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Abstract

DNA microarrays are strikingly efficient tools for analysing gene expres-
sion for large sets of genes simultaneously. The aim is often to identify
genes which are differentially expressed between some studied conditions,
thereby gaining insight into which cellular mechanisms are differently ac-
tive between the conditions. In the measurement process, several steps
exist that risk going partly or entirely wrong and quality control is there-
fore crucial.

In Paper I-III, a novel method is developed which integrates quality
control quantitatively into the analysis of microarray experiments. The
noise structure for each gene is modelled by (i) a global covariance struc-
ture matrix catching decreased quality by array-wise variances and catch-
ing shared sources of variation by correlations, and (ii) gene-wise variance
scales having a prior distribution with parameters estimated from the data
of all genes in an empirical Bayes manner. The variances and correlations
are entirely estimated from the data. In the estimates and tests for differ-
ential expression, arrays with lower precision or arrays sharing sources of
variation are downweighted. Thus, the sharp decision of entirely excluding
arrays is avoided. The method is called Weighted Analysis of Microarray
Experiments (WAME).

Current methods for microarray analysis generally disregard the qual-
ity variations. Simulations based on real data show that this often results
in severely invalid p-values. Trusting such p-values therefore risks result-
ing in false biological conclusions. WAME gives increased power and valid
p-values when few genes are differentially expressed and conservative p-
values otherwise. Similar results are seen on simulations according to the
model.

In Paper IV, WAME is used to identify genes which are differentially
expressed between small and large human fat cells. WAME here success-
fully downweights one array that was suspected of decreased quality on
biological grounds.

The WAME method is freely available as a add-on package for the R
language.
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Background

On DNA microarray experiments

Inside each of the cells of organisms ranging from humans to trees and
yeast, the DNA contains blueprints of a vast array of proteins. To pro-
duce a particular protein, a machinery referred to as the central dogma of
molecular biology is invoked (Alberts et al., 1998). Here, a relevant part
of the DNA (called a gene) is first essentially copied into messenger RNA
(mRNA) molecules. The mRNA molecules then carry the information to
the ribosomes, which produce the protein in question. The abundance of
the mRNA of a gene is called the expression of that gene.

The proteins are the main working horses for a wide array of func-
tions of the cell, including structural elements and hormones performing
between-cell signalling. Therefore, monitoring the production of proteins
is a way to gain insight into the inner mechanisms of the cells. Such insight
could ideally help understanding diseases on a detailed level, providing the
foundation of subsequent development of efficient drugs. A common prob-
lem is therefore to try and identify genes that are differentially expressed
between some studied conditions, that is genes which tend to have higher
abundance of mRNA in cells from one condition than from the other.

DNA microarrays is a technique for measuring the abundance of mRNA
for a large set of predefined genes (typically 1000-40000), which is per-
formed for relatively few biological samples (typically six to one hundred)
in each experiment. The microarrays thereby provide snapshots of how
active different mechanisms are in the measured cells at the time of the
measurements.

The actual microarrays are stamp-sized plates where different spots are
prepared to specifically match different genes. There are different types of
microarrays, the most common being two-colour spotted cDNA arrays and
one channel in-situ hybridised oligonucleotide arrays. From the mRNA
molecules, cDNA or cRNA which is labelled with fluorescent molecules
is prepared. When the cDNA or cRNA is hybridised to a microarray,
the labelled molecules stick to their predefined spots. When a laser then
sweeps over the surface, the amount of light emitted by the fluorescent
molecules at different positions of the array can be used to measure the
number of attached labelled molecules, signifying the expression of the
corresponding genes.

The process of performing a microarray measurement involves a long
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series of step before the data can be analysed. For an array in a patient
study (i) a patient is selected, (ii) a biopsy (a piece of the tissue of interest)
is taken, (iii) the RNA is extracted from the biopsy, (iv) cRNA or cDNA
marked with fluorescent markers is prepared from the RNA, (v) the cRNA
or cDNA is hybridised to the array and non-attached molecules are washed
off, (vi) the array is scanned using a laser and photodetector and, (vii) the
scanned data is preprocessed in the computer, e.g. background noise is
removed and other artefacts are removed by suitable normalisation. Each
of these steps in turn involves substeps. Frequently, steps are performed
in batches where a number of samples are prepared in parallel.

Unfortunately, each of the involved steps risks going partly or entirely
wrong, affecting individual samples or batches of samples. For example,
the biopsy might contain a non-representative cell-type distribution, the
RNA can become degraded during the handling of the biopsy, or some
lab conditions might make some lab step work non-optimally for some
samples. Thus there is a strong need for quality assessment and quality
control to handle occurrences of poor quality, as is clearly pointed out in
Johnson and Lin (2003) and Shi et al. (2004)

Currently, the main quality assurance solution is to try and identify
quality deviations in each step and exclude or remake samples with sus-
pected decreased quality. A short review of such methods are available in
Paper I. However, even utilising an optimal quality control procedure aim-
ing at removing low quality samples and/or individual gene measurements
(e.g. spots), there will always be a marginal region with some measure-
ments being of decreased quality without being worthless. Therefore qual-
ity control becomes a balancing act of not including samples that would
introduce too much noise into the subsequent analysis, but at the same
time not excluding samples that would otherwise have provided additional
strength to the analysis.

Adding to the problem is the fact that some sources of the quality de-
viations might be shared among subsets of the arrays, e.g. when they are
performed in parallel in the lab or when they share some inherent charac-
teristics, such as when some biopsies have a similar but non-representative
cell-type distribution. As will be pointed out in the next section, most cur-
rent methods for analysing the data do not take quality variations in the
data into account.
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Statistical analysis of microarray experiments

An important class of problems problem related to microarray experiments
is to try and identify genes that are differentially expressed between some
studied conditions, that is to try and find genes which have higher typi-
cal abundance of mRNA in cells from one condition than from the other.
Here, the conditions might for example refer to different treatments of
patients or strains of yeast. To formalise this problem, a differentially
expressed gene is defined as a gene with higher expected abundance in
samples from one condition compared to the other. An interpretation of
the expected abundance in a condition is the average abundance in all
possible biological samples from the condition. Since all possible samples
cannot be measured, a few samples are randomly selected from each con-
dition and they are measured with DNA microarrays. Statistics is then
used to draw conclusions on the difference in expression between the entire
populations of possible biological samples.

A statistical model is often first assumed for how the measurements are
distributed. For each gene, a function of the data (a statistic) is formed,
which is designed to have an extreme value when the data suggests a
differential expression. The statistic can then be used to test for differen-
tial expression for the different genes. The distributional assumptions are
then used to determine the critical value for the statistic, that is a value
of the statistic which is improbable to be exceeded if the gene is in fact
non differentially expressed. This means that if the statistic for a gene ex-
ceeds the critical value, the test rejects that the gene is not differentially
expressed and the gene is called significantly differentially expressed.

In the models below, a transformed version of the abundance is used,
where the base two logarithm (log2) is taken for each value. This transfor-
mation has the property that a two-fold increase or decrease in the original
measurement will result in an addition or subtraction, respectively, of one
to the log2-value. Thus increases and decreases are treated symmetrically.
In addition, the log2 values better fit standard statistical models.

The most common statistical model is the Ordinary Linear Model
(Arnold, 1980) which give rise to the ordinary t- and F-tests. In this case
the model implies that for each fixed gene, the measurements are normally
distributed with expected values according to the respective conditions
they come from. Furthermore, for each gene the noise (i.e. the random
deviations from the expected values) of the different arrays are assumed to
be independently distributed and to have equal variances. The likelihood
ratio statistic then becomes the ordinary t-statistic which is computed as
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the ratio between the estimated differential expression and the estimated
standard deviation of that difference. A large absolute value of the t-
statistic thus means that the difference is larger than can be explained by
chance if the gene is in fact non-differentially expressed.

In microarray experiments there are often relatively few arrays, result-
ing in highly variable estimates of the standard deviation for each gene.
To use the information in the large number of measured genes to handle
this problem, an empirical Bayes approach (Robbins, 1956; Maritz, 1970)
can be taken. Here, the variances of the genes are assumed to be inverse
gamma distributed a-priori, i.e. before data from the gene is observed.
The two parameters of the inverse gamma distribution are then estimated
from the data of all genes. This approach has been used by Baldi and Long
(2001), Lönnstedt and Speed (2002) and in the R (R Development Core
Team, 2006) package LIMMA (Smyth, 2004). Essentially, the parameters
are (i) a global typical variance for all genes and (ii) the variability of the
variances for different genes. Now, the estimate of the variance for each
gene becomes a compromise between the ordinary gene-wise estimate and
the estimate of the global variance. Here, more emphasis in placed on the
global variance estimate when there is a low estimated variability of the
variances for different genes, i.e. when the variances tend to be similar for
different genes. The corresponding statistics are called moderated t- or
F-statistics, since the ordinary variance estimates are moderated by the
global estimate in the statistics.

Full hierarchical Bayes models have been presented, e.g by Lönnstedt
and Britton (2005). However, Lönnstedt and Britton (2005) note that
the existing empirical Bayes methods have at least as good performance
as their novel models, and that the long computation times for the full
hierarchical Bayes methods not seem worth spending.

A statistic similar to the moderated t-statistic was proposed by Efron
et al. (2001) and Tusher et al. (2001), but without a underlying distribu-
tional model. Instead a permutation based procedure is used to estimate
the distribution of the statistic for non-differentially expressed genes. The
method is thus non-parametric and the underlying assumption is that
the arrays are exchangeable for non-differentially expressed genes. This
procedure is available in the SAM plugin for Microsoft Excel.

The empirical Bayes approach above was extended by Ritchie et al.
(2006), introducing array-specific variances to model array-wide quality
deviations. It can be noted that this paper appeared after Paper I, which
introduced a more general model for paired designs.
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In some microarray experiments, additional information is available.
For example, shared sources of variation may be known or quantitative
quality measures may be available, e.g. spot shape features or residuals
from the fitting of probe-level models (Bolstad, 2004). It is possible to
explicitly model some such sources of variation, for example using ran-
dom or fixed effects (cf. Bakewell and Wit (2005)) and to include quality
measures as covariates. However, such models would likely focus on some
of the clearer sources of variation but leave out more involved and hard
modelled sources.

In the parametric models above the noise of the different arrays is as-
sumed to be independent and/or to have equal variances. This essentially
implies that the quality of each array is identical and/or that the random
deviations of each array has nothing to do with the deviations of any other
arrays. The exchangeability assumption in the non-parametric methods
similarly implies that the quality of each array is identical and no two
arrays are more similar than any other two. However, it was previously
argued that the qualities of the different arrays are expected to vary. Also,
some sources of the quality deviations are shared among subsets of the ar-
rays and their random deviations from the expected value will be partly
connected. Thus the assumptions of the models seem questionable.

If the assumptions of the model used do not hold, two problems occur.
First, the statistic is designed from the model assumptions to give as
good inference results as possible. If the assumptions fail, one can expect
to lose power in the analysis. Second, when deriving p-values and the
critical value for the statistic, the model assumptions are used. When the
model assumptions fail, the test results and p-values might therefore be
misleading, potentially leading to erroneous biological conclusions.

Contributions of the thesis

The suspicion that data from different arrays coming from different biolog-
ical samples have unequal quality is verified by examination of microarray
experiments coming from several different experimental designs and mi-
croarray techniques. The model assumptions of the current methods are
thus found to be invalid in many cases.

An alternative analysis method is therefore proposed, where the noise
of different arrays is not assumed independent or to have equal variances.
Instead the model is a generalised linear model where each array has
a variance of its own and each pair of arrays have a correlation. Each

6



gene then has a factor which scales the array-wise variances. This factor
models the variation in variance for different genes and is assigned an
inverse gamma prior distribution. The model is thus a generalisation of
the one from the empirical bayes method in LIMMA.

The method is called Weighted Analysis of Microarray Experiments
(WAME) since an array is downweighted when it has high variance and/or
when it is positively correlated with other arrays, making them partially
contain the same information. Since the arrays are weighted according
to their quality, the sharp and sometimes subjective choice is avoided of
entirely excluding arrays with suspected decreased quality.

An advantage of the method is that the quality is entirely determined
from the actual data. Thus, array-wide quality deviations from all steps
are considered, which is in contrast to other quality assurance techniques
which only regard one or a few steps in experiments with a certain type
of microarrays. An addition, it makes it applicable to different DNA
microarray techniques, e.g. both in-situ hybridised one-channel arrays and
two-colour spotted cDNA arrays.

