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Abstract

In the automotive industry, due to temporal and financial constraints, we
need to strongly reduce the duration of the design phase, but still ensure
reliability and robustness. Structures in service are often exposed to com-
plex variable amplitude loads. In order to characterize the severity of cus-
tomers, to define specification for designing metallic structures by compu-
tation or for the validation on test rigs, simple forces are more useful. The
equivalent fatigue approach, developed at PSA PEUGEOT CITROËN, is a
method for transforming variable amplitude measured forces into simpler
loads, equivalent in terms of damage. The transformation should be per-
formed without information about the geometry of the structure undergo-
ing the loads. The aim of this work is to extend the one-input equivalent
fatigue method, to the multi-input forces.
A great part of the work is devoted to the condition of equivalence of
damage between the measured forces and the equivalent ones, when in-
formation about the structures is limited. The structures are considered
to be elastic and quasi-static. Models of life prediction like Basquin’s cri-
terion, for structures submitted to uniaxial fatigue at their critical points,
and Morel’s model for structures exposed to multiaxial fatigue, are used.
Three types of multi-input equivalent fatigue loads are developed. The si-
nusoidal and the Gaussian multi-input equivalent fatigue loads are stud-
ied, as well as the Markov chain multi-input loads. For the Markov loads,
a new theory needs to be developed in order to evaluate the rainflow con-
tent of linear combinations of multi-input Markov chain. Several applica-
tions of those three models are presented, and a set-up of experiments is
proposed.

Keywords : Equivalent fatigue, uniaxial and multiaxial high cycle fa-
tigue, multi-input variable amplitude loads, rainflow counting, Morel’s
model, Basquin’s model, Gaussian process, Markov chain
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Chapter 1

Introduction

In structures submitted to repeated variable loads, initiation and
growth of cracks in the material are the most common causes of the deteri-
oration of structures. When it happens after a long time, this failure mode
is called fatigue. Under variable amplitude and repeated loads, some local
cracks initiate on critical points of the structures. The fatigue phenomenon
is the cause of different well-known accidents over the last hundred years.
The complicated phenomenon has been discussed in many articles and
books, in order to observe, explain and model it. All fields of engineering
have been confronted to failures of structures incurring fatigue.

This is why proper fatigue design methods have been developed after ob-
serving, testing and analyzing structures or specimens incurring fatigue
mechanisms. Nowadays, the fatigue behaviour of the mechanical compo-
nents, exposed to well-known loads, can be estimated. The main problem
that the designers have to solve now is the reliability of the structures in
service. Structures in service are designed so that they do not reach failure
during their design life when they are submitted to loads in service.

In this study, we will be particularly interested in fatigue caused by me-
chanical loads. The mechanical loads depend on the usage of the structure.
In the automotive industry, loads on wheels depend on different factors.
They are influenced by the types of roads (e.g. mountain roads or cross
country), associated with the behaviour of the driver (depending on the
"driving style"). The huge number of different customers implies vari-
ability in the loads. Another source of variability refers to the structure

1



Chapter 1. Introduction

itself, its geometry and the mechanical properties of the material. This last
source is essentially due to the manufacturing process. The designers take
into account these sources of variability for designing structures in service.

In order to design structures in service, forces representative of a popula-
tion of customers are needed. They are called specifications. The designers
adapt the geometry of the new structures so that the component will have
high reliability when exposed to these specifications. This is performed by
the computations of finite element models and the validation of the new
structures on test rigs.

In order to be used easily, the specifications need to be simple. They are
deduced from complex measurements of forces stored during the usage of
the customers, or on test tracks. The equivalent fatigue approach can be a
useful method for transforming complex loads, like measured forces, into
simpler loads, equivalent in terms of damage. The equivalence of damage
has to be fulfilled for any structures, in order to have specifications that
do not depend on a particular component. The resulting forces are called
the Equivalent Fatigue Loads (EFL). The EFL are not only used for calcu-
lations or test rigs. They also inform us about the severity of customers or
markets.

The framework of the equivalent fatigue approach is the high cycle fatigue
for metallic structures in the finite life domain. The equivalent fatigue ap-
proach has been developed for a one-input force. It allows us to evalu-
ate a simple force, equivalent in terms of damage to a complex one-input
force, see [9, 65]. Moreover, the one-input equivalent fatigue approach has
been developed to structures undergoing uniaxial fatigue at their critical
points, i.e. exposed to uniaxial stress field. The equivalence of damage
between the one-input EFL and the measurement is verified on structures
exposed to uniaxial fatigue. The one-input equivalent fatigue approach is
now widely used at PSA PEUGEOT CITROËN.

However, structures in service can be submitted to multi-input forces,
acting at the same time, with different amplitudes and phases. More-
over, structures can undergo uniaxial and multiaxial fatigue at their criti-
cal points, when exposed to uniaxial and multiaxial stress fields. The con-
dition of equivalence of damage between the measurements and the EFL
governs the equivalent fatigue approach. Thus, a tool for evaluating the
damage of a structure undergoing multiaxial high cycle fatigue is needed.
Consequently, it is necessary to extend the equivalent fatigue approach to
structures submitted to multi-input forces and incurring multiaxial high
cycle fatigue.

2



1.1 Previous work

In most cases, the damage is based on local variables linked to the geom-
etry and the material of a structure, e.g. stresses and strains. If a structure
is not known, neither are these variables known. That is why it is nec-
essary to express these variables from the forces, in order to evaluate the
damage directly from the forces. However, the geometry and the material
still interfere in the evaluation of the damage. Can we get rid of it in the
characterization of the EFL?

The aim of this work is to extend the approach of equivalent fatigue to
multi-input forces. We aim to predict the damage induced by the EFL
from parameters defining them. We evaluate these parameters so that the
condition of equivalence of damage is fulfilled. We also aim to extend the
domain of application of the equivalent fatigue approach to the structures
undergoing multiaxial fatigue.

In order to test the equivalence of damage between the measurements and
the EFL, a proposition of experimental design is developed. Finally, a
method to analyze the results is proposed. It is not within the scope of
this thesis to discuss the results of the experiments.

1.1 Previous work

In the design process of the structures, it is essential to know the loads
representative of their lives, see [62]. The variability in the forces, due to
the wide panel of different customers and markets, is associated with the
variability in the properties of the material and its geometry, due to the
manufacturing process. The stress-strength method, presented in [13, 35,
64], is widely used in design methods, see [65]. From the stress-strength
method, we can control the risk of failure of the structures. Associated
with the equivalent fatigue approach, the stress strength method provides
specifications and acceptance criteria for designing structures. The one-
dimensional equivalent fatigue approach is exposed in [65, 9].

The prediction of the fatigue life for structures submitted to multidimen-
sional stress fields is discussed in numerous research works and described
in books and papers. In [22, 61], the multiaxial fatigue phenomena are ex-
plained in detail. In [25, 47], a state of art of the methods of multiaxial
fatigue prediction is discussed. The most advanced and efficient predic-
tion methods are mostly based on the micro-macro approach of the fatigue
phenomenon, see [12, 47]. The evaluation of the damage is computed

3



1.2 Overview of the thesis

from macroscopic stresses, using a model of the fatigue phenomenon at
the scale of the grains of the metal. The damage is due to accumulated
plastic deformation appearing on grains of the metal. Moreover, the ap-
plication of multiaxial criteria in the frequency domain has been explored
in [51, 52].

Most of the methods of life prediction from variable amplitude loads are
based on the rainflow cycle counting method, see [20, 21]. The Palmgren-
Miner rule of accumulation of the damage is the most frequently used
because of its simplicity. Authors like [56, 57] evaluate the rainflow con-
tent from Gaussian processes. In [6, 66], the study of the damage for non-
Gaussian processes was presented. From Markov chain random loads,
the rainflow content has been predicted from states and a transition ma-
trix, see [59]. The switching Markov chain is dealt with in [32]. These
methods provide tools to evaluate the expected rainflow content of one-
dimensional random processes. In the case of multi-input equivalent fa-
tigue method, the expected damage needs to be evaluated from multi-
input random processes.

The extension of the rainflow method to a multiaxial cycle counting method
has been explored in [34]. In [18], a tool to define multiaxial rainflow cycles
has been described as well. In order to deal with the multi-input equiva-
lent fatigue approach, we need to evaluate the damage from multi-input
forces. Moreover, the evaluation of the damage from multidimensional
forces has been discussed in [7, 17], where a multiaxial fatigue prediction
method has been used. An expression of the stresses from the forces can
be found in [7, 17], but an expression of the damage from forces is not
proposed.

A first proposition of equivalent fatigue approach for structures exposed
to multiaxial fatigue has been described in [39]. A method to transform
a variable amplitude multiaxial stress tensor, into a sinusoidal multiax-
ial stress tensor has been proposed. However, in the equivalent fatigue
approach, the stress tensor is not known. The equivalence of damage be-
tween the forces has to be performed instead.

1.2 Overview of the thesis

An overview of the structure of the thesis is given in Fig. 1.1. It shows
the different links between the chapters. The circled numbers refer to the

4



1.2 Overview of the thesis
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Figure 1.1: Overview of the thesis.

chapters. We aim to give a summary of the content of the chapters in the
following.

Uniaxial fatigue phenomenon and uniaxial EFL

In Chapter 2, we briefly discuss the uniaxial fatigue phenomenon in high
cycle fatigue. Basquin’s life prediction method is presented. In order to
predict life under variable stress, two methods of counting cycles are pre-
sented: the range counting method and the rainflow counting method.
The latter is now widely used in fatigue analysis. In Chapter 3, the one-
input equivalent fatigue approach for uniaxial stress fields, as it is used at
PSA PEUGEOT CITROËN, is explained. After a brief presentation of the
stress-strength method, the different steps of the process are detailed.
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1.2 Overview of the thesis

Multiaxial fatigue

In order to introduce the multiaxial fatigue phenomenon, several ap-
proaches and criteria for predicting life under multiaxial stress fields are
explained in Chapter 4. The high cycle fatigue criteria for infinite life and
finite life are differentiated. We focus on a criterion based on the micro-
macro approach of the damage, Dang Van’s criterion. Morel’s model pro-
vides a method for the prediction of finite life. Both of them base the eval-
uation of the damage from macroscopic stresses, using a model of the fa-
tigue phenomenon at the microscopic scale of the metal.

Evaluation of the damage

Part II deals with the proposition of multi-input equivalent fatigue ap-
proach. Chapter 5 deals with the motivations and needs for such a method.
In this work, three different EFL are described. The motivations for the
choice of such loads are given. The EFL is characterized by a set of param-
eters, determined by the condition of equivalence of damage between the
measurements and the EFL. A synopsis exposing the different steps of the
proposed method is presented at the end of Chapter 5.

In Chapter 6, the evaluation of the damage from multi-input forces is de-
tailed. We will assume that the structures are elastic and quasi-static. This
allows us to express the multi-input stress tensors from the multi-input
forces. We have chosen to use Morel’s model and Basquin’s criterion, in
order to evaluate the damage from the forces. For structures incurring
multiaxial fatigue, we assume that the multiaxial stress tensor is propor-
tional. Thus, the principal directions of the stress tensor are fixed. For
uniaxial fatigue, the stronger assumption of unidirectional stress tensor is
needed. We end up with two expressions of damage, depending on which
criterion we use. The equivalence of damage can be deduced from these
expressions of the damage from the multi-input forces.

However, the expression of the equivalence of damage does not only de-
pend on the forces, but also on the geometry and on the material of the
structures. Using Basquin’s criterion, the equivalence of damage depends
on a material constant, the Basquin’s exponent. Using Morel’s model, the
equivalence of damage depends on a threshold under which a rainflow
cycle of force does not induce damage, depending on the geometry, on
the material and on the mean value of the loads. The concept of optimal
structures is introduced, in order to evaluate this threshold.

6



1.2 Overview of the thesis

The equivalence of damage is expressed for one-input and multi-input
EFL. In the case of one-input EFL, the equivalence of damage leads to the
equality between the damage induced by the EFL and the one induced by
the measurements. In the case of multi-input EFL, the equality between
the two types of damage is not possible to obtain. Our approach aims to
minimize the difference between these two types.

Characterization of the EFL

We describe the construction of the EFL in two steps: the evaluation of the
expected damage from the EFL and the characterization of the parameters
defining the EFL and influencing the damage, by the condition of equiv-
alence of damage. The development of the one-input and the multi-input
EFL is detailed, using Basquin’s and Morel’s criteria.

The sinusoidal EFL is first described in Chapter 7. The multi-input equiva-
lent fatigue loads with several blocks of sinusoids are also discussed. The
sinusoidal EFL are characterized by amplitudes and phase shifts. Then,
we have chosen to study two different probabilistic EFL. In Chapter 8,
stationary narrow band Gaussian EFL are considered. The ability to de-
termine the expected rainflow content of a narrow-band Gaussian process
enables us to evaluate the expected damage induced by multi-input sta-
tionary narrow band Gaussian EFL. The multi-input Markov chain EFL
are described in Chapter 9. The expected rainflow content of a multi-input
Markov chain has been evaluated. We characterized the states and tran-
sition matrix of the EFL by the equivalence of damage. An extension of
the Markov chain for Markov chain with peaks is proposed. The aim is
to reproduce peaks occurring in the measurements, into the Markov chain
EFL with peaks.

Some applications of three-input EFL are proposed in Chapter 10. Exam-
ples of three-input EFL are described. The multi-input EFL using Basquin’s
and Morel’s criteria are compared. A threshold of non-damaging rainflow
cycle are compared when using Basquin’s and Morel’s criteria. Finally,
a method of data reduction of multi-input variable amplitude forces has
been applied.
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1.2 Overview of the thesis

Numerical calculations

For the numerical calculations, MATLAB has been used, together with the
WAFO toolbox, see [11]1.

Experiments

In Chapter 11, a proposition of validation experiments is detailed. The
aim is to test the equivalence of damage between two input measurements
and the bidimensional sinusoidal EFL. The evaluation of the EFL is made
using Morel’s model. The experimental set-up is described.

1The toolbox and the full documentation can be found at
http://www.maths.lth.se/matstat/wafo
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Background
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Chapter 2

Fatigue phenomenon in
uniaxial loading

Uniaxial fatigue aims to predict the durability of structures submitted to
constant amplitude or variable amplitude uniaxial loading. The uniaxial
stress tensors, at any location A of a structure, can be written as,

Σ(A) = σ(A)




1 0 0
0 0 0
0 0 0


 .

The material and the geometry of the structures, as well as the loading
influence the durability. Tests are carried out and models are built, in order
to predict the life of the structures.

The following chapter presents only a part of the wide domain of uniaxial
fatigue. The fatigue phenomenon in constant amplitude and variable am-
plitude loading is explored. Models of life prediction and accumulation
of damage, as well as methods of counting cycles will be presented and
illustrated. This chapter also aims to introduce the different tools used in
the uniaxial equivalent fatigue approach.
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2.1 Life prediction for constant amplitude loading

2.1 Life prediction for constant amplitude load-
ing

The different parameters characterizing the uniaxial constant amplitude
stresses are presented in Fig. 2.1.

Amplitude σ
a
 

σ(t) 

t 

σ
m

 

Range σ
r
 σ

min
 

σ
max

 

1 cycle 

Figure 2.1: Characterization of constant amplitude loading.

The stress ratio R is often used to define the loading,

R =
σmin

σmax
.

The case of R = −1 is referred to as "fully reversed" condition of testing,
and R = 0 as the "pulsating tension" condition.

2.1.1 S-N curve

After testing specimens at different amplitudes of loading, the S-N curve,
also called the Wöhler curve, is derived. It represents the number of cycles
or life to failure against the stress amplitude σa. Failure can be defined as
fracture or crack initiation. Different stress ratios lead to different S-N
curves. We often define the S-N curve for a loading at R = −1. In Fig. 2.2,
a typical S-N curve is shown. We observe three different zones on the S-N
curve (for more details, see [60]).

• The low cycle fatigue is related to the number of cycles from 102 to
approximately 103 or 104. Stresses are close to the ultimate tensile
strength σu. Some macroscopic plastic deformation appears.

12



2.1 Life prediction for constant amplitude loading
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Infinite life
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Figure 2.2: S-N curve.

• In the high cycle fatigue for finite life, the number of cycles goes from
104 to approximately 5 105 cycles.

• The last part is related to weak stresses and infinite fatigue life. The
fatigue phenomenon can appear after a long run of loading with an
amplitude close to the threshold σd, or may even never happen. The
scatter is very high in this region. The threshold σd represented in
Fig. 2.2 is called the fatigue limit. It is usually defined at around
106, 107 cycles. This last part is usually modeled by the asymptotic
σa = σd.

2.1.2 Basquin’s model

Basquin’s relation provides an analytical expression of the S-N curve, for
finite life (low or high cycle fatigue). It is the most commonly used model,
see [5].

N = B σ
−β
a . (2.1)

The parameters β and B are both constant, depending on the material and
on the geometry, respectively. We usually represent the S-N curve in the
log-log scale (see Fig. 2.2).

The simple Basquin’s curve provides an estimation of life prediction, with
little information on the material. The curve presented in Fig. 2.3 from [3]

13



2.1 Life prediction for constant amplitude loading
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B 

Figure 2.3: Approximation of S-N curve from the tensile strength σu.

is defined for a smooth specimen, with the tensile strength σu. Basquin’s
curve is deduced from the points A : [σa,A, NA] and B : [σa,B, NB], see
Fig. 2.3.

σa,A = 0.9 σu, NA = 103,

σa,B = 0.5 σu, NB = 106.

In this case,
β = 11.75

From the approximation, the Basquin’s coefficient can be derived. Some
tests at different amplitudes of stresses are of course still essential to get
the right S-N curve.

The S-N curve is a very convenient tool to predict life. However, param-
eters like the stress ratio, the temperature, the surface roughness or the
corrosive environment substantially modifies the durability of the spec-
imen. The influence of the stress ratio, or the mean value, is developed
next.

2.1.3 Influence of the mean stress on the S-N curve

In general, positive mean stress is more damaging and negative mean
stress is beneficial. The level of the S-N curve is slightly different for
positive or negative mean stress. This influence is illustrated in Fig. 2.4.
Different models take into account the impact of the tensile mean stress
on the evaluation of life, and it particularly transferred the influence of it
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Figure 2.4: Impact of the mean stress on the S-N curve.

on the endurance limit σd (see [63]). One of them is the Gerber parabola,
representing the tensile mean stress effect on σd,

σd
(σd)σm=0

+
(

σm

σu

)2
= 1, with |σm| ≤ σu.

The Gerber parabola, illustrated in Fig. 2.5, can still be used for high values
of N (see [22, 43, 60]).
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Figure 2.5: Gerber parabola.

Goodman’s model is more appropriate in order to predict the positive ef-
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2.1 Life prediction for constant amplitude loading

fect of compressive mean stress,

σa

σd
+

σm

σu
= 1 with |σm| ≤ σu.

2.1.4 Cumulative damage and life prediction

Any cyclic stress over the fatigue limit produces permanent fatigue dam-
age in the structure. The damage Di induced by ni cycles of amplitude σai
is related to Ni, the total number of cycles before failure at constant am-
plitude σai. In order to estimate the partial damage induced by ni cycles,
Miner has suggested the following expression of Di (see [38]),

Di =
ni

Ni
. (2.2)

Let’s consider k different blocks of sinusoids, with different stress levels σai
and number of cycles ni. We will assume that the mean value of the dif-
ferent blocks is 0. The damage induced by each block is given by Eq. (2.2).
The damage induced by the k blocks is called D. In [46], Palmgren sug-
gested that,

D =
k

∑
i=1

Di (2.3)

Together with Eq. (2.2), the Palmgren-Miner rule gives,

D =
k

∑
i=1

ni

Ni
. (2.4)

Failure is predicted if :

D = D1 + D2 + . . . Dk ≥ 1.

However, there are different cumulative fatigue damage and prediction
theories, discussed e.g. in [22]. Indeed the sequential effect is neglected in
the linear accumulation of damage, e.g. in the case of blocks of constant
amplitude loading. This is the main drawback of it. Then, from Fig. 2.6,

DCase1 6= DCase2.
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2.2 Variable amplitude loading and damage

0 500 1000 1500
−1

−0.5

0

0.5

1

0 500 1000 1500
−1

−0.5

0

0.5

1

N
1
 N

2
 N

1
 N

2
 

Case 1 Case 2 

Lo
ad

 

Lo
ad

 

Figure 2.6: Sequential effects on blocks of constant amplitude loading.

In the case of random loading, cumulative damage rules including se-
quential effects are not more accurate than models neglecting them. That
is why the Palmgren-Miner accumulation of damage is still used (see [63,
44]).

2.2 Variable amplitude loading and damage

Structures in service generally incur variable amplitude loading. Exam-
ples of possible loading in service are given in Fig. 2.7. In fatigue appli-
cation, it is a well-known fact that only maxima and minima influence
the life prediction, and not the points between them. In this context, we
suppose that the frequency of loads has no impact on life prediction. Min-
ima and maxima are called the turning points of the process. For variable
amplitude loading, it is quite common to decompose the signal into basic
cycles. Different methods of extracting cycles will be presented.

2.2.1 Range counting

The range counting method is a method of extracting cycles of a variable
amplitude process. It counts the load ranges. A load range starts at a turn-
ing point, at a level u, and is completed by the successive turning point at
a level v. Consequently, the range is the difference v− u. A positive range
comes from a minimum to a maximum (u < v). A negative range comes
from a maximum to a minimum(v < u). The range counting method is
illustrated in Fig. 2.8. Each range cycle can be characterized by its mini-
mum, its maximum and its number of occurrences.
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Figure 2.7: Samples of sinusoidal loading (graph a), sinusoidal loading by blocks
(graph b), narrow band loading (graph c) and broad band loading
(graph d).
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Figure 2.8: Range counting method: The ranges are the differences in heights be-
tween the maximum and minimum.
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2.2 Variable amplitude loading and damage

2.2.2 Rainflow counting

The rainflow counting method is performed to extract cycles from suc-
cessive turning points. It has been proposed by Endo in 1967, [20, 21].
The rainflow cycle counting method is actually the most popular and ef-
fective way of extracting cycles (see [14, 63]) in the context of fatigue life
prediction. Rainflow cycles and damage are assumed to be a function of
hysteresis loops in the stress-strain plane, see Fig. 2.9.
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Figure 2.9: Hysteresis loops in the stress strain plane.

Here follows a definition of the rainflow cycle algorithm, given by Rychlik
in [55]. Rainflow cycles are related to level crossings of the process. Up-
crossings and downcrossings are illustrated in Fig. 2.10. The intensity of
upcrossings and downcrossings of the level u is called µ+(u), and µ−(u),
respectively. The intensity of level crossings of u is called µ(u),

µ(u) = µ+(u) + µ−(u). (2.5)

We will adopt the following definition of the rainflow counting cycles,
from [55].

Definition 2.1. Rainflow cycle counting. Let X(t) be a function with 0 ≤
t ≤ T, with finite number of local maxima and minima. Let’s consider that a
local maxima Mi appears at a time point ti. Let t+i ∈ [ti, T] be the time of the
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2.2 Variable amplitude loading and damage

v

u

v

u

Figure 2.10: Markers ◦ are upcrossings and markers 4, the downcrossings, among
the turning points •.

first upcrossing of the level X(ti). If no such upcrossings appear in the time
interval [ti, T], then t+i = T. The time point t−i ∈ [0, ti] is defined as the last
downcrossing of the level X(ti). If no such downcrossing appear in the time
interval [0, ti], then t−i = 0. We define:

m−
i = inf{X(t) : t−i < t < ti}

m+
i = inf{X(t) : ti < t < t+i }.

The i:th rainflow cycle of the process X(t) is defined by its minimum mr f c
i and its

maximum Mr f c
i such as:

Mr f c
i = Mi

mr f c
i =

{
max(m−

i , m+
i ) if t+i < T,

m−
i if t+i = T.

We call cycles {mr f c
i , Mr f c

i } standing cycles, when the minimum occurs
before the maximum. For hanging cycles, the maximum occurs before the
minimum. This refers to the hysteresis loop, in Fig. 2.9.
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i
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− 

Figure 2.11: Definition of rainflow cycles.
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2.2 Variable amplitude loading and damage

Another common technique of rainflow counting is the method of the
"four-points", recommended by the AFNOR, see [1]. It is based on the
comparison of the three different amplitudes composed by four succes-
sive points of the process. The condition of extracting cycles is Y ≤ X
and Y ≤ Z with Y = |X(ti+1) − X(ti+2)|, X = |X(ti) − X(ti+1)| and
Z = |X(ti+2)− X(ti+3)|. These two techniques lead to the same rainflow
cycles.
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Figure 2.12: Illustration of extracting rainflow cycles [1].

The points that do not belong to any rainflow cycle representing close hys-
teresis loops are part of the residual. It contains the maximum and the
minimum turning points over the sequence. A treatment of the residual is
proposed in [1].

The rainflow cycles can be represented from the triplet {mi, Mi, ni}, or
from {σai, σmi, ni}, such as,

σai = (Mi −mi)/2
σmi = (Mi + mi)/2
ni : number of occurrences.

Amplitude Range 

Mean value
          

minimum 

maximum 
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2.2 Variable amplitude loading and damage

In Fig. 2.13, rainflow cycles are represented in a rainflow matrix.
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Figure 2.13: Two representations of the same rainflow cycles.

The discretization of the turning points is often carried out. The recom-
mended number of classes is usually 64.

2.2.3 Damage accumulation

It has been seen that the rainflow cycle counting method used together
with the Palmgren-Miner accumulation of damage gives an acceptable as-
sessment of life (see [15]). It is used on every cycle {σai, σmi, ni}. Conse-
quently, damage induced by the ni number of rainflow cycles is defined
by the ratio between ni and Ni, the number of sequences deduced from
the S-N curve, at the amplitude σai:

Di =
ni

Ni
.

Then, the damage induced by the whole sequence, with k rainflow cycles
extracted can be evaluated:

D =
k

∑
i=1

Di =
k

∑
i=1

ni

Ni
.

However, the S-N curve is usually evaluated for zero mean stresses. It is
recommended to convert non-zero mean stress cycles, into a fully reversed
cycle, equivalent in terms of damage. If the mean stress diagrams are
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2.2 Variable amplitude loading and damage

available for the proper material, these data may be used. If not, models
like Gerber parabola can be used, in order to transform cycles {σai, σmi, ni}
into {σ′ai, 0, ni}, equivalent in terms of fatigue.

From the point of view of fatigue, small rainflow cycles will create less
damage than others, or even no damage at all. Rainflow filter can be pro-
ceeded in life prediction methods. However, the most important problem
is to fix the threshold, under which an amplitude of rainflow cycle does
not induce damage. Series of experiments have shown that neglecting
cycles with amplitudes below the fatigue limit can lead to dangerous non-
conservative results. An allowable filter of 50% of the fatigue limit seems
to be more appropriate. For more details, see [16, 31].
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Chapter 3

Uniaxial equivalent fatigue
loading

In this chapter, the uniaxial equivalent fatigue approach is presented. How-
ever, in order to get an overview of the domain of application of this
method, we will first recapitulate the main aims of the stress-strength
method.

3.1 Stress-strength method

The stress-strength is a tool to control the risk of failure in the design pro-
cess of new structures, taking into account the variability of the mechan-
ical properties of the structures and the variability in the loads. In the
stress-strength method, the mechanical properties are called strength, and
the loads, stress.

In the automotive industry, in order to estimate the variability in the loads,
measurements on test tracks or during customers’usage are stored and
analyzed. For each customer, the measurements are transformed into an
equivalent fatigue load. The equivalent load is usually a constant ampli-
tude force, defined by an amplitude. The number of cycles is usually fixed,
see [8, 65]. The amplitude of the equivalent load represents the severity of
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3.1 Stress-strength method

the customer. Each customer has a different severity. A population of
customers is represented by a distribution of severities.

