almost sure to get a reliable confidence interval, is substantial.

12.4 Box interactions

We now proceed with box interactions for the Potts model. We fol-
low along the same lines as in section 11.5 for the Ising model. We
define the statistic, Sn(Y ), average connection probability and establish
unbiasedness and consistency for Sn(Y ).

Definition 12.2 The box statistic
Let Bn be a box in Z

2 and suppose we have data Y distributed according
to the marked Potts box interaction distribution on Bn for some q ≥ 2. We
define the statistic Sn(Y ) as

Sn(Y ) =

(
q

q − 1

)(

1

2 ps |Bn|
∑

v∈Bn

Y (v) +
1

2
− 1

q

)

.

Now to the average connection probability, the box interaction ver-
sion of pairwise connection probabilities in Section 12.2.

Definition 12.3 Average connection probability
Let B be a box in Z

2 and suppose we have data Y distributed according
to the marked Potts box interaction distribution on Bn for some q ≥ 2. We
define the average connection probability statistic fa,b

avg (p) as

fa,b
avg (p) =

1

|E(0)|
∑

〈l,l′〉∈E(0)

φ(n)
p,q (l ↔ l′)

We also state the box interaction version of Theorem 12.1.
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Theorem 12.3
Let Y be distributed according to the marked Potts box interaction model,
and let φp,q be the corresponding random cluster measure. Let Sn(Y ) be
defined as in Definition 12.2. Then Sn(Y ) is unbiased as an estimator
of fa,b

avg (0), the average connection probability. If β < βI
c then Sn(Y ) is

consistent and we have

q σY

2ps|Bn|1/2(q − 1)
( Sn(Y ) − fa,b

avg (p) )
D−→ Z

for some p ∈ [0, 1], where Z
D
= N(0, 1).

Proof:
Let A = q(q − 1)−1 and Sn(Y ) be as defined above. Then Sn(Y ) is indeed
unbiased.

E[Sn(Y )] = E

[

A

(

1

2 ps |Bn|
∑

v∈Bn

Y (v) +
1

2
− 1

q

)]

= A

(
1

2 ps
E[Y (0)] +

1

2
− 1

q

)

= A




1

2 ps
ps




2

q
− 1 +

2

A

1

|E(v)|
∑

el∈E(0)

φp,q(l ↔ l′)



+
1

2
− 1

q





= A

(
1

2 ps
ps

(
2

q
− 1 +

2

A
fa,b

avg (p)

)

+
1

2
− 1

q

)

= fa,b
avg (p)

From Bolthausen’s central limit theorem we have

∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2

D−→ Z0
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where Z0 follows the standard normal distribution. Then

∑

v∈Bn

(Y (v) − E[Y (v)])

σY |Bn|1/2

=
1

σY |Bn|1/2

(
∑

v∈Bn

Y (v) − |Bn|ps

(
2

q
− 1 + 2

1

A
fa,b

avg (p)

))

=
ps|Bn|1/2

σY

(

1

ps|Bn|
∑

v∈Bn

Y (v) − 2

q
+ 1 − 2

1

a
fa,b

avg (p)

)

=
1

A

2ps|Bn|1/2

σY

((

A
1

2ps|Bn|
∑

v∈Bn

Y (v) − 1

q
+

1

2

)

− fa,b
avg (p)

)

= A
2ps|Bn|1/2

σY

(
Sn(Y ) − fa,b

avg (p)
)

and
q − 1

q

2ps|Bn|1/2

σY
( Sn(Y ) − fa,b

avg (0) )
D−→ Z

follows where Z
D
= N(0, 1). Now, as a consequence of the above and

unbiasedness
|Sn(Y ) − fa,b

avg (0)| P−→ 0

follows and also consistency, and we are done.
2

We use the same estimated average connection probabilities f̂a,b
avg as

for the Ising model.