For several examined real experiments, the difference in test results
and p-values are significant between WAME and the traditional models,
where the traditional models suggest a much larger number of differen-
tially expressed genes. Resample-based simulations based on the real data
are performed, where the noise is real and the signal added. Here, the
p-values of WAME are valid when few genes are highly differentially ex-
pressed and conservative otherwise. The commonly used methods instead
give p-values which can be highly optimistic or conservative, depending on
how the quality deviations of the arrays happen to occur. Consequently,
p-values and derived entities, such as estimates of the number of differen-
tially expressed genes, from the standard methods are questionable to use
without careful model verifications.

It has recently been argued that the expression of different genes are
highly dependent, making the law of large number normally inapplicable
(Klebanov and Yakovlev, 2006) and e.g. the standard false discovery rate
estimator imprecise (Pawitan et al., 2006). However, since array-specific
quality deviations are not modelled in the underlying statistics being ex-
amined, the statistics of the different genes will share a common bias. The
observed strong dependencies might thus be due to failed model assump-
tions rather than due to the nature of microarray data per se, e.g. through
substantial long-range gene-gene interactions. This is further discussed in
Paper III.
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Using similar simulations where the noise is taken from resamples of
real data and a synthetic differential expression is added to randomly se-
lected genes. WAME is then found to have higher power of identifying the
differentially expressed genes than the commonly used methods. Similar
results are noted on fully parametric simulations.

The model is basically constructed in a stepwise manner in Paper I-
III, where Paper I treats two-condition experimental designs with pairwise
measurements, Paper II treats general experimental designs with pairwise
measurements and Paper III treats unpaired experimental designs.

In Paper IV, WAME is used to identify genes that are differentially
expressed between small and large human adipocytes (fat cells). The
biological importance is that the risk of metabolic complication, including
type 2 diabetes and cardiovascular disease, is increased not only by the
amount and location of adipose (fat) tissue, but also by the size of the
fat cells. The active mechanisms in cells of different size are therefore
of interest. WAME here successfully downweights one array that was
suspected of decreased quality on biological grounds and would otherwise
have been entirely excluded.
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Summary of papers

Summary of Paper I :
Weighted Analysis of Paired Microarray Experiments

Since several consecutive steps are involved before analysable data is ob-
tained in microarray experiments, the data of the different arrays are
suspected to have different quality. Three real datasets with paired two-
sample experimental designs are examined, the Swirl data by Dudoit and
Yang (2003), the Polyp data by Benson et al. (2004), and the Cardiac
data by Hall et al. (2004). All datasets reveal strong deviations in quality
between the different arrays, or pairs of one-channel arrays in case of one-
channel microarrays (see Figure 1-3). As expected, the different arrays
have different variability and, in addition, correlations between the noise
of certain arrays are evident.

A model called WAME is therefore formulated for paired two-sample
experiments, where the quality deviations are modelled by different vari-
ances for different arrays as well as by correlations between them in a
covariance matrix, catching both unequal precision and shared sources
of variation. Genes have different variability (biological and technical),
which is modelled by a gene-specific variance scaling factor with an inverse
gamma prior distribution. Given this structure, the pair-wise measured
log2-ratios for each gene are assumed to be normally distributed.

The model can be summarised as follows: For each gene g one log2

ratio is observed for each of the n pairs,

Xg = (Xg1, . . . , Xgn) .

Further, µg denotes the differential expression, Σ is the n × n covariance
matrix catching the quality deviations, cg is the gene-specific variance
scaling factor, and α is a hyperparameter determining the spread of the
prior distribution for cg. Then for fixed µg, Σ and α,

cg ∼ Γ−1(α, 1) and

Xg | cg ∼ Nn (µg1, cgΣ) .
(1)

For two-sample paired designs, this model is a generalisation of the widely
used empirical Bayes model proposed by Lönnstedt and Speed (2002),
which is implemented in the LIMMA package (Smyth, 2004). The mod-
els are equivalent when no correlations or unequal variances exist in Σ.
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The contribution of the WAME model is thus the modelling of the array-
specific qualities.

The estimation of the covariance matrix Σ is complicated for a number
of reasons. Primarily, Σ and µg cannot be maximum likelihood estimated
simultaneously, since there are trivial solutions that give infinite likelihood
(e.g. when the expected value is set to the measurement of one array and
the corresponding variance is set to zero). To circumvent this problem,
it is temporarily assumed than no differential expressed genes exist, and
thus that only noise is measured. A likelihood based estimator of Σ and α
is thus proposed. Since the estimates will be based on thousands of genes,
they are expected to be precise and are treated as known in the gene-wise
inference below.

The main goal with the inference is to examine the differential expres-
sion µg. The gene-wise maximum likelihood estimate of µg is derived to
be a weighted mean

µ̂g = wT Xg

where

wT =
1TΣ−1

1TΣ−11
.

Thus, arrays having increased variance or being positively correlated with
other arrays are downweighted. The likelihood ratio test for identifying
differentially expressed genes can be realised by a weighted moderated
t-statistic

Tg =
√

1TΣ−11 (n− 1 + 2α)
µ̂g√

Sg + 2
,

where Sg is a residual sum of squares like function of Xg taking Σ into
account. When the gene is not differentially expressed, Tg becomes t-
distributed with n− 1 + 2α degrees of freedom.

Since the covariance structure is entirely general and since it is esti-
mated entirely from the data, array-wide quality deviations in all steps
(biological and technical) are objectively incorporated into the analyses.

A simulation study is performed where data is simulated according
to the WAME model. Some widely used alternative methods are in-
cluded for comparison: the ordinary t-statistic, the moderated t-statistic
in LIMMA, Efron’s penalized t-statistic (Efron et al., 2001) and ranking
by fold-change, i.e. the average over all arrays. When correlations and/or
different variances are included, receiver operating characteristic (ROC)
curves reveal that WAME has the highest power. When no correlations
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exist and the variances are equal, LIMMA and WAME performs approxi-
mately equally well. In all cases, the moderated statistics outperform the
traditional methods, i.e. the t-test or the fold-change.

The point estimator of the covariance structure matrix Σ is evalu-
ated on data simulated according to the WAME model with and without
differentially expressed genes, as well as on data with heavier tails. The es-
timator turns out to be precise in all cases. When differentially expressed
genes exist, the differential expression is interpreted as a correlated noise
by the estimator and the correlations and variances are biased upwards.
Otherwise, the estimator is accurate.

On the real datasets, distinctly non-equal variances and non-zero corre-
lations are estimated, which corresponds well to visual inspection of plots
of the data. The corresponding weights for the different arrays in the es-
timate of the differential expression become highly unequal. In the Polyp
data, one of the arrays was suspected in advance to be of decreased quality
on biological grounds and was excluded in the original publication. That
array was significantly downweighted by WAME. Evaluation of the model
on the real datasets by comparison of the empirical and theoretical distri-
butions suggests that the inverse gamma family of prior distribution for
cg is flexible enough and that the t-statistic is t-distributed as suggested
by the model. In the SWIRL data, the conditions are well controlled and
it is believed that very few differentially expressed genes exist. Here, it
is noted that the observed distribution of the t-statistics from LIMMA
and WAME are somewhat unequal, where WAME follows the theoretical
null-distribution well while LIMMA provides t-statistics which seem too
optimistic.

Summary of Paper II :
Quality Optimised Analysis of General Paired Mi-
croarray Experiments

In Paper I, experiments with paired samples coming from two conditions
were examined. Now, WAME is extended to handle experiments with
paired samples and arbitrary numbers of conditions. This is performed by
generalising the model (1) to a generalised linear model (Arnold, 1980),
being a generalisation of the LIMMA model (Lönnstedt and Speed, 2002;
Smyth, 2004) by adding the covariance structure matrix Σ between the
arrays. In Paper I, the differential expression was directly defined by
the expected value of the measurements. Now, for each gene g a set of
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parameters γg are introduced, typically being the expected value for each
experimental condition. The expected value vector µg of the arrays and
the differential expression δg are then defined as linear combinations of γg

by a matrix C and a design matrix D. The model becomes

cg ∼ Γ−1(α, 1) and

Xg | cg ∼ Nn

(
µg, cgΣ

)
,

(2)

where µg = D γg and the differential expression is defined by δg = C γ.
The covariance matrix Σ and the hyperparameter α are essentially

estimated as in Paper I, again temporarily assuming µg = 0 for all genes.
This assumption is valid in the paired setting if no genes are differentially
expressed between any pairwise measured conditions. The estimator can
be expected to give results even if a few genes are differentially expressed
between some conditions.

The estimator of δg and the test for differential expression are derived
by first transforming the data by multiplication by the inverse of the square
root matrix of Σ, Σ−1/2,

X̃g = Σ−1/2 Xg .

Letting D̃ = Σ−1/2D and µ̃g = D̃ γg, properties of the normal distribution
gives

X̃g | cg ∼ Nn

(
µ̃g, cg I

)
(3)

where the identity matrix is denoted by I. Thus standard data is obtained
which is independent and identically distributed between the arrays.

The resulting likelihood ratio test statistic becomes a weighted mod-
erated F-statistic (or t-statistic when C has one row) and the maximum
likelihood estimator of the differential expression vector becomes a vector
of weighted averages,

δ̂g = C(DTΣ−1D)−DTΣ−1 Xg ,

where the generalised inverse is any matrix satisfying AA−A = A.
A time-course experiment is simulated according to the WAME model

with moderate correlations between arrays within time points and low
to moderate correlations between arrays from different time points. The
differential expression vector is here the vector of all changes in expected
value between nearby timepoints. The weighted moderated F-statistic
thus aims at identifying genes which are differentially expressed between
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any timepoints. The results are compared to the ordinary F-statistic, the
moderated F-statistic in LIMMA and a weighted moderated F-statistic in
LIMMA, which is based on the assumption of unequal variances but no
correlations. A substantial advantage in power is noted for WAME. This
is expected since the data are simulated according to the WAME model
and relevant correlations and differences in variance exist. Still it is hoped
to give an indication of the gains on real data.

Two real datasets are examined, the ApoAI dataset (Callow et al.,
2000) and the Cardiac dataset (Hall et al., 2004). In both cases, the
statistic show a good fit to the null-distribution. ApoAI is a well controlled
mouse knockout study where few genes are expected to be differentially
expressed. Here, the variation of the estimates of differential expressions
are lower for WAME, which is beneficial. Similar to in the SWIRL study
examined in Paper I, the moderated t-statistics from LIMMA are opti-
mistic.

Summary of Paper III :
Weighted analysis of microarray experiments

In Paper I and Paper II the covariance-structure matrix Σ is estimated
using a temporary assumption that µg = 0 for most genes, i.e. that the
measurements of most genes consist solely of biological and technical noise.
For unpaired designs where one-channel microarrays are used to measure
gene expression in different conditions, the signal can be decomposed into
two parts: (i) an expected expression in a reference condition and (ii) the
differential expression, i.e. a difference between the expected expression in
each condition compared to in the reference condition. For many such ex-
periments, the differential expression can be assumed zero for most genes.
However, the expected expression in the reference condition can in general
not be assumed zero for any genes. Therefore, the previous estimator of
Σ is not applicable.

In Paper III, the assumptions are relaxed to only assume that most
genes are non-differentially expressed, i.e. δg = 0. The trick used is to
transform the data and consider

Yg = Xg −µ̃0
g (4)

where µ̃0
g is a suitable linear estimator of µg which is unbiased under

the assumption of no differential expression, δg = 0, and which preserves
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the estimability of the differential expression δg, based only on the trans-
formed data.

In the unpaired designs above, the transformation can simply be a com-
mon subtraction for all arrays of an estimate of the expected expression
in the reference condition. Since the difference in mean value between the
arrays from the different conditions is unchanged by the transformation,
the differential expression will still be estimable.

By design, the transformed data will have expected value zero for non-
differentially expressed genes. Since the transformation is linear, the trans-
formed data will furthermore be normally distributed conditional on cg,
although with a different design matrix. Therefore, the method presented
in Paper II can essentially be applied to the transformed data, including
tests and estimates for the differential expression. It is shown that the
tests and estimators are in fact unchanged by the transformation, if the
covariance-structure matrices for the transformed and untransformed data
are known. The difference is that the covariance-structure matrix for the
transformed data can be estimated.