Information about the distribution of the strength is actually gained by
experience. Consequently, the variability induced by the manufacturing
process is usually well known from the designers. The main tasks of the
designers is to adapt the mean strength of the new component in order to
respect the risk of failure, imposed by the manufacturer.

The value of the equivalent fatigue loading is the scalar measuring the
severity of the customers. The analysis of the equivalent fatigue loading
in a population allows us to determine the distribution of the severity. We
do not have information about the structures the forces are applied to as
it does not exist yet. Consequently, the evaluation of the EFL has to be
performed independently of the structure.
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Figure 3.1: Probability distributions of stress and strength.

Stress distribution

Usually, the stress distribution can be modeled by a normal distribution,
defined by the mean value µs and the standard deviation σs, see Fig. 3.1.
The random variable defining the stress is called s. The distribution is
estimated from the analysis of amplitudes of equivalent fatigue loads, de-
duced from customers’usage. The greater the amplitude of the EFL is, the
more severe is the customer.
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3.2 The uniaxial equivalent fatigue approach

Strength distribution

In order to be homogeneous with the stress distribution, the strength is
also defined as forces. We often assume that the distribution of the strength
r is normal, and defined by the mean and the standard deviation µr and
σr. The parameter q = σr/µr is known often from experience. This param-
eter q partly corresponds to the control of the process of manufacturing.
The scatter is also intrinsic to the material. The parameter q is small for a
well-controlled process of manufacturing.

The risk

Let’s now consider the following random variable z as z = r− s, which is
normally distributed with mean value µz and standard deviation σz. The
distribution of z is defined by its standard deviation σz =

√
σ2

s + σ2
r and

its mean value µz = µr − µs. The risk R is deduced from the probability
that z is negative. It is the probability to failure,

R = P(z < 0).

3.2 The uniaxial equivalent fatigue approach

The target is to evaluate the characteristics of the uniaxial EFL Fe. The uni-
axial EFL is a sinusoidal force, with an amplitude called Fe

a and N0 cycles.
In practice, N0 is settled at 106. The mean of the EFL is zero. The first
step of this section is the evaluation of the damage from the force. We will
then describe the characterization of Fe so that it fulfills the equivalence of
damage with F. The uniaxial equivalent fatigue approach is governed by
two assumptions.

Assumption 3.1. Elastic and quasi-static structures. The global behaviour
of the structures is supposed to be elastic and quasi-static.

Moreover, every location of a structure gives rise to a proper relation be-
tween the force and the stress tensor, depending on the geometry and on
the material. In any structures incurring loads, crack initiation is more
likely at the critical points of a structure. The durability of the compo-
nents completely depends on the behaviour of these critical points. We
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3.2 The uniaxial equivalent fatigue approach

will concentrate on them in this study. The first critical point reaching a
damage equal to one is called Ac. At the critical point Ac, we will consider
that the stress tensor is uniaxial.

Assumption 3.2. Uniaxial stress tensor. At the critical point Ac of the
structures, the stress tensor Σ(Ac, F) is supposed to be uniaxial,

Σ(Ac, F) = σ(Ac, F)




1 0 0
0 0 0
0 0 0


 .

The use of the uniaxial EFL has been restricted to the structures that fulfill
Assumption 3.1 and Assumption 3.2.

3.2.1 Evaluation of the damage from the forces

The damage is usually expressed from the stress component σ(Ac, F). In
the equivalent fatigue approach, the geometry of the structures is sup-
posed to be unknown. Consequently, in order to build a uniaxial EFL, we
need to evaluate the damage from the forces, instead.

As is shown in Fig. 3.2, the evaluation of the damage from the forces is
split into two different steps. The first step is devoted to finding a general
expression of the stress component from the force F (as indicated by {1} in
Fig. 3.2). With the help of a fatigue criterion, we can evaluate the damage
from components of the stress tensor (step denoted as {2}). We finally get
a model to evaluate damage from variable amplitude loading (denoted by
{1 + 2}).

General expression of stress from the uniaxial force (step {1} in Fig. 3.2)

Under the hypothesis of elastic structure, the stress component σ(Ac, F) is
proportional to the force F.

σ(Ac, F) = k(Ac) F. (3.1)

The coefficient k(Ac) depends on the geometry and on the material.
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3.2 The uniaxial equivalent fatigue approach
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Figure 3.2: Steps of the one-input equivalent fatigue approach.

Evaluation of the damage from variable amplitude stress (step {2} in
Fig. 3.2)

The aim is now to evaluate the number of cycles before failure from vari-
able amplitude stress. This will be done at the critical point Ac of a struc-
ture, defined by its proper k(Ac). Basquin’s curve has been chosen to eval-
uate the damage from σ(Ac, F) and is shown in Eq. (2.1). Parameters B and
β are the parameters of Basquin’s criterion, and depend on the material.
We usually approximate the exponent β ' 8, for steels. Let’s consider a
zero mean cycle of stress, with an amplitude σa(Ac, F). The number of
cycles N and σa(Ac, F) is linked by,

Nj (σa(Ac, F))β = B(Ac). (3.2)

Mean value effect

In order to take into account the impact of the mean value, a correction
on the amplitude σaj into σ′aj is made, so that the couples (σaj, σmj, nj) and
(σ′aj, 0, nj) are equivalent in terms of damage [8, 9]. The extension of the
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3.2 The uniaxial equivalent fatigue approach

Gerber’s parabola to any non-zero mean stress cycle is used. It is restricted
to mean values σmj under the tensile strength σu.

σ′aj(Ac, F) =
σaj(Ac, F)(

1−
(

σmj(Ac,F)
Su

)2
) with |σmj(Ac, F)| < σu. (3.3)

Damage accumulation

Let’s consider as Nj the number of cycles to failure under the stress ampli-
tude σ′aj. From Eq. (3.2), we get,

Nj (σ′aj(Ac, F))β = B(Ac)

The Palmgren-Miner accumulation of damage is adopted. So, Eq. (2.4)
holds. From Eq. (3.2) and Eq. (3.3), we get,

D(Ac, F) = ∑
j

nj
1

B(Ac)




σaj(Ac, F)

1−
(

σmj(Ac ,F)
σu

)2




β

. (3.4)

Evaluation of the damage from uniaxial force (step {1 + 2} in Fig. 3.2)

From the extraction of rainflow cycles from F, we get cycles defined by
(Faj, Fmj, nj). From Eq. (3.1),

σaj(Ac, F) = k(Ac)Faj,
σmj(Ac, F) = k(Ac)Fmj. (3.5)

Thus, from Eq. (3.3), we get,

F′aj =
Faj

1−
(

k(Ac)Fmj
Su

)2 . (3.6)

If we refer to a standard S-N curve, as shown in Fig. 2.3, the endurance
limit is reached at 106 cycles. Consequently, as Fe is supposed to be a
sinusoidal zero mean force, the ratio between σd and Fe

a is the coefficient
k(Ac),

σd = k(Ac) Fe
a .
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Figure 3.3: Network of Gerber parabola.

An approximation of the ratio between the tensile strength σu and the fa-
tigue limit σd has been proposed in [9],

K =
σu

σd
' 2.5 (for steel [65]). (3.7)

From Eq. (3.6) and Eq. (3.7),

F′aj =
Faj

1−
(

Fmj
K Fe

a

)2 . (3.8)

In Fig. 3.3, Gerber’s parabola correspond to different values of 1/(K Fe
a ).

So, from Equations (3.4, 3.5, 3.8),

D(Ac, F) =
1

B(Ac)
(k(Ac))β ∑

j
nj




Faj

1−
(

Fmj
K Fe

a

)2




β

. (3.9)

3.2.2 Equivalence of damage and characterization the equiv-
alent fatigue loading

The number of rainflow cycles of Fe is N0 and the amplitude of all of them
is Fe

a . The mean of the uniaxial EFL is zero. The damage induced by the Fe

can be evaluated,

De(Ac, Fe) =
1

B(Ac)
(k(Ac))β N0 (Fe

a )β . (3.10)
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3.3 Conclusion

The last step (denoted as {3} in Fig. 3.2) is deduced from Eq. (3.9) and
Eq. (3.10),

De(Ac, Fe) = D(Ac, F),

then,

∑
j

nj




Faj

1−
(

Fmj
K Fe

a

)2




β

= N0 (Fe
a )β . (3.11)

We can conclude that no parameter depending on the geometry intervenes
in the expression of Eq. (3.11). It is valid for any structure, fulfilling As-
sumption 3.1 and Assumption 3.2. Two constants depending on the ma-
terial are present, K, given in Eq. (3.7), and the Basquin’s exponent β. A
numerical value has been proposed, which is appropriate for steels.

3.3 Conclusion

The evaluation of the damage from the variable amplitude force F is based
on the rainflow content of the variable amplitude force. The Gerber’s
parabola are used in order to take into account the impact of the mean
values of the rainflow cycles on the damage. An extra assumption about
the ratio between the tensile strength and the fatigue limit was needed.
Basquin’s criterion and Palmgren-Miner accumulation of damage are used
in order to evaluate the damage from the variable amplitude loads. The
determination of the amplitude of the zero-mean equivalent fatigue force
is governed by the equality of the damage induced by the measurements
and the damage induced by the one-input EFL. The calculation of the am-
plitude of the EFL requires numerical solving.
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Chapter 4

High cycle fatigue life
prediction under multiaxial
loading

Life prediction in multiaxial fatigue is a wide, recent and complex domain
of fatigue. This has been discussed in numerous research work, in order
to understand, analyze and predict life of structures under constant and
variable amplitude multiaxial stresses. In general, in high cycle fatigue,
no plastic deformation is visible at the macroscopic scale. Fatigue is gov-
erned by initiation and growth of cracks. In automotive industry, the life
is mostly covered by the initiation of cracks, because the crack growth du-
ration is relatively short.

The first studies in multiaxial fatigue are empirical approaches, based on
experimental results (e.g. Gough and Pollard). Then, the macroscopic ap-
proaches have been developed. The proposed criteria are based on macro-
scopic quantities. Some of them are based on stresses, like shear stresses
or invariant (e.g. Mc Diarmid, Sines, Crossland). Synthesis of the empir-
ical and the macroscopic approach can be found e.g. in [19, 47, 61, 63].
A historical state of art of multiaxial fatigue is presented in [25]. Other
macroscopic criteria are based on the energy dissipated by the strain work
(e.g. Palin-Luc [4] ). Micro-macro approaches are closely related to the
microscopic phenomenon of fatigue, (e.g. Dang Van [12], Papadopoulos
[47, 48], Morel [39, 40, 41]). The evaluation of the damage is computed
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4.1 A high cycle fatigue criterion for infinite life, Dang Van’s criterion

from macroscopic stresses, using a model of the fatigue phenomenon at
the scale of the grains of the metal.

Two classes of criteria can be differentiated. One class contains the high
cycle multiaxial fatigue criteria. In this case, we aim to define the loading
for which the life of the structure is infinite and the loading for which the
life is finite. For each loading, we can estimate if the structure will break or
not. The other class of fatigue criteria predicts the life of components in a
finite life domain of multiaxial fatigue, i.e. it provides a way of computing
damage from constant amplitude and variable amplitude loading. In the
general framework of multi-input EFL, these criteria are needed.

4.1 A high cycle fatigue criterion for infinite life,
Dang Van’s criterion

The micro-macro approach in high cycle fatigue seems to be the most ad-
vanced approach in the last few years. We will describe the Dang Van’s
criterion, precursor of this approach, see [12]. Criteria based on the micro-
macro approach of the fatigue phenomenon follow the same idea that
the nucleation of microcracks is at the origin of the fatigue phenomenon.
These small cracks grow until they are detected on the macroscopic scale.

The macroscopic stress tensor is defined in the minimum volume where
no heterogeneity is observable. This is called the representative elemen-
tary volume (REV). At the macroscopic scale, the REV is homogeneous.
The macroscopic stress tensor is defined at this scale. In high cycle fa-
tigue, near the fatigue limit, the elastic shakedown is reached after a few
cycles and consequently the material remains elastic.

The REV is composed of many grains. At the scale of a grain, the material
is not homogeneous. Even if the macroscopic behaviour of the material is
elastic, plastic flow can appear in some grains of the REV where the elastic
limit has been reached. It is at the origin of the crack initiation in the grain.
Although we associate this approach with the micro-macro approach, in
contrast to the macroscopic approach, all the phenomena at the origin of
the fatigue phenomenon are described at the grain scale. The scale of a
grain is rather called the mesoscopic scale. We will use this scale in the
following.
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4.1 A high cycle fatigue criterion for infinite life, Dang Van’s criterion

∆c
∆c
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plane
on the REV 
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Figure 4.1: Representation of a REV and a plane ∆c.

The criterion aims to characterize the macroscopic loading that induces
the crack initiation in the REV. Papadopoulos has also formulated a crite-
rion based on the same principle as Dang Van. It is easier to use, and also
provides good results, see [50].

Each metal grain, also called crystal, has its own orientation, where plastic
strain is more likely to appear when incurring loading. This orientation is
called the easy glide direction. In an REV, we suppose that the grains
are randomly orientated. Thus, the REV is made up of grains of many
different orientations. Some grains will experience more plastic strains
than others, and will be more damaged. Crack initiation is more likely
to appear first in those grains. The plasticity in some grains is due to
the mesoscopic shear stress. We will be interested in the plane ∆c of the
REV, which incurs the maximum amplitude of mesoscopic shear stress,
see Fig. 4.1. The grains with an orientation that coincides with ∆c will be
damaged first. At the macroscopic level, stresses applied to a plane are
decomposed into two parts, the shear stress, defined as a column vector
C(t) and the normal stress N(t), see Fig. 4.2. The shear stress describes
the amplitude over time of the cyclic stress resulting from the projection
of Σ(t), on a plane of normal unit vector n:

N(n, t) =
(

nT · Σ(t) · n
)

n, (4.1)

and
C(n, t) = Σ(t) · n−

(
nT · Σ(t) · n

)
n. (4.2)

In Fig. 4.2, the normal stress and the shear stress are represented, applied
to any plane ∆ of the REV. A metallic structure incurs elastic shakedown
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4.1 A high cycle fatigue criterion for infinite life, Dang Van’s criterion

∆
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Figure 4.2: The loading on a shear plane are defined by the shear stress C(t) and the
normal stress N(n, t). The axis system related to the plane is (0, u, v).

when, after several cycles inducing plasticity, the response of the struc-
ture becomes elastic. Dang Van has assumed that the structure must incur
elastic shakedown at the mesoscopic and the macroscopic scale to be in an
infinite life regime. The structure tends to adapt. The mesoscopic shear
stress in the adapted conditions is called c(n, t). It can be expressed from
the macroscopic shear stress C(n, t), under the conditions of adaptation
as:

c(n, t) = C(n, t)− Cm(n), (4.3)

where Cm(n) is the center of the minimum circumscribed circle to C(n, t).

Dang Van’s criterion is based on the hydrostatic pressure P(t) and shear
stress c(n, t). No plasticity appears in the most damaged grains of the REV
if,

max
n

[
max

t
[‖c(n, t)‖+ αdP(t)]

]
≤ βd. (4.4)

The parameters αd and βd are called Dang Van’s parameters and depend
on the material. Plasticity in the most damaged grains appears if Eq. (4.4)
is violated. We need to evaluate the plane ∆c for which the maximum am-
plitude of the shear stress is reached. Consequently, we need to maximize
the shear stress over the different plane, and over the time t.

Dang Van’s criterion is usually represented in graphs, relating the shear
stress c(n, t) and p(t).
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Figure 4.3: Examples of representation of the Dang Van’s criterion. In case a), no
crack initiation predicted. In case b), crack initiation predicted.

Crack initiation appears if the cyclic loading crosses Dang Van’s limit, de-
fined by a line with intercept βd and slope αd. This corresponds to the case
b) in Fig. 4.3. In graph a), crack initiation will not happen.

4.2 Multiaxial criterion for finite life prediction

Dang Van’s criterion and many other criteria have been developed and
tested so far. However, they concern the infinite life domain of high cy-
cle fatigue. We can not access finite life prediction and damage. There
exists several different criteria, leading to the prediction of life. We can
distinguish two different ways of predicting life. The macroscopic ap-
proach allows us to evaluate damage from macroscopic magnitudes, re-
lated to the macroscopic stress tensor. For example, criteria from Macha
and Robert (see [23, 37, 43]) are based on the macroscopic approach. The
second approach is based on the micro-macro approach, and on the elas-
tic shakedown phenomenon. Morel and Papadopoulos are examples of
them. Morel’s criterion will be discussed in the following.
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4.3 Morel’s model

4.3 Morel’s model

Morel’s criterion is based on the micro-macro approach introduced and
developed by Dang Van and Papadopoulos. In the high cycle fatigue
regime, some grains can undergo plasticity, while the macroscopic be-
haviour of the REV remains elastic. Cracks initiate at the scale of the
grains of the REV. Crack initiation in a grain is due to accumulated plastic
strain appearing at the mesoscopic scale. The passage from the macro-
scopic scale to the mesoscopic scale has been modeled, in order to predict
the fatigue phenomena in the mesoscopic scale, with magnitudes related
to the REV.

In each metal grain or crystal, the plastic strain is due to plastic glide ap-
pearing along a particular direction, called the easy glide direction. In
a REV, we suppose that the grains are randomly orientated. Thus, the
REV is made up of grains of many different orientations. Some grains will
experience more plastic strains than others, and will be more damaged.
Crack initiation is more likely to appear first in those grains. Morel uses
the accumulated mesoscopic plastic strain Γ, as a variable of damage.

Plastic strain in a grain is due to plastic mesoscopic shear stress, occur-
ring along the easy glide direction of a grain. The easy glide direction of
a grain belongs to the easy glide plane. An easy glide plane is defined
by its normal vector n. It is located by its spherical co-ordinates, by the
angles θ and φ. An easy glide direction on it is defined by its unit vec-
tor m. It is located by the angle ψ. The couple (n, m) is the easy glide
system. Only one easy glide system is assumed to be active in a grain.
This is illustrated in Fig. 4.4. The vector C, the macroscopic shear stress,
is defined by Eq. (4.2). The mesoscopic shear plastic strain γp is due to
the mesoscopic shear stress τ, acting on m. Papadopoulos, in [47, 49], has
established that the mesoscopic shear stress is related to the macrosopic
resolved shear stress τ by Eq. (4.5),

τ = τ − µγpm. (4.5)

The factor µ is material dependent. The magnitudes τ and τ are the meso-
scopic and macroscopic resolved shear stresses, respectively. They are de-
duced from the projection of the σ and Σ, the mesoscopic and macroscopic
stress tensors, respectively, on m,

τ = (mT · σ · n) m,
τ = (mT · Σ · n) m,

= τ m.
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Figure 4.4: Location of a slip band of a grain, through the gliding system (n,m). The
unit vector n is normal to the plane ∆. The unit vector m belongs to the
plane ∆.

The norm of τ is called τ.

4.3.1 Constant amplitude loads

The method of fatigue life prediction for constant amplitude similar and
non-similar loading has been developed and discussed in [39, 40, 42]. In
the case of constant amplitude loads, the components of the stress tensor
Σ can be expressed with an amplitude, a mean value, and a phase shift.

Location of the critical plane and the critical direction

The aim is to predict the location of the critical plane and the critical direc-
tion. The quantities τ and τ are both sinusoidal, with amplitudes τa and
τa, respectively. Let’s consider Tσ(θ, φ) such that,

Tσ(θ, φ) =

√∫ 2π

0
τ2

a(θ, φ, ψ)dψ.

Papadopoulos, in [48], has shown that Tσ(θ, φ) on a plane ∆ is propor-
tional to an upper bound estimation of the plastic mesostrain accumulated
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Figure 4.5: Elliptic path of the macroscopic shear stress C, on a plane ∆, defined by
n. The amplitude τa of the macroscopic resolved shear stress τ results
from the projection of C on the direction m.

on the grains of the REV, so orientated that their easy glide planes are par-
allel to the plane defined by the couple (θ, φ). The Papadopoulos criterion
gives,

max
θ,φ

{Tσ(θ, φ)}+ αpPmax ≤ βp,

where αp and βp are constants related to the material. They can be linked
to the Dang Van’s constant αd and βd,

αp = αd
√

π,

βp = βd
√

π. (4.6)

The magnitude Pmax is the maximum of the hydrostatic pressure over a
sequence of loading. The critical plane ∆c is defined by the couple (θc, φc),
for which the variable Tσ(θ, φ) reaches the maximum TΣ,

TΣ = max
θ,φ

(Tσ(θ, φ)).

Grains with easy glide direction contained in ∆c experience more plasticity
than the grains with other orientation and easy glide direction. Under
constant amplitude loading, the most critical direction on it is defined by
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Figure 4.6: Evolution of the yield limit.

the maximum amplitude of the macroscopic resolved shear stress τa,

τA = max
ψ

τa(θ, φ, ψ).

The direction with maximum amplitude of macroscopic resolved shear
stress τA is located by ψc. Since the metal is isotropic at the macroscopic
scale, there always exists some grains less favorably orientated, i.e. grains
with an easy glide direction that coincides with the direction defined by
(θc, φc, ψc). Consequently, the crack initiation may appear along this criti-
cal plane, experiencing TΣ and along the direction defined by ψc.

Accumulation of plastic mesoscopic strain

A crystal starts to deform plastically when τ fulfills,

f (τ, γp, τy) = (τ − cγp m) · (τ − cγp m)− τ2
y = 0,

where c is a constant dependent on the material, and τy is called the yield
limit. Associated with Eq. (4.5), we get,

f (τ , γp, τy) = (τ − (c + µ)γp m) · (τ − (c + µ)γp m)− τ2
y = 0,

Three successive phases describe the crystal, from the first yielding to fail-
ure, see Fig. 4.6. During these three phases, the yield limit evolves. The
crystal reaches failure when the accumulated plastic mesostrain Γ reaches
a critical value ΓR and the yield limit becomes negligible. Phases I and
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Figure 4.7: Accumulation of plastic strain.

III are the hardening and the softening phases, where the yield limit in-
creases and decreases, respectively. Phase II is called the saturation phase.
At this stage, the yield limit is considered as constant. The phase II is of-
ten predominant, see [41]. Thus, we will consider here that the saturation
phase represents the life of a grain. The yield limit is equal to τlim, at the
saturation phase. The plasticity cumulates as illustrated in Fig. 4.7. Plastic
strain cumulates in each transition, defined by the period of time Tk. We
suppose that the metal is virgin for t < 0, i.e. no plastic strain has been
accumulated at t < 0. Plastic deformation appears when the macroscopic
resolved shear stress crosses the interval of 2τlim, as illustrated in Fig. 4.7.
The plastic deformation accumulated during a transition is proportional
to the length of the segment ΩTk

,

ΩT1 = (τA − τlim),
ΩTk

= 2(τA − τlim) = (τR − 2τlim), ∀k ≥ 2,

where τR is the range of the cycles of τ . Under the assumptions that the
saturation phase is predominant, the plastic strain Γ can be deduced from
them, for each transition Tk,

Γk = L1ΩTk for k ≥ 1.

The plastic strain accumulated until failure is called ΓR,

ΓR =
τlim
L2

. (4.7)
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Figure 4.8: Evaluation of τlim. The variable Pa represents the amplitude of the hy-
drostatic pressure, and Pm the mean value. The variable τa is the ampli-
tude of the resolved shear stress.

The constants L1 and L2 depend on the material.

Morel has proposed an expression of τlim, as illustrated in Fig. 4.8,

τlim =
1
H

(
−αpPm + βp

αp + TΣ
Pa

TΣ

Pa

)
,

where Pa and Pm are the amplitude and the mean value of the hydrostatic
pressure on the sequence. The constant αp and βp are material constant
from Papadopoulos criterion, see Eq. (4.6). The coefficient H represents
the ratio between τA and TΣ, see Fig. 4.5,

H =
TΣ

τA
,

√
π ≤ H ≤

√
2π.

In the case of proportional stress tensors, the coefficient H is equal to
√

π.

The life is expressed as the number of cycles, N, until the grains with
an easy glide direction that coincides with the most damaging direction,
reaches failure. From Fig. 4.7, one cycle of τ includes two transitions.
Therefore, the plastic strain accumulated during one cycle is,

Γcy = 4L1(τA − τlim),
= 2L1(τR − 2τlim). (4.8)
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The number of cycles cycles N is,

N =
ΓR

Γcy
.

From Equations (4.7,4.8),

N = q
τlim

(τA − τlim)+
,

with

q =
1

4L1L2
, (4.9)

and,

x+ =

{
x if x > 0
0 if x ≤ 0.

The variable q is a constant related to the material. It is determined from
a Wöhler curve of the material. The damage induced by n cycles (or 2n
reversals) of amplitudes and ranges τA and τR is,

D =
n
N

= n(τA−τlim)+
τlimq

= n(τR−2τlim)+
2τlimq . (4.10)

4.3.2 Variable amplitude loading

Morel proposed to evaluate damage from multiaxial variable amplitude
loading. In Fig. 4.9, an example of macroscopic shear stress C is shown.
For more details, see [41].

Damage accumulation

Morel proposed to locate the critical plane by the use of the parameter
Tσrms,

Tσrms(θ, φ) =

√∫ 2π

0
τ2

rms(θ, φ, ψ)dψ.
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Figure 4.9: Variable amplitude macroscopic shear stress C on a plane ∆.

The variable τrms is the standard deviation of τ . The critical plane ∆c is
located at the maximum of Tσrms (θ, φ),

TΣrms = max
θ,φ

(Tσrms(θ, φ)).

We will assume that the material is virgin, i.e. no microscopic plastic de-
formation exists before submitting the loading. The damage reaches one
when the accumulated plastic deformation reaches ΓR. We will assume
that the saturation is predominant. Thus, τy is constant, see Fig. 4.6,

τy = τlim.

In Fig. 4.10, the method of evaluation of the plastic strain Γ from the
macroscopic resolved shear stress is described. It is based on the extrema
of the history of the macroscopic resolved shear stress. At time point t = 0,
the interval [−τlim, τlim] is centered around 0, as shown in Fig. 4.10. Once
the signal crosses the segment of 2τlim, plastic strain accumulates. It stops
accumulating when the first next turning point is reached. The segment
of length 2τlim moves to this turning point. The time period during each
accumulation of the plastic strain is called a transition. In Fig. 4.10, four
different transitions are illustrated.

The plastic deformation induced by the transition k during the time period
Tk is proportional Ωk,

Ωk = |τk −τk−1 − 2τlim|.
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Figure 4.10: Accumulation of plasticity in grains in the case of variable amplitude
macroscopic resolved shear stress.

Moreover,
Γk = L1Ωk.

The plastic strain accumulated during the four transitions is,

Γ = L1

4

∑
k=1

Ωk.

We have deduced that the way of evaluating the accumulated mesoscopic
plastic strain is very close to the rainflow filter counting. Thus, we will
consider that the evaluation of Γ on a sequence of loading follows Theo-
rem 4.1,

Theorem 4.1. Evaluation of the plastic mesoscopic strain Γ. Under the
assumption that the saturation phase is predominant, Morel’s way of evaluating
the accumulated plastic mesoscopic strain Γ from variable amplitude macroscopic
resolved shear stress can be expressed from the rainflow cycles counting method.
The mesoscopic plastic strain is induced by the reversals of rainflow cycles with
ranges greater than 2τlim, and the reversals of the residual with ranges greater
than 2τlim. The ranges of the reversals inducing damage are called τri, and,

Γ = L1 ∑
k

(τri − 2τlim)+.
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Evaluation of life

A simple way of computing a good approximation of τlim is to express it
with the standard deviations of the hydrostatic pressure and the resolved
shear stress,

τlim =
1
H

(
−αpPm + βp

αp + TΣrms
Prms

TΣrms

Prms

)
. (4.11)

The variable Prms is the standard deviation of the hydrostatic pressure P.
In [39], Morel proposed to evaluate H,

H =
TΣrms

Crms
,

with
Crms = max

ψ
(τrms(ψ)).