The point and interval estimators

Given the statistic Sn(Y ) our estimate of β is

β̂ = − 1

2
log( 1 − (f̂a,b

avg )−1( Sn(Y ) ) )

The confidence interval is given by the following result.
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Theorem 12.4 Confidence interval for the inverse temperature
Let Y be distributed according to the marked Potts box interaction model

on a finite box Bn at inverse temperature β and some q ≥ 2. Let βI
c be

the critical temperature for the Ising model. Let Sn(Y ) and fa,b
avg be defined

as above. Then [βlow, βup] is a level α confidence interval for the inverse
temperature β. The bounds are given by

βlower = −1

2
log

(

1 − (fa,b
avg )−1

(

Sn(Y ) − z(
√

α+1)/2

q σY

2ps|Bn|1/2(q − 1)
+

D√
α√

m

))

and

βupper = −1

2
log

(

1 − (fa,b
avg )−1

(

Sn(Y ) + z(
√

α+1)/2

q σY

2ps|Bn|1/2(q − 1)
−

D√
α√

m

))

where zα and Dα are quantiles from the standard normal distribution and
the Kolmogorov-Smirnov distribution respectively. The confidence interval
is valid if βI

c 6∈ [βlow, βup].

As for a proof see the argumentation before Theorem 11.2, page 149.

12.5 Simulation study: box interactions

We simulate the statistic Sn(Y ) for boxes B10, B20, B30 and B40 using
a = b = 2 and selection probabilities, ps = 0.1, 0.2, and also for ps = 0.4,
0.6 0.8 and ps = 1.0 on B20. We generate 100 omniparametric samples Yk

for each box size, calculate statistics

Sn(Y1), ..., Sn(Y100)

and then proceed as before with validation, precision and reliability, see
Section 11.4 for a detailed description of the procedure.

Validation

We see in Figure 12.6 and B.6 the results of the validation procedure
for ps = 0.1 and ps = 0.2 on boxes B10, B20, B30 and B40. In all cases the
confidence intervals are good, there are no deviations from the expected
behaviour. In Figure 12.7 we see the corresponding results for ps = 0.2,
0.4, 0.6, 0.8 and ps = 1.0 on B20, and as in the previous simulation studies
we see a drop in estimated confidence level when β ≥ 0.25, with its lowest
level at β ≈ 0.37. For β around the critical value we have acceptable
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estimated confidence levels again, but what else is there to expect when
E[Wn,α,ps ] increase dramatically for β ≥ 0.4 (Figure 12.9).

In Figure 12.8 (right) we see the reason for the deviation. The curve
for E[Sn(Y )] barely falls within the confidence region around the sample
mean. For detailed discussion of the subject see under ”Validation” in
Section 11.4 on page 151.

Precision

We see the results of our simulations in Figure 12.9. These are rather
similar to the corresponding results in previous section (Figure 12.4).
We extended to box interaction to get more out of our data, and we do
get smaller confidence intervals than we did using only pairwise inter-
actions. Our best estimate still comes from simulation on box B50 using
ps = 0.2 resulting in estimated expected width less than 0.05 for β ≤ 0.4.
For fixed β we also have a reduced risk of getting one-sided intervals.

Reliability

We estimate the probability of having a confidence interval covering
the critical value βI

c , see Figure 12.10 for results. By using enough
data, at least ps = 0.2 on B20, we have a very high probability of not
getting faulty confidence intervals for β < 0.35, this approach requires
on average 336 data points (see Table 11.1, page 156).
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Figure 12.6: Estimated confidence level on boxes B10 (upper left), B20 (upper
right), B30 (lower left) and B40 (lower right). The desired confidence level is α =
0.95. The results are given for selection probability ps = 0.10. For corresponding
results with ps = 0.20 see Figure B.6 (page 215).