To investigate the properties of the new version of WAME, two real
datasets are examined, the COPD data by Spira et al. (2004) and the
Atrium data by Barth et al. (2005). Relevant unequal variances and corre-
lations are visually observed (see Figure 4-6) and estimated using WAME,
which leads to unequal weights for the different arrays.

When p-values are computed using (i) WAME, (ii) the ordinary t-
statistic, (iii) the moderated t-statistic and (iv) the weighted moderated
t-statistic, the observed distributions of the p-values differ substantially.
Here WAME is considerably more conservative. Since the model assump-
tions seem to fail for the methods not modelling correlations and/or differ-
ent variances, it is suspected that their p-values are optimistic and invalid.
However, it cannot be ruled out that the p-values of WAME are conser-
vative due to the assumption of no differentially expressed genes, which
might partly explain the difference in distributions.

To make a closer examination, data is first simulated with real noise
and without differentially expressed genes. This is performed by repeat-
edly selecting two random subgroups of four arrays from within one group
in the original data. Since the same condition is samples twice, no differ-
entially expressed genes exist. The different methods are then performed
on those groups. Figure 7 shows the empirical p-value distributions for
the resampled Atrium data analysed with the four methods. For WAME,
the resulting p-value distributions are very close to the expected uniform.
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For OLM (the ordinary t-statistic), LIMMA and weighted LIMMA there
is a high variability between the p-value distributions and they are in
many cases substantially different from the expected uniform. Thus it
seems questionable to trust p-values, or derived entities such as estimates
of false discovery rates and the number of differentially expressed genes,
from the standard methods without careful prior model verification.

To evaluate the power of the methods in the studied datasets, a known
differential expression is added to randomly selected genes in the resam-
pled data above. Here, WAME performs best, followed by LIMMA and
weighted LIMMA, which in turn perform significantly better than the tra-
ditional methods of performing t-tests or ranking by fold-change. Using
the same kind of simulated data, it is further suggested that when the pro-
portion of differentially expressed genes increases, the p-values of WAME
become conservative, but does not lose power.

In some of the studied datasets, some arrays in certain groups get
weights with different signs compared to the other arrays of that group.
A random effects model is shown to elucidate why this happens.

It is furthermore noted that previously observed strong correlations
between gene-wise statistics might be due to failure of taking array-wide
quality deviations into account in the model and not due to the nature of
microarray data per se.

Summary of Paper IV :
Separation of human adipocytes by size - hypertrophic
fat cells display distinct gene expression

Is is known that the risk of metabolic complication, including type 2 dia-
betes and cardiovascular disease, is increased not only by the amount and
location of adipose tissue (fat), but also by the size of the adipocytes
(fat cells). Human fat cells can change 20-fold in diameter and sev-
eral thousand-fold in volume. Enlargement of subcutaneous abdominal
adipocytes is associated with insulin resistance and is an independent
predictor of type 2 diabetes.

In Paper IV, a simple and accurate procedure is first developed for sep-
arating adipocytes from adipose tissue into two populations according to
size. A paired two-sample microarray experiment is then performed where
the gene expression is measured separately for large and small adipocytes
from three patients. Here WAME is used and biologically interesting
genes are identified, of which three are further studied: SAA, TM4SF1
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and leptin. Using a database containing expression profiles from a large
number of human tissues and cell types, the genes are indicated to be
highly expressed in adipocytes compared to other tissues. A separate set
of biological samples are used to verify the differential expression of the
three genes using realtime RT-PCR. Finally, the differential expression on
protein level is indicated using immunohistochemistry.

In the microarray analysis, three patients coded as 13, 15 and 16 were
included. The biological sample for Patient 13 was strongly suspected to
be of decreased quality. For each Patient a ratio between the measured
expression of large and small adipocytes was log2-transformed and used.
Figure 8 shows the log2-ratios for all genes, for each pair of patients.
Estimated variances and correlations as well as weights are also shown.
Here the data from the array for Patient 13 is found to have roughly
14 times higher variance than the data from the arrays for the other two
patients. Nevertheless, the figure shows that genes having a high log2

ratio in Patient 15 or Patient 16 tend to have a high log2 ratio also in
Patient 13, so the data from Patient 13 appears to contain some signal
and thus not to be worthless.

If the WAME model is suitable for the data and the estimates of the
variances and correlations are correct, the ordinary unweighted estimate
of differential expression (excluding Patient 13) has 9% higher variance
than the weighted estimate from WAME. In addition, one extra degree
of freedom is obtained in the t-statistic, further increasing the power. If
instead Patient 13 is included in the ordinary unweighted estimate, the
variance will become 229% higher and the assumptions of the standard
methods will clearly fail.
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1 Introduction

DNA microarrays are strikingly efficient tools for analysing gene expression
for large sets of genes simultaneously. They are often used to identify genes
that are differentially expressed between two conditions, e.g. before and after
some treatment. A drawback is that the technology involves several consec-
utive steps, each exhibiting large quality variation. Thus there is a strong
need for quality assessment and quality control to handle occurrences of poor
quality, as is clearly pointed out in Johnson and Lin (2003) and Shi et al.
(2004).

Despite the observed need for effective quality control, standard operat-
ing procedures for quality assurance of the entire chain of processing steps
have only recently been proposed (Ryan et al., 2004, for one-channel experi-
ments). However, even utilising an optimal quality control procedure aiming
at removing low quality arrays and/or individual gene measurements (e.g.
spots), there will always be a marginal region with some measurements be-
ing of decreased quality without being worthless, as noted in Ryan et al.
(2004). Consequently, it should be possible to make progress by integrating
quality control quantitatively into the analysis following the lab steps and
low-level analysis, taking quality variations into account.

When integrating the quality concept into the analysis, the quality of
different parts of the dataset should ideally be estimated from data and used
in the subsequent selection of differentially expressed genes. Here we intro-
duce a method, called Weighted Analysis of paired Microarray Experiments
(referred to as WAME), for the analysis of paired microarray experiments,
e.g. comparison of pairs of treatment conditions and many two-colour exper-
iments. WAME aims at estimating array- or repetition-wide quality devia-
tions and integrates the quality estimates in the statistical analysis. Only the
observed gene expression ratios are used in the quality assessment, making
the method applicable to most paired microarray experiments, independent
of which DNA microarray technology is used.

In short WAME identifies and downweights repetitions (biological or tech-
nical) of pairs (corresponding to individuals or to arrays) with decreased
quality for many genes. Repetitions with positively correlated variations, e.g.
caused by shared sources of variation, are similarly down-weighted. Thus,
estimates of differential expression with improved precision and tests with
increased power are provided.

As a useful complement to the WAME analyses we suggest pair-wise plots
of log-ratios of gene expression measurements. Such plots are supplied for all
three real datasets analysed, and are particularly useful for understanding
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which patients or arrays are up- or down-weighted.
In the adopted model, log ratios of measured RNA-levels are assumed

normally distributed. The covariance structure is specified by parameters of
two types: (i) a global covariance matrix signifying different quality for dif-
ferent repetitions and (ii) gene specific multiplicative factors. The latter have
inverse gamma prior distribution with one gene-specific parameter, which is
estimated by an empirical Bayes method.

The paper is organised as follows. In Section 2, some background on
microarray quality and a selected literature review are presented. This is
followed by a detailed description of our model. Methods for estimating the
parameters and a likelihood ratio test for identifying differentially expressed
genes are derived. We give a summary of the computational procedure in-
cluding a reference to R code available from the Internet. In the following
section simulations are used to compare WAME to four currently used meth-
ods: (i) average fold change, (ii) ordinary t-test, (iii) the penalized t-statistic
of Efron et al. (2001), and (iv) the moderated t-statistic of Smyth (2004).
Next, WAME is applied to three real datasets, the Cardiac dataset of Hall
et al. (2004), the Polyp dataset of Benson et al. (2004) and the Swirl dataset
(Dudoit and Yang, 2003). The results obtained are discussed in a subse-
quent section and some derivations and mathematical details are given in an
appendix.

2 Background

To put the quality control aspect of our model into context, the different
steps and sources of variation in typical paired microarray experiments are
outlined below. In addition, a selection of publications dealing with quality
control for microarray experiments are briefly reviewed.

2.1 Sources of variation in typical microarray experi-
ments

The first step, after decision on experimental design, of a microarray ex-
periment aiming at identifying differentially expressed genes would typically
be to determine how biological samples should be acquired. In experiments
dealing with homogeneous groups of single cell organisms, such as yeast, in
highly controlled environments, this task is typically less complex than when
dealing with heterogeneous groups of multicellular organisms, such as hu-
mans. Here selection of subjects and cells from the relevant organ, e.g. by
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biopsy or laser dissection, are complicated tasks.
From the biological sample the following lab-steps are performed: RNA

extraction, reverse transcription (and in vitro transcription), labelling, hy-
bridisation to arrays and scanning. The parts of the scanned images corre-
sponding to the different genes (i.e. spots or probe-pairs) are identified and
quantified. In addition, background correction may be performed. Subse-
quently, normalisation of the quantified measurements is performed to han-
dle global differences. In the case of Affymetrix type arrays, 11-20 pairs of
quantitative measurements are combined into one expression level estimate
for each gene. For an experiment of paired type, one log2-ratio of the expres-
sion level estimates is calculated for each pair and gene. These log2-ratios
are then used to examine which genes are differentially expressed.

In several of the steps mentioned above there are substantial quality varia-
tions. For example, the quantity and quality of the RNA in biopsies may vary
considerably. There are sometimes evidence of poor quality making it pos-
sible to remove obviously worthless samples. Nevertheless, there will always
be a marginal region with measurements of reduced quality without being
worthless. In addition, some variations are hard to detect before the actual
normalised log2-ratios are computed, e.g. non-representative tissue distribu-
tion in human biopsies. An additional aspect of quality control is systematic
errors, where the variations of different repetitions are correlated. This could
be due to shared sources of variation, such as simultaneous processing in lab
steps or non-representative tissue composition in the biopsies.

Another potentially important factor is the quality of the arrays used for
the measurements. Flaws in the manufacturing process might make mea-
surements for individual genes inferior. This is more of a problem in the
case of spotted arrays, for which there are only one or a few spots per gene.
However, such bad spots can often be detected. The quality control in the
actual manufacturing of microarrays is certainly very important but will not
be further discussed here.

2.2 A brief review of some relevant publications

In Johnson and Lin (2003) and Shi et al. (2004) the general need for improved
quality assurance in the context of DNA microarray analysis is emphasised.
Tong et al. (2004) implement a public microarray data and analysis software
and note that “Although the importance of quality control (QC) is generally
understood, there is little QC practise in the existing microarray databases”.
They include some available measures of quality for different steps in the
analysis in their database.
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Dumur et al. (2004) survey quality control criteria for the wet lab steps
of Affymetrix arrays, going from RNA to cDNA. Additionally, three sources
of technical variation (hybridisation day, fluidic scan station, fresh or frozen
cDNA) are evaluated using an ANOVA model.

Ryan et al. (2004) present guidelines for quality assurance of Affymetrix
based microarray studies, utilising a variety of techniques for the different
steps, some of which are shown to agree. A sample quality control flow
diagram is suggested, including steps from extracted RNA to the quantified
arrays.

Chen (2004) aims screens out ineligible arrays (Affymetrix type) using a
graphical approach to display grouped data. Park et al. (2005) similarly aim
at identifying outlying slides in two-channel experiments by using scatterplots
of transformed versions of the signals from the two channels.

Tomita et al. (2004) use correlation between arrays (Affymetrix type) to
evaluate the RNA integrity of the individual arrays, by forming an average
correlation index (ACI). The ACI is shown to correlate with several existing
quality factors, such as the 3’-5’ ratio of GAPDH.

Li and Wong (2001) and Irizarry et al. (2003) introduce estimates of
expression levels for probe-sets in Affymetrix type arrays, based on linear
models of probe-level data. Bolstad (2004) extend the use of such probe-
level models (PLM), e.g. by plotting residuals from the robust regression. It
is thereby possible to visually assess the quality of the actual scanned and
hybridised arrays, potentially detecting errors in certain steps of microarray
experiments based on Affymetrix type arrays.