For the sake of simplicity Morel proposed, in [41], to use the most conser-
vative value

√
2π, in the case of non-proportional loading.

The damage induced by a reversal of τ is expressed from τlim and the
ranges of the reversals, called τri. We assume that the saturation phase is
predominant. Thus, the accumulation of damage over a sequence of load-
ing is linear. Let’s consider as Nseq,R, the number of sequences of loading,
inducing the plastic strain ΓR, before crack initiation. From Eq. (4.7), we
get

Nseq,R =
τlim

L2L1 ∑k(τri − 2τlim)+
.

From Eq. (4.9),

Nseq,R =
4qτlim

∑k (τri − 2τlim)+
, (4.12)

where τri is defined in Theorem 4.1. Let τai be the amplitude of the re-
versals of τ. Then,

Nseq,R =
2qτlim

∑k (τai − τlim)+
. (4.13)

The aim is to locate the critical direction on the critical plane. Let’s con-
sider as Dseq, the damage induced by Nseq sequences of cyclic loading. We
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4.4 Conclusion

will consider that the direction m for which the damage Dseq is the greatest
one is the critical direction,

Dseq = Nseq
Nseq,R

= Nseq
∑k(τai−τlim)+

2qτlim
.

(4.14)

4.4 Conclusion

Morel’s criterion provides a method of life prediction in multiaxial high
cycle fatigue for finite life. The damage is due to plastic strain appearing
in some grains of the REV. The damage is based on the mesoscopic plastic
strain accumulated on the less favorably orientated grains of the REV. The
plastic strain is due to the macroscopic resolved shear stress, acting on
one of the directions of the critical plane. We observed that Morel’s way
of evaluating the plastic strain from the macroscopic resolved shear stress
is close to the rainflow filter method.
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Part II

An approach to multi-input
equivalent fatigue loads
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Chapter 5

Multi-input equivalent
fatigue loads: Motivations
and needs

It is commonly observed that structures in service are not only exposed to
one-input external forces, but also to multi-input external forces. Suspen-
sions of cars are a good example of structures submitted to such loads. In
this case, loads usually come from the wheels. They are vertical, transver-
sal and longitudinal variable amplitude forces, coupled or not, acting on
the suspension at the same time. Structures like axles are even submit-
ted to forces from the two front (or two rear) wheels. Consequently, six
different forces act on them, three from each of the wheels.

It is evident that some interactions exist within the forces. Right and left
front (or rear) vertical forces are often either in phase (e.g. in the case of
straight line roads), or in opposite phase (e.g. in curves). In order to ana-
lyze these forces in fatigue, we have to take into account these interactions.
The fatigue analysis of each component of the multi-input forces, consid-
ered separately, would not take into account the interaction that may have
an important impact on the life prediction.

Most of the components of the vehicle incur multiaxial fatigue, i.e. fatigue
induced by multiaxial stress tensors. This is mostly due to the geometry
of the structures. The aim of the multi-input equivalent fatigue approach
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5.1 Prediction of life from forces and characterization of the equivalent
forces

is to build simple multi-input forces, equivalent in terms of damage, to
some variable amplitude loads, like measurements. This has to be per-
formed without information about the geometry they are applied to. Thus,
we need a model to evaluate damage from variable amplitude multiaxial
stresses, in the framework of the high-cycle fatigue for finite life predic-
tion.

5.1 Prediction of life from forces and characteri-
zation of the equivalent forces

First of all, in order to evaluate damage from the forces, we need to know
the stress fields generated by multi-input variable amplitude loads. The
structures are exposed to forces that do not depend on the point of the
structure we look at. They are global magnitudes. Conversely, stress fields
are defined at points of the structures, and can be different from one point
to another. They are local magnitudes. The damage is also locally defined.
Thus, we need to evaluate local magnitudes, as damage, with global mag-
nitudes, as forces. We will restrict the study to points of structures where
cracks are more likely to appear. These points are called the critical points
of the structures.

We also need to predict the life from the stress fields. Different criteria
predicting finite life can be used. Are they all usable in the method of
multi-input equivalent fatigue approach? Are there any restrictions or
properties that the criterion has to fulfill, in order to be used in the equiv-
alent fatigue approach? Uniaxial EFL is applicable to uniaxial stress field,
and Basquin’s curve for life prediction was chosen. How can we evaluate
the damage from multiaxial stress fields? How do we extract the damage
from the forces directly?

In the context of the EFL, the geometrical properties of the structures are
unknown. Therefore, we need to get information about the damage from
the forces, without information about the structures. In the expression of
the damage from the forces, some parameters may be linked to the geom-
etry. Some extra assumptions about the structures may be necessary, in
order to evaluate them.

The study of the multi-input EFL aims to define the equivalent forces. We
have to choose the shape of the equivalent loads. The choice can be mo-
tivated by different factors, like the simplicity in their shape or in their
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5.1 Prediction of life from forces and characterization of the equivalent
forces

generation. The choice can be also motivated by the ability to evaluate
damage from the parameters defining the EFL. For instance, in the case
of sinusoidal multi-input EFL, amplitudes and phase shifts are essential
to describe the EFL entirely. We need to know the interaction of these
parameters on the damage and to express the damage from them.

The unknown parameters of the EFL that influence the damage are con-
tained in the parameter vector θ. In order to characterize the parameters
that will influence the damage, for each types and shapes of EFL, we need
to evaluate θ. The vector of parameters θ is defined in the parameter space
Θ and is determined from the equivalence of damage.

Notation 5.1. Parameter vector θ. The vector θ contains the parameters
defining the EFL and influencing the damage induced by them.

In the case of uniaxial EFL, only sinusoidal loads have been experienced,
essentially because of their simplicity in their application to test benches
and characterization of severity of customers. An extension to other types
of EFL will be explored, such as deterministic and probabilistic equivalent
forces. Deterministic forces such as sinusoidal equivalent forces have been
studied, see Fig. 5.1. Probabilistic loads like narrow band Gaussian and
Markov chain loads have also been investigated. They are illustrated in
Fig. 5.2 and Fig. 5.3. On the basis of these three models, we will study
the possibility to evaluate the damage as an expression of the parameters
that belong to the vector θ. The sinusoidal equivalent loads are defined
by their amplitudes, phase shifts and number of cycles. This model can be
composed by either one block, or several blocks of sinusoids.
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Figure 5.1: Illustration of sinusoidal loads.
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Figure 5.2: Illustration of Gaussian loads.

The Gaussian EFL is interesting as it reproduces, with greater accuracy,
the different measurements we attempt to model. The rainflow content
of the loads can be closer to the measurements, compared to the Markov
or sinusoidal multi-input EFL. We will be particularly interested in the
narrow-band Gaussian processes.
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Figure 5.3: Illustration of Markov chain loads.

The Markov chain model is interesting to develop because of its flexibility.
We can choose to define the Markov chain EFL with a large number of
states. It allows us to model some rare and damaging events with a high
amplitude of loads as well. These rare events induce a great part of the
damage over the life of the structure. After describing a simple model of
Markov chain EFL, a model of Markov chain with peaks has been studied.
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5.2 Synopsis

5.2 Synopsis

In Fig. 5.4, a synopsis of the general problem of the multi-input EFL is
proposed (see [26, 27]).
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Figure 5.4: Synopsis of the Multi-input EFL.

This synopsis deals with an example of suspensions of cars. The com-
ponent illustrated is exposed to the forces from the wheels. The passage
from the forces to the stress fields depends on the geometry and the ma-
terial properties of the component. In the case of the uniaxial stress field,
the evaluation of the damage from the forces is governed by the method of
extracting damaging cycles from the forces, by the relation between dam-
age and amplitude of cycles, and finally by the accumulation of damage
over the different cycles.

In the case of multiaxial variable amplitude stress fields, Basquin’s crite-
rion is not appropriate. We need a criterion of multiaxial high cycle fatigue
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5.2 Synopsis

that predicts life of structures. In the previous part, a large number of fa-
tigue criteria has been presented. However, criteria based on the micro-
macro approach of damage are the most advanced. Morel’s criterion, de-
scribed in the previous part has been chosen to evaluate the damage from
multiaxial stress fields. It is based on the microscopic approach and pro-
vides a rather good assessment of life.
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Chapter 6

Evaluation of the damage
from multi-input loads

The aim of this chapter is to evaluate damage from multi-input variable
amplitude forces. Different parameters related to the geometry will have
an impact on the expression of the damage. However, if we do not know
the geometry of the structures, we will see how it is possible to get rid of
these constants. In the case it is not possible, we will attempt to evaluate
them.
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Figure 6.1: Synopsis of the evaluation of the damage from multi-input forces
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6.1 Assumptions on the behaviour of metal components

As explained in the previous chapter, the damage is expressed at a point of
a structure, from the stress tensor, see Fig. 6.1. Thus, it is locally defined.
However, the forces are applied to a structure and are globally defined.
How can we evaluate a local parameter, like damage, with a global pa-
rameter, like forces, without information about the geometry? This ques-
tion seems to be impossible to answer, since every structure is different,
and consequently incurs different damage, even if they are exposed to the
same loads.

In the case of uniaxial stress tensor, the evaluation of the damage from
the loads can be expressed by Basquin’s curve, see [65], [8] or [9]. Several
reports and articles have explored the evaluation of the damage from the
forces, in the framework of multidimensional stress tensors, like in [7, 17].
Criteria like the critical plane approach have been used. The evaluation of
the damage is usually based on an equivalent stress, called σe. The first
task is to evaluate σe from the forces. In [18], a normalized equivalent
stress has been chosen as a linear combination of the forces:

σe =
n

∑
i=1

ciFi with
n

∑
i=1

c2
i = 1.

The damage is based on the rainflow content of σe, which is defined as
a linear combination of the forces. The RiaD concept (or the rainflow-in-
all-direction) is based on the rainflow counting of linear combinations of
multiaxial and non-proportional forces.

In the following, we aim to evaluate the damage from Morel’s and Basquin’s
criteria. What these criteria have in common is that they are based on the
rainflow content of the components of the stress tensors. Once the evalu-
ation of the damage from the forces is settled, we will define the equiva-
lence of damage in order to determine the multi-input EFL.

6.1 Assumptions on the behaviour of metal com-
ponents

Let’s consider F(t), a vector of n-input forces, over the time period T0,

F =








F1(t)
F2(t)

...
Fn(t)


 : t ∈ [0, T0]





. (6.1)
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6.1 Assumptions on the behaviour of metal components

First, we will assume that the global behaviour of the structure is elas-
tic. This assumption is in accordance with the framework of high cycle
fatigue. Moreover, these structures are quasi-static. We will consider that
the effect of the frequency of the different loads on the fatigue life is negli-
gible, in accordance with Basquin’s and Morel’s criteria.

Assumption 6.1. Elastic and quasi-static structures. We will assume that
the global behaviours of the structures are elastic and quasi-static, when exposed
to cyclic loads F.

Every location of a structure gives rise to a proper relation between loads
and multiaxial stresses that depends on the geometry and on the material.
In any structure exposed to loads, crack initiation is more likely at the crit-
ical points of the structure. The durability of the components completely
depends on the behaviour of these critical points. The multi-input forces
give rise to one or more critical points. Structures reach failure if the dam-
age reaches one at one of its critical points. The first critical point reaching
a damage equal to one is called Ac. The location of the critical point de-
pends on the structure and on the sequence of multi-input loads applied
to it.

Remark 6.1. The critical point Ac on a structure should be written as a function
of F and of the geometry G, like Ac(F, G). However, for the sake of simplicity,
we will consider that the dependency of the critical point to the loads F and the
geometry G is implicit.

It has been frequently observed that, in car components, when the loads
F are applied to the structure, the principal directions of stress tensors at
the critical points often do not rotate in time. Let’s consider these two
assumptions.

Assumption 6.2. Proportional stress tensors. Let’s consider F, applied to a
structure. The multi-input forces give rise to a critical point Ac. It is assumed
that, at Ac, the principal directions do not move in time.

Assumption 6.3. Unidirectional stress tensors. This assumption is a special
case of the proportional stress tensor. We will assume that the stress tensor is
unidirectional at Ac.

Under Assumption 6.1 and Assumption 6.3, Basquin’s criterion is applica-
ble. However, if we consider Assumption 6.1 and Assumption 6.2, Basquin’s
criterion is not appropriate. Morel’s criterion can be used for life predic-
tion from multiaxial proportional and non- proportional stress tensors. In
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6.1 Assumptions on the behaviour of metal components

the following, we will express the stress tensors from the loads under the
different assumptions. Let’s consider Σ(Ac, F, t), the multiaxial stress ten-
sor at the point Ac. It can be written as a symmetric matrix,

Σ(Ac, F, t) =




σ11(Ac, F, t) σ12(Ac, F, t) σ13(Ac, F, t)
σ12(Ac, F, t) σ22(Ac, F, t) σ23(Ac, F, t)
σ13(Ac, F, t) σ23(Ac, F, t) σ33(Ac, F, t)


 .

Under Assumption 6.1, we can conclude that,

Σ(Ac, F, t) =
n

∑
i=1

Ki(Ac)Fi(t), (6.2)

with

Ki(Ac) =




Ki,11(Ac) Ki,12(Ac) Ki,13(Ac)
Ki,12(Ac) Ki,22(Ac) Ki,23(Ac)
Ki,13(Ac) Ki,23(Ac) Ki,33(Ac)


 .

Let’s consider Σd(Ac, F, t) the diagonalized stress tensor, at the time point
t,

Σd(Ac, F, t) = RT(Ac, t)Σ(Ac, F, t)R(Ac, t), (6.3)

where R defines the change of basis from Σ(Ac, F, t) to Σd(Ac, F, t),

Σd(Ac, F, t) =




σd,11(Ac, F, t) 0 0
0 σd,22(Ac, F, t) 0
0 0 σd,33(Ac, F, t)


 ,

with
σd,11 ≥ σd,22 ≥ σd,33.

Under Assumption 6.2, the principal directions of the stress tensor do not
rotate in time. We will therefore conclude that the principal directions of
R do not change in time,

R(Ac, t) = R(Ac).

As a consequence, we can normalize the vector Σd(Ac, F, t),

Σd(Ac, F, t) = σ(Ac, F, t)




1 0 0
0 α(Ac) 0
0 0 β(Ac)


 , (6.4)

with
−1 ≤ β(Ac) ≤ α(Ac) ≤ 1.
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6.2 Damage from multi-input forces using Morel’s criterion

For the sake of simplicity, we will consider tensors Σd(Ac, F, t) as row vec-
tors,

Σd(Ac, F, t) = σ(Ac, F, t)




1
α(Ac)
β(Ac)


 with − 1 ≤ β(Ac) ≤ α(Ac) ≤ 1.

(6.5)
The structures for which Assumption 6.1 and Assumption 6.3 are fulfilled,
the diagonalized stress tensor can be deduced from Eq. (6.5), with partic-
ular values of α(Ac) and β(Ac),

α(Ac) = β(Ac) = 0. (6.6)

6.2 Damage from multi-input forces using Mo-
rel’s criterion

Morel’s criterion aims to define the critical plane and the most critical
direction on it. For each direction of the critical plane, we associate the
macroscopic resolved shear stress. The damage is based on the cycles and
the residual of the macroscopic resolved shear stress, computed from rain-
flow filter counting method. Morel’s criterion is applicable for variable
amplitude multiaxial stress tensors. We will use it for proportional mul-
tiaxial stress tensors, for points of structures where Assumption 6.1 and
Assumption 6.2 are satisfied.

6.2.1 Expression of the resolved shear stress

Let’s call τ(Ac, F, t) the resolved shear stress on the most damaging di-
rection of the critical plane, when multi-input forces F are applied. The
resolved shear stress is a linear combination of the different components
of the stress tensor. The stress components are linear combinations of the
forces. So, the norm τ(Ac, F, t) is a linear combination of the components
of F. Hence, under Assumption 6.1,

τ(Ac, F, t) =
n

∑
i=1

ci(Ac, F, t) Fi(t). (6.7)

Moreover, we have previously assumed that the stress tensor at the critical
point Ac is proportional. Consequently, the linear combination between
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6.2 Damage from multi-input forces using Morel’s criterion

the forces and the components of the stress tensor, at the point Ac, de-
pends only on the location of Ac, as shown in Eq. (6.2). The critical plane
and the most damaging direction on it do not move in time, [61]. Under
Assumption 6.1 and Assumption 6.2, and from Eq. (6.2), Eq. (6.7) becomes,

τ(Ac, F, t) =
n

∑
i=1

ci(Ac)Fi(t).

After normalizing it, we get,

τ(Ac, F, t) = C(Ac)
n

∑
i=1

ai(Ac)Fi(t), (6.8)

The coefficients ai(Ac) and the parameter C(Ac) are defined as follows,

n

∑
i=1

[ai(Ac)]2 = 1 and C(Ac) > 0.

The row vector a(Ac) is the vector containing the coefficients ai(Ac),

a(Ac) = (a1(Ac), . . . , an(Ac)). (6.9)

We will also define,

F∗(Ac, F, t) =
n

∑
i=1

ai(Ac)Fi(t),

= a(Ac) F(t).

Thus,
τ(Ac, F, t) = C(Ac)F∗(Ac, F, t).

We can therefore conclude that each pair of C(Ac) and a(Ac) refers to a
structure exposed to the forces F and to the localization of Ac, on it. More-
over, τ is expressed in MPa. The coefficients ai(Ac) do not have a unit. As
F is expressed in Newton, the parameter C(Ac) is expressed in mm−2. For
the sake of simplicity, we will adopt Eq. (6.10), in the following,

τ(Ac, F) = C(Ac)F∗(Ac, F). (6.10)

6.2.2 Evaluation of the damage

The damage is defined at the point Ac, the most critical point of a structure.
It is induced by the loads F, applied to it. From Eq. (4.12) and Eq. (4.14),
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6.2 Damage from multi-input forces using Morel’s criterion

the damage induced by Morel’s criterion depends on the reversals of the
rainflow cycles and the residual of the resolved shear stress τ,

D(Ac, F) =
1

4qτlim(Ac, F)

[
∑

i
(τri(Ac, F)− 2τlim(Ac, F))+

]
,

where

x+ =

{
x if x > 0
0 otherwise.

The parameter q depends on the material of the structure, τri(Ac, F) is the
range of the i-th reversal (or half cycle) of the rainflow cycles or the resid-
ual. The parameter τlim(Ac, F), defined in Eq. (4.11), depends on the re-
solved shear stress, on the hydrostatic pressure and on Dang Van’s coeffi-
cients. Hence, it also depends on the multi-input loads F. From Eq. (6.10),
we deduce that,

D(Ac, F) =
1

4qτlim(Ac, F)

[
∑

i
(C(Ac)F∗ri(Ac, F)− 2τlim(Ac, F))+

]
,

where F∗ri(Ac, F) is the range of the i-th reversal of the rainflow cycle or the
residual of F∗(Ac, F). Hence

D(Ac, F) =
C(Ac)

4qτlim(Ac, F)

[
∑

i

(
F∗ri(Ac, F)− 2

τlim(Ac, F)
C(Ac)

)

+

]
.

Let’s consider the change of variable,

T(Ac, F) = 2
τlim(Ac, F)

C(Ac)
. (6.11)

We get,

D(Ac, F) =
1

2qT(Ac, F)

[
∑

i
(F∗ri(Ac, F)− T(Ac, F))+

]
.

The parameter T(Ac, F) depends on the geometry, on the material and
on the loads, the parameter a(Ac), on the geometry and q is a material
constant.

Theorem 6.1. Life prediction from multi-input forces F, for proportional
stress tensors. The damage induced by the multi-input forces F at the points of
a structure, where Assumption 6.1 and Assumption 6.2 are fulfilled, is,

D(Ac, F) =
1

2qT(Ac, F)

(
∑

i
(F∗ri(Ac, F)− T(Ac, F))+

)
, (6.12)
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6.3 Damage from multi-input forces using Basquin’s criterion

with

T(Ac, F) = 2
τlim(Ac, F)

C(Ac)
, T(Ac, F) > 0. (6.13)

The entity F∗ri(Ac, F) is the range of the reversal of the i-th rainflow cycle of
F∗(Ac, F),

F∗(Ac, F) = a(Ac) F, ||a(Ac)|| = 1. (6.14)

Remark 6.2. Life prediction from one-input force F, for proportional stress
tensors. For one-input EFL,

F∗(Ac, F) = F.

Hence,

D(Ac, F) =
1

2qT(Ac, F) ∑
i

(Fri − T(Ac, F))+ ,

with Fri, the range of the reversal of the i-th rainflow cycle of F.

Each critical point is characterized by the row vector a(Ac), T(Ac, F) and
the material constant q. Two critical points can be defined with the same
T(Ac, F) and a(Ac), even if the geometry is different. Consequently, they
will reach the same damage when they are exposed to the same loads.

6.3 Damage from multi-input forces using Bas-
quin’s criterion

Basquin’s criterion is valid if Assumption 6.1 and Assumption 6.3 are ful-
filled. In this case, the stress tensor is unidirectional. After expressing the
stress tensor from the forces, we will evaluate the damage from the forces.

6.3.1 Expression of the stress tensor from the forces

In the case of unidirectional stress tensor, the diagonalized stress tensor is
reduced to one component. From Eq. (6.5) and Eq. (6.6),

Σd(Ac, F, t) = σ(Ac, F, t)




1
0
0


 .
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6.3 Damage from multi-input forces using Basquin’s criterion

When Assumption 6.1 and Assumption 6.3 are valid, σ(Ac, F, t) can be
written as a linear combination of the forces.

σ(Ac, F, t) = Cb(Ac)
n

∑
i=1

ai(Ac)Fi(t).

The coefficients ai(Ac) and the parameter Cb(Ac) are defined by,

Cb(Ac) > 0, and
n

∑
i=1

[ai(Ac)]2 = 1.

The linear combination of the forces F∗(Ac, F) is defined as,

F∗(Ac, F, t) =
n

∑
i=1

ai(Ac)Fi(t).

Thus,

Σd(Ac, F, t) = Cb(Ac)F∗(Ac, F, t)




1
0
0


 . (6.15)

6.3.2 Evaluation of the damage

From Eq. (2.1), the damage is expressed from the rainflow cycles of the
stress component. Together with the Palmgren-Miner accumulation, we
can deduce the damage from variable amplitude forces F, as a function of
the amplitudes of the rainflow cycles of the stress component. Thus,

D(Ac, F) =
1

B(Ac)
∑

i
(σai(Ac, F))β ,

where σai is the amplitude of the i-th rainflow cycle, and B(Ac) is a con-
stant depending on the geometry. Hence,

D(Ac, F) =
1

B(Ac)
∑

i

(
σri(Ac, F)

2

)β

,

where σri is the range of the i-th reversal. From Eq. (6.15), we obtain,

D(Ac, F) =
Cb(Ac)
B(Ac)

∑
i

(
F∗ri(Ac, F)

2

)β

.
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6.4 Equivalence of damage

The entity F∗ri(Ac, F) is the range of the i-th reversal of F∗(Ac, F). In the
following, we will consider that,

CB(Ac) =
Cb(Ac)
B(Ac)

.

Theorem 6.2. Life prediction from multi-input forces F, from uniaxial
stress tensors. When Assumption 6.1 and Assumption 6.3 are fulfilled, the
damage induced by the multi-input forces F can be expressed from Basquin’s cri-
terion.

D(Ac, F) = CB(Ac) ∑
i

(
F∗ri(Ac, F)

2

)β

, (6.16)

with,
CB(Ac) > 0.

The entity F∗ri(Ac, F) is the range of the reversal of the i-th rainflow cycle of
F∗(Ac, F).

F∗(Ac, F) = a(Ac) F, ||a(Ac)|| = 1.

Remark 6.3. Life prediction from one-input force F, from uniaxial stress
tensors. For one-input EFL,

F∗(Ac, F) = F.

Hence,

D(Ac, F) = CB(Ac) ∑
i

(
Fri

2

)β

.

The range of the i-th reversal of F is called Fri.

In the study, the Gerber’s parabola have not been included in the evalua-
tion of the damage from the forces.

6.4 Equivalence of damage

Let’s consider the measurements F, as defined in Eq. (6.1). The aim is to
characterize the EFL Fe, equivalent in terms of damage to the measure-
ments F,

Fe =








Fe
1(t)

Fe
2(t)
...

Fe
n(t)


 : t ∈ [0, T0]





. (6.17)
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6.4 Equivalence of damage

The loads Fe can be chosen as deterministic or probabilistic. Once the
model of Fe has been chosen, the aim is to evaluate the parameter vector
θ, characterized in Notation 5.1, containing all the parameters defining Fe

influencing the damage.

The damage on a structure, at its critical point Ac, induced by the mea-
surements, is called D(Ac, F). The damage induced by the EFL is called
De(Ac, Fe). The damage induced by Fe is expressed with the parameters
of the EFL, contained in θ. From Basquin’s or Morel’s criterion, the dam-
age is deduced from the rainflow content of the linear combinations of the
components of the forces, F∗(Ac, F). Therefore, we need to determine the
rainflow content from parameters defining the EFL. We need to evaluate
the expected damage E[D(Ac, Fe)], i.e. the expected rainflow content of
each linear combination from parameters characterizing Fe,

E[D(Ac, Fe)] = De(Ac, θ), (6.18)

where Fe is expressed in Eq. (6.17).

The equivalence has to be performed whatever the structures fulfilling As-
sumption 6.1 and Assumption 6.2 or Assumption 6.1 and Assumption 6.3.

6.4.1 Equivalence of damage for one-input EFL

For the one-input EFL, the equivalence between the measurements and
the EFL is fulfilled when the equality between D(Ac, F) and De(Ac, Fe) is
satisfied.

Definition 6.3. Equivalence of damage for one-input force. The one-input
EFL Fe is equivalent to the one-input deterministic force F defined on the time
period T0, if,

D(Ac, F) = De(Ac, θ). (6.19)

From Remark 6.2, the equivalence of damage can be given in details, using
Morel’s criterion,

1
T(Ac, F) ∑

i
(Fri − T(Ac, F))+ = E

[
1

T(Ac, θ) ∑
j

(
Fe

rj − T(Ac, θ)
)

+

]
.

(6.20)
The components Fri and Fe

rj are the i-th and jth ranges of the rainflow cycles
of F and Fe, respectively. We deduce that the equality between D(Ac, F)
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6.4 Equivalence of damage

and De(Ac, θ) is not independent of the structure, as we cannot get rid of
the thresholds T(Ac, F) and T(Ac, θ). This means that the equivalence of
damage can be fulfilled for a particular known structure.

From Remark 6.3, the equivalence of damage can be given in details, using
Basquin’s criterion.

∑
i

(Fri)
β = ∑

j
[E

(
Frj

)β]. (6.21)

The equality of damage is valid whatever the structures they are applied
to. However, the exponent β, dependent on the material, has to be evalu-
ated.

6.4.2 Equivalence of damage for multi-input EFL

Let Fe∗(Ac, Fe) be the linear combination of the components of the multi-
input forces Fe,

Fe∗(Ac, Fe) = a(Ac) Fe.

The magnitudes D(Ac, F) and De(Ac, θ) are dependent on F∗(Ac, F) and
Fe∗(Ac, Fe). The coefficients of the linear combinations are contained in
the unit vector a(Ac), dependent on the geometry of the structure.

In order for Fe to be equivalent, we need to find the parameter vector
θ so that Fe and F give the same damage whatever the structures. As
soon as the number of structures is infinite and the number of parameters
contained in θ is finite, we can not fulfill the equality of damage for any
structure. Thus, we will identify the parameter vector θ so that the two
forces Fe and F are almost equivalent, whatever the structures. In order
to assure that Fe and F are almost equivalent, we have chosen to evaluate
θ so that the square distances between De(Ac, θ) and D(Ac, F) are mini-
mized, whatever the structures and critical points Ac on them. The least
square method is used.