187



CHAPTER 12. PARAMETER ESTIMATION IN THE POTTS MODEL

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

p
s
=0.2 p

s
=0.4

p
s
=0.6

p
s
=0.8

p
s
=1.0
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line) and confidence bands for the true value using the central limit theorem (The-
orem 9.6) and confidence level α = 0.95 for ps = 0.1 on B20. The left diagram
shows the corresponding information for ps = 0.8, also on B20.
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Figure 12.9: The width of level 0.95 confidence intervals for different boxes, using
ps = 0.1 (upper left) and ps = 0.2 (middle left) for boxes B10 and B20. In the lower
left diagram we see the corresponding information for ps = 0.2, 0.4, 0.6, 0.8 and 1.0
on box B50. Solid lines represent E[Wn,α,ps ] and dashed lines E[Wn,α,ps |Wn,α,ps <
∞]. The diagrams in the right column show P(Wn,α,ps < ∞) for the corresponding
data sets.
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Figure 12.10: Estimations of P(V ) as functions of β for boxes B10, B20 using
ps = 0.1 (left) and ps = 0.2 (right), both for α = 0.95.
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12.6 A non-asymptotic method

We now adapt the material presented in Section 11.7 (page 165) to
the Potts model. We make the necessary adjustments for the Potts
model. For motivations and proofs see Section 11.7.

The point and interval estimators

Given data X and the calculated statistic T (X) we let

β̂ = − 1

2
log( 1 − f−1

avg ( T (X) ) )

be out point estimate of β. A level α conservative confidence interval for
β is [βlow, βup] as described below.

Theorem 12.5 Confidence interval for the inverse temperature
Let Y be distributed according to the Potts model on a finite box Bn at

inverse temperature β and let βI
c be the critical temperature for the Ising

model. Let T be any statistic with finite first and second moments. Gen-
erate omniparametric Potts samples X1, ..., Xn and compute quantile func-
tions f1−α,low and f1−α,up as described in Section 11.7.2. Then [βlow, βup] is a
level α confidence interval for the inverse temperature β, with bounds as
follows.

βlow = − 1

2
log(1 − plow), plow = min{p : fα,up(p) = T (X)}

βup = − 1

2
log(1 − pup), pup = max{p : fα,low(p) = T (X)}

12.7 Simulation study: the non-asymptotic method

We simulate 1000 data sets for each combination of selection prob-
ability and box size and use these for generating percentile functions.
For the non-asymptotic method the percentile function replace the con-
fidence bands we computed using central limit theorems. This give us
a cruder (read non-smooth) estimate of the confidence region for the
statistic which in the end leads to more variations in the estimated con-
fidence levels (see ”Validation” below).
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Validation

We generate for each combination of selection probability and box
size 100 data sets. The validation procedure is carried out in the same
manner as for the Ising model in Section 11.8, for results see figures
12.11,12.11 and B.8 (pages 193, 216, 217). In all cases the de-
sired confidence levels are met. There are more variations than for the
asymptotic methods but nothing that casts any doubt over the method.
There are no phenomenons resulting in low (estimated) confidence lev-
els encountered for pairwise and box interactions in previous sections.

Precision

We are now able to get confidence intervals with width between 0.05
and 0.1 without using too much data. For example combination (ps, Bn) =
(0.2, B10) gives us a width of ≈ 0.1 for a subcritical process. The most
narrow interval comes from the combination (ps, Bn) = (0.2, B50) which
gives us W ≤ 0.05 for a subcritical process. In Figure 12.13 we see
E[Wn,α,ps ] in detail for simulations on box B20 for a subcritical process.
The minimum width is well below 0.05.