Several papers have been written on the quality control of individual
measurements of genes (spots or probes). Wang et al. (2001, 2003) define a
spot-wise composite score from various quantitative measures of quality of
individual spots in spotted microarrays. They further perform evaluations
on several in-house datasets, showing that when bad spots are removed, the
variance of all gene-specific ratios in one chip is decreased. In Hautaniemi
et al. (2003) Bayesian networks are used to discriminate between good and
bad spots with training data provided by letting experienced microarray users
examine the arrays by hand.

In the papers discussed above the countermeasure against low-quality
spots or arrays is to treat them as outliers and to remove them. Again,
there will always be a marginal region with some measurements being of
decreased quality without being worthless. An interesting approach using
weighted analysis of the microarray gene expression data is due to Bakewell
and Wit (2005). The starting point is a variance component model for the
log expression mean for a spot i with variance σ2

b + σ2
i /mi, where σ2

b is
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the variance between spots while σ2
i is the variance between pixels in spot

i and mi is the effective number of pixels. For each gene the spots are
weighted inversely proportional to estimated variances, and different genes
are essentially treated independent of each other. Only quality deviations of
the actual hybridised spots are included in the model.

In Yang et al. (2002) the variance of different print tip groups or arrays
in cDNA experiments are estimated by a robust method. The need for scale
normalisation between slides is determined empirically, e.g. by displaying box
plots for the log ratios of the slides.

The model we propose (WAME) assesses the quality of different arrays
quantitatively by examining the computed log2-ratios. Thus, quality devi-
ations in all steps leading to the gene expression estimates are included, as
long as the quality deviations occur for a wide variety of measured genes.
Furthermore, shared systematic errors are taken care of via estimated covari-
ances between repetitions. The assessed qualities are incorporated into the
analysis based on the statistical model presented in the next sections.

In microarray experiments there are often relatively few replicates, result-
ing in highly variable gene-specific variance estimates. To use the information
in the large number of measured genes to handle this problem, an empirical
Bayes approach (Robbins, 1956; Maritz, 1970) can be taken, determining a
prior distribution from the data, thus moderating extreme estimates. This
approach has been used in Baldi and Long (2001), Lönnstedt and Speed
(2002) and Smyth (2004).

3 The model

The experimental layouts studied in the present paper are restricted to
comparisons of paired observations from two conditions. For each gene
g = 1, . . . , NG and each pair of measurements i = 1, . . . , NI , let Xgi with
expected value µg be the normalised log2-ratio of the observed gene expres-
sions from the two conditions. Thus, µg measures the expected log2 ratio of
the RNA concentrations of the two conditions.

In Section 2.1 it was noted that there may exist dependencies between
repetitions, e.g. due to systematic errors. Furthermore, different arrays may
have different precision in their measurements of the gene expressions. To
describe this, we use a covariance structure matrix Σ which models precision
as individual variances for the different repetitions and dependencies between
repetitions as covariances.

Due to both technical and biological reasons the observations for the dif-
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ferent genes have different variability, and a gene-specific multiplicative factor
cg for the covariance matrix is introduced. The cg-variables for different genes
are assumed to be independent. Given cg the vector Xg consisting of all rep-
etitions for gene g is assumed to have a NI-dimensional normal distribution
with mean vector µg1 and covariance matrix cgΣ. The vectors Xg for dif-
ferent genes are also assumed independent. This independence assumption
is optimistic but we believe that it is not critical in the Σ-estimation step
owing to the large number of genes.

In microarray experiments, the number of experimental units is typically
fairly small and estimates of cg utilising only information from the mea-
surements with gene g may be highly variable. Therefore prior information
is introduced as a prior distribution for cg, which serves to moderate the
estimates of cg. The prior for cg is assumed to be an inverse gamma dis-
tribution with a parameter α determining the spread of the distribution, in
effect determining the information content in the prior. The inverse gamma
distribution is a conjugate prior distribution for the variance of a normal
distribution and has as such been used in Bayesian and empirical Bayesian
analysis of microarray data before (Baldi and Long, 2001; Lönnstedt and
Speed, 2002; Smyth, 2004).

The model can be summarised as follows: We observe Xg = (Xg1, . . . , XgNI
)

where g = 1, . . . , NG. Let Σ be a covariance matrix with NI rows and
columns, cg a set of gene-specific variance scaling factors and α a hyperpa-
rameter determining the spread of the prior distribution for cg. Then for
fixed µg, Σ and α,

cg ∼ Γ−1(α, 1) and

Xg | cg ∼ NNI
(µg1, cgΣ) ,

(1)

and all variables corresponding to different genes are assumed independent.

4 Inference

4.1 Estimation of a scaled version of the matrix Σ

Estimating Σ may appear easy but it turns out to be rather intricate and
there are several issues involved.

Firstly, there are trivial solutions that give infinite likelihood of the model.
For instance, if the gene-specific mean value µg is equal to the observation
of one of the repetitions the likelihood goes to infinity as the corresponding
variance goes to zero. To avoid this complication the assumption that the
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differential expression of most genes is approximately zero is introduced tem-
porarily. This assumption is not as consequential as it might sound, since it is
made by most of the procedures that have become de facto standard in the
(preceding) normalisation step, one example being the loess normalisation
method (Yang et al., 2002). Nevertheless, it does limit the set of experimen-
tal setups that can be treated and the proportion of genes that are regulated
must not be too large. The impact of this assumption is further investigated
by the simulation study in Section 5.2. For the rest of Section 4.1, µg is thus
set equal to zero for all g = 1, . . . , NG.

Another issue is the scaling of Σ. For each gene, the covariance matrix is
scaled with the random variable cg which has an inverse gamma distribution
with a parameter which is unknown in a first stage. To address this issue, the
estimation of Σ is performed in two steps. In the first step, a transformation
is applied to Xg such that the transformed vector has a distribution that is
independent of cg. To simplify notation the index g will be dropped from Xg

and cg in the rest of this section. Let U = (U1, . . . , UNI
) where

Ui =

{
X1 if i = 1
Xi/X1 if 2 ≤ i ≤ NI

. (2)

The distribution of the vector U has the density

fU | c,Σ(u) = fX | c,Σ(x(u))|J(u)|

where J is the corresponding Jacobian. Some algebra shows that the scaling
factor c cancels for U2, . . . , UNI

and by integrating over U1, we get the density

fU2,...,UNI
| Σ(u2, . . . , uNI

) =

∫ ∞

−∞
fU | c,Σ(u) du1

= C |Σ|−1/2 [
vTΣ−1v

]−NI/2
,

(3)

where C is a normalisation constant and v = (1, u2, . . . , uNI
). The distribu-

tion (3) is independent of c and the marginal distribution of ui is a Cauchy

distribution translated with ρ1,iσi,i/σ1,1 and scaled with
√

1− ρ2
1,iσi,i/σ1,1,

where ρ1,i is the correlation between X1 and Xi and σi,i is the variance of
Xi. This shows that ρ1,i and σi,i/σ1,1 are identifiable. Analogously, from the
one dimensional Cauchy distributions of Uj/Uk = Xj/Xk, , j = 2, . . . , NI ,
k = 2, . . . , NI and j 6= k, it follows that all other correlations and variance
ratios are identifiable as well.

From (3) we see that the distribution of (U2, . . . , UNI
) is unchanged if we

multiply Σ with a constant. Let us therefore fix one element of Σ, e.g. we
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set the first element in the first row equal to one. Let Σ∗ denote the matrix
thus obtained. Then

Σ∗ = λΣ, (4)

and the constant λ will be estimated together with the hyperparameter α as
described below in Section 4.2. Thus estimation of the covariance matrix Σ
will be carried out in two steps: first estimate Σ∗ with one element fixed and
then estimate λ.

Numerical maximum likelihood based on the distribution (3) is used to
produce a point estimate of Σ∗. Here the number of unknown parameters are
NI(NI + 1)/2, growing as N2

I . To get an efficient implementation C/C++ is
combined with R (R Development Core Team, 2004). The resulting compu-
tational time for three arrays is less than a second and for 30 arrays it takes
a few hours.

4.2 Estimation of the hyperparameter α and the scale λ

In this section, we develop methods for estimation of the hyperparameter α as
well as the scale parameter λ in (4). From the model assumptions in Section
3 we recall that cg has an inverse gamma distribution with hyperparameter
α, e.g.

cg | α ∼ Γ−1(α, 1).

The inference of α will be based on the statistic

Sg = (AXg)
T(AΣAT)−1AXg,

where A is an arbitrary NI − 1×NI matrix with full rank and each row sum
equal to 0. It follows that the distribution of Sg conditioned on cg is a scaled
chi-square distribution with NI − 1 degrees of freedom,

Sg | cg ∼ cg · χ2
NI−1 .

The unconditional distribution of Sg can be calculated by use of the fact
that a gamma distribution divided by another gamma distribution has an
analytically known distribution, a beta prime distribution (Johnson et al.,
1995, page 248). Thus,

Sg | α ∼ 2× β′ ((NI − 1)/2, α) , (5)

which has the density function

fSg | α(sg) =
1

2

Γ(α + (NI − 1)/2)

Γ(α)Γ((NI − 1)/2)

(sg/2)(NI−1)/2−1

[1 + sg/2]α+(NI−1)/2
.
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In the same fashion, denote the variance estimator based on Σ∗ in (4) by S∗
g ,

that is,
S∗

g = (AXg)
T(AΣ∗AT)−1AXg . (6)

It follows that, S∗
g = Sg/λ so

S∗
g | α, λ ∼ 2/λ× β′ ((NI − 1)/2, α) . (7)

Assuming independence between the genes, α and λ can now be estimated
by numerical maximum likelihood. The estimated value of the (unscaled)
covariance matrix Σ can then be calculated from Equation (4). Results from
simulations show that the estimation of α and λ is accurate enough for real-
istic values (results not shown). In the following sections, these parameters
are therefore assumed to be known.

4.3 The posterior distribution of cg

The posterior distribution of cg is not explicitly used in the calculations
above, but still of general interest. As previously mentioned, the distribution
of Sg conditioned on cg is a scaled chi-square distribution with NI−1 degrees
of freedom. Since chi-square distributions and inverse gamma distributions
are conjugates, the posterior distribution of cg given Sg is an inverse gamma
distribution as well. We find

cg ∼ Γ−1 (α, 1)

cg | Sg ∼ Γ−1

(
α + (NI − 1)/2, 1 +

Sg

2

)
,

and the prior can be interpreted as representing 2α pseudo observations,
which add a common variance estimate to all genes. A discussion regarding
the use of this model in microarray analysis can be found in Lönnstedt and
Speed (2002) and Smyth (2004) and a general discussion in Robert (2003)
Section 4.4.

4.4 Inference about µg

In this section we derive a statistical test for differential expression based on
the WAME model. The hypotheses for gene g can be formulated as

H0 : gene g is not regulated (µg = 0)

HA : gene g is regulated (µg 6= 0).
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A test suitable for the hypothesis H0 is the likelihood ratio test (LRT) based
on the ratio of the maximum values of the likelihood function under the
different hypotheses. With our notation we reject H if

sup
HA

L (µg|xg)

sup
H0

L (µg|xg)
=

sup
µg 6=0

L (µg|xg)

L (0|xg)
≥ k, (8)

where k, 1 ≤ k < ∞, sets the level of the test. To calculate the likelihood
function, we need to integrate over cg, e.g.,

L (µg|x) =

∫
fX | µg ,cg ,Σ(x)fcg | α(cg) dcg

= (2π)−NI/2 |Σ|−1/2 Γ(NI/2 + α)

Γ(α)

[
(xg − µg1)T Σ−1 (xg − µg1)

2
+ 1

]−(α+NI/2)

.