Definition 6.4. Equivalence of damage for multi-input forces F. The EFL
are said to be equivalent to measurements F if the parameter vector θ defining Fe

fulfills,

θ = arg min
θ∈Θ

(∫

||a||=1
(De(Ac, θ)− D(Ac, F))2 dS

)
, (6.22)

where dS is a small element of the surface of the n-dimensional unit sphere.
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6.4 Equivalence of damage

Using Morel’s criterion and from Theorem 6.1 and Eq. (6.22), we can de-
duce that,

θ = arg min
θ∈Θ

(∫

||a||=1

(
E

[
1

T(Ac, θ)

(
∑

i
(Fe∗

ri (Ac, θ)− T(Ac, θ))+

)]

− 1
T(Ac, F)

(
∑

j

(
F∗rj(Ac, F)− T(Ac, F)

)
+

))2

dS


 . (6.23)

We will assume that the EFL and the measurements are applied to the
same structures. The location of the critical point is the same when F or
Fe applied. Consequently, the vector a(Ac) will be the same, from F to
Fe. The equivalence of damage with Morel’s criterion is dependent of
constants related to the geometry at the critical point.

Using Basquin’s criterion and from Theorem 6.2 and Eq. (6.22), we get,

θ = arg min
θ∈Θ




∫

||a||=1

(
∑

i

[
E (Fe∗

ri (Ac, θ))β
]
−∑

j

(
F∗rj(Ac, F)

)β
)2

dS


 .

(6.24)
In Basquin’s case, contrary to the equivalence of damage for one input
case, the equivalence of damage from multi-input forces depends on the
geometry of the structures, through the unit vector a(Ac).

6.4.3 Evaluation of a threshold of non-damaging ranges of
rainflow cycles in Morel’s criterion

The parameters T(Ac, F) and a(Ac) both depend on the geometry and on
the location of the critical points on the structures. They are essential for
evaluating damage from loads. In order to evaluate the multi-input EFL,
using Morel’s criterion, we still need to evaluate the thresholds T(Ac, F)
that correspond to each a(Ac) and the forces F, i.e. each critical point Ac.

The threshold T(Ac, F) depends on Ac, and on the forces. Cycles of F∗
or Fe∗ do not induce damage if their ranges do not exceed T(Ac, F) or
T(Ac, θ) respectively. In Theorem 6.5, we will investigate the influence of
the forces on the threshold and provide an analytical expression of it, for
proportional stress tensors.
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6.4 Equivalence of damage

Theorem 6.5. Expression of the threshold T(Ac, F). The stress field fulfilling
Assumption 6.1 and Assumption 6.2 can be written as,

Σd(Ac, F, t) = Cs(Ac)
n

∑
i=1

di(Ac) Fi(t)




1
α(Ac)
β(Ac)


 ,

with
Cs(Ac) > 0, −1 ≤ β(Ac) ≤ α(Ac) ≤ 1.

The threshold T(Ac, F) of any structure and point fulfilling Assumption 6.1
and Assumption 6.2, has an analytical expression,

T(Ac, F) =
M1

M2
,

The variables M1 and M2 are defined by,

M1 = 2
(

βd
Cs(Ac)

− αd
3

(1 + α(Ac) + β(Ac)) F∗m(Ac, F)
)

M2 =
αd
3
|1 + α(Ac) + β(Ac)|+ 1− β(Ac)

2
, (6.25)

where αd and βd are Dang Van’s coefficients, dependent on the material. The
variable F∗m(Ac, F) is the mean value of the F∗(Ac, F).

Proof. The proof is detailed in Appendix A.

Equivalence of damage

We deduce from Theorem 6.5 that the threshold T(Ac, F) depends on the
mean value of the loads, and on the location of the critical point. The
mean values of the components of Fe belong to the parameter vector θ,
as it influences the damage induced by Fe (see Notation 5.1). We will
consider that the mean of the components of the EFL is equal to the mean
of the components of F,

mean (Fi) = E[Fe
i ]

Therefore, if the loads F and Fe are applied to the same critical points of
the same structures,

T(Ac, F) = T(Ac, θ) = T(Ac). (6.26)
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6.4 Equivalence of damage

From Eq. (6.20), we get,

∑
j

E
[(

Fe
rj − T(Ac)

)
+

]
= ∑

i
(Fri − T(Ac))+ . (6.27)

From Eq. (6.23), we get,

θ = arg min
θ∈Θ

(∫

||a||=1

((
∑

j
E

(
Fe∗

rj (Ac, θ)− T(Ac)
)

+

)

−
(

∑
i

(F∗ri(Ac, F)− T(Ac))+

))2

dS


 . (6.28)

Threshold for one-input EFL

Moreover, the threshold T(Ac) can also be evaluated for unidirectional
stress tensor, when α(Ac) = β(Ac) = 0.

Theorem 6.6. Threshold T(Ac) for unidirectional proportional stress ten-
sors. In the case of unidirectional stress tensor, the threshold T(Ac) is,

T(Ac, F) =
4

Cs(Ac)
3βd − Cs(Ac)αdF∗m(Ac, F)

2αd + 3
. (6.29)

Proof. The particular values α(Ac) = β(Ac) = 0 are replaced in Eq. (A.1).

We can conclude with regard to this approach that we can get a theoreti-
cal expression of the threshold. However, parameters like Cs(Ac) are un-
known. We do not end up with numerical useful results of the threshold.
However, in the framework of equivalent fatigue approach, and from the
equivalence of damage, clarified in Eq. (6.22), we can not get rid of the
threshold. We need a numerical evaluation of it to determine the equiva-
lent loads Fe.

71



6.5 Optimal structures

6.5 Optimal structures

The problem of finding a suitable threshold T(Ac, F) whatever the geom-
etry, seems to be impossible to solve without additional assumptions on
the components we are working on. In a number of industrial cases, struc-
tures are designed to fulfill reliability requirements, imposed by the man-
ufacturer. These requirements can take different forms. We consider that
the forces that the structures are supposed to incur without reaching fail-
ure, are known. These forces are measured and stored during test tracks,
and are representative of the design life of the structures. The structures
fulfilling the reliability requirements have damage below or equal to one,
at their critical point, once these predefined sequences of forces are ap-
plied to them. The predefined loads are called Fdl .

We will consider the optimal structures, for which the damage reaches
exactly one, at their critical point, after the forces Fdl have been applied,
and satisfying Assumption 6.1 and Assumption 6.3. The critical points of
the optimal structures are called Âc.

Definition 6.7. Optimal structures. A structure is optimally designed if, after
applying the predefined multi-input forces,

Fdl =








Fdl,1(t)
...

Fdl,n(t)


 : t ∈ [0, Tdl ]





,

we get,
D(Âc, Fdl) = 1,

where Âc is the critical point of the optimal structure.

Using Morel’s criterion, a critical point Âc on an optimal structure is de-
fined by its threshold T(Âc, Fdl) and linear combination a(Âc). For each
point, from Eq. (6.12), the following equation is fulfilled:

1

2qT(Âc)
∑

i

(
F∗ri(Âc, Fdl)− T(Âc)

)
+

= 1. (6.30)

In consequence, we will be able to characterize the critical points, through
a(Âc) and T(Âc, Fdl), of all the different optimal structures. In practice,
we will only choose to treat a finite number of optimal structures.
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Figure 6.2: Loadings Fdl,1, Fdl,2, Fdl,3.

Moreover the threshold depends on the mean value of the linear combina-
tions of the loads F∗(Ac, F). It means that the evaluation of the thresholds
with the loads Fdl is available for the mean values of the components of
Fdl . This means that the numerical thresholds we have computed is not
usable for multi-input forces with different mean values.

Example 6.5.1. Several examples of characterization of optimal geome-
tries will be proposed. The aim is to characterize the structures, optimally
designed for predefined Fdl . In Fig. 6.2, forces from wheels, stored on test
tracks are presented. The longitudinal, transversal and the vertical forces
are called Fdl,1, Fdl,2 and Fdl,3, respectively. The structures exposed to these
loads are designed so that the damage at their critical points reaches one
after N times a predefined loading. Let’s call DT the damage induced by
one lap of track. The force Fdl is composed by N sequences stored during
a lap. For optimal structures, we get,

N DT(Âc, Fdl) = 1. (6.31)

Some structures are exposed to two-input loads, or three-input loads Fdl,1,
Fdl,2 and Fdl,3. First, we will determine a(Âc) and T(Âc, Fdl), so that Eq. (6.31)
is fulfilled, and for

Fdl =
(

Fdl,1
Fdl,2

)
.

We will consider that, in the case of bidimensional vector a(Âc),

a(Âc) =
(

cos(γ(Âc)), sin(γ(Âc))
)

.

The evaluation of the thresholds T(Âc, F) will be done for a finite num-
ber of γ(Âc), called γk. In Fig. 6.3, the different thresholds T(Âc, Fdl) are
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Figure 6.3: Pairs (T(Âc, F), a(Âc)) defining the optimal designed structures, ex-
posed to longitudinal and transversal loads Fdl,1 and Fdl,2.

represented in a polar plot, for,

γk =
kπ

18
1 ≤ k ≤ 18. (6.32)

Each γk corresponds to a linear combination a(Âc) and a threshold T(Âc, F).

Another example is illustrated in Fig. 6.4. Forces Fdl,1 and Fdl,3 were taken
into account.

Fdl =
(

Fdl,1
Fdl,3

)
.

The threshold T(Âc, Fdl) has been computed, for the same values of γk in
Eq. (6.32).

The next example is computed from the three loads, Fdl,1, Fdl,2 and Fdl,3,

Fdl =




Fdl,1
Fdl,2
Fdl,3


 .

The different vectors a(Âc) are generated randomly and uniformly. In
Fig. 6.5, the threshold is represented in a polar plot. ¤
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Figure 6.4: Pairs (T(Âc, F), a(Âc))) defining optimal designed structures, exposed
to longitudinal and vertical loads Fdl,1 and Fdl,3.
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Figure 6.5: Pairs (T(Âc, F), a(Âc)) defining optimal designed structures, exposed
to longitudinal, transversal and vertical loads Fdl,1, Fdl,2 and Fdl,3.
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6.6 Conclusion

This part is devoted to the evaluation of the damage from one-input and
multi-input forces. We succeed in evaluating the damage, under different
assumptions. The structures are supposed to be elastic and quasi-static.
Under the assumption of uniaxial stress tensor, we use Basquin’s criterion
to predict the life of the components. In the case of multiaxial stress tensor,
Morel’s criterion is used. We assume that the stress tensor is proportional.

We end up with different expressions of life prediction. Using Basquin’s
or Morel’s case, the damage is dependent on the rainflow content of linear
combinations of the forces. The coefficients defining the linear combina-
tions depend on the geometry of the structures. Other constants appear in
the expression of the damage from forces. They are linked to the geometry,
the material and the loads.

In the case of Morel’s model, the constant T(Ac, F), needs to be evaluated.
When Assumption 6.2 is valid, a theoretical expression of the threshold
is proposed. It can be evaluated numerically for optimal structures, for
which the damage reaches one at their critical points, once Fdl is applied.
In the case of Basquin’s criterion, the exponent β, dependent on the mate-
rial, needs to be determined. The Gerber’s parabola have not been used in
this application.

For one-input force, the equivalence of damage between F and Fe is ful-
filled if the equality in damage is satisfied. However, for multi-input
forces, the forces F and Fe are equivalent if the distances between D(Ac, F)
and De(Ac, θ) are minimized, over the different structures.
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Chapter 7

Sinusoidal equivalent
fatigue loads

In this chapter, a deterministic EFL is studied. Each component of the EFL
is considered as a sinusoidal load. Thus, an extension of the uniaxial ap-
proach, described in Chapter 3, to the multi-input equivalent fatigue ap-
proach, is proposed. The sinusoidal EFL will be developed with Basquin’s
and Morel’s criteria for the evaluation of the damage. The EFL and the
measurements are denoted as in Equations (6.1,6.17).

First, we will evaluate the sinusoidal EFL with one block. The measure-
ments are modeled by constant amplitude EFL. Then, we will extend this
model. The EFL are not only defined by one block of sinusoid, but sev-
eral blocks. Each block is characterized by amplitudes, phase shifts, and a
number of cycles.

7.1 A model of sinusoidal EFL

A first model of sinusoidal EFL is proposed. Each component is defined
by one block of sinusoids. The components of Fe are expressed as,

Fe
i (t) = Ai cos (ωt + φi), 1 ≤ i ≤ n.
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7.1 A model of sinusoidal EFL

Several assumptions are made. The mean of each component of Fe is equal
to the one of each component of F. Then,

mean(Fe
i ) = mean(Fi).

We have chosen to fix the phase shift φ1, otherwise the condition of equiv-
alence does not admit of a unique solution. Hence,

φ1 = 0. (7.1)

Moreover, we have fixed the number of cycles of Fe to N0. The angular
frequency of each component is fixed to ω,

ω = 2π
N0

T0
, (7.2)

where T0 is defined in Eq. (6.17).

In the case of one-input EFL,

Fe∗(Ac, t) = Fe(t) = A1 cos (ωt).

The variable we need to evaluate from the equivalence of damage is con-
tained in the vector θs, as in Notation 5.1. For one-input EFL, we get,

θs = (A1).

The vector θs is defined in the parameter space Θs,

Θs = {A1 > 0}.

In the case of multi-input EFL, the different parameters that should be
found are the amplitudes and the phase shifts of the different components
of Fe. We deduce the parameter vector θs,

θs = (A1, . . . , An, φ2, . . . , φn). (7.3)

The parameter vector θs belongs to the parameters space Θs,

Θs = {A1 > 0, . . . , An > 0, 0 ≤ φ2 < 2π, . . . , 0 ≤ φn < 2π}.
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7.2 Damage from multi-input sinusoidal loads

In the case of sinusoidal loads, the linear combination of the components,
Fe∗, can be written as,

Fe∗(Ac, Fe) = a(Ac) Fe

= A∗(Ac, θs) cos(ωt + φ∗(Ac, θs)). (7.4)

The vector a(Ac) is defined by Eq. (6.9) and by its coefficients ai(Ac). The
amplitude A∗(Ac, θs) and the phase φ∗(Ac, θs) can be derived from the
amplitudes and phase shifts of the components of Fe,

A∗(Ac, θs) =

(
n

∑
i=1

a2
i (Ac)A2

i

+2
n−1

∑
i=1

n

∑
j=i+1

Ai Ajai(Ac)aj(Ac) cos (φi − φj)

) 1
2

, (7.5)

cos (φ∗(Ac, θs)) =
∑n

i=1 ai(Ac)Ai cos φi

A∗(Ac, θs)
,

with 0 ≤ φ∗(Ac, θs) < 2π. (7.6)

The damage induced by Morel’s or Basquin’s criterion is based on the rain-
flow content of Fe∗(Ac, Fe). The rainflow content of Fe∗(Ac, Fe) is reduced
to a cycle with the amplitude A∗(Ac, θs) and N0 number of occurrences
(2N0 reversals).

From Theorem 6.1, the damage induced by Fe∗(Ac, Fe), using Morel’s cri-
terion, is,

De(Ac, θs) =
N0

2qT(Ac)
(2A∗(Ac, θs)− T(Ac))+. (7.7)

From Theorem 6.2, the damage induced by Basquin’s criterion is,

De(Ac, θsb) = CB(Ac)N0(A∗(Ac, θs))β. (7.8)

7.3 Equivalence of damage

Basquin’s and Morel’s criteria allow us to evaluate the damage from the
parameter vector θs. We find a solution θs from the condition of equiv-
alence of damage, described in the previous chapter. For one-input EFL,
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7.3 Equivalence of damage

the equivalence of damage is governed by Definition 6.3. The damage
induced by F is deduced from Remark 6.2 and Remark 6.3 when using
Morel’s or Basquin’s criterion. Using Morel’s criterion, from Remark 6.2,
the damage induced by the 2N0 reversals of the one-input EFL Fe is,

De(Ac, θs) =
1

2qT(Ac)
N0(2A1 − T(Ac))+.

Hence, the amplitude of the equivalent load becomes,

A1 =
1
2

(
T(Ac) +

1
N0

∑
i

(Fri − T(Ac))+

)
. (7.9)

From Basquin’s criterion, the damage is expressed from the N0 rainflow
cycles of Fe.

De(Ac, θs) = CB(Ac)N0 Aβ
1 . (7.10)

The amplitude A1 is deduced by,

A1 =
1

N0

β

√√√√∑
i

(
Fri

2

)β

. (7.11)

Note that Eq. (7.9) and Eq. (7.11) involved material and geometrical pa-
rameters like T(Ac) and β.

In the case of multi-input loads, the equivalence of damage between F
and Fe is expressed in Definition 6.4. The expression of the damage from
Morel’s or Basquin’s criteria are deduced from Theorem 6.2 and Theo-
rem 6.1. The damage induced by the sinusoidal EFL from Morel’s criterion
is,

De(Ac, θs) =
1

2qT(Ac)
N0(2A∗(Ac, θs)− T(Ac))+.

The amplitude A∗(Ac, θs) is deduced from the parameters belonging to θs,
from Equations (7.5,7.6). Basquin’s model gives,

De(Ac, θs) = CB(Ac)N0(A∗(Ac, θs))β.

The vector θs fulfills Definition 6.4.

Example 7.3.2. An example of sinusoidal two-input EFL is presented here.
We choose to model the sequence of variable amplitude forces by a sinu-
soidal EFL, with N0 = 500 cycles. The EFL and the measurements are
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Figure 7.1: Simulation of sinusoidal EFL with Basquin’s model.

illustrated in Fig. 7.1. Moreover, we choose Basquin’s criterion to evaluate
Fe, with β = 8. The parameter vector θs(Ac) is,

θs = (1.68, 2.34, 1.47),

The phase shift φ2 is expressed in radians, which means 84◦. ¤

7.4 Sinusoidal EFL with several blocks

In this section, the multi-input EFL with several blocks of sinusoids is de-
veloped. Each component of Fe is defined by K different blocks. We as-
sume that the number of cycles of each block is the same.

For
(k− 1)T0

K
≤ t <

kT0

K
,

the k-th block of the component Fe
i is defined as,

Fe
i (t) = Aki cos (ωt + φki) , 1 ≤ i ≤ n, 1 ≤ k ≤ K, (7.12)

where ω is defined by Eq. (7.2).
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7.4.1 Model of sinusoidal EFL with several blocks

For the same reason as in the sinusoidal EFL with one block, we assume
that,

φk1 = 0, ∀ 1 ≤ k ≤ K.

The parameters defining multi-input sinusoidal EFL with several blocks
are contained in the vector θsb. Amplitudes and phase shifts of each block
are contained in θsb,

θsb = (A11, . . . , AK1, A12, . . . , AK2, . . . , A1K, . . . , AnK,
φ12, . . . , φK2, . . . , φ1n, . . . , φKn). (7.13)

The parameter vector θsb belongs to the parameter space Θsb,

Θsb = {A11 > 0, . . . , AK1 > 0, . . . , A1K > 0, . . . , AnK > 0,
0 ≤ φ12 < 2π, . . . , 0 ≤ φK2 < 2π, . . . ,

0 ≤ φ1n < 2π, . . . , 0 ≤ φKn < 2π} . (7.14)

The damage induced by Morel’s or Basquin’s criteria is a function of the
parameters in θsb.

7.4.2 Damage from sinusoidal EFL with several blocks

For one-input EFL, the equivalence of damage is governed by Definition 6.3.
In the case of one-input EFL with several blocks, we use the equation of
equivalence of damage to determine more than one parameter. We do not
get a unique solution, due to the number of unknown parameters, greater
than the number of equations used to determine them.

In the multi-input case, the damage from Morel’s and Basquin’s models is
deduced from the linear combinations of Fe, Fe∗(Ac, Fe). From Eq. (7.12),
we deduce Fe∗(Ac, Fe),

Fe∗(Ac, Fe) = A∗
k(Ac, θsb) cos

(
ωt + φ∗k (Ac, θsb)

)
, 1 ≤ k ≤ K,

with
(k− 1)T0

K
≤ t <

kT0

K
.

The parameters A∗
k(Ac, θsb) and φ∗k (Ac, θsb) are deduced from Equations

(7.5,7.6).
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Figure 7.2: Simulation of sinusoidal EFL with Basquin’s model.

From Morel’s model, the damage induced by Fe∗(Ac, Fe) is deduced from
the amplitudes of each block of sinusoids of Fe∗(Ac, Fe),

De(Ac, θsb) =
1

2qT(Ac)
N0

K

K

∑
k=1

(
2A∗

k(Ac, θsb)− T(Ac)
)
+ . (7.15)

From Basquin’s model, the damage induced by Fe∗(Ac, Fe) is,

De(Ac, θsb) = CB(Ac)
N0

K

K

∑
k=1

(
A∗

k(Ac, θsb)
)β . (7.16)

In order for Fe and F to be equivalent in terms of damage, the vector θsb
has to fulfill Definition 6.4.

Example 7.4.3. In Fig. 7.2, a simulation of sinusoidal EFL with two blocks
is presented. The measurements F are the same as in Example 7.3.2. Basquin’s
model has been chosen, with β = 8. The number of cycles of each block is
250 cycles. The parameter vector is,

θsb = (0.6, 2.56, 1.91, 1.96, 1.63, 0.82)

The phase shifts are expressed in radians, which means 93.4◦ and 47◦. ¤
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Chapter 8

Gaussian equivalent fatigue
loads

In contrast to the sinusoidal EFL, the Gaussian loads are random pro-
cesses. Morel and Basquin’s model will be used. Details about the con-
struction of one-input and multi-input narrow-band Gaussian EFL will be
described. In order to use Gaussian processes as EFL, we need to evalu-
ate the expected intensity of rainflow cycles of linear combinations of the
components of the forces. In the following, we will see how it is possible to
access the distribution of the rainflow amplitudes of Gaussian processes.

We first recall some definitions and properties of Gaussian loads. For more
details, see [33] and [29]. Let’s consider a random process X,

X = {X(t) : t ∈ R}.

The process X is stationary if it satisfies Definition 8.1.

Definition 8.1. A random process X is stationary if the expectation E[X(t)] does
not depend on the time point t,

E[X(t)] = E[X(0)] = m,

and if the covariance C(X(t), X(t + τ)) only depends on τ, i.e.

C(X(t), X(t + τ)) = E [(X(t)−m)(X(t + τ)−m)]
= E [(X(0)−m)(X(τ)−m)]
= r(τ), (8.1)
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Chapter 8. Gaussian equivalent fatigue loads

where r(τ) is the covariance function .

Thus,
r(0) = Var(X(t)).

From the covariance function, the power spectrum can be derived. When
the spectrum is continuous,

r(t) =
∫ +∞

−∞
S( f ) exp(2iπ f t)d f .

The function S is called the spectral density or the power spectrum of X.
Moreover,

Var(X(t)) =
∫ +∞

−∞
S( f )d f

We can also define the spectral moment λm, as a function of the spectral
density S,

λm = (2π)m
∫ +∞

−∞
f mS( f )d f .

Thus,
λ0 = Var(X(t)).

The random process X is a Gaussian random process if it satisfies Defini-
tion 8.2,

Definition 8.2. A random process X is a Gaussian process if, for each n and each
time point t1, t2 . . . , tn, every linear combination α1X(t1) + . . . + αnX(tn) has a
Gaussian distribution.

A stationary Gaussian process X is characterized by its spectrum S and
its mean value m. We can distinguish two types of Gaussian processes,
narrow and broad-band processes, as shown in Fig. 8.1 and Fig. 8.2.
The narrow-band Gaussian process is described by a narrow-band power
spectrum, as shown in Fig. 8.1. The spectrum is concentrated around some
close frequencies. An example of the function S( f ) for a narrow-band
Gaussian process is, e.g. ,

S( f ) =





0 for f < f0 − ∆ f
2 ,

Var(X(t))/∆ f for f0 − ∆ f
2 < f < f0 + ∆ f

2 ,
0 for f > f0 + ∆ f

2 .
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Figure 8.1: Simulation of narrow-band Gaussian process (left) and its estimated
spectrum (right).
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Figure 8.2: Simulation of broad-band Gaussian process (left) and its estimated
spectrum (right).
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Chapter 8. Gaussian equivalent fatigue loads

In this case, the spectrum is concentrated around f0. The irregularity fac-
tor, 0 ≤ α ≤ 1, is commonly used, taking values close to 1 for narrow-band
processes, and close to 0 for broad-band processes,

α =
Intensity of upcrossings of the mean of X

Intensity of local maxima of X
.

In this study, we are particularly interested in the intensity of rainflow
cycles. Much work has been done on the distribution of cycles of Gaussian
processes, like [6, 36, 56, 58, 66].

Let’s consider the cumulative intensity of rainflow cycles of a Gaussian
process, µr f c(u, v), as the expected number of rainflow cycles per time
unit, with the minimum below the level u and the maximum above the
level v, with u < v. In [56], it is proved that the cumulative intensity of
rainflow cycles is the intensity of upcrossings of the interval [u, v], which
was independently found in [59]. Let’s consider Nosc

T0
(u, v), the number of

interval upcrossings of the process X, during the time period T0,

Nosc
T0

(u, v) = ]{upcrossings of [u, v] by {Xt : t = [0, T0]}},

where ]{.} represents the number of elements in the set {.}. The variable
Nr f c

T0
(u, v) is the number of rainflow cycles with a minimum below u and

a maximum above v, of the process X, during the time period T0. Thus,
from [56],

Nr f c
T0

(u, v) = Nosc
T0

(u, v).

Moreover, if,

µosc(u, v) = lim
T0→+∞

E[Nosc
T0

(u, v)]

T0
,

and,

µr f c(u, v) = lim
T0→+∞

E[Nr f c
T0

(u, v)]

T0
,

then,
µr f c(u, v) = µosc(u, v). (8.2)

The Theorem 8.3 is found in [57].

Theorem 8.3. Bounding the cumulative intensity of rainflow cycles. Let’s
consider a continuous random process X, with a finite number of turning points
in a bounded time interval. The cumulative intensity of rainflow cycles is bounded
from below by the intensity of cycles using the range counting method (or min-
max counting cycles, see subsection 2.2.1), which is called µrc(u, v). Moreover,

88



Chapter 8. Gaussian equivalent fatigue loads

µr f c(u, v) does not exceed the minimum intensity of upcrossings of levels u and
v, called µ+(u) and µ+(v). Thus,

µrc(u, v) ≤ µr f c(u, v) ≤ min
(
µ+(u), µ+(v)

)
. (8.3)

Let’s consider µ+
nb(u) and µ+

nb(v), the expected numbers of upcrossings of
the levels u and v, per time unit, of a narrow-band Gaussian process. Then
the expected number of rainflow cycles with the minimum below u and
the maximum above v, µ

r f c
nb (u, v) is,

µ
r f c
nb (u, v) ≈ min

(
µ+

nb(u), µ+
nb(v)

)
.