In all cases the situation is worse for the supercritical process, we
do not only get wider intervals but also suffer a risk of getting one-sided
intervals. On the B10 using only ps = 0.1 we may get one-sided intervals
throughout the supercritical phase, while on B50 using ps = 0.2 we get
two-sided intervals with very high probability as long as p ≤ 0.8. We
see in Figure 12.12 (right column) that the risk of getting one-sided
intervals increase rather quick with p once the risk is present. For large
enough p we will get one-sided intervals no matter how much data we
use.
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Figure 12.12: The width of level 0.95 confidence intervals for different boxes,
using q = 4, ps = 0.1 (upper left) and ps = 0.2 ( middle left) for boxes B10, B20, B30,
B40 and B50, and for ps = 0.2, 0.4, 0.6, 0.8 and ps = 1.0 on B20 (lower left). Solid
lines represent E[Wn,α,ps ], and dashed lines E[Wn,α,ps |Wn,α,ps < ∞]. The right
column shows P(V ) in the corresponding situations. The desired confidence level
is α = 0.95.

194



12.7. SIMULATION STUDY: THE NON-ASYMPTOTIC METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

p

p
s
=0.1 p

s
=0.2 p

s
=0.3

p
s
=0.4 p

s
=0.5

Figure 12.13: A detailed diagram of the estimated width on box B20, the full
diagram is shown in the lower left of Figure 12.12.

195





CHAPTER 13

Parameter estimation:
concluding remarks

We have presented three methods for parameter estimation for the Ising
and Potts models, two asymptotic and one non-asymptotic. The theoret-
ical background differs, especially if we compare the asymptotic meth-
ods and the non-asymptotic method. If choosing an asymptotic method
there are a few choices we have to make before applying the procedure,
and we need to estimate the method characteristics such as suscep-
tibility and connection probability. For the non-asymptotic method we
estimate percentile functions instead of susceptibility. There are also is-
sues concerning which model the data set is taken from, it might seem
simple but there may be problems.

13.1 Comparison of methods

We have made a few design choices during the development of the
procedures. In this section we compare and reflect on them, and also
linger on the ideal versus real situation, discussing how constraints
in computer resources, and above all time may affect the final result.
Precision is vital in parameter estimation and we discuss the most im-
portant task in applying the methods in a real world situation, capture
the variance of the statistic. Finally we discuss which method is best.
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13.1.1 Theoretical background and design choices

The asymptotic models both depend on how closely the distribution
of a certain statistic approximates a normal distribution. The basic
assumption is that we estimate the inverse temperature β for the Ising
or Potts model on the whole two-dimensional lattice. Since we can not
do simulation on the entire Z

2 lattice we perform them on boxes Bn and
make n as large as we can manage, especially when estimating the two
required theoretical quantities, or model characteristics.

• The connection probabilities, φp,q(0 ↔ 1) or fa,b
avg .

• The susceptibility, that is, the sum of covariances, Cov[Y (0), Y (v)],
for all v in Z

2.

Depending on computer resources and time these can both be estimated
to arbitrary precision. In the thesis we have used the Kolmogorov-
Smirnov distribution to capture the remaining variance of the connec-
tion probability. For the susceptibility however, there is no theorem for
the remaining variance of the estimate, so we consider it known at its
value.

In the non-asymptotic approach we view the models on a finite box
Bn, as if the rest of the infinite lattice does not exist. This fits well into
the ordinary boundary conditioned orientated approach with the free
boundary condition. We simulate data and get a sample of the statistic
and generate mean value and percentile functions. Here we capture the
variance of a statistic by pure simulation instead of using a central limit
theorem accompanied by simulations.

13.1.2 Ideal versus real situation

In a perfect world we estimate the true connection probability on Z
2

with the technique described in Chapter 2. Since the susceptibility in
all four asymptotic models can be rewritten as a sum of random clus-
ter connection probabilities we use the same technique again. In the
non-asymptotic method we estimate the connection probability on Bn

to arbitrary precision using as many simulations as we need, the per-
centile functions are handled in the same manner. Once the connection
probabilities and the susceptibility (on Z

2) are estimated to arbitrary
precision and data collected from within some finite region the open
question is how well that data describes the behaviour on the whole
lattice.
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Figure 13.1: An illustration of a rare event where two pairs of neighbouring
vertices are unconnected but two other pairs are connected over longer paths of
open vertices. The two clusters are separated by the dashed line.