It is now straight forward to calculate the denominator L(0|xg) in (8) and
some algebra shows that the numerator is maximised by µ̂g = x̄w

g , where

x̄w
g =

1TΣ−1

1TΣ−11
xg , (9)

is a weighted mean value of the observations. Analogously, we define the
random variable X̄w

g by replacing xg with Xg. Then,

X̄w
g |cg ∼ N

(
µg,

cg

1TΣ−11

)
and it can be shown that

wT =
1TΣ−1

1TΣ−11
(10)

is the weight vector that minimises the variance of wTXg. The weights in
equation (10) will depend on the covariance matrix as follows. A repeti-
tion with high variance will have a low weight while a repetition with low
variance will have a high weight. Moreover, a positive high correlation be-
tween repetitions will cause decreased weights. Note that if a repetition is
highly correlated with a repetition with lower variance, its weight can actu-
ally become negative. According to the theory, this is nothing strange but
practically this is of course not satisfying. Fortunately, such extreme cases
seem to be rare in the microarray context and if they appear, the source of
the correlation should be investigated and one could consider removing the
negatively weighted repetition.
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Evaluation of the likelihood function at 0 and x̄w
g and a few calculations

show that the inequality (8) is equivalent to

|x̄w
g |√

sg + 2
≥ k′

where sg is the observed value of Sg defined in Section 4.2 and k′ is some
non-negative constant. Define

Tg =
√

1TΣ−11 (NI − 1 + 2α)
X̄w

g√
Sg + 2

(11)

and reject the null hypothesis if

|Tg| ≥ k′′,

where k′′ is another non-negative constant. The statistic Tg will be referred
to as the weighted moderated t-statistic since it is a weighted generalisation of
the moderated t-statistic derived by Lönnstedt and Speed (2002) and refined
by Smyth (2004). Indeed, if all repetitions have equal estimated variances and
no estimated correlations, Tg becomes equivalent to the result in Section 3
in Smyth (2004). To calculate the value of k′′ that corresponds to a given
level of the test, the distribution of Tg needs to be derived. Under the null
hypothesis, it turns out to be a t-distribution with 2α + NI − 1 degrees of
freedom,

Tg ∼ t2α+NI−1 . (12)
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4.5 Summary of the computational procedure

The computational procedure is summarized below in eight steps including
three types of model control. R code corresponding to these steps is available
from http://wame.math.chalmers.se.

(i) To estimate Σ∗, optimize numerically the product of the right members
of (3) for all genes as a function of Σ with the element in the upper
left corner set equal to 1. For each gene v = (1, u2, . . . , uNI

) with
u2, . . . , uNI

given by (2).

(ii) Compute S∗
g , g = 1, . . . , NG, in (6) for some full rank NI−1×NI matrix

A with zero row sums.

(iii) Estimate α and λ by numerical maximum likelihood with the distribu-
tion (7) for S∗

g , g = 1, . . . , NG, assumed to be independent.

(iv) Compute Σ = (1/λ)Σ∗.

(v) For each gene g compute X̄w
g from (9) with xg replaced by Xg and

compute Tg from (11) with Sg = λS∗
g . From the Tg-values p-values may

be computed from the distribution (12) and a gene ranking list may be
produced.

(vi) Compute the empirical distribution of Tg, g = 1, . . . , NG, and plot it
together with the density of the theoretical distribution (12) as a model
control. The corresponding q-q plot is expected to coincide with the
theoretical distribution in the central part but typically not in the tails.

(vii) Compute the empirical distribution of Sg, g = 1, . . . , NG, and plot it
together with the density of the theoretical distribution (5) as a model
control.

(viii) As an additional model control, plot pairwise log2-ratios for repetitions
as in Figures 3, 6 and 8 below.
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5 Results from simulations

5.1 Comparison to similar gene ranking methods

A simulation study was done to compare the performance of WAME to four
published methods. These methods were

• Average fold-change

• Ordinary t-statistic

• Efron’s penalized t-statistic

• Smyth’s moderated t-statistic

The average fold-change for a gene is simply the mean value over all the
observed log2-ratios and the ordinary t-statistic is the average fold-change
divided by the corresponding sample standard deviation. These two methods
have traditionally been popular gene ranking methods and it is therefore
interesting to see how they perform. Another method introduced in Efron
et al. (2001) is the penalized t-statistic which is a modified version of the
ordinary t-statistic where a constant has been added to the sample standard
deviation. The motivation for this adjustment is the unreliability of the t-
statistic in situations when only a few repetitions are used. The constant
used here was chosen as the 90th percentile of the empirical distribution of
the sample standard deviations, according to Efron et al. (2001). Finally,
the moderated t-statistic is included. It was developed and implemented by
Smyth (2004) and it is available in the R package LIMMA (Smyth et al.,
2003). The moderated t-statistic can be seen as a refined version of the
B-statistic which was first presented in Lönnstedt and Speed (2002). In the
paired microarray context, WAME is a generalisation of LIMMA in the sense
that the two models are identical when all repetitions have the same variance
and no correlations exist.

All methods were applied to a series of simulated datasets with different
settings and the number of true positives as a function of false positives was
plotted, generating several so called receiver operating characteristic (ROC)
curves. The average over 100 datasets was used to produce a single curve
where each dataset was created as follows. The number of genes (NG) was
fixed to 10000, the number of repetitions (NI) to 4 and the hyperparameter
α to 2. These values were chosen since they are typical for real datasets.
The covariance matrix Σ is fixed and for each gene g the following steps were
done.
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1. cg was sampled from an inverse gamma distribution according to the
model specification.

2. A vector of NI = 4 independent observations was drawn from a normal
distribution with mean value zero and variance one. This vector was
then multiplied by the square-root matrix of Σ.

3. If this particular gene was selected to be regulated, then the absolute
mean value for each of the NI elements was drawn from a uniform
distribution between 0 and 2.

5% of the genes were randomly selected and set to be upregulated. Analo-
gously, 5% were downregulated resulting in totally 10% regulated genes. It
should be noted that it is only the total number of regulated genes that had
an impact on the performance for the different methods, not the number of
upregulated genes compared to the number of downregulated genes.

Four cases, all with different covariance matrices, were studied. In the
first case, all of the repetitions had variances equal to 1 and there were no
correlations, thus Σ was an identity matrix. The ROC curves produced by
the simulated data can be seen in the upper part of Figure 1. WAME and
LIMMA performs best, closely followed by the penalized t-statistic. Note
that WAME and LIMMA have almost identical performance in this case
and, as mention above, this was expected since the weighted moderated t-
statistic and the moderated t-statistic are almost equivalent for this setting.
Another interesting detail is the weak performance of the t-statistic due to
its instability issues when only few repetitions are used.

In the second case, different variances were introduced. Σ was again a
diagonal matrix but with the values 0.5, 1, 1.5 and 2 on the diagonal, thus all
correlations were again zero. The ROC curves can be seen in the lower part
of Figure 1. As before, WAME and LIMMA are the methods that performs
best, but in this case, WAME performs better since it put less weight on the
repetitions with high variance.

To investigate the impact of correlations, the third case used

Σ =


1.0 0.4 0.2 0.0
0.4 1.0 0.4 0.2
0.2 0.4 1.0 0.4
0.0 0.2 0.4 1.0

 . (13)

This corresponds to a case when there are both high and low correlations
between the repetitions. The upper part of Figure 2 shows that WAME
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performs slightly better than both LIMMA and the penalized t-statistic since
it estimates the correlations and takes them into account.

Finally, in the fourth case both different variances and correlations were
included. The variances and correlations were identical to the ones in the
second and third cases respectively, i.e. variances of 0.5, 1.0, 1.5, 2.0 and
correlations of 0, 0.2 and 0.4, the latter placed according to (13). The result
can be seen in the lower part of Figure 2. Here, the largest advantage of
using WAME can be seen. For a rejection threshold such that half of the
selected genes are true positives, using WAME results in almost a third less
false positives which can correspond to hundreds of genes.

All four simulations show that WAME and its weighted moderated t-
statistic perform at least as good as the moderated and penalized t-statistics.
In the case of both different variances and correlations between the repeti-
tions, WAME performs clearly better than all of the included methods. Both
the average fold-change and the ordinary t-statistic have poor performance
in the current setting with only four repetitions.

5.2 Evaluation of the point estimator of Σ

The estimation of Σ is one of the crucial steps when applying WAME since
errors made will affect estimates of other entities such as α and the weighted
mean value x̄w

g . The resulting precision and accuracy when numerical max-
imum likelihood is applied to the distribution in equation (3) are therefore
interesting questions, both when the model assumptions hold and when they
are violated. In an attempt to partially answer these questions, Σ was es-
timated from different simulated datasets and the results were compared to
the true values. The datasets were created according to the description in
the previous section and the same parameters were used, i.e. NG = 10000,
NI = 4 and α = 2. Five different cases, listed in Table 1, were examined. As
in the previous section, 100 datasets were simulated for each setting and for
each such dataset the covariance matrix Σ and the hyperparameter α were
estimated according to Section 4. Table 2 summarises the result where the
true value of Σ, the mean value of the estimated Σ as well as the standard
deviations are listed. It should be noted that in all cases, except for case III,
α is estimated with high accuracy and precision.

In the first two cases (I and II), the covariance matrix was estimated with-
out any bias and with low standard deviation showing that the methods are
accurate under the model assumptions. In case III the normal distribution
was substituted against a t-distribution with 5 degrees of freedom, having
substantially heavier tails. The estimated Σ seems to be slightly biased to-
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Figure 1: ROC curves from simulated data. The pair at the top, from the
first case, show the performance of the evaluated methods on data with equal
variances of 1 for all replicates and no correlations. The pair at the bottom,
from the second case, analogously show the performance on data with differ-
ent variances of 0.5, 1, 1.5, 2 and no correlations. The parameters used for
these two simulations were as follows. NG = 10000, NI = 4, α = 2 and 10%
of the genes were regulated. The figures to the right are magnifications of
the dashed boxes to the left.
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Figure 2: ROC curves from simulated data. The pair at the top, from
the third case, show the performance of the evaluated methods on data with
equal variances of 1 for all replicates and correlations of 0, 0.2 and 0.4, placed
according to (13). The pair at the bottom, from the fourth case, analogously
show the performance on data with different variances of 0.5, 1, 1.5, 2 and
correlations of 0, 0.2 and 0.4, placed according to (13). The parameters used
for these two simulations were as follows. NG = 10000, NI = 4, α = 2 and
10% of the genes were regulated. The figures to the right are magnifications
of the dashed boxes to the left.
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Case Correlation Heavy tails Regulated genes Filter
I No No None No
II Yes No None No
III Yes Yes None No
IV Yes No Yes, 10% No
V Yes No Yes, 10% Yes, 5% removed.

Table 1: Descriptions of the five different settings used in this simulation
study. When correlations are used, they follow the structure in equation
(13).

ward higher variances and α was estimated to be 1.55 instead of 2. This
pattern was also seen when the degrees of freedom were increased to 10 and
15 (results not shown). In case IV 10% of the genes were set to be regulated
and since no differentially expressed genes are assumed, the regulation leads
to positive correlations and increased variance estimates. Having 10% of the
genes regulated is a rather high number, but not extreme. Therefore, a filter
was applied to minimise the impact of regulated genes on the estimation of
the covariance matrix. For each gene g, the filter calculates the minimal ab-
solute value of the fold change, which will be denoted Xg,min. Removing the
top 5% of the genes with highest Xg,min gave a much better estimate of Σ,
which is included as case V. Note that the genes were only removed from the
the estimate of Σ∗, i.e. the arbitrarily scaled Σ, and not from the estimates
of α and λ. Also note that the number 5% depends on several parameters,
such as the total number of regulated genes and the covariance matrix itself.
The results of the filtering procedure on real data is presented in the next
section.