In [6, 66], Eq. (8.3) was used to investigate an approximation of the joint
probability distribution hr f c(u, v) of rainflow cycles with the minimum
at level u and the maximum at level v for a class of Gaussian process.
It is expressed by the cycle distribution of a Gaussian process using the
range counting method, called hrc(u, v) and the distribution of cycles of a
narrow-band Gaussian process, hnb(u, v),

hr f c(u, v) = bhnb(u, v) + (1− b)hrc(u, v). (8.4)

The parameter b depends on spectral moments λ0, λ1, λ2 and λ4. Several
approximations of the distribution hrc(u, v) have been proposed. One of
them is described in [6],

hrc(u, v) =
1

λ0α22
√

2π

(
u− v√

4λ0(1− α2)

)

exp
(
− u2 + v2

4λ0(1− α2)
− (u− v)2(1− 2α2)

4λ0(1− α2)2α2

)
, (8.5)

with

α =
λ2√

(λ0λ4)
,

which is the irregularity factor. The coefficient α tends to one for narrow-
band Gaussian process, and tends to zero for broad-band Gaussian pro-
cess. From [66], the distribution hnb(u, v) can be written as,

hnb(u, v) =

{
[pP(u)− pV(u)]δ(u + v) + pV(u)δ(u− v) u > 0
pP(u)δ(u− v) u ≤ 0,

(8.6)
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8.1 Expected damage from one-input stationary narrow-band Gaussian
process

with δ denoted as the dirac function, and pP(u) and pV(v) the probability
density functions of peaks at the level u and valleys at the level v, respec-
tively. For narrow-band zero-mean Gaussian process X,

pP(u) = pV(−v)

=

√
(1− α2)√

2πλ0
exp

(
− u2

2λ0(1− α2)

)

+
αu
λ0

exp
(
− u2

2λ0

)
Φ

(
αu√

λ0(1− α2)

)
.

The function Φ is the cumulative standard normal distribution function,

Φ(u) =
1√
(2π)

∫ u

−∞
exp

(
− t2

2

)
dt.

Equations (8.4, 8.5, 8.6) lead to a complicated approximation of the distri-
bution of the amplitude of rainflow cycles for Gaussian processes. As a
first approach of multi-input EFL, and for the sake of simplicity, we will
restrict our work to narrow-band Gaussian processes. Thus,

hr f c(u, v) = hnb(u, v) and α = 1.

Thus,

pP(u) =
u
λ0

exp
(
− u2

2λ0

)
= pV(−v).

The density function of peaks and valleys is the Rayleigh density function.
The marginal distribution of amplitude of rainflow cycles with amplitude
h, called pH(h), is Rayleigh,

pH(h) =
h

λ0
exp

(
− h2

2λ0

)
.

8.1 Expected damage from one-input stationary
narrow-band Gaussian process

In order to evaluate the expected damage from a Gaussian process, we
need to obtain information about the intensity of rainflow cycles, when
using Basquin’s or Morel’s criteria. Much work has been done concerning
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8.1 Expected damage from one-input stationary narrow-band Gaussian
process

the evaluation of the rainflow content of narrow-band Gaussian processes.
Let’s consider a narrow-band stationary Gaussian process X, such as,

X = {X(t) : 0 ≤ t ≤ T0},

with mean E[X(t)] = m and variance Var(X(t)) = σ2
X . The intensity of

level crossings is the expected number of passages of the level u per time
unit (see Eq. (2.5)). It is called µ+(u). The expected number of upcrossings
of the level u by the process X during the time period T0 is called µ+

T0
(u),

µ+
T0

(u) = T0µ+(u).

Rice’s formula allows us to determine the expected number of level cross-
ings of the level u by a Gaussian process, see [53, 54].

Theorem 8.4. Rice’s formula. Let’s consider a stationary Gaussian process
{X(t) : 0 ≤ t ≤ T0} with mean E(X(t)) = m and variance Var(X(t)) = σ2

X
and variance of the derivative Var(Ẋ(t)) = σ2

Ẋ . The expected number of level
upcrossings of a level u is:

µ+
T0

(u) =
T0

2π

σẊ
σX

exp

(
− (u−m)2

2 σ2
X

)
.

The expected number of level crossings of the mean m is,

µ+
T0

(m) =
T0

2π

σẊ
σX

.

For a narrow-band Gaussian process, the expected number of cycles dur-
ing the time period T0 is approximated by µ+

T0
(m). The Rayleigh approxi-

mation provides an estimation of the intensity of rainflow cycles for narrow-
band Gaussian processes, [57].

Theorem 8.5. Rayleigh approximation. Let’s consider a stationary narrow-
band Gaussian process {X(t) : 0 ≤ t ≤ T0}, with the variance σ2

X and the
variance of the derivative σ2

Ẋ . The intensity of rainflow cycles, per time unit, with
amplitude h is:

µ(h) ≈ µ+(m)pH(h) =
1

2π

σẊ
σX

h
σ2

X
exp

(
− h2

2σ2
X

)
. (8.7)

where pH(h) is the Rayleigh probability density function of the rainflow cycles
with amplitude h.

91



8.1 Expected damage from one-input stationary narrow-band Gaussian
process

The expected damage per time unit, induced by rainflow cycles of X, de-
pends on the intensity of rainflow cycles with amplitude h. The expected
damage on a time period T0, computed at a critical point Ac of a geometry,
is called De(Ac, X), and is defined by Eq. (6.18),

De(Ac, X) = E[D(Ac, {X(t) : t ∈ [0, T0]})].

8.1.1 Morel’s model of life prediction

Let’s consider a critical point Ac with the threshold T(Ac). The expected
damage on a time period T0, induced by X, is defined in Remark 6.2. In
the case of one-input Gaussian process,

De(Ac, X) = T0
1

q T(Ac)

∫ +∞

T(Ac)
2

(2h− T(Ac)) µ(h) dh (8.8)

= T0
1

q T(Ac)
de(Ac, X), (8.9)

where h is the amplitude of the rainflow cycle of X. Let’s develop the
expression of the damage:

de(Ac, X) = 2
∫ +∞

T(Ac)
2

(
h− T(Ac)

2

)
µ(h) dh

=
1
π

σẊ
σX

∫ +∞

T(Ac)
2

(
h− T(Ac)

2

)
h

σ2
X

exp

(
−h2

2σ2
X

)
dh

=
1
π

σẊ
σX




[
−

(
h− T(Ac)

2

)
exp

(
−h2

2σ2
X

)]+∞

T(Ac)
2

+
∫ +∞

T(Ac)
2

exp

(
− h2

2σ2
X

)
dh

)

=
1
π

σẊ
σX

(∫ +∞

T(Ac)
2σX

exp
(
−v2

2

)
σX dv

)

= σẊ

√
2
π

∫ +∞

T(Ac)
2σX

1√
2π

exp
(
−v2

2

)
dv

= σẊ

√
2
π

(
1− Φ

(
T(Ac)
2σX

))
. (8.10)
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8.1 Expected damage from one-input stationary narrow-band Gaussian
process

The function Φ is the normal cumulative distribution. Consequently the
expected damage induced by X is finally:

De(Ac, X) = T0
1

q T(Ac)
σẊ

√
2
π

(
1− Φ

(
T(Ac)
2σX

))
.

Theorem 8.6. Expected damage from one-input narrow-band Gaussian
process with Morel’s criterion. Let Ac be a critical point on a structure ful-
filling Assumption 6.1 and Assumption 6.2, defined by the threshold T(Ac).
The stationary Gaussian process X = {X(t) : t ∈ [0, T0]} is a one-input force,
applied to the structure, with the standard deviation σX and the standard devia-
tion of the derivative σẊ . The damage induced by Morel’s criterion at Ac is,

De(Ac, X) = T0
1

q T(Ac)
σẊ

√
2
π

(
1− Φ

(
T(Ac)
2σX

))
. (8.11)

8.1.2 Basquin’s model of life prediction

Basquin’s model of damage is also based on the intensity of rainflow cy-
cles of the process X. Let’s consider a critical point of a structure, called
Ac. From Remark 6.3, we can deduce the expected damage induced by X,
called De(Ac, X) over a time period T0,

De(Ac, X) = T0

∫ +∞

0
CB(Ac) hβ µ(h) dh.

From the Rayleigh approximation, we get:

De(Ac, X) = CB(Ac)
T0 σẊ
2 πσX

∫ +∞

0
hβ h

σ2
X

exp

(
− h2

2 σ2
Ẋ

)
dh

Thus,

De(Ac, X) = CB(Ac)
T0 σẊ
2 πσX

∫ +∞

0
(2r)β/2 σ

β
X exp(−r)dr ,

(
r =

h2

2 σ2
X

)
,

= CB(Ac)
T0 σẊ
2 πσX

2(β/2) σ
β
XΓ

(
β

2
+ 1

)
.

The gamma function is defined as:

Γ(t) =
∫ +∞

0
xt−1 exp(−x)dx.
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8.2 A model of Gaussian EFL

Theorem 8.7. Expected damage from one-input narrow-band Gaussian
process with Basquin’s criterion. Let Ac be a critical point on a structure,
fulfilling Assumption 6.1 and Assumption 6.3. The stationary Gaussian pro-
cess X = {X(t) : t ∈ [0, T0]} is a one-input force, applied to the structure, with
the standard deviation σX and the standard deviation of the derivative σẊ . The
damage induced by Basquin’s criterion at Ac is,

De(Ac, X) = CB(Ac)
T0 σẊ
2 πσX

2(β/2) σ
β
XΓ

(
β

2
+ 1

)
. (8.12)

8.2 A model of Gaussian EFL

In the following, the one-input Gaussian EFL will be described first. The
model will then be extended to multi-input Gaussian EFL, where different
difficulties will appear. It mostly concerns the correlation that can appear
between the measurements.

Let’s consider multi-input stationary narrow-band Gaussian EFL Fe, de-
fined by Eq. (6.17). The variance matrix of Fe is called Var(Fe),

Var(Fe) =




σ2
1 . . . σ1n
...

. . .
...

σn1 . . . σ2
n


 . (8.13)

The covariance function of stationary Gaussian processes Fe
i and Fe

j , with
mean value mi and mj respectively, is called ri,j,

ri,j(τ) = C(Fe
i (t), Fe

j (t + τ))

= E
[
(Fe

i (t)−mi)(Fe
j (t + τ)−mj)

]
.

The covariance matrix R(τ) contains all the covariance function of Fe,

R(τ) =




...
. . . ri,j(τ) . . .

...




i=1,...,n,j=1,...,n.

From the covariance function ri,j(τ), the cross spectrum can be computed,

si,j( f ) =
∫ +∞

−∞
ri,j(τ) exp−2iπ f τ dτ,
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8.2 A model of Gaussian EFL

when the integral converges. We can deduce the matrix of cross spectra
S( f ),

S( f ) =




...
. . . si,j( f ) . . .

...




i=1,...,n,j=1,...,n.

8.2.1 Assumptions

The multi-input Gaussian EFL are assumed to be stationary narrow-band
Gaussian processes. The EFL are equivalent in terms of damage to the
measurements F, defined in Eq. (6.1). We will assume that the expected
number of cycles is fixed to N0, for each component of the EFL. Let’s call
σḞe

i
, with 1 ≤ i ≤ n, the standard deviation of its derivative. Then, from

Theorem 8.4, and using,
µ+

T0
(m) = N0,

we get,

σḞe
i

= N0 σi
2π

T0
, i = 1, . . . , n, (8.14)

where T0 is the time period of the process Fe. Moreover, we will also
consider that, for each component, the mean values of the equivalent loads
are equal to the ones of the measurements.

8.2.2 One-input Gaussian EFL

Let’s consider the one-input narrow-band stationary Gaussian load Fe,
equivalent in terms of damage to the one-input measurement F. The pa-
rameter we have to find in order to define Fe entirely is σ1. Let’s consider
the parameter vector,

θg = (σ1),

belonging to the parameter space Θg,

θg ∈ Θg = {σ1 > 0}.
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8.2 A model of Gaussian EFL

8.2.3 Two-input Gaussian EFL

In Fig. 8.3, a simple example of measurements is presented. In this case,
F1(t) and F2(t) are correlated in the axis system (A). However, in the axis
system (B), the forces do not seem to be correlated anymore.

F
1
 

F
2
 

F’
2

F’
1

β
1
 

(A) 

(B) 

Figure 8.3: Example of correlation between two loads F1 and F2, where β1 is the
angle between F1 and F′1.

Let’s consider the matrix R(A), the estimated covariance matrix of F1 and
F2. For every time point t, the diagonalized matrix is called R(B),

R(B) = MT R(A)M. (8.15)

Therefore, we can define an axis system B, such as the projections of F1(t)
and F2(t) in B are almost independent. Let’s consider F′1(t) and F′2(t), re-
sulting from the projection of F1(t) and F2(t) in (B),

C(F′1(t), F′2(t)) ≈ 0. (8.16)

Let’s consider stationary and narrow-band Gaussian EFL Fe such as,

Fe =
{(

Fe
1

Fe
2

)
: t ∈ [0, T0]

}

and,
Fe

i = {Fe
i (t) : 0 ≤ t ≤ T0}, with i = 1, 2.
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8.2 A model of Gaussian EFL

The construction of the Gaussian EFL will be based on the two-input in-
dependent stationary narrow-band Gaussian processes X1 and X2, com-
ponents of X,

X =
{(

X1(t)
X2(t)

)
: t ∈ [0, T0]

}
,

and
Xi = {Xi(t) : 0 ≤ t ≤ T0}, with i = 1, 2.

Processes X and Fe are linked by the matrix M,

Fe = MX. (8.17)

The variance of the components of Fe and X are denoted as,

Var(Fe) =
(

σ2
1 σ12

σ21 σ2
2

)
,

and

Var(X) =

(
σ2

X1
0

0 σ2
X2

)
.

From Eq. (8.17),
Var(Fe) = M Var(X) MT . (8.18)

In the two-input case, the change of axis system is given by an angle β1,
see Fig. 8.3. Thus,

M =
(

cos(β1) sin(β1)
− sin(β1) cos(β1)

)
.

Consequently, we can deduce the standard deviation of the equivalent
loads Fe

1 and Fe
2 from those of X1 and X2.

If Eq. (8.14) is fulfilled for the processes X1 and X2, we can prove that
Eq. (8.14) holds for Fe

1 and Fe
2 . Let’s consider σ2

Ẋ1
and σ2

Ẋ2
the variance of

the derivative Ẋ1 and Ẋ2,

σẊ1
=

N0σX12π

T0
,

σẊ2
=

N0σX22π

T0
.
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8.2 A model of Gaussian EFL

So, from Eq. (8.18),

Var(Ḟe) = M

(
σ2

Ẋ1
0

0 σ2
Ẋ2

)
MT

= M




( N0σX1 2π

T0

)2
0

0
( N0σX2 2π

T0

)2


 MT

=
(

N02π

T0

)2
M

(
σ2

X1
0

0 σ2
X2

)
MT ,

Hence,

Var(Ḟe) =
(

N02π

T0

)2
Var(Fe). (8.19)

If the expected number of rainflow cycles of X1 and X2 is fixed to N0, the
expected number of rainflow cycles for Fe

1 and Fe
2 is fixed to N0 as well.

In order to define the Gaussian EFL, we finally need to evaluate the change
of the axis system. The vector θg contains parameters defining the equiv-
alent loads,

θg = (σX1 , σX2 , β1).

The vector θg belongs to the parameter space Θg, see [67]:

θg ∈ Θg = {σX1 > 0, σX2 > 0,−π

2
≤ β1 ≤

π

2
}.

8.2.4 N-input Gaussian EFL

In the n-input case, the processes X are defined as follows,

X =








X1(t)
...

Xn(t)


 : 0 ≤ t ≤ T0





The variance of X is characterized by,

Var(X) =




σ2
X1

. . . 0
...

. . .
...

0 . . . σ2
Xn


 .
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8.2 A model of Gaussian EFL

The multi-input EFL are defined in Eq. (6.17), and the variance in Eq. (8.13).
Equations (8.17, 8.18) hold in the n-input case. The matrix M is the rota-
tion matrix. Its components are expressed from the 1

2 n(n− 1) angles, see
[2] and [67]. The orthogonal matrix M can be decomposed into several
orthogonal matrices,

M = (M12M13 . . . M1n) (M23M24 . . . M2n) . . . (M(n−1)(n)), (8.20)

with

Mab =




I 0 0 0 0
0 cos(βab) 0 sin(βab) 0
0 0 I 0 0
0 − sin(βab) 0 cos(βab) 0
0 0 0 0 I




row a

row b

The sines and cosines take place in the rows a and b and in the columns a
and b. The different angles βab with 1 ≤ a < b ≤ n define the change of
axis system from A to B. The components of the n× n matrix M are called
mij, with i = 1, . . . , n and j = 1, . . . , n.

Again, we will consider that X has a fixed and known expected number
of cycles N0. From Eq. (8.14),

σẊi
=

N0σXi 2π

T0
with i = 1, . . . , n.

Then,

Var(Ḟe) = M




σ2
Ẋ1

. . . 0
...

. . .
...

0 . . . σ2
Ẋn


 MT

= M




( N0σX1 2π

T0

)2
. . . 0

...
. . .

...

0 . . .
(

N0σXn 2π
T0

)2




MT .

Finally,

Var(Ḟe) =
(

N02π

T0

)2
Var(Fe).
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8.3 Equivalence of damage

We can conclude that if the expected number of rainflow cycles of the
multi-input process X is fixed to N0, then Fe has also a fixed expected
number of rainflow cycles N0.

We have assumed that the means of the components of Fe are known and
equal the ones of the measurements. The expected number of cycles of Fe

is also known. We finally need to characterize the variance of Fe and the
change of axis system, from (A) to (B), in order to define the narrow-band
stationary Gaussian EFL.

In order to know the matrix M, the number of βab that should be fixed
is 1

2 n(n − 1). In addition to the n variances of the components of Fe, we
finally have 1

2 n(n + 1) different parameters to give, in order to specify the
stationary narrow-band Gaussian EFL,

θg = (σX1 , . . . , σXn , β12, β13, . . . , β1n, β23, . . . , β2n, . . . , β(n−1)(n)). (8.21)

The vector θg belongs to the parameter space Θg,

θg ∈ Θg = {σX1 > 0, . . . , σXn > 0,−π

2
≤ β12 ≤

π

2
, . . . ,−π

2
≤ β(n−1)(n) ≤

π

2
}.

Remark 8.1. It is also possible to define the orthonormal matrix M. Then,

n

∑
i=1

m2
ij = 1, j = 1, . . . n,

n

∑
i=1

mijmik = 0, j = 1, . . . , n, k = 1, . . . , n, j 6= k. (8.22)

The total number of components of M is n2. If we consider Eq. (8.22), the to-
tal number of parameters that should be found in order to define M entirely is
1
2 n(n − 1). The vector θg still contains 1

2 n(n + 1) parameters that should be
found from the equivalence of damage.

8.3 Equivalence of damage

We aim to evaluate the parameter vector θ, so that the equivalence of dam-
age is fulfilled. From Basquin’s or Morel’s criterion, the damage is based
on the rainflow content of linear combinations of the components of the
forces. Thus, the expected damage induced by the EFL is based on the
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8.3 Equivalence of damage

rainflow content of a linear combination of narrow-band Gaussian pro-
cesses, called Fe∗(Ac, Fe). A linear combination of narrow-band Gaussian
processes is also a narrow-band Gaussian process, if they have the narrow
band of their spectra in common. That is why Theorem 8.6 and Theo-
rem 8.7 still hold for Fe∗(Ac, Fe).

8.3.1 One-input Gaussian EFL

The expected damage induced by the force F is D(Ac, F), at a critical point
Ac. The damage induced by Fe is called De(Ac, Fe) and is deduced from
Eq. (8.11), if using Morel’s criterion, or from Eq. (8.12), if using Basquin’s
criterion. The aim is to find the vector θg, describing Fe so that the damage
induced by the equivalent load is fulfilled, see Definition 6.3. The damage
De(Ac, θg) is expressed in Eq. (6.18). Hence, we need to solve the equation,

D(Ac, F) = De(Ac, θg). (8.23)

From Morel’s criterion, Theorem 8.6 and Eq. (8.14), we get,

De(Ac, θg) =
N0σ1

qT(Ac)

√
2
π

(
1− Φ

(
T(Ac)

2σ1

))
. (8.24)

Using Morel’s criterion, the damage evaluated from a known sequence of
measurement F is expressed from its rainflow content, as shown in Re-
mark 6.2. The ranges of the reversals of the rainflow cycles and residuals
of F are called Fri:

D(Ac, F) =
1

2qT(Ac)
∑

i
(Fri − T(Ac))+ .

Thus, from Eq. (8.23) and Eq. (8.24), we obtain,

1
2 ∑

i
(Fri − T(Ac))+ = N0σ1

√
2
π

(
1− Φ

(
T(Ac)

2σ1

))
. (8.25)

Let’s call g the function,

R+, σ1 7−→ σ1Φ
(

1− T
2σ1

)
∈ R+,
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8.3 Equivalence of damage

where T is a positive constant. Since the function g is continuous and
strictly increasing on R+, and,

g(σ1) → +∞ when, σ1 → +∞,

g(σ1) → 0 when, σ1 → 0,

and assuming that,

0 < ∑
i

(Fri − T(Ac))+ < +∞,

Eq. (8.25) always has a solution.

From Basquin’s criterion, Theorem 8.7 and Eq. (8.14), we get,

De(Ac, θg) = CB(Ac) N0 2(β/2) σ
β
1 Γ

(
β

2
+ 1

)
. (8.26)

The damage induced by the measurement F1 is evaluated from Basquin’s
criterion as follows,

D(Ac, F) = CB(Ac) ∑
i

(Fri)
β . (8.27)

From the equality of damage, we can deduce an analytical expression of
σ1,

σ1 = β

√√√√ ∑i (Fri)
β

N0 2(β/2)Γ
(

β
2 + 1

) .

We can deduce the standard deviation of F from this expression.

8.3.2 Multi-input Gaussian EFL

In the case of multi-input equivalent fatigue loads,

Fe∗(Ac, Fe) = a(Ac) Fe.

From Eq. (8.17),
Fe∗(Ac, Fe) = a(Ac) M X. (8.28)
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8.3 Equivalence of damage

Let’s call σ∗(Ac, Fe) the standard deviation of the process Fe∗(Ac, F). We
aim to express σ∗(Ac, Fe) from the variances of the multi-input narrow-
band Gaussian process X, belonging to the parameter vector θ. From
Eq. (8.28), it holds,

Var(Fe∗(Ac, Fe)) = [σ∗(Ac, Fe)]2 =
n

∑
i=1

(
n

∑
j=1

ai(Ac)mij

)2

σ2
Xj

, (8.29)

where mij are the components of M. Thus, the standard deviation σ∗(Ac, Fe)
is a function of the parameters contained in θg. The expected damage
induced by the multi-input narrow-band Gaussian EFL, with a fixed ex-
pected number of cycles N0, is expressed from Theorem 8.6 and Eq. (8.14)
using Morel’s model,

De(Ac, θg) =
N0σ∗(Ac, θg)

qT(Ac)

√
2
π

(
1− Φ

(
T(Ac)

σ∗(Ac, θg)

))
, (8.30)

From Basquin’s model and Theorem 8.7 and Eq. (8.14), we get,

De(Ac, θg) = CB(Ac) N0 2(β/2) (
σ∗(Ac, θg)

)β Γ
(

β

2
+ 1

)
. (8.31)

The EFL are equivalent to the measurements F if θ satisfies Definition 6.4
and if the square distance between the expected damage of Fe and the
damage induced by the measurements is minimized.

Example 8.3.4. In the following example, a transformation of measure-
ments from test tracks into Gaussian EFL has been performed. Morel’s
criterion has been used. The threshold T(Ac) has been chosen to be con-
stant over the critical points Ac, T(Ac) = 1. This example is a two-input
case. We have considered that

a(Ac) = (cos(γ(Ac)), sin(γ(Ac))).

The measurements are illustrated in Fig. 8.4.
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Figure 8.4: Illustration of measurements F1 and F2.

The number of cycles N0 of the EFL is fixed to 1000 cycles. The parameters
of the Gaussian EFL have been evaluated, see Fig. 8.5,

θg = (0.902, 0.518, 0.017).

The angle β1 is expressed in radians, which means 1◦.
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Figure 8.5: Fitting (left) and representation of a sample of Fe
1 and Fe

2 (right).

The comparison between the Rayleigh distribution and the cumulative
frequencies of amplitudes of Fe

1 and Fe
2 has been calculated, see Fig. 8.6.
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Figure 8.6: Comparison between cumulative frequencies of amplitudes of Fe
1 and

Fe
2 and the Rayleigh cumulative distribution.

¤

8.4 Conclusion

In this chapter, we have given a characterization of the stationary narrow-
band Gaussian EFL. We are able to evaluate the expected damage from a
narrow-band Gaussian process, using Theorem 8.7 and Theorem 8.6. The
mean of the Gaussian components of EFL is assumed to be equal to the
ones of the components of F. The number of cycles of Fe is fixed and
known.

We succeeded in translating the dependency existing between the compo-
nents of the measurements F. We observed that there is an axis system
linked to F, in which the components are almost independent. The pa-
rameter vector is composed of the standard deviation of each component
of Fe, and by the location of the axis system, in the nD space. The evalua-
tion of the multi-input EFL is governed by the equivalence of damage.

105



106



Chapter 9

Markov chain equivalent
fatigue loads

In the literature, Markov chains have been used to model complicated
and variable amplitude sequences of turning points. As we have previ-
ously seen, the intensity of rainflow cycles is crucial in the evaluation of
the damage the loads induce, when using Morel’s or Basquin’s criterion.
The intensity of rainflow cycles from parameters of a Markov sequence is
possible to evaluate, see e.g. [10, 24, 45].

In the following part, we have chosen to treat Markov chain EFL. We will
first model the measurements as a simple Markov chain. The simple case
of loads with three different states is considered. Moreover, some short
and rare events can be identified in the measurements. These rare events
usually contain a great part of the damage over the whole sequence. That
is the reason why we will reproduce them in the Markov chain EFL. An
extension to more than three states will be explored. The different states
and the transition matrix are determined by the equivalence of damage.

A Markov chain is a discrete time random process. Every time point is
associated to a state. Let’s consider a time point t, referred to a state i. The
state j occurring at the point t + 1 only depends on the state at the time
point t, and not on the history of the signal. The transition from i to j is
governed by the probability to go from i to j. Thus, a Markov chain is
defined by its states and the different conditional probabilities to go from
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Chapter 9. Markov chain equivalent fatigue loads

one state to another. These conditional probabilities are called transition
probabilities. More details about Markov chains can be found in e.g. [29].

Let’s consider the sequence {X0, X1, . . .} of random variables, which takes
values in the finite space S, also called the state space:

S = {−N,−N + 1, . . . , N − 1, N}. (9.1)

Definition 9.1. The process {Xt}∞
t=0 is a Markov chain if it satisfies the follow-

ing condition:

P(Xt = xt|X0 = x0, . . . , Xt−1 = xt−1) = P(Xt = xt|Xt−1 = xt−1)
∀ t ∈ N, ∀ x0, . . . , xt ∈ S. (9.2)

The Markov chain X is homogeneous if it satisfies the following condition:

P(Xt+1 = j|Xt = i) = P(X1 = j|X0 = i) ∀ t ∈ N, ∀ i, j ∈ S. (9.3)

The transition matrix P = (pij) is the matrix of transition probabilities,

pij = P(Xt+1 = j|Xt = i).

The transition matrix P contains the transition probabilities (pij) which
satisfies,

N

∑
j=−N

pij = 1. (9.4)

Definition 9.2. The vector π is called a stationary distribution of the Markov
chain X if π has entries {π j : j ∈ S} such that,

• π j ≥ 0 ∀j, and ∑j π j = 1,

• π = πP, or π j = ∑i πi pij ∀j.

The component i of the stationary distribution is the probability that the
process X is at the state i at time point t,

πi = P(Xt = i). (9.5)

In the following, we will consider that the initial distribution of the Markov
chain X is π, i.e,

πi = P(X0 = i).
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9.1 Expected damage from multidimensional Markov chain loads
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Figure 9.1: Simulation of a Markov chain X with five states.

Example 9.0.5. An example with N = 2 is given in detail,

P =




p−2−2 p−2−1 p−20 p−21 p−22
p−1−2 p−1−1 p−10 p−11 p−12
p0−2 p0−1 p00 p01 p02
p1−2 p1−1 p10 p11 p12
p2−2 p2−1 p20 p21 p22




=




0.8 0.06 0.05 0.04 0.05
0.1 0.06 0.04 0.6 0.2
0.5 0.4 0.05 0.03 0.02

0.05 0.05 0.1 0.1 0.7
0.1 0.33 0.03 0.04 0.5




. (9.6)

An example of a realization of a Markov chain is given in Fig. 9.1. The
stationary distribution π is,

π = (0.377, 0.153, 0.049, 0.133, 0.287) .