In the real world however we have limited time and computer re-
sources, so we have to decide which compromises to apply. In the the-
sis we have (for the asymptotic models) based connection probabilities
on simulations on as large boxes as possible (in our case B50) in order
to generate 10000 simulations. The susceptibility estimates are based
on 100000 simulations on various box sizes (see chapters 11 and 12).
We have also in chapters 11 and 12, due to limited computer resources,
been forced to estimate the connection probabilities on smaller boxes
than desired. As a consequence we experience deviations between the
statistic’s sample mean and its expected value, as see in figures 11.6,
11.12, 12.3 and 12.8. A simple remedy for this problem is the use of
larger boxes when generating model characteristics, as seen in Figure
11.7 (page 153).

In applying the non-asymptotic methods we have used the same esti-
mate of the connection probability as in the pairwise interaction models
to achieve a better estimate. A more theoretically motivated approach
would be to estimate a new connection probability for each simulated
box size, as we have done with the percentile functions (generated using
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1000 simulations for each box size), and use that instead.
With all the results at hand other choices would perhaps be prefer-

able. A better approach might be to apply also the asymptotic methods
on the graph Bn and generate all characteristics using the same n. This
would get rid of the deviations between the statistics sample mean and
its expected value for some β. The question regarding how close the
distribution of the statistic approximates a normal distribution remains
open.

13.1.3 The role of susceptibility

We have used two different approaches to estimate the susceptibility
in the marked interaction models, one based on random cluster con-
nection probabilities and one based on omniparametric Potts samples.

For the marked Ising interaction model we have shown that the co-
variance can be written as a sum of connection probabilities in the ran-
dom cluster model, and estimated these. Some of these connection
probabilities are however difficult to estimate since they describe rare
events, and non-monotone probabilities, see Figure 13.1. We have used
as many as 100000 simulations and still the estimated susceptibility
have a ragged curve (Figure 10.5, page 136). If we instead base our
estimate on omniparametric Ising samples, as in the marked Ising box
interaction, marked Potts interaction model and marked Potts box in-
teraction model we get a much smoother curve, see figures 10.6 and
10.7 (pages 137 and 138) for a comparison. There is also reasons to
believe that the extra randomisation used when generating omnipara-
metric Ising or Potts samples has a smoothing effect. We have found no
reason to believe that the true susceptibility is described by something
else than a rather smooth curve, at least throughout the subcritical
region.

13.1.4 Which method is best?

We would recommend the non-asymptotic method, for several rea-
sons. Considering precision the non-asymptotic method is not dramat-
ically better than the two others. It is more precise than method one
(pairwise interactions) but approximately equal to method two (box in-
teractions). Method two and three are not directly comparable since
they require different kind of data sets, while method one and three can
be directly applied to the same type of data.

Another advantage with method three is that it gives us valid or reli-
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able confidence intervals for all β while any of the asymptotic methods
only work in parts of the subcritical regime (i.e. β < βI

C, see Section
12.1). Without any prior information on the value of β this is a major
drawback for the asymptotic methods.

However, we feel that the strongest argument for method three is
speed. All three methods require a lot of computer resources so speed
is relative. But instead of spending cpu time on estimating the sus-
ceptibility for the asymptotic methods we can generate functions for
the statistic’s expected value and percentiles in the non-asymptotic ap-
proach using less resources and still get good results. Also method
three allows us to use virtually any statistic, as long as it give us rea-
sonable function estimates (expected value, percentiles). From a theo-
retical point of view we need finite first and second moments, nothing
else.