6 Results from real data

WAME was run on three real data sets: the ischemic part of the dataset of
Hall et al. (2004), the dataset of Benson et al. (2004) (henceforth referred to
as the Cardiac and Polyp datasets, respectively) and the Swirl dataset (de-
scribed in Section 3.3 of Dudoit and Yang, 2003). These datasets represent
microarray experiments with different characteristics; different laboratories,
both two-colour cDNA and one-channel oligonucleotide (Affymetrix) arrays,
different tissues and two different species (human and zebrafish). The Car-
diac and Swirl datasets are publicly available.
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True Σ Mean estimated Σ Sample
standard deviation

I
0.50 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.50 0.00
0.00 0.00 0.00 2.00

0.50 0.00 -0.00 -0.00
0.00 1.01 -0.00 0.00

-0.00 -0.00 1.51 -0.00
-0.00 0.00 -0.00 2.02

0.01 0.01 0.01 0.01
0.01 0.04 0.02 0.01
0.02 0.02 0.05 0.02
0.01 0.01 0.01 0.07

II
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.50 0.28 0.17 0.00
0.40 1.00 0.50 0.29
0.20 0.40 1.51 0.70
0.00 0.20 0.40 2.00

0.02 0.01 0.01 0.01
0.01 0.04 0.02 0.03
0.01 0.01 0.06 0.04
0.01 0.01 0.01 0.11

III
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.51 0.29 0.18 -0.00
0.40 1.01 0.50 0.28
0.20 0.40 1.52 0.70

-0.00 0.20 0.40 2.03

0.02 0.01 0.01 0.01
0.01 0.04 0.02 0.02
0.01 0.01 0.05 0.03
0.01 0.01 0.01 0.07

IV
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.61 0.39 0.28 0.11
0.48 1.11 0.60 0.39
0.28 0.45 1.61 0.80
0.10 0.25 0.43 2.11

0.02 0.02 0.02 0.01
0.01 0.04 0.03 0.01
0.01 0.01 0.06 0.04
0.01 0.01 0.01 0.08

V
0.50 0.28 0.17 0.00
0.40 1.00 0.49 0.28
0.20 0.40 1.50 0.69
0.00 0.20 0.40 2.00

0.46 0.21 0.11 -0.02
0.33 0.90 0.38 0.22
0.14 0.34 1.39 0.59

-0.02 0.16 0.36 1.93

0.01 0.01 0.01 0.02
0.01 0.02 0.02 0.02
0.01 0.02 0.06 0.03
0.02 0.01 0.01 0.07

Table 2: Result from the estimations of Σ from each of the five different
cases. Correlations are shown in italic and covariances in non-italic. The
parameter values used were NG = 10000, NI = 4 and α = 2. The mean
values and sample standard deviations were calculated from the results of
100 simulated datasets. Refer to Table 1 for a description of the different
cases.
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The Cardiac dataset is described to have been strictly quality controlled
by a combination of several available methods. The dataset is therefore
interesting to examine to see if WAME detects relevant differences in quality
even in an example of a quality controlled, publicly available dataset. The
Polyp dataset includes one biopsy that was previously thought to be an
outlier and therefore discarded, thus providing a case with one seemingly
lesser quality to be detected. In the Swirl dataset, two highly differentially
expressed genes exist. Therefore, it is of interest to check that those genes are
highly ranked by WAME. Furthermore, the Swirl dataset has been analysed
previously in Smyth (2004).

6.1 Cardiac dataset

In the public dataset from Hall et al. (2004), heart biopsies from 19 patients
with heart failure were harvested before and after mechanical support with
a ventricular assist device. The aim of the study was to “define critical
regulatory genes governing myocardial remodelling in response to significant
reductions in wall stress”, where a first step was to identify differentially
expressed genes between the two conditions.

Affymetrix one-channel oligonucleotide arrays of type HG-U133A were
used in the study, each containing 22283 probe-sets. The quality of the ar-
rays was controlled using quality measures recommended by Affymetrix as
well as by the program Gene Expressionist (GeneData, Basel, Switzerland).
The quality of the different lab steps leading to the actual hybridisations
were controlled using standard methods. The 19 patients were divided into
three groups: ischemic (5 patients), acute myocardial infarction (6 patients)
and non-ischemic (8 patients). The ischemic group was the smallest and
consequently the one where quality variations might make the biggest dif-
ference. It was therefore chosen for further examination using WAME, to
see if relevant quality variations could be detected despite the close quality
monitoring.

The dataset was retrieved in raw .CEL-format from the public repository
Gene Expression Omnibus (Edgar et al., 2002). The .CEL-files were subse-
quently processed using RMA (Irizarry et al., 2003) on all the arrays of the 19
patients simultaneously. Patient-wise log2-ratios of the five ischemic patients
were then formed by taking pairwise differences of the log2 measurements
before and after implant.

Applying WAME to the patient-wise log2-ratios provided interesting re-
sults. The estimated covariance matrix (see Table 3) suggests that two of the
five patients (I13 and I7) were substantially more variable than the others,
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while the correlations between patients were rather limited. These numbers
seem credible when examining Figure 3, where for each pair of patients, the
respective log2-ratios of all genes were plotted against each other. The plots
clearly show that the observations of the two patients in question (I13 and
I7) are more variable than the others.

The corresponding weights, derived from the estimated covariance matrix
Σ, are shown in Table 4. As was discussed in Sections 4.1 and 5.2, when
estimating Σ all genes are assumed to be non-differentially expressed. To
examine the impact of potentially regulated genes on the estimation of Σ,
the analysis was redone, removing genes with high lowest absolute log2-ratio
in the estimation of Σ, as described in Section 5.2. The individual elements
of the estimated covariance matrix and of α changed only slightly, even when
as much as 50% of the data was removed (data not shown). This is reflected
in the weights in Table 4.

Patient
Patient I12 I13 I4 I7 I8

I12 0.046 0.003 0.001 0.012 0.002
I13 0.033 0.196 -0.014 0.007 -0.001
I4 0.023 -0.126 0.065 0.013 0.002
I7 0.111 0.030 0.102 0.258 -0.017
I8 0.040 -0.011 0.038 -0.152 0.047

Table 3: Estimated covariance-correlation matrix, Σ, for patients in the Car-
diac dataset. (Correlations in italic, covariances in non-italic.)

Patient
Removed genes I12 I13 I4 I7 I8

none 0.297 0.091 0.232 0.053 0.326
5% 0.301 0.089 0.233 0.054 0.323
10% 0.303 0.087 0.235 0.053 0.321
50% 0.323 0.082 0.240 0.046 0.308

Table 4: Weights for patients in the Cardiac dataset. Different numbers of
potentially regulated genes were removed in the estimation of Σ, to check
their influence. Potential regulation was measured by minimal absolute log2-
ratio among the patients.

The hyperparameter α related to the spread of the gene-specific variance
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Figure 3: Pair-wise plots of the log2-ratios of the patients in the Cardiac
dataset. The plots to the lower-left show two-dimensional kernel density
estimates of the distribution of log2-ratios in each pair of patients. This pro-
vides information in the central areas where the corresponding scatterplots
are solid black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in
increasing level of density: white, grey, black and red.
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scaling factors, cg, was estimated to be 1.92, giving a heavy tail for the
prior distribution. Thus removing cg by transformation when estimating Σ
(Section 4.1) is justified.

Inspecting the fitted distribution of Sg given α = 1.92 against the em-
pirical distribution of Sg reveals a good fit (see Figure 4), implying that the
family of inverse gamma prior distributions is rich enough for this dataset.
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Figure 4: Empirical distribution of Sg in the Cardiac dataset, together with
the density of Sg given α = 1.92.

Examining the observed values of the statistic, Tg, compared to the ex-
pected null distribution reveals a good overall concordance (see Figure 5).
Some genes have a larger tg than can be explained by the null distribution,
which points toward some of them being up-regulated by the treatment (see
the qq-plot in Figure 5).

6.2 Polyp dataset

In the dataset from Benson et al. (2004), biopsies from nasal polyps of five
patients were taken before and after treatment with local glucocorticoids.
The goal was to examine closer the mechanisms behind the effect of the
treatment and one step was to identify differentially expressed genes. Tech-
nical duplicates stemming from the same extracted RNA were run for each
biopsy on Affymetrix HG-U133A arrays. This gave a dataset of 20 arrays
and 22283 probe-sets.

Comparing each of the arrays in the dataset with all arrays from other
patients and/or conditions, by looking at pair-wise scatterplots, the arrays
from before treatment of patient 2 consistently showed larger variation than
any other. The biopsy in question was found to be considerably smaller than
the others, providing possible explanations such as non-representativeness
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Figure 5: To the left, a histogram of the observed Tg-values together with the
density of the null distribution (in red), in the Cardiac dataset. To the right, a
quantile-quantile plot where the observed values of Tg are plotted against the
quantiles of Tg under the null hypothesis. The central part of the empirical
distribution follows the identity line well, showing good concordance with
the null distribution. For high positive Tg-values, the observations clearly
deviate from the predicted ones, pointing at the existence of up-regulated
genes.

in tissue distribution. The data from patient 2 was therefore excluded in
Benson et al. (2004).

WAME would preferably identify the patient 2 observation as having
larger variation and downweight it. The data was processed using RMA
(Irizarry et al., 2003) and the log2-ratio for each patient was formed by taking
differences between the averages over the technical duplicates, before and
after treatment, combining 4 arrays for each patient into one set of log2-
ratios. Making one scatter plot of the two sets of log2-ratios for each pair
of patients (Figure 6) clearly indicates that patient 2 is more variable than
patients 1,3 and 5. Interestingly, the measurements from patients 1 and 2
seem to be highly correlated and patient 4 seems to have high variability.

Estimating the covariance matrix, Σ, the correlation between patients 1
and 2 is estimated to 0.82 (see Table 5), which is high but not unbelievable
when studying Figure 6. The variance of patient 2 is furthermore estimated
to be four times that of patient 1. Examining the resulting weights, patient 2
actually receives a weight of −2% (see Table 6). The negativeness is a result
of its variance being much higher than that of patient 1, together with them
being highly correlated. As negative weights seem questionable, a natural
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Figure 6: Pair-wise plots of the log2-ratios of the patients in the Polyp
dataset. The plots to the lower-left show two-dimensional kernel density
estimates of the distribution of log2-ratios in each pair of patients. This pro-
vides information in the central areas where the corresponding scatterplots
are solid black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in
increasing level of density: white, grey, black and red.
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solution is to remove patient 2, which was done in (Benson et al., 2004).
Beside the result of the very low weight for patient 2, the other patients
receive distinctly different weights, which is interesting.

Patient
Patient 1 2 3 4 5

1 0.300 0.493 0.000 -0.012 -0.067
2 0.822 1.200 0.004 0.041 -0.157
3 0.002 0.012 0.091 -0.071 -0.055
4 -0.038 0.067 -0.417 0.319 0.102
5 -0.291 -0.340 -0.434 0.430 0.178

Table 5: Estimated covariance-correlation matrix, Σ, for patients in the
Polyp dataset. (Correlations in italic, covariances in non-italic.)

Patient
Removed genes 1 2 3 4 5

none 0.179 -0.026 0.483 0.104 0.260
5% 0.181 -0.025 0.481 0.104 0.259
10% 0.180 -0.024 0.482 0.103 0.259
50% 0.157 -0.015 0.506 0.100 0.252

Table 6: Weights for the patients in the Polyp dataset. Different numbers of
potentially regulated genes were removed, to check their potential influence in
the estimation of Σ. Potential regulation was measured by minimal absolute
log2-ratio among the patients.

The hyperparameter α, related to the spread of the gene-specific variance
scaling factors, cg, was estimated to 1.97, giving infinite variance for the
distribution of cg. The fit of Sg given α = 1.97 was very good (see Figure 10
in the Appendix).

As in the Cardiac dataset, the weights were steadily estimated when
potentially regulated genes were removed in the estimation of the covariance
matrix Σ (see Table 6). The estimated correlations between patients 3, 4
and 5 were reduced somewhat. Removing 5% of the genes reduced those
correlations by 0.03-0.04 and removing 10% reduced them by 0.06-0.07. The
high correlation between patient 1 and 2 was only slightly reduced (<0.03),
even when 50% of the genes were removed.
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Examining the observed values of the statistic, Tg, compared to the ex-
pected null distribution (see Figure 7) reveals a good overall concordance.
Some genes have a more extreme Tg than can be explained by the null distri-
bution, which points toward many of them being regulated by the treatment
(see the qq-plot in Figure 7).
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Figure 7: To the left, a histogram of the observed Tg-values together with the
density of the null distribution (in red), in the Polyp dataset. To the right, a
quantile-quantile plot where the observed values of Tg are plotted against the
quantiles of Tg under the null hypothesis. The central part of the empirical
distribution follows the identity line well, showing good concordance with
the null distribution. For extreme Tg-values, the observations clearly deviate
from the predicted ones, pointing at the existence of regulated genes.

6.3 Swirl dataset

In the Swirl experiment (Dudoit and Yang, 2003), one goal was to identify
genes that are differentially expressed in zebrafish carrying a point mutated
SRB2 gene, compared to ordinary, wild-type zebrafish. SRB2 and one of its
known targets, Dlx3 are expected to be highly differentially expressed in this
experiment, thus these genes should be highly ranked using WAME. The
Swirl dataset has been examined in Smyth (2004).