¤

9.1 Expected damage from multidimensional Markov
chain loads

The damage is evaluated from the intensity of rainflow cycles of linear
combinations of the forces. The multi-input forces Fe are defined in Eq. (6.17).
Even if Fe is a multi-input Markov chain, the components or the linear
combinations of the components are not Markov chains. Let’s call
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9.1 Expected damage from multidimensional Markov chain loads

Fe∗(Ac, Fe) a linear combination of the components of Fe, defined by the
row vector a(Ac) = (a1(Ac), a2(Ac), ..., an(Ac)). The entity µr f c(u, v) rep-
resents the cumulative intensity of rainflow cycles of the process Fe∗(Ac, Fe),
with a minimum below u and a maximum above v, u ≤ v. In [56], it is
proved that the cumulative intensity of rainflow cycles is the intensity of
upcrossings of the interval [u, v], which was found in [59]. The intensity
of upcrossings is called µosc(u, v),

µosc(u, v) = µr f c(u, v).

The aim is to evaluate the cumulative intensity of rainflow cycles µosc(u, v),
and study the upcrossings of any interval [u, v], with u ≤ v, of a linear
combination Fe∗(Ac, Fe).

The different states of Fe are contained in S, and are associated with the
column vector Vi, going from the origin to the state i. The vector Vi is
defined in an axis system with n dimensions, with the origin at 0 and axis
defined with unit basis vectors (e1, e2, . . . , en). At the state i, Fe is equal to
Vi. Let’s call g the following application,

g : S 3 i 7−→ Vi ∈ Rn.

Each value of X in S is associated with a column vector Vi,

g(i) = Vi.

The vector Vi is illustrated in Fig. 9.2. Moreover, let’s call v∗i ,

v∗i (Ac) = a(Ac) Vi. (9.7)

In order for the linear combination to upcross the interval [u, v], the Markov
chain Fe has to go from a set U to a set V, defined, in our case, as:

U = {i ∈ S : v∗i (Ac) < u},
V = {i ∈ S : v∗i (Ac) > v}.

When Fe goes from U to V, it starts at any state contained in U and can
either go directly to any state in V, or may visit the set W, defined as,

W = {i ∈ S : u ≤ v∗i (Ac) ≤ v},

and finally go to V. The three sets are disjoint and they satisfy the property
that,

U
⋃

V
⋃

W = S.
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Figure 9.2: Illustration of a path of a bidimensional Markov chain EFL Fe.

The different sets are illustrated in Fig. 9.2, in the case of a bidimensional
Markov chain.

In the following, we will evaluate the probability for Fe to go from the set
U to the set V, passing, or not, through the set W. The sets are different from
a linear combination to another, and from an interval [u, v] to another. The
oscillations from U to V will occur in two different ways:

• At time point t, the Markov chain Fe starts at any state contained in
U, and goes to any state of V at time point t + 1. We will call this first
event E0.

• If it does not go directly from U to V, the process visits the set W.
Thus, Fe starts at any state in U at time point t, jumps to any state in
W at time point t + 1, stay in W from time point t + 1 to t + k, and
finally reaches V at time point t + 1 + k. This event is called Ek.

In Fig. 9.3, the events E0 and E3 are illustrated. The intensity of rainflow
cycles of Fe∗(Ac, Fe), represents the probability that E0, E1, . . . , all disjoint
events, happen. We are thus interested in the probability that

⋃+∞
k=0 Ek

happens. The probability that the Markov chain Fe starts in U and goes to
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Figure 9.3: Illustration of events E0 and E3.

V is,

µr f c(u, v) = µr f c(U, V)

=
+∞

∑
k=0

P(Ek), (9.8)

where P(Ek) is the probability that the event Ek happens. The aim is to
evaluate the probability P(Ek). Let’s consider the states iu, iv and iw, con-
tained in U, V and W, respectively. Then,

P(Ek) = ∑
iu∈U

P(Ek|Xt = iu) P(Xt = iu), (9.9)

Then, we can deduce that,

µr f c(U, V) =
+∞

∑
k=0

∑
iu∈U

P(Ek|Xt = iu) P(Xt = iu).

The probability P(Xt = iu) is given by the stationary distribution πiu , from
Eq. (9.5),

πiu = P(Xt = iu), ∀iu ∈ U.

Thus,
P(Ek) = ∑

iu∈U
P(Ek|Xt = iu) πiu .

Let’s first consider the event E0. We are interested in the probability to go
from any state iu ∈ U to any state iv ∈ V,

P(E0|Xt = iu) = ∑
iv∈V

P(Xt+1 = iv|Xt = iu), ∀iu ∈ U.
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So, from Eq. (9.9), we get,

P(E0) = ∑
iu∈U

[
∑

iv∈V
P(Xt+1 = iv|Xt = iu)

]
P(Xt = iu).

Let’s define the column vector d,

d = (qiu ), qiu = ∑
iv∈V

P(Xt+1 = iv|Xt = iu), ∀iu ∈ U. (9.10)

The row vector π̃ is defined as,

π̃ = (πiu ), ∀iu ∈ U. (9.11)

Thus, from Eq. (9.10) and Eq. (9.11),

P(E0) = π̃d. (9.12)

Let’s now consider the event E1, or the possibility that the signal starts at
any state in U, and goes to any state in W, before reaching any state in V.
Thus,

P(E1|Xt = iu) = ∑
iw∈W

[
P(Xt+1 = iw|Xt = iu) ∑

iv∈V
P(Xt+2 = iv|Xt+1 = iw)

]

= ∑
iw∈W

[
P(Xt+1 = iw|Xt = iu) ∑

iv∈V
P(Xt+1 = iv|Xt = iw)

]
,

using the property of homogeneity of the Markov chain X, in Eq. (9.3). We
deduce the probability that E1 happens,

P(E1) = ∑
iu∈U

[
∑

iw∈W
P(Xt+1 = iw|Xt = iu)

∑
iv∈V

P(Xt+1 = iv|Xt = iw)

]
P(Xt = iu). (9.13)

Let’s first define the matrix C, such that,

C = (piuiw ), piuiw = P(Xt+1 = iw|Xt = iu), ∀iw ∈ W, ∀iu ∈ U. (9.14)

The column vector e is defined as,

e = (qiw ), qiw = ∑
iv∈V

P(Xt+1 = iv|Xt = iw), ∀iw ∈ W. (9.15)
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We deduce a simpler expression of P(E1), from Equations (9.11, 9.13, 9.14,
9.15),

P(E1) = π̃Ce.

The event E2 happens when the process goes from a state in U, to two
states in W, and finally goes to any states in V.

Let’s consider iw1 and iw2 two different states belonging to W. The proba-
bility to start from a state iu to any states iv, passing by any state iw1 and
iw2 is expressed as,

P(E2|Xt = iu) = ∑
iw1∈W

P(Xt+1 = iw1 |Xt = iu)

∑
iw2∈W

[
P(Xt+2 = iw2 |Xt+1 = iw1) ∑

iv∈V
P(Xt+3 = iv|Xt+2 = iw2)

]

= ∑
iw1∈W

P(Xt+1 = iw1 |Xt = iu)

∑
iw2∈W

[
P(Xt+1 = iw2 |Xt = iw1) ∑

iv∈V
P(Xt+1 = iv|Xt = iw2)

]
.

(9.16)

Thus, from Eq. (9.9),

P(E2) = ∑
iu∈U


 ∑

iw1∈W
P(Xt+1 = iw1 |Xt = iu)

∑
iw2∈W


P(Xt+1 = iw2 |Xt = iw1) ∑

iv∈V
P(Xt+1 = iv|Xt = iw2)

︸ ︷︷ ︸





 P(Xt = iu).

(9.17)

The term in the brackets is the probability to start at iw1 and go to any
states iv ∈ V, passing by iw2. Let’s define the matrix A as,

A = (piw1 iw2
), piw1 iw2

= P(Xt+1 = iw2 |Xt = iw1), ∀iw1, iw2 ∈ W. (9.18)

From Equations (9.11, 9.14, 9.15, 9.17, 9.18), we get,

P(E2) = π̃CAe.
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9.1 Expected damage from multidimensional Markov chain loads

By extension, we can deduce that the probability to go from U to V passing
by k different states of W is P(Ek), so that,

P(Ek) = π̃CAk−1e, k ≥ 1. (9.19)

From Equations (9.8, 9.12, 9.19), we deduce that,

µr f c(U, V) = π̃d +
+∞

∑
k=1

π̃CAk−1e,

= π̃

(
d + C

(
+∞

∑
k=1

Ak−1

)
e

)
.

If the geometrical sum converges, then,

+∞

∑
k=1

Ak−1 =
+∞

∑
k=0

Ak

= (I−A)−1.

We obtain,
µr f c(U, V) = π̃(d + C (I−A)−1 e). (9.20)

Remark 9.1. This last expression of µr f c(u, v) is valid for infinite time. Thus,
in the case of finite life processes, this is an overestimation of the cumulative in-
tensity of rainflow cycles.

From Eq. (9.8), we have computed the intensity of rainflow cycles of
Fe∗(Ac, Fe), with a minimum below u and a maximum above v, by com-
puting the intensity of upcrossings of the interval [u, v]. We end up with an
evaluation of the cumulative intensity of rainflow cycles from the transi-
tion matrix of the multidimensional Markov chain. More generally,
Eq. (9.20) is valid for any disjoint sets U, V and W, and any stationary
multidimensional Markov chain. This is illustrated in Fig. 9.4.

From the cumulative intensity of rainflow cycles in Eq. (9.20), we can de-
duce the intensity of rainflow cycles which start precisely at u and end at
v. It is called f r f c(u, v). The amplitudes uk represents the ordered ampli-
tudes v∗i (Ac). Thus,

uk ≤ uk+1 ≤ uk+2 . . . with 1 ≤ k ≤ 2N + 1. (9.21)

Let’s consider uk1
and uk2 , with k1 ≤ k2 such that,

uk1
= u,

uk2 = v. (9.22)
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9.1 Expected damage from multidimensional Markov chain loads

t+1F
e

tF
e

tF
e

t+1F
e

t+kF
e

t+1+kF
e

Eo

Ek

W

U

V

Figure 9.4: Illustration of oscillations from the set U to the set V, possibly passing
by W.

Then,

f r f c(uk1
, uk2) =µr f c(uk1+1, uk2−1)− µr f c(uk1

, uk2−1)

−µr f c(uk1+1, uk2) + µr f c(uk1
, uk2).

(9.23)

The expected number of rainflow cycles per time units, N1, is deduced
from Eq. (9.23),

N1 = ∑
uk1

∑
uk2

f r f c(uk1
, uk2). (9.24)

Example 9.1.6. Let’s consider a transition matrix P, such as:

P =




0 0 1 0 0
0 0 1 0 0

p0−2 p0−1 0 p01 p02
0 0 1 0 0
0 0 1 0 0




,

where
pij = P(Xt+1 = j|Xt = i).

The transition matrix P is related to the bidimensional process illustrated
in Fig. 9.5. In this example, we will consider the intensity of oscillations
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9.1 Expected damage from multidimensional Markov chain loads

eF1

c(A  )F*e

eF2

i=2

i=−2

k=1 k=2

i=−1
i=0

k=3

i=1

k=4 k=5

Figure 9.5: Illustration of a bidimensional process with five states.

and the intensity of rainflow cycles of the process Fe∗(Ac, Fe) as shown in
Fig. 9.5. From Eq. (9.21), we get,

u1 = v∗−2(Ac),
u2 = v∗−1(Ac),
u3 = v∗0(Ac),
u4 = v∗1(Ac),
u5 = v∗2(Ac).

For all 0 < k1 < 2N − 1, for all 0 < k2 < 2N − 1, such as k1 < k2, the
cumulative intensity of rainflow cycles of Fe∗(Ac, Fe) is,

µr f c =


0 0 0 0 0
p0−2

2
p0−2

2
p0−2(p01+p02)

2(1−p0−1)
p0−2 p02

2(1−p0−1−p01)
0

p0−2+p0−1
2

p0−2+p0−1
2

(p0−2+p0−1)(p01+p02)
2

(p0−2+p01)p02
2(1−p01)

0
1−(p0−2+p0−1)(p01+p02)

2
1−(p0−2+p0−1)(p01+p02)

2
p01+p02

2
p02
2 0

1−(p0−2+p0−1)(p01+p02)
2

1−(p0−2+p0−1)(p01+p02)
2

p01+p02
2

p02
2 0




,

The matrix of expected intensity of rainflow cycles f r f c(uk1
, uk2) can be

computed from µr f c(uk1
, uk2), as in Eq. (9.23),

f r f c =




0 0 A B C
0 0 D E F
0 0 0 G H
0 0 0 0 0
0 0 0 0 0




.
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9.1 Expected damage from multidimensional Markov chain loads

with

A =
p2

0−2
2(1− p0−1)

,

B =
p2

0−2 p01

2(1− p0−1)(1− p0−1 − p01)
,

C =
p0−2 p02

2(1− p0−1 − p01)
,

D =
p0−1(1 + (p0−2 − 1)p01 − p02 + p0−2 p02 + p0−1(p02 + p01 − 1))

2(1− p0−1)
,

E =
1
2
(
(p0−2 + p0−1)p02

p01 − 1
+

p0−2 p02

p01 + p0−1 − 1

+
p0−2(p01 + p02)

p0−1 − 1
+ (p0−2 + p0−1)(p01 + p0−1)),

F =
−p0−1 p02(p0−2 + p0−1 + p01 − 1)

2(p01 − 1)(p0−1 + p01 − 1)
,

G =
(p0−2 + p01)p02

2(1− p01)
,

H =
p02(p0−2 + p0−1 + p01)

2(p01 − 1)
.

(9.25)

¤

The Morel’s and Basquin’s criteria are both based on the intensity of rain-
flow cycles of a process. The expected damage induced by the process Fe,
on the time period T0, is expressed from Eq. (6.18).

9.1.1 Morel’s criterion

The range of a rainflow cycle, going from the state i to the state j is
|v∗i (Ac)− v∗j (Ac)|, where v∗i (Ac) is defined in Eq. (9.7). From Theorem 6.1,
we get,

De(Ac, Fe) =
T0

qT(Ac)
∑

i
∑

j

(
|v∗i (Ac)− v∗j (Ac)| − T(Ac)

)
+

f r f c(i, j).

(9.26)
Only rainflow cycles with ranges greater than the threshold T(Ac) induce
damage.
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9.2 A model of Markov chain equivalent fatigue loads

9.1.2 Basquin’s criterion

The coefficients of the Basquin’s curve are the parameter B(Ac) and expo-
nent β. From Theorem 6.2, the damage induced by Fe is:

De(Ac, Fe) = CB(Ac)T0 ∑
i

∑
j

( |v∗i (Ac)− v∗j (Ac)|
2

)β

f r f c(i, j). (9.27)

9.2 A model of Markov chain equivalent fatigue
loads

For this first attempt, we will work with the simplest case of Markov
chains. The one-input and two-input cases will be developed first. The
extension to more than two inputs will then be described in detail.

9.2.1 General assumptions

This study will be developped for zero mean measurements. The Markov
chain EFL Fe is assumed to be symmetric around 0,

Fe L= −Fe. (9.28)

This condition implies that,

E(Fe) = 0.

For the Markov chain EFL Fe, we will consider that the expected number
of cycles is fixed to N0, during the time period T0. Hence, from Eq. (9.24),
it follows,

NT0 = T0 ∑
i

∑
j

f r f c(i, j) = N0. (9.29)

Moreover, for the models we will develop, we need to define the unknown
parameters contained in the vector θmc and the parameter space it belongs
to, so that the Markov chains EFL Fe are equivalent, in terms of damage,
to measurements F.
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9.2 A model of Markov chain equivalent fatigue loads

9.2.2 The one-input case

In the one-input case, we have chosen to treat a model with three different
states, as shown in Fig. 9.6.

1 5 10 15 20 25 30
−v  

0  

v   

F
e  

TIME 

Figure 9.6: Example of realization of Markov chain for one-input equivalent loads
with amplitudes ||V1|| = ||V−1|| = v.

The levels of states 1 and −1 are defined by the amplitude v, also called
the amplitude of the Markov chain Fe. The vector Vi goes from the origin
0 to a states i. Hence,

V1 = −V−1 = v.

Every time we are at one of the states 1 or −1, the chain goes back to 0
with probability one, which gives:

P =




0 1 0
p1 0 p−1
0 1 0


 .

The parameters p1 and p−1 are the transition probabilities to go from the
state 0 to one of the states 1 or −1, respectively. From the property of
symmetry of Fe and Eq. (9.28), we get,

p−1 = p1 =
1
2

. (9.30)

The vector of parameter θmc = v belongs to the parameter space Θmc:

Θmc = {v ≥ 0}.

We have to evaluate θmc, so that the damage induced by the one-input
Markov chain EFL, De(Ac, θmc), is equal to the damage evaluated from
the one-input measurement, D(Ac, F), see Eq. (6.19).
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9.2 A model of Markov chain equivalent fatigue loads

9.2.3 The two-input case

In the two-input case, the model of Markov chain adopted is presented in
Fig. 9.7. The different states are corners of a rectangle. The sizes of the
lengths are 2v1 and 2v2.

Fe
2
 

(i=1) 

Fe
1
 

(i=2) 

(i=0) 

(i=−1) (i=−2) 2v
1
 

2v
2
 
o 

o o 

o 

Fe 
States o 

Figure 9.7: Model of Markov chain for two-input EFL.

In the Fig. 9.8, an example of realization of the two-input Markov chain
EFL is illustrated.

0 5 10 15 20 25
−V1

0

V1

TIME

F
1e

0 5 10 15 20 25
−1

0 

1 

TIME

F
2e

V
1
 

V
−1

 

V
−2

 

V
2
 

Figure 9.8: Example of a simulated two-input Markov chain EFL.

The transition probabilities to go from one of the states i = −2,−1, 1, 2 to
the original state i = 0 are one. The transition probabilities to go from
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9.2 A model of Markov chain equivalent fatigue loads

the origin 0 to one of the states i = −2,−1, 1, 2 are called pi. Then, the
transition matrix called P can be written as a function of the pi:

P =




0 0 1 0 0
0 0 1 0 0

p−2 p−1 0 p1 p2
0 0 1 0 0
0 0 1 0 0




.

Under the assumptions of a symmetric Markov chain EFL Fe and from
Eq. (9.4),

p−1 = p1,
p−2 = p2.

and

V1 = −V−1,
V2 = −V−2.

Moreover, as shown in Fig. 9.7,

V1 = −V−1 =
( −v1

v2

)
,

V2 = −V−2 =
(

v1
v2

)
.

From Fig. 9.7, the situations "in phase" or "out of phase" are referred to
states 2, −2 and 1, −1, respectively. Let’s consider the transition probabil-
ities pin and pout to be in phase or out of phase:

pin = p−2 + p2 = 2p−2

pout = p−1 + p1 = 2p−1. (9.31)

From Eq. (9.4),

p−2 =
1
2
− p−1.

Consequently, in the two-input case, the equivalent loads are defined by
parameters, given in the parameter vector θmc = (p−1, v1, v2). The param-
eter vector takes values in the parameter space Θmc:

θmc ∈ Θmc = {0 < p−1 <
1
2

, v1 > 0, v2 > 0}.
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9.2 A model of Markov chain equivalent fatigue loads

1F e

2F e

3F e

i=1

i=−2

i=−1

i=0

2v

2v2

3

2v1

i=−3

i=−4

i=2
i=4
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Figure 9.9: Model of Markov chain in three dimensions.

9.2.4 Generalization to the n-input case

The extension of the previous model to more than two forces is proposed.
Let’s consider Fe and F, n-input forces. In the case of n = 3, the rectan-
gle formed by the states in Fig. 9.7 is extended to a box, as illustrated in
Fig. 9.9. The lengths of the sides are denoted by 2v1, 2v2 and 2v3. The box
is centered around zero, the origin. By extensions, in the case of n > 3, the
EFL are represented by a rectangular parallelepipe in the n dimensional
space, centered around the origin 0. It is described by n sides of different
lengths, and 2n corners. Each corner represents a state. Again, every time
the Markov chain is at one of the corners, it comes back to the origin. The
transition probability to go from the origin to one of its corners, or to one
of its states i, is denoted by pi. The transition matrix P can be written as:

P =




0 · · · 0 1 0 · · · 0
...

...
...

...
...

0 · · · 0 1 0 · · · 0
p−w · · · p−1 0 p1 · · · pw

0 · · · 0 1 0 · · · 0
...

...
...

...
...

0 · · · 0 1 0 · · · 0




, with w = 2n−1. (9.32)
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9.3 Equivalence of damage

Since Fe is symmetric, we have:

pi = p−i.

From Eq. (9.4):

pw =
1
2
−

w−1

∑
i=1

pi.

The vector of parameters θmc, defining the equivalence of damage, con-
tains all the parameters linked to Fe:

θmc = (p1, . . . , pw−1, v1, . . . , vn). (9.33)

The vector θmc belongs to the parameter space Θmc,

Θmc = {0 < p1 <
1
2

, . . . , 0 < pw−1 <
1
2

, 0 <
w−1

∑
i=1

pi <
1
2

, v1 > 0 . . . vn > 0}

and satisfies the equivalence of damage.

9.3 Equivalence of damage

We have previously assumed that the damage is evaluated from the ranges
and the intensity of the rainflow cycles. In the case of Markov chain EFL,
it depends on the transition matrix, the ranges of the rainflow cycles and
on the expected number of cycles NT0 = N0. We will evaluate θmcp so
that the Markov chain EFL and the measurements fulfill the equivalence
of damage.

9.3.1 Equivalence of damage for one-input Markov chain
EFL

From Eq. (9.23) and Eq. (9.30), we can deduce the matrix of intensity of
rainflow cycles f r f c,

f r f c =
1
8




0 1 1
0 0 1
0 0 0


 . (9.34)
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9.3 Equivalence of damage

Hence, from Equations (9.26,9.29,9.34),

De(Ac, θmc) =
N0

3qT(Ac)
(
2 (v− T(Ac))+ + (2v− T(Ac))+

)
.

From the equality of damage, available in the one-input case, see Eq. (6.19),

De(Ac, θmc) = D(Ac, θmc).

From Equations (9.27,9.29,9.34), we get, for Basquin’s criterion,

De(θmc, Ac) = CB(Ac)N0
8
3

(
1
8

(v
2

)β
+

1
8

(v)β +
1
8

( v
2

)β
)

= CB(Ac)
N0

3
(v)β

(
21−β + 1

)
.

From Remark 6.3 and the equality of damage, we can deduce v, as,

v =
β

√√√√√ 3 ∑i

(
Fri
2

)β

N0(21−β + 1)

9.3.2 Equivalence of damage for multi-input Markov chain
EFL

We now have to find the parameter vector θmc that fulfills Eq. (6.22). From
Morel’s criterion and Eq. (9.26), we can express the damage induced by
Fe∗(Ac, Fe), and :

De(Ac, θmc) =
N0

∑i ∑j f r f c(i, j)
1

qT(Ac)

∑
i

∑
j
(|v∗i (θmc, Ac)− v∗j (θmc, Ac)| − T(Ac))+ f r f c(i, j).

We can express the algebraic values v∗i , from Eq. (9.7), by the amplitudes
of the states vi, with 1 ≤ i ≤ n. Again, the expected number of rainflow
cycles of the Markov chain EFL is fixed to N0.
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9.4 Examples

With Basquin’s definition of the damage, the damage is expressed by:

De(θmc, Ac) =
CB(Ac)N0

∑i ∑j f r f c(i, j)

∑
i

∑
j

( |v∗i (θmc, Ac)− v∗j (θmc, Ac)|
2

)β

f r f c(i, j). (9.35)

9.4 Examples

In the first example, a case with one-input force is treated. A second ex-
ample illustrates the two-input Markov chain EFL. In both of them, the
damage is evaluated with Morel’s criterion. A threshold T(Ac) has been
fixed arbitrarily.

Example 9.4.7. In Fig. 9.10, an example of transforming the measurement
F1 into Markov chain EFL Fe

1 is illustrated. In this case, we have considered
that T(Ac) = 1, for all Ac. Morels’ criterion has been chosen to evaluate
D(Ac, F) and De(Ac, θmc). In this example,

θmc = (1.009).
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Figure 9.10: Measurement F1 and representation of a sample of Fe
1 (right).

¤
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9.4 Examples

Example 9.4.8. In the following pictures, an example of two-input EFL is
proposed. Forces F1 and F2 are measurements stored during test tracks,
see Fig. 9.11.
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Figure 9.11: Measurements.
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Figure 9.12: Equivalent loads using Basquin’s approach.

The evaluation of the damage has been based on Basquin’s approach, with
Basquin’s coefficient β = 8. The number of cycles Fe has been fixed to
1000. The EFL are illustrated in Fig. 9.12. The vector θmc containing the
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9.5 Markov chain equivalent fatigue loads with peaks

parameters defining Fe
1 and Fe

2 is,

θmc = (0.0024, 1.64, 1.8).

Thus, the transition matrix P of the example is,

P =




0 0 1 0 0
0 0 1 0 0

0.4951 0.0024 0 0.0024 0.4951
0 0 1 0 0
0 0 1 0 0




From Eq. (9.31) we obtain,

pin = 0.9902
pout = 0.0048.

These probabilities coincides with the observation of the measurements,
in Fig. 9.11. The measurements seem to be mostly in phase. ¤

9.5 Markov chain equivalent fatigue loads with
peaks

Some short events happening during the life of components of cars con-
tain a large part of the total damage. They are induced e.g. by bumps or
pot holes. They are characterized by some peaks in the measurements of
the forces, appearing during test tracks.

The aim of this work is to build a new Markov chain EFL that models these
peaks. We will first give a definition of what we mean by peaks in order
to detect them and evaluate the damage induced by the peaks. From the
equivalence of damage, we will determine the parameter vector θmcp.

9.5.1 Characterization of peaks

Some peaks in the measurements are induced by some very damaging,
short and rare events happening during the life of the components. These
peaks represent the rare events. A significant damage is contained in
them.
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9.5 Markov chain equivalent fatigue loads with peaks

Every critical point is characterized by a linear combination of the compo-
nents of the forces F, and other constants depending on the fatigue crite-
rion chosen. The critical point Ac incurs peaks during the period of time
T0 if F∗(Ac, F) contains a peak during T0. The linear combination can at-
tenuate or magnify some peaks contained in the components of F. Conse-
quently, some geometries and critical points, incurring the same forces F,
can incur peaks when others do not. Hence, the temporal localization of
the peaks can be different from one structure and its critical point to an-
other. We choose to define the short events appearing as peaks in, at least,
one linear combination, i.e. one critical point of a structure.

The frequency of the accidental events is usually known for structures in
service. We can thus get information about the average number of oc-
currences during the life. The time period Tp is the life of the structures.
The expected number of occurrences of peaks during Tp, for each linear
combination, i.e. for each structure, is given and fixed to Np.

Let’s consider N+
Tp

(u), the intensity of upcrossings of F∗(Ac, F), of the level

u, and N−
Tp

(v), the intensity of downcrossings of the level v, during the
time period Tp.

We define as peaks the maxima above a high level vp and minima below
the level up, where up = −vp and vp > 0. When Np peaks are observed
during [0, Tp], we have,

N−
Tp

(up) + N+
Tp

(vp) = Np.

As Np is constant for every structure, the levels up and vp are different
from one structure to another, i.e. from one linear combination to another.
Other factors can define the peaks in F∗(Ac, F). For instance, the detection
of the peaks can be supported by the expected damage accumulated by
these peaks during the life of the components.