13.2 Theoretical parameter estimation issues

Parameter estimation for Gibbs fields such as the Ising and Potts
models can be a difficult task. Given a data set from the Ising or Potts
model we may produce an estimate of the inverse temperature. By as-
suming q known and zero external field the only parameter left is β. So if
we put strong confidence in our estimate β̂ one would like to think that
the model assumption and β̂ together give us a close description of the
real situation. However both the Ising and the Potts model experience a
phase transition, that is, for β above some threshold βc we do not have
unique probabilistic behaviour. Even though the real world is finite and
no sharp phase transition ever occur we may encounter smeared out
effects of a phase transition if the subset of Z

2 we use is large enough.
So our data could be generated from several different measures with
qualitatively different behaviour.

Let P(β) be the set of plausible measures for the model at hand at
some inverse temperature β. Then |P(β)| = 1 if β ≤ βc and |P(β)| > 1 if
β > βc holds for both Ising and Potts models. In the Ising case there are
two extremal measures (originating from different boundary conditions)
in P(β) and every other element therein is a mix of these two. For the
q-state Potts model there are q extremal measures, and by mixing them
we may produce all other measures in P(β).

Let us return to β̂ and the information it carries. If β̂ indicates β ≤ βc

we are done since the model assumption and estimate give us a full
description of the situation. If β̂ indicates β > βc we need extra informa-
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tion to determine which measure in P(β) is responsible for producing
our data set. This measure estimation problem is rather complicated
and separate from estimating β, we do treat it further. We mention it
here since one otherwise may believe that the underlying measure is
known, based on β̂, in situations when clearly β > βc. It also affects
the generation of model characteristics (connection probabilities, sus-
ceptibility, percentile functions) since we always assume that they are
generated using the correct model.
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CHAPTER A

Notation

The lattice

Z
d The integer lattice in d dimensions.

E
d Edge set of the integer lattice in d dimensions.

L
d The graph having Z

d as vertex set, and edges between
vertices with distance 1.

B
d
n The subgraph of L

d, restricted to the box [−n, n]d . . .
∂Bn . . . and its boundary ∂Bn = Bn+1 \ Bn.
0 Short for the origin (0, ..., 0) ∈ Z

d.
1 Short for (1, 0) ∈ Z

2.

Graphs

G = (V, E) A graph with vertex set V and edge set E.
V (G) The vertex set of a graph G.
E(G) The edge set of a graph G.
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Vertices, edges and configurations

u, v, w, x, y, ... Vertices
〈x, y〉, e, f, g, h, ... Edges
Γp,q The random cluster model process with

parameters p and q.
Σβ The Ising model at inverse temperature β
Ωβ,q The Potts model with parameters β and q
γ, σ, ω, ... Fixed parameter configurations
γo, σo, ωo, ... Omniparametric configurations
γ(e), γe, γe,k Given γ the configuration at e is denoted γ(e),

γe is the configuration on the graph (V, E \ {e})
and γe,k is the configuration with γe,k(e) = k
and γe,k(f) = γ(f) whenever f 6= e. The same
notation applies for edges as well as vertices.

G(γ) Given a random cluster sample γ we let
G(γ) = (V, {e ∈ E : λ(e) = 1}).

κ(γ) The number of clusters in the graph G(γ).

The two-type Richardson model

Ξλ
v (t) The state of vertex v ∈ Z

d at time t when the intensity
of the type two infection is λ

Ξλ(t) The configuration of Z
d at time t.

ηλ
i (t) The subset of Z

d having type i at time t, i = 1, 2.
ξλ
i The subset of Z

d having type i at t = 0, i = 1, 2.

The omniparametric two-type Richardson model
Θ(t) The configuration of Z

d at time t.
Θv(t) The state of vertex v ∈ Z

d at time t.

Special events

Gλ
i,n Then event that infection type i = 1, 2 survives until

reaching the boundary of a box Bn.
Gλ

n Then event that both infection types survives until
reaching the boundary of a box Bn.

Gλ Then event that both infection types grows to infinity.
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Measures

P
λ1,λ2

ξ1,ξ2 The probability measure for the two-type Richardson
model with starting configuration (ξ1, ξ2) having intensities
λ1 and λ2 respectively for the two infection types.