The dataset consists of four two-colour cDNA microarrays with 8448
spots, with publicly available data. We used standard pre-processing to
compensate for effects such as background and dye bias. Background cor-
rection subtract and within-array normalisation print tip loess were used in
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the LIMMA package (Smyth et al., 2003). Between-array scale normalisation
(Yang et al., 2002) was not performed in contrast to the analysis in Smyth
(2004). When including between-array scale normalisation in combination
with LIMMA in the simulation study of Section 5.1 the performance was not
notably increased (results not shown). However, the model used for simu-
lation leaves the signals unaffected when noise levels varies, which may be
questionable for some sources of variation.

Making one scatter plot of the log2-ratios for each pair of arrays (Figure 8)
indicates that array 2 is less variable than the others, while the genes with
lowest log2-ratio on array 1 seem to be outliers, since they are not extreme in
any other array. Examining the estimated covariance matrix (see Table 7),
array 2 indeed receives the highest variance. In addition, there are substantial
correlations between arrays 1 and 3, 2 and 4 and 3 and 4, which is also
indicated by the scatter-plots (Figure 8).

Array
Array 1 2 3 4

1 0.128 0.007 0.079 0.017
2 0.066 0.086 -0.002 0.038
3 0.489 -0.017 0.203 0.076
4 0.136 0.371 0.482 0.124

Table 7: Estimated covariance-correlation matrix, Σ, for the arrays in the
Swirl dataset. (Correlations in italic, covariances in non-italic.)

When re-performing the estimation of Σ after removing potentially regu-
lated genes (in analogy with the analyses of the Polyp and Cardiac datasets),
the correlations were decreased somewhat. Removing 5% of the genes de-
creased the three high correlations by 0.02-0.06, while removing 10% de-
creased them by 0.04-0.08. However, the corresponding weights only changed
marginally (see Table 8).

The hyperparameter α was estimated to 1.89. Further analysis of the
dataset shows that the distribution of Sg fits the predicted distribution of Sg

well given α = 1.89 (see Figure 11 in in the Appendix). The observed values
of the statistic, Tg, seem to fit the null distribution well (see Figure 9).

Since the point mutated gene, SRB2 and one of its known targets, Dlx3,
are expected to be highly differentially expressed, their actual ranking is of
interest. In Table 9 below, the top 20 genes as ranked by WAME are listed.
The values of some widely used statistics are included for comparison. The
rankings by WAME and the moderated t-statistic (Smyth et al., 2003) are
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Figure 8: Pair-wise plots of the log2-ratios of the arrays in the Swirl dataset.
The plots to the lower-left show two-dimensional kernel density estimates of
the distribution of log2-ratios in each pair of patients. This provides infor-
mation in the central areas where the corresponding scatterplots are solid
black (cf. Figure 6 in Huber et al., 2003). The colour-scale is, in increasing
level of density: white, grey, black and red.
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Array
Removed genes 1 2 3 4

none 0.289 0.474 0.072 0.165
5% 0.288 0.469 0.076 0.166
10% 0.290 0.462 0.075 0.173
50% 0.282 0.447 0.087 0.184

Table 8: Weights for the arrays in the Swirl dataset. Different numbers of
potentially regulated genes were removed, to check their potential influence in
the estimation of Σ. Potential regulation was measured by minimal absolute
log2-ratio among the arrays.
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Figure 9: To the left, a histogram of the observed Tg-values together with the
density of the null distribution (in red), in the Swirl dataset. To the right, a
quantile-quantile plot where the observed values of Tg are plotted against the
quantiles of Tg under the null hypothesis. The central part of the empirical
distribution follows the identity line well, showing good concordance with
the null distribution. For extreme Tg-values, the observations clearly deviate
from the predicted ones, pointing at the existence of regulated genes.
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quite similar, while the rankings by the ordinary t-statistic and the average
log2-ratio (i.e. fold change) are rather different than the one by WAME,
which was expected. All four spots for the two validated genes are included
in WAME’s top 20 list (see Table 9). It could be noted that the ordinary t-
statistics and LIMMA’s moderated t-statistics are both generally numerically
larger than the WAME values. One reason for this seems to be that the
reference distributions of the ordinary t-statistics and LIMMA’s moderated
t-statistics show q-q plots that differ from the reference distribution by a
higher slope also in the central part (data not shown but compare the figure
on page 24 in Smyth et al. (2003)) in contrast to the plot in the right part
of Figure 9. We have also performed a simulation study with a covariance
matrix as in Table 7 and with 10% of the genes differentially expressed. It
shows better ROC curves with WAME than with the other two methods
(data not shown) in a similar way as in Figure 2.

7 Discussion

A problem with the microarray technology is that it involves several consec-
utive steps, each exhibiting large quality variations. Thus there is a strong
need for quality assessment and quality control to handle occurrences of
poor quality. In this paper, we introduce the WAME method for the anal-
ysis of paired microarray experiments, which aims at estimating array- or
repetition-wide quality deviations and integrates these estimates in the sta-
tistical analysis.

The quality deviations are modelled here as different variances for differ-
ent repetitions (e.g. arrays) as well as correlations between them in a covari-
ance matrix Σ, catching both unequal precision and systematic errors. Genes
have different variability (biological and technical), which is modelled by a
gene-specific variance scaling factor cg. Given this structure, the pair-wise
measured log2-ratios for each gene are assumed to be normally distributed.

Estimation of the covariance matrix is complicated by the gene-specific
scaling factors and unknown differential expressions µg. We assume that
most genes are not differentially expressed (µg = 0) and the gene-specific
scaling factors are removed by a transformation. A scaled version of Σ is
estimated by numerical maximum likelihood. The assumed restricted dif-
ferential expression restrains the experimental setups that can be analysed,
but similar assumptions are made in procedures that have become de facto
standard in the (preceding) normalisation step.

Since most microarray experiments contain only a few repetitions, the
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Name ID average ordinary moderated WAME
log2-ratio t-statistic t-statistic

fb85d05 18-F10 -2.66 -18.41 -20.79 -15.15
fb58g10 11-L19 -1.60 -14.32 -14.15 -11.51
control Dlx3 -2.19 -15.91 -17.57 -11.17
control Dlx3 -2.19 -13.58 -16.08 -9.84

fb24g06 3-D11 1.32 19.52 13.62 9.80
fb54e03 10-K5 -1.20 -25.74 -13.11 -9.66
fc22a09 27-E17 1.26 24.76 13.68 9.50
fb40h07 7-D14 1.35 14.15 12.69 9.12
fb85a01 18-E1 -1.29 -17.35 -13.01 -8.81
fb87f03 18-O6 -1.08 -27.90 -12.06 -8.80
fb37e11 6-G21 1.23 14.37 11.94 8.47
fb94h06 20-L12 1.28 15.41 12.54 8.46
fb87d12 18-N24 1.28 12.96 11.87 8.39
control BMP2 -2.24 -8.63 -11.78 -8.33
fc10h09 24-H18 1.20 15.05 11.92 8.23
fb85f09 18-G18 1.29 11.50 11.38 8.22
control BMP2 -2.33 -8.37 -11.58 -7.95

fb26b10 3-I20 1.09 15.50 11.17 7.81
fb37b09 6-E18 1.31 11.57 11.55 7.78
fc22f05 27-G10 -1.19 -10.42 -10.44 -7.70

Table 9: The top 20 most probably regulated genes in the Swirl dataset
according to WAME.
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estimates of the gene-specific variance scaling factors cg are imprecise, which
may lead to false conclusions. An empirical Bayes approach is used with an
inverse gamma prior distribution that moderates extreme estimates similar
to (Baldi and Long, 2001; Lönnstedt and Speed, 2002; Smyth, 2004). The hy-
perparameter α determining the spread of the prior distribution is estimated
by numerical maximum likelihood together with the scale of the previously
estimated arbitrarily scaled Σ.

In the present paper, quality is modelled in a general manner by the
covariance structure matrix Σ. In some microarray experiments, additional
information is available, for example, shared sources of variation may be
known. Quantitative quality measures may also be available, e.g. spot shape
features or residuals from the fitting of probe-level models (Bolstad, 2004).
It is possible to explicitly model some such sources of variation, for example
using random or fixed effects (cf. Bakewell and Wit (2005)) and to include
quality measures as covariates. However, such models would likely focus on
some of the clearer sources of variation but leave out more involved and hard
modelled sources. One can view our method as an attempt to identify the
effects on the single gene level of those variability sources, with the prior
distribution modelling the noise structure of a random gene from the whole
gene population. An approach combining explicit modelling with a general
covariance structure would be interesting as future work.

To identify differentially expressed genes a likelihood-ratio test is derived,
resulting in the weighted moderated t-statistic, which is a generalisation of
the moderated t-statistic in Smyth (2004). The estimated covariance matrix
Σ is used to produce both weights for the different repetitions and gene-
specific variance estimates. The weighted mean is the estimate of differential
expression with minimal variance.

As discussed above, array- or repetition-wide quality deviations in all
steps leading to the observed log2-ratios are estimated and incorporated in
the analysis. The current paper is restricted to paired two-sample settings
where most genes are non-differentially expressed. A generalisation similar
to Smyth (2004) should be possible for experiments with pairwise measure-
ments. The scaled estimate of the covariance matrix Σ could be calculated
according to the procedure in the current paper (cf. Section 4.1). The un-
known scale of the covariance estimate, as well as the parameter α of the
prior distribution for the gene-specific variance scales, could be estimated
utilising generalised residual sums of squares for all genes, appropriately de-
fined through the norm determined by Σ (cf. Sg in Section 4.2). Tests for
single or multiple identifiable linear combinations of expected values could
be derived as in the current paper to get weighted moderated t-statistics and
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modified F -statistics. Work on generalisations, with simulated and real data
sets is in progress.

A simulation study was done to compare the performance of WAME
to four published methods. On data without correlations and with equal
variances between repetitions, WAME performs as well as the moderated
t-statistic which assumes this structure. When correlations and/or unequal
variances are included, WAME performs better than the other methods. In
one case, using WAME results in almost a third less false positives which
can correspond to hundreds of genes. Evaluating the point estimator of the
covariance matrix Σ revealed good precision and accuracy when no regulated
genes were present. Including 10% regulated genes resulted in a bias, which
was partly handled by removing genes likely to be regulated. In both cases
estimation of the hyperparameter α was nearly unbiased and accurate. The
estimate of Σ was essentially unbiased when heavy tails were introduced in
contrast to the estimate of α which was 1.55 instead of 2. As a practical con-
sideration, filtering of seemingly regulated genes may be appropriate when
a relatively large number of genes can be expected to be regulated. How-
ever, results from real and simulated data indicate that such filtering results
in largely unchanged weights, reducing its importance. Also, in the cases
studied the unfiltered statistic is slightly conservative (results not shown).

Three real datasets were analysed: the ischemic part of the dataset of
Hall et al. (2004), the dataset of Benson et al. (2004) and the Swirl dataset
(Dudoit and Yang, 2003). In all cases, relevant correlations and differences in
precision between replicates were found, even in the first dataset which had
been quality controlled using several available methods. The exact origin
of the correlations is an interesting, open question. In the second dataset
one previously identified outlier was practically removed by WAME. In the
Swirl dataset, expected differentially expressed genes are ranked among the
top 20. Relevant empirical distributions showed good fit to the theoretical
distributions, indicating that the family of prior distributions for cg is flexible
enough and that the normality assumption is satisfactory.

The model used in WAME is optimistic in several ways. Exact normality
is not to be expected and the independence between the genes is hard to
fully justify. The noise structure may also be different for the regulated
genes, e.g. if there are several normalising procedures involved in the pre-
processing step. This may affect the power, which points towards the use of
a moderated impact of Σ on the weights in the final analysis. Thus, even
if simulations under the model assumptions show highly promising results,
there are many experimental situations where the model assumptions may
not be justified. We intend to look further into different robustness questions
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for model deviations in the future.
The role of microarray experiments is often to test for regulation of tens

of thousands of genes as an exploratory tool to derive candidate ranking
lists of potentially regulated genes, which in subsequent steps will be biologi-
cally interpreted and validated by more precise techniques. We find that our
approach competes well with other methods in the production of such lists.