9.5.2 Damage induced by peaks

In order to evaluate the damage induced by the peaks, we need to get the
part of the rainflow content of F∗(Ac, F) related to them. Turning points
below the level up or above vp are peaks.

Definition 9.3. Damage induced by peaks. The damage related to the peaks
are induced by reversals of residual and rainflow cycles with minimum below up
or maximum above vp. The damage of the peaks in F is called Dp(Ac, F).
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lv
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Figure 9.13: Illustration of peaks.

The damage induced by the remaining part of the rainflow content of
F∗(Ac, F), without the peaks, is called Dwp(Ac, F),

Dwp(Ac, F) = D(Ac, F)− Dp(Ac, F) (9.36)

9.6 Model of Markov chain with peaks

The general assumptions of the previous model of Markov chain EFL still
hold for Markov chain EFL with peaks.

• The Markov chain EFL are symmetric around 0, see Eq. (9.28),

• The expected number of rainflow cycles of the Markov chain EFL is
fixed to N0. Consequently, Eq. (9.29) is still valid.

Let’s consider the state space Sp, such that,

Sp = {−N′, (−N + 1)′, . . . , (N − 1)′, N′}\{0}.

It contains the states that aim to model the peaks. The states that model F
without the peaks, belong to the state space Swp,

Swp = S,

where S is defined in Eq. (9.1).
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9.6 Model of Markov chain with peaks

9.6.1 One-input case

We have chosen the one-input Markov chain with peaks as illustrated in
Fig. 9.14.
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Figure 9.14: One-input Markov chain EFL with peaks.

We will assume that every time the Markov chain is at one of the states 1,
−1, 1′ or −1′, Fe goes back to 0. The probability for Fe to start from 0 and
to go to one of the states i is called pi. Consequently,

P =




0 0 1 0 0
0 0 1 0 0

p−1′ p−1 0 p1 p1′
0 0 1 0 0
0 0 1 0 0




.

The two states 1′ and −1′, with the greatest amplitudes, will model the
damage induced by the peaks of F. They belong to Sp. The three other
states 1, −1 and 0 model the remaining part of the damage induced by F.
They belong to Swp. The number of peaks in Fe is Np, during the time pe-
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9.6 Model of Markov chain with peaks

riod Tp. Moreover, the total number of cycles is fixed to N0. Consequently,

p1 + p−1 =
N0 − Np

N0
,

p1′ + p−1′ =
Np

N0
. (9.37)

Moreover, from Eq. (9.28) probabilities fulfill the following condition:

p−1′ = p1′ ,
p−1 = p1. (9.38)

From Equations(9.4, 9.37, 9.38), we can deduce the transition matrix P,

P(Fe) =




0 0 1 0 0
0 0 1 0 0

Np
2N0

N0−Np
2N0

0 N0−Np
2N0

Np
2N0

0 0 1 0 0
0 0 1 0 0




.

The transition matrix is expressed by the constants Np and N0. But we still
need to evaluate the amplitudes of the states. From Eq. (9.28) and Fig. 9.14,
we deduce,

v1 = −v−1,
v1′ = −v−1′ . (9.39)

The unknown parameters are contained in θmcp,

θmcp = (v1, v1′ ). (9.40)

The parameter vector θmcp belongs to the vector space Θmcp, such as,

Θmcp = {v1 > 0, v1′ > 0}.

9.6.2 Multi-input case

In the case of multi-input Markov chain EFL with peaks, the general ap-
proach is the same as the multi-input Markov chain EFL previously seen.
However, we will add states in order to model the peaks detected in F.
Consequently, the different states of the chains are represented by the
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9.6 Model of Markov chain with peaks

corners of two rectangular parallelepipeds, with 2n corners each. In the
three-dimensional case, the Markov chain EFL with peaks is illustrated in
Fig. 9.15.
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Figure 9.15: States of Markov chain EFL with peaks, in three dimensions.

We will consider that every time the process Fe is at one of the corners of
the rectangles, Fe goes back to the state 0 with probability 1. Hence, we
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9.6 Model of Markov chain with peaks

can deduce the following transition matrix,

P =




0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0
p−{2n}′ · · · p−1′ p−2n · · · p−1 0 p1 · · · p2n p1′ · · · p{2n}′

0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0




.

The states −1′, . . . , {−2n}′ and 1′, . . . , {2n}′ are contained in the subset
of states Sp. The other states, −1, . . . ,−2n and 0, 1, . . . , 2n belong to Swp.
Moreover, we have assumed that the mean number of times the process
Fe reaches a state in Sp is fixed to Np, during the time period Tp. Hence,

2n

∑
i=−2n

pi =
N0 − Np

N0
,

{2n}′

∑
j=−{2n}′

pj =
Np

N0
. (9.41)

Finally, as Fe is assumed to be symmetric around 0, then

pi = p−i, for i = 1, . . . 2n,
pj = p−j, for j = 1′, . . . {2n}′. (9.42)

Then,

2n

∑
i=1

pi =
N0 − Np

2N0
,

{2n}′

∑
j=1′

pj =
Np

2N0
. (9.43)

We therefore need to evaluate 2n+1 − 2 different transition probabilities
and 2n lengths of the rectangles. The unknown parameters belongs to the
vector θmcp,

θmcp = (p1, . . . , p2n−1, p1′ , . . . , p{2n−1}′ , v1, . . . , vn, v1′ , . . . , vn′ ). (9.44)
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9.6 Model of Markov chain with peaks

The vector θmcp belongs to the parameter space Θmcp,

Θmcp = (0 < p1 <
1
2

, . . . , 0 < p2n−1 <
1
2

,

0 < p1′ <
1
2

, . . . , 0 < p{2n−1}′ <
1
2

, 0 <
2n−1

∑
i=1

pi +
2n

∑
i=1

p′i <
1
2

v1′ > v1 > 0, . . . , vn′ > vn > 0, ).

9.6.3 Equivalence of damage

The equivalence of damage is defined by Eq. (6.19) in the case of one-input
EFL, or Eq. (6.22) for multi-input EFL. We aim to minimize the square dis-
tance between the damage induced by the EFL and the damage induced
by the measurements, over different possible structures. We call θ

p
mcp the

vector containing parameters defining the peaks. The vector θ
wp
mcp contains

parameters defining the EFL without the peaks. Hence,

θ
wp
mcp = θmcp − θ

p
mcp.

One-input EFL

In the one input case, the vector θmcp has been defined in Eq. (9.40). Hence,

θ
p
mcp = (v′1),

θ
wp
mcp = (v1).

The entity De(Ac, θmcp) is the expected damage induced by the EFL. From
Definition 6.3, the parameters of the one-input Markov chain EFL with
peaks has to fulfill,

De(Ac, θmcp) = D(Ac, F). (9.45)

The vector θmcp is composed by two parameters. The equality of damage
in Eq. (9.45) is therefore not enough for a unique solution.

Definition 9.4. Equivalence of damage for one-input Markov chain EFL
with peaks. The one-input Markov chain EFL with peaks is equivalent to mea-
surements F if it satisfies,

Dwp(Ac, F) = De
wp(Ac, θ

wp
mcp),

Dp(Ac, F) = De
p(Ac, θ

p
mcp). (9.46)
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9.6 Model of Markov chain with peaks

Multi-input EFL

In the Eq. (9.44), the vector θ has been described,

θ
p
mcp = (p1′ , . . . , p{2n−1}′ , v1′ , . . . , vn′ ),

θ
wp
mcp = (p1, . . . , p{2n−1}, v1, . . . , vn).

We will consider that multi-input EFL with peaks are equivalent in terms
of damage to measurements if Definition 9.5 is fulfilled.

Definition 9.5. Equivalence of damage for multi-input Markov chain EFL
with peaks. A multi-input Markov chain EFL with peaks, Fe, is equivalent in
terms of damage to measurements F, if the vectors θ

p
mcp and θ

wp
mcp verify,

θ
wp
mcp = arg min

θwp
mcp∈Θwp

mcp

(∫

||a||=1

(
Dwp(Ac, F)− De

wp(Ac, θ
wp
mcp)

)2
dS

)
,

(9.47)
and,

θ
p
mcp = arg min

θp
mcp∈Θp

mcp

(∫

||a||=1

(
Dp(Ac, F)− De

p(Ac, θ
p
mcp)

)2
dS

)
, (9.48)

Using Morel’s criterion and from Eq. (9.26), we can deduce that the dam-
age De

p(Ac, θ
p
mcp) and De

wp(Ac, θ
wp
mcp),

De
p(Ac, θ

p
mcp) =

T′p
qT(Ac)


 ∑

i∈Swp

∑
j∈Sp

f r f c(i, j)
(
|v∗i − v∗j | − T(Ac)

)
+

+ ∑
i∈Sp

∑
j∈Sp

f r f c(i, j)
(
|v∗i − v∗j | − T(Ac)

)
+

+ ∑
i∈Swp

∑
j∈Sp

f r f c(i, j)
(
|v∗i − v∗j | − T(Ac)

)
+


 ,

with

T′p = Np


 ∑

i∈Swp

∑
j∈Sp

f r f c(i, j) + ∑
i∈Sp

∑
i∈Swp

f r f c(i, j) + ∑
i∈Sp

∑
i∈Sp

f r f c(i, j)


 ,

(9.49)
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9.6 Model of Markov chain with peaks

and

De
wp(Ac, θ

wp
mcp) = De(Ac, θmcp)− De

p(Ac, θ
p
mcp). (9.50)

The damage De(Ac, θmcp) is defined in Eq. (9.26).

Using Basquin’s criterion and Eq. (9.27), we deduce that,

De
p(Ac, θ

p
mcp) = T′p CB(Ac)


 ∑

i∈Swp

∑
j∈Sp

f r f c(i, j)

( |v∗i − v∗j |
2

)β

+ ∑
i∈Sp

∑
j∈Sp

f r f c(i, j)

( |v∗i − v∗j |
2

)β

+ ∑
i∈Sp

∑
j∈Swp

f r f c(i, j)

( |v∗i − v∗j |
2

)β

 ,

where Tp is expressed in Eq. (9.49). The damage De
wp(Ac, θ

wp
mcp) can be

deduced from Eq. (9.50). The damage De(Ac, θmcp) is computed from
Eq. (9.27).

Example 9.6.9. An example of two-input Markov chain EFL with peaks
is presented. The measurements are illustrated in Fig. 9.11. We evalu-
ated the damage from Morel’s criterion. We considered arbitrary values
of T(Ac) = 1, for all critical points Ac. The number of cycles N0 of the EFL
is fixed at 1000 cycles. The number of peaks in the measurements is 10.
In Fig. 9.16, a sample of Fe is given. The parameter vectors θ

p
mcp and θ

wp
mcp

are,

θ
p
mcp = (0.1141, 0.53, 0.53),

θ
wp
mcp = (5.3 10−4, 2.1, 2.2).
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Figure 9.16: An example of two-input EFL with peaks.

¤

9.7 Conclusion

We have constructed a first model of Markov chain EFL. It provides a sim-
ple multi-input load, equivalent to complicated measurements. A summa-
rize can be found in [28]. The Markov chain can be easily extended and
some levels added to the model, in order to get a better equivalence be-
tween the loads. The rare events called peaks have been modeled, as they
usually contain a great amount of damage in a sequence of measurements.
The Markov chain EFL with peaks are more faithful to the measurements
and still simple. Moreover, we have considered that the mean value of the
components of Fe are zero. In order for F and Fe to have the same mean
value, the mean value of each components of F can be added to Fe.
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Chapter 10

Applications

In this chapter, some applications will be presented. First examples of
three-input EFL will be described. The sinusoidal and the Markov chain
EFL based on the same measurements and using Basquin’s criterion, will
be proposed. Moreover, we will compare the sinusoidal EFL, evaluated on
the basis of Morel’s and Basquin’s criteria. Finally, a method for reducing
multi-input variable amplitude data will be proposed, in order to reduce
the forces to its damaging time points.

The determination of the EFL is based on the evaluation of the parameter
vector θ ∈ Θ. It is governed by the equivalence of damage, from Defini-
tion 6.4. From Equations (6.23,6.24), the equivalence of damage depends
on variables depending on the geometry and the material, such as the unit
vector a(Ac). This unit vector is different from one geometry to another,
loaded by multi-input forces F. The equivalence of damage is valid for
any structures, fulfilling the different assumptions presented in Chapter
6. In practice, the unit sphere, containing the unit vectors a(Ac) is dis-
cretized. The unit vectors are uniformly spread on the sphere. They are
called ak, with 1 ≤ k ≤ Ka. Each unit vector ak corresponds to a structure,
loaded by F, and the location of the critical point Ac on it.

We aim to evaluate the parameter vector θ̂, so that,

θ̂ = arg min
θ̂∈Θ

(
Ka

∑
k=1

(
D(ak, F)− De(ak, θ̂)

)2
)

, (10.1)
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10.1 Three-input EFL

where D(ak, F) is the damage induced by the measurements, for the unit
vector ak, and De(ak, θ̂), the expected damage induced by the EFL. We
evaluate the parameter vector from Eq. (6.24), using Basquin’s criterion,
and from Eq. (6.28), using Morel’s criterion. From these two equations,
we evaluate θ̂ using,

θ̂ = arg min
θ̂∈Θ

(
Ka

∑
k=1

(
yk − f (ak, θ̂)

)2
)

, (10.2)

with,
yk = ∑i

(
F∗ri(ak, F)

)β ,

f (ak, θ̂) = ∑i

[
E

(
Fe∗

ri (ak, θ̂)
)β

]
,

(10.3)

using Basquin’s model. When using Morel’s criterion,

yk = ∑i
(

F∗ri(ak, F)− T(Ac)
)
+ ,

f (ak, θ̂) = ∑i

[
E

(
Fe∗

ri (ak, θ̂)− T(Ac)
)

+

]
.

(10.4)

For each type of EFL, f (ak, θ̂) has a different expression depending on the
parameter vector θ̂.

10.1 Three-input EFL

In the three-input equivalent fatigue approach, two different applications
will be presented below. The first one concerns the sinusoidal EFL. An
extension of them to the EFL defined with blocks of sinusoids is then ex-
plored. Finally, three-input Markov chain EFL will be described. Basquin’s
criterion is used in this section. The measurements have been stored dur-
ing test tracks. They represent a sequence of measurements. Basquin’s
coefficient β has been fixed to 8. The number of cycles N0 for Markov
and sinusoidal forces has been fixed to 1000 cycles. The coordinates of ak,
called aki, are given according to the following procedure. Let Xk1, . . . , Xkn
be independent random variables from N(0,1),

aki =
Xki√

∑n
i=1 X2

ki

.
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Figure 10.1: Three-dimensional sinusoidal EFL : the measurements are drawn in
black and the ellipses representing the sinusoidal EFL, in grey. The
number of cycles of the sinusoidal EFL is fixed to 1000 cycles.

10.1.1 Sinusoidal EFL

The parameter vector θ̂s contains the parameters defining the three-input
sinusoidal EFL. The aim is to evaluate the vector θ̂s that fulfills Eq. (10.2).
From Eq. (7.3),

θ̂s = (A1, A2, A3, φ2, φ3).

The parameters A1, A2, A3 are the amplitudes of the components of Fe.
The phase shifts are denoted as φ2, φ3, assuming that φ1 = 0. From
Basquin’s model of damage, we evaluate yk from Eq. (10.3). The variable
f (ak, θ̂s) for the sinusoidal EFL is deduced from Eq. (7.8),

f (ak, θ̂s) = N0

(
A∗(ak, θ̂s)

)β
,

where A∗(ak, θ̂s) is expressed in Eq. (7.5). In Fig. 10.1, the measurements
and the sinusoidal loads have been drawn together. The fitting of yk and
f (ak, θ̂s) is drawn in Fig. 10.2. The k are ordered so that f (ak, θ̂s) increases.
We can deduce a numerical evaluation of θ̂s, such as,

θ̂s = (0.53, 1.54, 2.15, 4.19, 5.65).

The parameters φ2 and φ3 are expressed in radians. In this example, we
have considered Ka = 200.

An extension of the sinusoidal EFL will be described. The sequence of
sinusoidal EFL is composed of two different blocks of sinusoids. The two
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Figure 10.2: Equivalence of damage in the case of sinusoidal EFL with one block of
sinusoids.

blocks have the same frequency. The number of cycles of each of them is
fixed to 500 cycles. From Eq. (7.13), the parameter vector is,

θ̂sb = (A11, A21, A12, A22, A13, A23, φ12, φ22, φ13, φ23).

The measurements and the EFL are shown in Fig. 10.3. The parameter
vector θ̂sb fulfilling Eq. (10.1) is,

θ̂sb = (0.95, 1.06, 0.64, 1.68, 2.64, 1.55, 5.36, 4.88, 0.65) .

We can conclude from Fig. 10.4 that the fitting is improved when the EFL
are defined by two blocks of sinusoids. The same kind of improvement of
the fitting can be done whatever the type of EFL.

10.1.2 Markov chain EFL

In the case of three-input Markov chain EFL, the expected damage evalu-
ated from the multi-input EFL is expressed in Eq. (9.27),

f (ak, θ̂mc) =
N0

∑i ∑j f r f c(i, j) ∑
i

∑
j

(
v∗i (θ̂mc, ak)− v∗j (θ̂mc, ak)

2

)β

f r f c(i, j).

The variable yk is given in Eq. (10.3). The parameter vector θ̂mc fulfills
Eq. (10.2). In this example, we still consider Ka = 200. The number of
cycles N0 is fixed to 1000 cycles.

142



10.1 Three-input EFL

−4 −2 0 2 4 6
−4

−2

0

2

4

6

F
2,

F
2e  

F
1
e F

1
,

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

5

6

7

F
3,F

3e  
F

2
e F

2
,

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

5

6

7

F
3
,

F
1,F

1e  

F
3
e 

Figure 10.3: Three-dimensional sinusoidal EFL with two blocks. The measure-
ments are drawn in black and the ellipses representing the sinusoidal
EFL, in grey. Each block is a sequence of 500 cycles.
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Figure 10.4: Equivalence of damage in the case of sinusoidal EFL with two blocks
of sinusoids.
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Figure 10.5: Three-dimensional Markov chain EFL. The measurements are drawn
in black and the Markov chain EFL, in grey. The number of cycles of
the Markov chain is 1000 cycles.
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Figure 10.6: Equivalence of damage in the case of Markov chain EFL.

The function f (ak, θ̂mc) and yk are drawn in Fig. 10.6. The EFL and the
measurements are drawn in Fig. 10.5. From Eq. (9.33), the vector θ̂mc for
these measurements is,

θ̂mc = (0.0577, 0.194, 0.0012, 0.58, 0.72, 2.42).

From these two models of multi-input EFL, we deduce that, in both cases,
the amplitude of the component Fe

2 is greater than the amplitude of the
component Fe

1 and smaller than Fe
3 . Moreover, the amplitudes of the Markov

chain and the sinusoidal EFL are of the same order of magnitude. From
Fig. 10.2 and Fig. 10.6, the fitting for the sinusoidal EFL with one block
seems to be better than the Markov chain EFL. This is not always the case.
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10.2 Comparison between Basquin’s and Morel’s
criteria

The aim of this study is to evaluate multi-input sinusoidal EFL, with Basquin
and Morel’s criteria, in order to compare the two multi-input EFL. The
measurements are illustrated in Fig. 10.7. The comparison will be illus-
trated by a two-input sinusoidal EFL, with two blocks.
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Figure 10.7: Measurements.

Here, we will emphasize the evaluation of the constants dependent on
the material. For Morel’s criterion, the material parameter is q, see The-
orem 6.1. In the case of Basquin’s criterion the material parameter is β,
from Theorem 6.2. The evaluation of these constants is based on a Wöh-
ler curve. We have chosen to use the data from [30]. In Morel’s criterion,
the material parameter q has been identified, q = 23800 cycles. The expo-
nent related to Basquin’s criterion is fixed to β = 12.9. The fitting of the
Basquin’s model and Morel’s models are illustrated in Fig. 10.8.

From Morel’s criterion, it is essential to have information about the thresh-
old T(Ac), a constant related to the geometry of the structures. Therefore,
we need to characterize the optimal structures, made up of the material we
have previously chosen. The loads Fdl , following Definition 6.7, are repre-
sented by 600 repetitions of the sequence of the measurements illustrated
in Fig. 10.7.
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Figure 10.8: Fitting of Basquin’s and Morel’s models in order to find the constants
related to the materials. In the case of Basquin’s criterion, we get β =
12.9. In the case of Morel’s criterion, we get q=23800 cycles.

We used Eq. (6.30) to evaluate T(Ac). Here, we have chosen to express
each unit vector ak by an angle γk,

ak = (cos(γk), sin(γk)), with 0 < γk ≤ π, 1 ≤ k ≤ Ka. (10.5)

In this application, we have considered Ka = 36, and,

γk =
kπ

36
, with 1 ≤ k ≤ 36.

For each ak, i.e. each critical point on an optimal structure k, we evaluate
the threshold T(γk). The result is presented in Fig. 10.9.

Once the different constants linked to the geometry and the material are
determined, we can evaluate the different yk, from Eq. (10.3) and Eq. (10.4).
The variable yk is computed for one sequence of measurements, and is
illustrated in Fig. 10.10. We observe that yk is rather different from one
criterion to another. For instance, in the directions from γk = 0 to γk = π

4 ,
it decreases smoothly when Morel’s criterion is used, due to the sensitivity
to the big cycles. It decreases and increases rapidly when using Basquin’s
criterion.

We aim to model the bidimensional measurements with sinusoidal EFL
with two blocks of sinusoids, with N0 = 106 cycles (5 105 cycles for each
block). In the basis of Basquin’s criterion, the damage induced by two-
input sinusoidal EFL with two blocks can be found from Eq. (7.16),

f (ak, θ̂sb) =
N0

2

2

∑
k=1

(
A∗

k(ak, θ̂sb)
)β

.
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Figure 10.9: Evaluation of constants related to the geometries of the optimal struc-
tures, in Morel’s criterion, T(γk) and ak. The angles γk are expressed
in degrees.
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Figure 10.10: Evaluation of yk when Basquin’s criterion is used (left) and Morel’s
criterion is used (right).
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Figure 10.11: The measurements and the sinusoidal EFL computed with Basquin’s
(left) and Morel’s (right) criteria.

The amplitude A∗
k(ak, θ̂sb) is deduced from parameters of θ̂sb, see Eq. (7.5).

Using Morel’s criterion, the damage induced by the EFL can be deduced
from Eq. (7.15),

f (ak, θ̂sb) =
N0

2

2

∑
k=1

(
2A∗

k(ak, θ̂sb)− T(γk)
)

+
. (10.6)

Using Basquin’s or Morel’s criterion, the parameter vector θ̂sb fulfills Eq. (10.2).
The parameter vector related to the sinusoidal EFL with Basquin’s crite-
rion is,

θ̂sb = (1.071, 0.868, 0.95, 0.97,−2.08,−0.92).

The parameter vector related to the sinusoidal EFL with Morel’s criterion
is,

θ̂sb = (0.77, 0.89, 0.77, 0.712,−1.94,−1.97).

In Fig. 10.11, the measurements and the sinusoidal EFL are represented.
The equivalence of damage is illustrated in Fig. 10.12. The EFL given by
the two models are significantly different. This is mainly due to the differ-
ences in shape of the yk, presented in Fig. 10.10. The EFL from Basquin’s
model are represented by two different ellipses. Their principal axes are
shifted by π/4. This is mainly due to the increase of the yk, at γk = π/4.
In Fig. 10.13, the fitting of the equivalence of damage is represented, in the
case of Basquin’s criterion.
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Figure 10.12: Equivalence of damage when Basquin’s criterion used (left) and

when Morel’s criterion used (right).
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Figure 10.14: Gaussian EFL using Basquin’s criterion (left) and Morel’s criterion
(right).

The evaluation of the Gaussian processes has been performed. They model
the same measurements as represented in Fig. 10.7. The same constants
linked to the geometry and the material of the optimal structures and pre-
viously described, have been used. In Fig. 10.14, the two Gaussian EFL,
using Basquin’s and Morel’s models, are illustrated. The parameter vec-
tor θg has been evaluated for each case, see Eq. (8.21). When Basquin’s
criterion is used,

θg = (0.373, 0.460, 2.23).

When Morel’s criterion is used,

θg = (0.312, 0.460, 4.13).

The equivalence fatigue approach using Basquin’s criterion provides Gaus-
sian EFL with greater standard deviations. The amplitudes of the sinu-
soidal EFL, using Basquin’s criterion was greater than the sinusoidal EFL
obtained from Morel’s criterion. However, in this study, we did not take
into account the impact of the mean value of the rainflow cycles in the
evaluation of the damage using Basquin’s criterion.
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10.3 Data reduction and turning points of multi-input forces

10.3 Data reduction and turning points of multi-
input forces

In order to facilitate their use in calculations or on test rigs, the time sig-
nals usually need to be reduced. Some time points, inducing almost no
damage, are removed. When using methods of life prediction based on
the rainflow content of the forces, the reduction of a one-input variable
amplitude force is quite straightforward. The turning points are usually
kept. The reduction of time signals is problematic in the case of multi-
input forces, especially for non-proportional forces. In [17], a method of
reduction of multi-input data has been proposed, which is based on the
rainflow cycle counting method.

In this context, we will attempt to study a method of data reduction on
multi-input forces, based on the damage criteria we have used. We will
illustrate this with a two-input force.

Morel’s and Basquin’s criteria are both based on the rainflow content of
the linear combinations of the forces, F∗(Ac, F), characterized by a(Ac)
and F. The rainflow content of F∗(Ac, F) is based on its turning points.
Consequently, the turning points of the linear combinations are crucial to
evaluate the damage. In order to reduce the signals of F, we propose to
keep the time points of F that are turning points in, at least, one linear
combination F∗(Ac, F), defined by the unit vector a(Ac).

In practice, we use a finite number of linear combinations ak, defined by
the angle γk, as in Eq. (10.5). Let’s consider γd, a vector of different an-
gles γk. The time points of F being turning points in, at least, one of the
directions γk ∈ γd, are kept. The time points of F that are not turning
points in any of the linear combinations defined by γk ∈ γd, are removed.
How should we choose the vector γd in order to reduce the signals sub-
stantially and still keep the equivalence in damage, between the reduced
signals and the original signals of forces ?

In the following example, the forces F are bidimensional, illustrated in
Fig. 10.7. We attempt to reduce the bidimensional signals, for different
vectors γd.

Example 10.3.10. The reduced signal is called Fred. Once the reduction of
F to its damaging points is proceeded, we evaluate the damage from Fred,
called Dred(γk, Fred), and compare it to the damage induced by F, D(γk, F).

151



10.3 Data reduction and turning points of multi-input forces

In the example, we have chosen to evaluate the damage from Morel’s cri-
terion. The thresholds T(γk) used for that are shown in Fig. 10.9. The
evaluation of the damage can also be done with Basquin’s criterion.

In the left column of Fig. 10.15, the different directions contained in γd are
represented by arrows. We finally compare the damage induced by Fred
and by F, through the ratio Dred(γk, Fred)/D(γk, F), over twenty angles
γk, such that,

γk =
kπ

20
, with, 1 ≤ k ≤ 20.

The results are illustrated in the right column.

For each case, we compare the length of Fred and F. Let’s consider L the
data length of F and Lred, the data length of Fred.

CASES γd in rad. 100 Lred
L

1
(
0, π

2
) ∼ 63%

2
(
0, π

4 , π
2 , 3π

4
) ∼ 77%

3
(
0, π

8 , π
4 , 3π

8 , π
2 , 5π

8 , 3π
4 , 7π

8
) ∼ 86%

4
(
0, π

8 , π
4 , 3π

8
) ∼ 67%

In the first case, we keep the turning points of F∗(γk, F), where γk belongs
to the vector γd = (0, π

2 ). The damage induced by Fred and F are rather
different. It means that we lose some damaging points of F in the data
reduction. However, the reduction in terms of length is quite important.
The length of Fred is two thirds of the length of F.