P
λ
ξ1,ξ2 Short for P

λ1,λ2

ξ1,ξ2 with λ1 = 1 and λ2 = λ.
φp,q The fixed parameter random cluster measure with

parameters p and q.
φq The omniparametric random cluster measure with

parameter q fixed.
µβ,q The Potts measure with parameters β and q.
µβ The Ising measure with inverse temperature β.
ρp,q The Edwards-Sokal measure.

Miscellanea

C(u) The connected component containing the vertex u. We
write C(u) = C(v)
for the event that u and v are in the same
connected component.

IA(λ) Indicator variable for the event A in configuration λ.

Operators

P
model
param A projection mapping from omniparametric a space

to the corresponding fixed parameter space
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CHAPTER B

Additional simulation results

This appendix show some of the simulation results from chapter 11
and 12. We do not make any comments on them here, instead see the
respective section given for each figure.
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Figure B.1: Pairwise interactions for the Ising model, Section 11.4, page 149.
Proportion of the confidence intervals that actually cover the correct value of β on
boxes B10 (upper left), B20 (upper right), B30 (middle left), B40 (middle right), and
B150 (lower). The correct confidence level is α = 0.95. The results are given for
selection probability ps = 0.20.
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Figure B.2: Box interactions for the ising model, Section 11.6, page 159. Pro-
portion of the confidence intervals that actually cover the correct value of β on
boxes B10 (upper left), B20 (upper right), B30 (middle left), B40 (middle right), and
B50 (lower). The desired confidence level is α = 0.95. The results are given for se-
lection probability ps = 0.20. For corresponding results with ps = 0.10 see Figure
11.11 (page 161).
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Figure B.3: The nonasymptotic method for the Ising model, Section 11.8, page
168. Proportion of the confidence intervals that actually cover the correct value of
β on boxes B10 (upper left), B20 (upper right), B30 (middle left), B40 (middle right),
and B50 (lower). The correct confidence level is α = 0.95. The results are given for
selection probability ps = 0.20.
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Figure B.4: The nonasymptotic method for the Ising model, Section 11.8, page
168. Proportion of the confidence intervals that actually cover the correct value
of β on box B20 for different values of the selection probability. The upper left
diagram is for ps = 0.20, upper right for ps = 0.40, middle left for ps = 0.60, middle
right for ps = 0.80 and lower for ps = 1.00.

213



APPENDIX B. ADDITIONAL SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

Figure B.5: Pairwise interaction for the Potts model, Section 12.3, page 176.
Proportion of the confidence intervals that actually cover the correct value of β on
boxes B10 (upper left), B20 (upper right), B30 (middle left), B40 (middle right) and
B50 (below). The correct confidence level is α = 0.95. The results are given for
selection probability ps = 0.20 and q = 4.
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Figure B.6: Box interactions for the Potts model, Section 12.5, page
185.Proportion of the confidence intervals that actually cover the correct value
of β on boxes B10 (upper left), B20 (upper right), B30 (lower left) and B40 (lower
right). The desired confidence level is α = 0.95. The results are given for selection
probability ps = 0.20. The corresponding diagrams for ps = 0.10 are shown in
Figure 12.6 on page 187.
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Figure B.7: The nonasymptotic method for the Potts model, Section 12.7, page
191. Proportion of the confidence intervals that actually cover the correct value of
β on boxes B10 (upper left), B20 (upper right), B30 (middle left), B40 (middle right),
and B50 (lower) with q = 4. The desired confidence level is α = 0.95. The results
are given for selection probability ps = 0.20.
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Figure B.8: The nonasymptotic method for the Potts model, Section 12.7, page
191. Proportion of the confidence intervals that actually cover the correct value of
β on box B20 for different values of the selection probability with q = 4. The upper
left diagram is for ps = 0.20, upper right for ps = 0.40, middle left for ps = 0.60,
middle right for ps = 0.80 and lower for ps = 1.00.
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