In the cases 2 and 3, we increase the number of γk contained in γd. They
are uniformly spread from 0 to π. The damage of Fred is very close to the
damage induced by F. However, the reduction in length between Fred and
F is not as effective as in the first case.

In the fourth case, the components of γd are not equally spaced, from 0
to π. We can conclude that we lose some time points in F that induces
damage. In this case, it proves that the choice of the components of γd is
very important. ¤

In this example, we have illustrated a proposition of data reduction, in
accordance with the damage criteria used in the multi-input equivalent
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10.3 Data reduction and turning points of multi-input forces

fatigue approach. We deduce that the vector γd is important in the eval-
uation of Fred. The components of γd are preferably uniformly spread in
the 2D space. From Example 10.3.10, in order to have a good compromise
between the length of Fred and the equality of damage between Fred and F,
case 2 is appropriate. This observation is in accordance with the method
proposed in [17].

This method can be extended to more than two-input forces. The main
problem is to find the unit vectors ak that are equally spread in the nD
space.
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Figure 10.15: Data reductions. In the left column, each component γk ∈ γd
is represented by arrows. In the right column, the ratio between
Dred(γk, Fred), the damage induced by Fred and D(γk, F), the one in-
duced by F, are represented.
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Chapter 11

Experiments

The industrial aim of the method of equivalent fatigue is, among other
things, to define specifications for test benches. Therefore, it is essential
to check if the equivalence of damage is fulfilled experimentally, between
the measurements and the EFL. The aim of these experiments is to test the
equivalence in damage between known measurements of forces, and the
sinusoidal EFL, with two blocks. The tests will be performed in the case
of two-input forces, on a suspension arm. The experimental set-up will
be described. A brief presentation of the geometry, the material and the
boundary conditions will be given.

After checking the validity of the different assumptions, i.e. Assumption 6.1
and Assumption 6.2, the evaluation of the EFL from predefined measure-
ments will be done. The experimental life of the structure when the mea-
surements or the EFL are applied, will be analyzed and compared.

11.1 The suspension arm

We have chosen to test the equivalence in damage between variable am-
plitude loads and the sinusoidal EFL on a suspension arm. The suspen-
sion arm is usually submitted to three different loads from the wheels, the
transversal, the longitudinal and the vertical loads. In Fig. 11.1, a picture
of a triangle as a part of the suspension system is presented. In our test,
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11.2 Experimental set-up

Figure 11.1: Location of the triangle in the suspension system.

the suspension triangle will be submitted to only two forces, applied in
the plane of the triangle.

11.2 Experimental set-up

We associated three points in the triangle, the points E1, E2 and D. The
triangle is linked to the wheel by a ball joint. The point D is the center of
the fixture, where the forces are applied. The points E1 and E2 are illus-
trated in Fig. 11.2. They are located at the center of the holes. The origin
of the axis system is E1. The X-axis starts at the point E1 and goes to E2.
The Y-axis is perpendicular to the X-axis. The Z-axis is perpendicular to
the plane (X, Y).

In our test, the triangle will be submitted to two loads, in the plane of
(X, Y). They are called,

F =
(

F1
F2

)
.

The two forces are applied at the point D, by hydraulic actuators. The ma-
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11.3 Assumptions

Z E1

E2

D
Y

X

Figure 11.2: Axis system.

terial of the suspension is the HR55 steel1. From this data, we can deduce
the different constants linked to the material, needed in the equivalent fa-
tigue approach.

The boundary conditions of the experiments are exposed in Fig. 11.3. In E1
and E2, the translation displacements in the plane (X, Y) are blocked. This
is performed by bearings linked with the frame. These two bearings are
cylindrical roller bearings. The displacements of E1 and E2 in the Z-axis
are not blocked. The actuators and the triangle are linked by a ball joint in
D. This is illustrated in Fig. 11.3 by the link called {1}. A pivot links the
ball joint to the frame. It is illustrated by the link called {2}.

11.3 Assumptions

In order to check the validity of the equivalence of damage between the
measurements and the EFL, we need to check the validity of the assump-
tions in the critical area of the triangle. From Assumption 6.1, the structure
has to be loaded under elastic and quasi-static conditions. In order to be
elastic, the von Mises stress component has to be below a threshold σE.
For the material HR55, σE is 460 MPa.

In order to fulfill Assumption 6.2, the stress tensor has to be proportional
at the critical point of the triangle. In order to check if the assumptions

1The Wöhler curve has been found in internal database, ARCELOR ESOPE-HR55, 2002.
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Figure 11.3: Boundary conditions and loads.

are fulfilled for the suspension arm, we will first locate the critical point.
From the observation of the principal direction of the stress tensor at this
point, we can deduce if the structure fulfills one of the two assumptions.

A finite element model of the triangle has been studied. The different ele-
ments are shells with a lower and an upper skin. In Fig. 11.4 and Fig. 11.5,
two different cases of loads have been observed.

PICTURES of Fig. 11.4 and Fig. 11.5 Force F1 in N Force F2 in N
CASE 1 1 0
CASE 2 0 1

The von Mises stresses have been plotted. The triangle has been plotted
in the deformed configuration. The critical areas may be located where
the von Mises stresses are greatest, represented by a dark grey zone. We
could deduce that the critical area is located at the lower skin, in the gray
box represented in Fig. 11.6.

From these two different cases, we can deduce the stress tensor of each
point of the triangle, for any forces F. The stress tensor has been consid-
ered as bidimensional. From Eq. (6.2), under the assumption of elastic
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Step: Step-1
Increment      1: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +2.719e+02

triangle A8
ODB: TESTEFL_2.odb    ABAQUS/Standard 6.4-5    Tue Jul 04 09:57:46 METDST 2006
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Step: Step-3
Increment      1: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +3.062e+02

triangle A8
ODB: TESTEFL_2.odb    ABAQUS/Standard 6.4-5    Tue Jul 04 09:57:46 METDST 2006

1

2

3

Figure 11.4: Localization of the critical zone on the lower skin, where the von Mises
stresses are represented by a dark grey zone. For a better representa-
tion, we have plotted the case of F1 = 1000N, and F2 = 0 (top), and the
case of F1 = 0 and F2 = 1000 (bottom).
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Figure 11.5: Localization of the critical zone on the upper skin, where the von Mises
stresses are represented by a dark grey zone. For a better representa-
tion, we have plotted the case of F1 = 1000N, and F2 = 0 (top), and the
case of F1 = 0 and F2 = 1000 (bottom).
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Figure 11.6: Location of the critical zone at the lower skin.

stresses, at any point A of the triangle, we deduce,

Σ(A, t) =
2

∑
i=1

Ki(A)Fi(t) (11.1)

=
2

∑
i=1

(
Ki,11(A) Ki,12(A)
Ki,21(A) Ki,22(A)

)
Fi(t). (11.2)

Let’s consider Σ1(A) and Σ2(A), the stress tensors at the point A of the
structures, submitted to forces of the cases 1 and 2. Then,

Σ1(A) = K1(A),

and
Σ2(A) = K2(A).

Thus the stress tensor Σ(A, t) can be deduced from the stress tensors Σ1(A)
and Σ2(A),

Σ(A, t) = Σ1(A)F1(t) + Σ2(A)F2(t), (11.3)

Let’s assume that Σ1(A) and Σ2(A) are proportional. Their principal di-
rections are similar, and they do not rotate. The tensors Σd,1 and Σd,2 are
the diagonalized stress tensors. Thus,

Σd,1(A) = M(A)TΣ1(A)M(A),

Σd,2(A) = M(A)TΣ2(A)M(A). (11.4)
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Figure 11.7: Location of elements ] 4211 and ] 4192.

From Eq. (11.3), we deduce that,

M(A)TΣ(A, t)M = M(A)T (Σ1(A)F1(t) + Σ2(A)F2(t)) M(A)
= Σd,1(A)F1(t) + Σd,2(A)F2(t),
= Σd(A, t). (11.5)

If the stress tensors of the cases 1 and 2, at the point A, are proportional,
with the same principal directions, we can deduce that the stress tensor
is proportional at the point A. From Eq. (6.5), when the stress tensor is
proportional at A, we deduce,

Σd(A, t) =
(

σd,1(A, t)
σd,2(A, t)

)
(11.6)

= σ(A, t)
(

1
α(A)

)
.

The components of the diagonalized stress tensor, σd,1(A, t) and σd,2(A, t),
are proportional.

Two different points of the critical zone have been chosen, as shown in
Fig. 11.7. The stress components σd,1(A, t) and σd,2(A, t) have been drawn
in Fig. 11.8, when the triangle is submitted to variable amplitude and non
proportional forces F. We also observed that the principal directions are
similar at these two points. Consequently, the stress tensors at the critical
zone are proportional.
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Figure 11.8: Stress tensors at the critical areas. The triangle was loaded by two-
input variable amplitude forces F. The stresses σd,1 and σd,2 are drawn
for the element 4211 (left) and the element 4292 (right), at the lower
skin.

163



11.4 Determination of the forces

11.4 Determination of the forces

In order to use Morel’s criterion in the determination of the EFL, the two-
input forces Fdl have to be known for the suspension arm. When the
structure is submitted to these forces, the predicted damage at the criti-
cal point is one. The forces Fdl come from measurements from test tracks.
We have chosen to scale these measurements and limited the maximum
of the forces at 11000 N, in order to remain in the elastic domain of the
structure. According to the criterion, the predicted damage reaches one
at the critical point when the sequence presented in Fig. 11.9 is repeated
177 times. The forces Fdl we have chosen are the sequence presented in
Fig. 11.9, repeated 177 times.
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Figure 11.9: The forces Fdl .

The evaluation of the geometrical characteristics of the optimal structures
follows Definition 6.7. We will consider a finite number of unit vector ak,
such as,

ak = (cos(γk), sin(γk)),

where,

γk =
kπ

36
, 1 ≤ k ≤ 36.
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Figure 11.10: The thresholds T(γk) of the optimal structures.

The thresholds T(Âc) are computed for each ak, or for each γk. The param-
eter q is needed to determine the thresholds of Morel’s model. We deduce
it from a push-pull Wöhler curve (R = −1),

q = 1.17 104.

The thresholds are called T(γk). They are illustrated in a polar plot, in
Fig. 11.10. The EFL are sinusoidal forces. We have chosen sinusoidal EFL
with two blocks, which is a good compromise between a good fitting and
a small number of parameters. The variables f (ak, θsb) and yk are defined
in Eq. (10.4). For two-input sinusoidal EFL with two blocks, we deduce
f (ak, θsb) from Eq. (10.6). From the fitting, we deduce the vector θsb, de-
fined in Eq. (7.13),

θsb = (6690, 6110, 5421, 5785,−0.5297, 0.8509).

The forces Fdl and Fe
dl are represented in Fig. 11.12.

We do not know the vector a representative of the most critical point of the
triangle. From Fig. 11.11, the damage induced by the forces Fdl and Fe

dl can
be different, due to the fitting. This remark can be taken into account once
the results are analyzed. Thus, it could be interesting to determine the
linear combination a at the critical point of the structure, and to evaluate
the predicted difference, from Fig. 11.11.
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Figure 11.11: Fitting of the damage induced by the EFL.
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Figure 11.12: Measurements and two-input EFL with two blocks.
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11.6 Conclusion

11.5 Analysis of the results

We choose to test ten specimens, five of them are submitted to the mea-
surements Fdl , and the others, to the EFL. The test should be carried out
in the randomize order. Once the tests are done, we compare the num-
ber of cycles obtained in the two samples. Let’s consider Ne, the life of
the suspension arm submitted to the EFL, and N, the life of the structure
submitted to Fdl . We assume that both log10(N) and log10(Ne) are nor-
mally distributed with the same variance. In order to compare the mean
of the two samples, we will use the Student’s t-distribution to construct
the confidence interval for the difference of the expected log10(life).

The mean of log(Ne) is called ηe and the mean of log(N) is η. The differ-
ence between η and ηe is called δ. Let’s consider m and me, the means of
the sample of life of structures submitted to Fdl , and the sample of life of
structures submitted to the EFL, respectively. The number of observations
of each sample are n and ne (in our case n = ne = 5). The standard de-
viation of the samples are s and se. We write the confidence interval for
η − ηe as Iδ, where,

Iδ =

[
m−me ± t S

√
1
n

+
1
ne

]
.

with
S =

s + se

ν
,

and ν = n + ne. The quantile t is a quantile in the t-distribution which
determines the coefficient of confidence of the interval.

11.6 Conclusion

We have presented an approach to test the equivalence in damage in 2D.
From the finite element model of the structure, we found the localization
of the critical point, and checked the validity of the Assumption 6.1 and
Assumption 6.2. In order to evaluate the EFL, we used Morel’s criterion.
The equivalent fatigue loads have been evaluated from the predefined
loads Fdl . Finally, an analysis of the results is proposed.
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Chapter 12

Conclusion

The equivalent fatigue approach is a method for transforming complex
multi-input loads into simple forces, equivalent in terms of damage, what-
ever the structures the forces are applied to. An approach to the multi-
input equivalent fatigue loads has been described, in the framework of
the uniaxial and multiaxial high cycle fatigue of metallic structures, in a
quasi-static regime.

12.1 Models of life prediction and equivalence
of damage

Structures in service often incur uniaxial fatigue at their critical point.
However, the multiaxial fatigue phenomenon can also be observed. In
order to design those structures, this phenomenon has to be taken into
account. In this case, the stress tensor is frequently proportional at the
critical point.

Basquin’s criterion is used in the equivalent fatigue approach, for struc-
tures exposed to uniaxial fatigue. The damage is based on the rainflow
cycle content of the stress component. The accumulation of the damage
is chosen as linear. Morel’s model provides life prediction from uniaxial
and multiaxial, proportional and non-proportional stress tensors, in high
cycle fatigue for finite life. It is based on the micro-macro approach. In
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12.1 Models of life prediction and equivalence of damage

order to use Morel’s criterion in the framework of the equivalent fatigue
approach, we chose a simplified form, presented in Chapter 3. Thus we
gain in simplicity and rapidity in the prediction of life. The accumulation
of damage in this case is linear.

The structures to which the forces are applied are supposed to be elastic
and quasi-static. When using Basquin’s criterion in the equivalent fatigue
approach, we have assumed that the stress tensor at the critical point is
unidirectional. When using Morel’s model, the stress tensor is supposed
to be proportional. The principal directions do not move in time.

We provide an expression of the damage from the forces, using Basquin
and Morel’s models, under these different assumptions. The two expres-
sions are based on the linear combinations of the components of the forces.
The coefficients defining the linear combination are contained in a unit
vector, dependent on the geometry of the structures. In both models, the
damage is based on the rainflow content of the linear combinations.

In the expression of the equivalence in damage between two forces, using
Basquin’s criterion, only one constant linked to the material is needed, the
exponent β. It has to be evaluated from a Wöhler curve of the material.
Basquin’s criterion is rather easy to use in the equivalent fatigue approach.
However, it is restricted to structures exposed to uniaxial fatigue at their
critical points.

In the case of Morel’s model, the equivalence in damage between the mea-
surements and the EFL is dependent on a threshold, under which a rain-
flow cycle of force does not induce damage. Under the different assump-
tions, this threshold depends on the material, the geometry and the mean
value of the loads. Therefore, when Morel’s model is used in the equiva-
lent fatigue approach, we need extra assumptions on the structures. Thus
the concept of optimal structures has been introduced. It is possible to
evaluate the threshold for these structures. The damage reaches one at
their critical points, when submitted to sequences of known loads, rep-
resentative of their design life. These sequences of forces can be mea-
surements stored during laps of tracks, and are predefined by the man-
ufacturer. In order to evaluate the thresholds for the optimal structures, a
Wöhler curve of the material is necessary. Thus, the determination of the
threshold requires more accurate information about the structures.

In each criterion, the equivalence in damage between the EFL and the
measurements is restricted to structures for which the constants appearing
in the equivalence of damage and depending on the material and on the
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12.2 The equivalent fatigue loads

geometry, are known. The number of geometries belonging to this family
of structures is infinite. For models of EFL characterized by a finite num-
ber of parameters, the equality in damage between the measurements and
the EFL over the different structures fulfilling the assumptions, observable
in the one-input equivalent fatigue approach, is impossible in the case of
multi-input equivalent fatigue approach. Thus, the two multi-input forces
are equivalent if the distances between the damage induced by the mea-
surements and the damage induced by the EFL are minimized, over the
linear combinations characterizing the different structures. We rather use
the least square method in order to evaluate the set of parameters defining
the EFL. We deduce the set minimizing the distances between the damage
induced by the EFL and the one induced by the measurements.

12.2 The equivalent fatigue loads

Different types of EFL have been treated. A deterministic model, such
as the sinusoidal multi-input EFL, as well as probabilistic models, such
as narrow band Gaussian processes and Markov chains, have been de-
termined. These EFL have the common advantage that they are easily
generated, and defined by a few number of parameters. From models like
sinusoidal and Gaussian multi-input EFL, we evaluated the expected rain-
flow content of the linear combinations of the components of the EFL. For
a Markov chain, the evaluation of the rainflow content of linear combina-
tions of a multi-input Markov chain has been developed as well. We de-
duced the damage expressed from parameters characterizing the EFL. We
used the condition of equivalence of damage to determine these parame-
ters. In order to improve the fitting between the damage induced by the
measurements and the damage induced by the EFL, different propositions
have been explored. In the case of multi-input sinusoidal EFL, an exten-
sion to several blocks of sinusoids has been studied (the same method can
be used for Gaussian EFL). For Markov chain EFL, the peaks observable in
the multi-input measurements, have been modeled in the Markov chain
EFL with peaks. In both cases, the number of parameters increases, which
makes the fitting of the damage more accurate.

Sinusoidal EFL are convenient to implement in calculation for designing
structures and easy to use on test benches. However, the rainflow content
of the sinusoidal EFL is far from that of the measurements. Therefore the
Gaussian EFL seem to be more appealing because they are variable am-
plitude loads. The Markov chain EFL is interesting to use because some
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12.3 The requirements of the equivalent fatigue approach

events, like damaging events, occurring in the measurements, can be mod-
eled in the EFL. However, the computations of complicated Markov chain
EFL can be time-consuming.

Different applications have been provided in order to illustrate the models
of EFL we have chosen to study. These examples treat bidimensional and
three-dimensional EFL. Moreover, the study focused on the evaluation of
the damage. A method of data reduction has been applied. The aim is to
remove the time points of the signals of forces that do not induce damage.

12.3 The requirements of the equivalent fatigue
approach

Several different models of life prediction and EFL have been chosen to
treat the equivalent fatigue approach. We can also study the possibility
for a damage model and a multi-input process to be used in the equivalent
fatigue approach.

Whatever the criterion we used in the equivalent fatigue approach, differ-
ent constants linked to the geometry and the materials need to be iden-
tified. The use of a fatigue model of life prediction in the equivalent fa-
tigue approach has to fulfill two points. In the industrial framework of
equivalent fatigue approach, a complicated and time-consuming compu-
tation has to be avoided. Moreover, the constants depending on the ge-
ometry and on the materials have to be identified from the information
available on the structures to which the equivalent fatigue approach is ap-
plied. Thus, the choice of the fatigue criterion depends on the information
we have about the structures.

Several requirements concerning the multi-input process are needed, in
order to be used in the equivalent fatigue approach. When using fatigue
criteria based on the rainflow content of the loads, it is essential to be able
to predict the rainflow content from parameters defining the EFL. More-
over, the number of parameters defining the EFL has to be lower than the
number of equations, which allows us to evaluate them. The number of
equations is infinite with the use of Basquin and Morel’s criteria. There-
fore, any EFL for which the rainflow content can be evaluated, defined
with a finite number of parameters, can be used in the equivalent fatigue
approach. However, the objective of the equivalent fatigue approach is to
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12.4 Perspectives

transform complex loads with variable amplitudes to simple loads. Com-
plex EFL do not fulfill the requirements imposed by the method. The com-
plexity of the EFL depends on its use. Choosing an appropriate EFL is a
compromise between accuracy in the equivalence in damage between the
measurements and the EFL, and the simplicity of the EFL.

12.4 Perspectives

The stress-strength method allows us to take into account the scatter in-
duced by the severity of the customers and the scatter linked to the strength
of the structures induced by the manufacturing process. The severity is
deduced from loads measured on test tracks. In the uniaxial equivalent
fatigue approach, the severity is a scalar, the amplitude of the one-input
sinusoidal EFL. Over a population of customers, we can determine the dis-
tribution of severity. The possibility to extend the stress strength method
to the case of multi-input EFL could be interesting to explore. The diffi-
culty lies in the choice of the variable representative of the severity, from
multi-input EFL. The main advantage of a severity represented by a scalar
is its simplicity in use. However, the completeness of the multi-input EFL
may not be reproduced in a scalar.

As in the one-input EFL, Basquin’s criterion can be associated with Ger-
ber’s parabola. It would be interesting to use Gerber’s parabola in the
multi-input case. The ratio between the maximal tensile strength and the
endurance limit is necessary. The equivalence of damage between the two
loads is valid on structures, incurring uniaxial fatigue, and made of mate-
rial for which these mechanical characteristics are known. However, the
computation of the damage and the characterization of the EFL may be
more time-consuming with the use of Gerber’s parabola.

We have assumed that the frequency does not impact the life prediction of
the structures. Criteria of life prediction in high cycle fatigue taking into
account the frequency content, have been developed. A frequency domain
implementation of fatigue criteria, like Crossland’s failure criterion, has
been done. However, no criteria based on the microscopic phenomena of
fatigue have been implemented in the frequency domain. Moreover, the
equivalent fatigue approach is not specifically used for high cycle fatigue
on metallic structures. It could be interesting to extend it to structures
undergoing low cycle fatigue, or non linear structures. The requirements
about the choice of criterion considering above are still valid.
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12.4 Perspectives

We have evaluated the multi-input EFL under the hypothesis of propor-
tional stress tensor. It would be interesting to study the evaluation of the
EFL in the case of a non-proportional stress tensor. In this case, Morel’s
criterion can still be used. The critical plane and the critical direction on
it change from one sequence of loads to another. Thus, the magnitudes,
like the threshold, may not only depend on the geometry but also on the
forces.

A proposition of experiments has been presented. The aim was to check if
the equivalence between bidimensional variable amplitude loads and the
sinusoidal EFL with two blocks, was verified. In the multi-input equiv-
alent fatigue approach, two different criteria have been developed, and
several different EFL have been studied. In order to verify the whole ap-
proach, the same experiment for each model and each criterion should be
done. Moreover, the same loads should be tested on different structures,
with different geometrical characteristics.
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Appendix A

Evaluation of a threshold of
non-damaging range of
rainflow cycles in Morel’s
criterion

We will evaluate a theoretical expression of T(Ac, F), in terms of the pa-
rameters depending on the stress tensors and on the loads, and prove The-
orem 6.5. Moreover, a minimization of the threshold in terms of α(Ac) and
β(Ac) will be proposed.

Theorem A.1. Expression of the threshold T(Ac, F). The stress field fulfilling
Assumption 6.1 and Assumption 6.2 can be written as,

Σd(Ac, F, t) = Cs(Ac)
n

∑
i=1

di(Ac) Fi(t)




1
α(Ac)
β(Ac)


 ,

with
Cs(Ac) > 0, −1 ≤ β(Ac) ≤ α(Ac) ≤ 1.

The threshold T(Ac, F) of any structure and point fulfilling Assumption 6.1
and Assumption 6.2, has an analytical expression,

T(Ac, F) =
M1

M2
,
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Appendix A. Evaluation of a threshold of non-damaging range of
rainflow cycles in Morel’s criterion

The variables M1 and M2 are defined by,

M1 = 2
(

βd
Cs(Ac)

− αd
3

(1 + α(Ac) + β(Ac)) F∗m(Ac, F)
)

M2 =
αd
3
|1 + α(Ac) + β(Ac)|+ 1− β(Ac)

2
, (A.1)

where αd and βd are Dang Van’s coefficients, dependent on the material. The
variable F∗m(Ac, F) is the mean value of the F∗(Ac, F).

Proof. The components α(Ac) and β(Ac) depend on the geometry and on
Ac. They are constant in time. Under the hypothesis of elastic and quasi-
static structures, each component of Σd(Ac, F, t) is a linear combination of
the forces. Thus,

σ(Ac, F, t) = Cs(Ac)
n

∑
i=1

di(Ac) Fi(t) with

{
Cs(Ac) > 0
∑n

i=1(di(Ac))2 = 1.

Let’s consider the unit vector d,

d(Ac) = (d1(Ac), d2(Ac), . . . , dn(Ac)) .

When the geometry is known, parameters Cs(Ac), d(Ac), α(Ac) and β(Ac)
are also known. These variables are independent as there exists an infinite
number of structures and combinations of these parameters. Hydrostatic
pressure and resolved shear stress are expressed from them.

Let’s call the hydrostatic pressure P(Ac, F) at a given point Ac of the struc-
ture:

P(Ac, F) =
1
3

(1 + α(Ac) + β(Ac)) σ(Ac, F).

The standard deviation and the mean of P are called Prms and Pm respec-
tively,

Prms(Ac, F) =
1
3
|1 + α(Ac) + β(Ac)| σrms(Ac, F),

Pm(Ac, F) =
1
3
(1 + α(Ac) + β(Ac)) σm(Ac, F), (A.2)

where σm(Ac, F) and σrms(Ac, F) are the mean and the standard deviation
of σ(Ac, F).

From Mohr’s circles, the resolved shear stress τ(Ac, F), is expressed by:

τ(Ac, F) =
1
2
(1− β(Ac)) σ(Ac, F).
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Appendix A. Evaluation of a threshold of non-damaging range of
rainflow cycles in Morel’s criterion

From Eq. (6.8),
τ(Ac, F) = C(Ac) F∗(Ac, F).

Thus, we deduce,

C(Ac) =
1− β(Ac)

2
Cs(Ac),

a(Ac) = d(Ac). (A.3)

As a consequence,

τ(Ac, F, t) = Cs(Ac)
1− β(Ac)

2
F∗(Ac, F),

and

τrms(Ac, F) = Cs(Ac)
1− β(Ac)

2
F∗rms(Ac, F). (A.4)

The stress σ(Ac, F, t) is proportional to τ(Ac, F, t). They are both linked to
the same combination of the forces F∗(Ac, F, t). Moreover, from Eq. (A.2),
we get,

Prms(Ac, F) =
1
3
|1 + α(Ac) + β(Ac)| Cs(Ac)F∗rms(Ac, F),

Pm(Ac, F) =
1
3
(1 + α(Ac) + β(Ac)) Cs(Ac)F∗m(Ac, F). (A.5)

From Eq. (4.11) and Eq. (6.11), the parameter T(Ac, F) is expressed from
the hydrostatic pressure and the resolved shear stress:

T(Ac, F) =
M1

M2
.

The magnitudes M1 and M2 are defined as,

M1 = 2 (βd − αd Pm(Ac, F)) ,

M2 = C(Ac)
(

αd Prms(Ac, F)
τrms(Ac, F)

+
H√
π

)
.

The value of H for proportional stress tensors is known, see [39],

H =
√

π.
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Appendix A. Evaluation of a threshold of non-damaging range of
rainflow cycles in Morel’s criterion

Consequently, we can deduce an analytical expression of the threshold
T(Ac, F), from Eq. (A.5,A.4),

M1 = 2
(

βd
Cs(Ac)

− αd
3

(1 + α(Ac) + β(Ac)) F∗m(Ac, F)
)

,

M2 =
αd
3
|1 + α(Ac) + β(Ac)|+ 1− β(Ac)

2
.

Thus, we can deduce that the threshold T(Ac, F) depends on the mean
value of the loads, and on the location of the critical point.
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