To summarise, WAME estimates and integrates array- or repetition-wide
quality deviations in the analysis of paired microarray experiments. An em-
pirical Bayes approach is used to moderate the gene-specific variance esti-
mates, resulting in a weighted moderated t-statistic with a derived distribu-
tion. The performance of WAME has been evaluated on both simulated and
real microarray data. The simulations show a considerable advantage relative
to four other methods studied, particularly for data with unequal variances
or correlations among repetitions. The three real datasets studied indicate
that data with unequal variances or correlations should be quite common.
The model controls with diagnostic plots also show satisfactory results for
all three real datasets.
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Appendix

Additional Figures
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Figure 10: Empirical distribution of Sg in the Polyp dataset, together with
the density of Sg given α = 1.97.
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Figure 11: Empirical distribution of Sg in the Swirl dataset, together with
the density of Sg given α = 1.89.
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Mathematical details

We observe Xg = (Xg1, . . . , XgNI
) where g = 1, . . . , NG. Let Σ be a covari-

ance structure matrix for the NI repetitions, cg a set of gene-specific variance
scaling factors and α a hyperparameter determining the shape of the prior
distribution for cg. Then for fixed µg, Σ and α,

cg ∼ Γ−1(α, 1),

Xg | cg ∼ NNI
(µg1, cgΣ)

and all variables corresponding to different genes are assumed independent.

Estimation of a scaled version of the matrix Σ

Assume that µg = 0 for all g. Under this assumption, it is possible to derive
a scale independent estimate of the covariance matrix Σ by a transformation
of the vector Xg. This is done as follows (the index g is dropped to increase
the readability). Let U = (U1, . . . , UNI

) where

Ui =

{
X1 if i = 1
Xi/X1 if 2 ≤ i ≤ NI .

The inverse becomes

Xi =

{
U1 if i = 1
UiU1 if 2 ≤ i ≤ NI

and the Jacobian can be derived to

J(u1, . . . , uNI
) = uNI−1

1 ,

so for U ∈ RNI the density becomes

fU | c,Σ(u) = fX | c,Σ (x(u)) |J(u)|

= (2π)−NI/2 c−NI/2 |Σ|−1/2 |u1|NI−1e−
u2
1

2c
vTΣ−1v.

where v = (1, u2, . . . , uNI
)T. Integration over u1 yields

fU2,...,UNI
| Σ(u2, . . . , uNI

| Σ) =

∫ ∞

−∞
fU | c,Σ(u | c, Σ) du1

= C |Σ|−1/2 [
vTΣ−1v

]−NI/2
,

(14)
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where C is a normalisation constant and v is defined as above. This density
is scale invariant with respect to the parameter Σ in the sense that for any
scalar λ,

fU2,...,UNI
| Σ(u2, . . . , uNI

|λΣ) = fU2,...,UNI
| Σ(u2, . . . , uNI

|Σ).

Thus, it is also independent of c and under the assumption of independent
genes, the log-likelihood function becomes

l(Σ) = C ′ − NG

2
log (|Σ|)− NI

2

Ng∑
g=1

log
(
vT

gΣ
−1vg

)
,

where C ′ is a constant that is independent of Σ. Numerical maximisation
yields a scaled version of Σ, denoted Σ∗. Here the first element in the first
row of Σ∗ is fixed to one.

Estimation of the hyperparameter α and the scale λ

From the model assumptions, we know that

cg ∼ Γ−1(α, 1).

Assume that Σ is known and define

Sg = (AXg)
T(AΣAT)−1AXg,

where A is a contrast matrix, i.e. a matrix of dimension NI − 1 × NI , with
full rank and with each row sum equal to 0. It follows that

Sg ∼ cg × χ2
NI−1 .

The unconditional distribution of Sg can be derived by integrating over cg,
i.e.,

fSg | α(sg) =

∫ ∞

0

fSg | cg(s)fcg | α(cg) dcg

=
1

2

(s/2)(NI−1)/2−1

Γ (α) Γ((NI − 1)/2)

∫ ∞

0

c−α−(NI−1)/2−1e−(s/2+1)/cg dcg

=
1

2

Γ(α + (NI − 1)/2)

Γ(α)Γ((NI − 1)/2)

(s/2)(NI−1)/2−1

[1 + s/2]α+(NI−1)/2
.

This is a beta prime distribution (also called a beta distribution of the second
kind) (Johnson et al., 1995) with parameters NI − 1 and α which is denoted
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β′(NI−1, α). Since only a scaled version of Σ, denoted Σ∗, is assumed known
from the primary estimation step, the following entities are defined. Let

Σ∗ = λΣ

S∗
g = (AXg)

T(AΣ∗AT)−1AXG = Sg/λ,

where λ is the unknown scale for Σ∗. It follows that

S∗
g ∼ 2/λ× β′(NI − 1, α).

The log likelihood function for S∗
g can be derived to

l(α, λ|{sg}NG
g=1) = C + NG [(NI − 1)/2 log(λ) + log Γ(α + (NI − 1)/2)− log Γ(α)]

− (α + (NI − 1)/2)

NG∑
g=1

log(sgλ/2 + 1).

Numerical maximum likelihood is used to estimate α and λ, which together
with Σ∗ can be used to calculate an estimate for Σ.

Inference about µg

The hypotheses that are interesting to test are if different genes are regulated
or not, that is for each g,

H0 : gene g is not regulated (µg = 0)

HA : gene g is regulated (µg 6= 0).

To test these hypotheses a maximum likelihood ratio (LRT) test is derived.
For each g, we reject H0 if

sup
µg 6=0

L (µg|xg)

L (0|xg)
≥ k,

where 1 ≤ k < ∞. The likelihood L can be calculated by integration over
cg, i.e.

L (µg|x) =

∫
fX | µg ,cg ,Σ(x)fcg | α(cg) dcg

= (2π)−NI/2 |Σ|−1/2 Γ(NI/2 + α)

Γ(α)

[
(xg − µg1)T Σ−1 (xg − µg1)

2
+ 1

]−NI/2−α

.

39Kristiansson et al.: Weighted Analysis of Paired Microarray Experiments

Produced by The Berkeley Electronic Press, 2005



To calculate the numerator in the likelihood ratio we need to maximise L
over µg, which is the same as minimising

(xg − µg1)T Σ−1 (xg − µg1) .

A little algebra shows that this optimum corresponds to the argument

µ̂g =
1TΣ−1

1TΣ−11
xg .

We will use x̄w
g to denote this weighted sum and it can be shown to be

the weighted mean with least variance. The maximum value of the likelihood
function becomes

L(x̄w
g |xg) = (2π)−NI/2 |Σ|−1/2 Γ(NI/2 + α)

Γ(α)

[
xT

gΣ
−1xg − (x̄w

g )21TΣ−11

2
+ 1

]
.

Using this, the likelihood ratio test statistic can be rewritten as

L
(
x̄w

g |xg

)
L (0|xg)

=

[
xT

gΣ
−1xg + 2

xT
gΣ

−1xg −
(
x̄w

g

)2
1TΣ−11 + 2

]NI/2+α

=

[
1 +

(
x̄w

g

)2
1TΣ−11

xgΣ−1xg −
(
x̄w

g

)2
1TΣ−11 + 2

]NI/2+α

=

[
1 +

(
x̄w

g

)2
1TΣ−11(

xg −
(
x̄w

g

)
1
)T

Σ−1
(
xg −

(
x̄w

g

)
1
)

+ 2

]NI/2+α

=

[
1 +

(x̄w
g )21TΣ−11

(Awxg)
T Σ−1 (Awxg) + 2

]NI/2+α

where Aw is the contrast matrix

Aw =


1− w1 −w2 −w3 . . . −wNI

−w1 1− w2 −w3 . . . −wNI

. . . . . . . . . . . . . . .
−w1 −w2 −w3 . . . 1− wNI


and wi is the i:th element of the vector

1TΣ−1

1TΣ−11
.
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The next step is to show that

(Awxg)
T Σ−1 (Awxg) = sg . (15)

To do that, we first note that for any pair of contrast matrices A1 and A2

with NI columns and of rank NI − 1, with each row sum equal to zero,

(A1xg)
T (A1ΣAT

1)
− (A1xg) = (A2xg)

T (A2ΣAT

2)
− (A2xg) .

Here a generalised inverse is used, defined as BB−B = B, which gives

B−1 = B−

when B is invertible. Now,

sg = (Axg)
T (AΣAT)−1 (Axg) = (Awxg)

T (AwΣAT

w)− (Awxg) ,

so we can prove (15) by showing that

(Awxg)
T Σ−1 (Awxg) = (Awxg)

T (AwΣAT

w)− (Awxg) .

Since Aw is idempotent, this is the same as proving that

(AwΣAwT)− = AT

wΣ−1Aw .

Writing Aw as

Aw = I − 1
1TΣ−1

1TΣ−11

it follows that

AwΣAT

w

(
AT

wΣ−1Aw

)
AwΣAT

w =AwΣAT

wΣ−1AwΣAT

w

=

[
I − 1

1TΣ−1

1TΣ−11

]
Σ

[
I − 1

1TΣ−1

1TΣ−11

]T

Σ−1

×
[
I − 1

1TΣ−1

1TΣ−11

]
Σ

[
I − 1

1TΣ−1

1TΣ−11

]T

=

[
Σ− 11T

1TΣ−11

]
Σ−1

[
Σ− 11T

1TΣ−11

]
=Σ− 11T

1TΣ−11
= AwΣAT

w .

Thus,
(AwΣAT

w)− = AT

wΣ−1Aw
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and (15) is proved.
Using this result, we can write the LRT as

|x̄w
g |√

sg + 2
≥ k′, (16)

where 0 ≤ k′ < ∞ is a new constant. To derive the distribution of the
statistic that corresponds to (16) under the null hypothesis, we proceed as
follows. Let

Tg =
√

1TΣ−11 (NI − 1 + 2α)
X̄w

g√
Sg + 2

.

Then since
X̄w

g ∼ N
(
0,

cg

1TΣ−11

)
it can be shown that X̄w

g is independent to all elements of AwXg and thus
to Sg. Furthermore,

Tg =
X̄w

g /
√

cg/1TΣ−11√
Sg/cg + 2/cg/

√
NI − 1 + 2α

,

where the numerator is independent of Sg and has the same normal distri-
bution conditionally on all cg (and thus also unconditionally), showing that
the denominator in this ratio expression is independent of the numerator. A
similar argument shows that Sg/cg and 2/cg are independent, and since they
are chi-square distributed with NI−1 and 2α degrees of freedom respectively,
the sum is chi-square distributed with NI−1+2α degrees of freedom. Hence,
under the null hypothesis, Tg is a t-distribution with NI − 1 + 2α degrees of
freedom,

Tg | Σ, α ∼ tNI−1+2α .

We call Tg the weighted moderated t-statistic.
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In microarray experiments, several steps may cause sub-optimal quality and the need for qual-
ity control is strong. Often the experiments are complex, with several conditions studied simul-
taneously. A linear model for paired microarray experiments is proposed as a generalisation of
the paired two-sample method by Kristiansson et al. (2005). Quality variation is modelled by dif-
ferent variance scales for different (pairs of) arrays, and shared sources of variation are modelled
by covariances between arrays. The gene-wise variance estimates are moderated in an empirical
Bayes approach. Due to correlations all data is typically used in the inference of any linear com-
bination of parameters. Both real and simulated data are analysed. Unequal variances and strong
correlations are found in real data, leading to further examination of the fit of the model and of
the nature of the datasets in general. The empirical distributions of the test-statistics are found to
have a considerably improved match to the null distribution compared to previous methods, which
implies more correct p-values provided that most genes are non-differentially expressed. In fact,
assuming independent observations with identical variances typically leads to optimistic p-values.
The method is shown to perform better than the alternatives in the simulation study.
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1 Introduction

Microarray experiments involve a series of steps, ranging from selection of
biological samples to hybridisation and scanning of arrays, each producing
data with varying quality. There is therefore a pressing need for quality
control (Johnson and Lin, 2003).

In Kristiansson et al. (2005) an analysis procedure called Weighted Anal-
ysis of Paired Microarray Experiments (WAME) was proposed for paired
two-sample microarray experiments. Quality was modelled as a common
covariance structure for all genes, giving each pair of observations a vari-
ance estimate and catching shared sources of variation by covariances. To
reflect the different variability of different genes, gene-specific scaling factors
for the covariance structure matrix were introduced, having inverse gamma
prior distribution (cf. Lönnstedt and Speed (2002) and Smyth (2004)). A
weighted moderated t-test was derived to identify differentially expressed
genes between the two conditions. For three real datasets both distinctly dif-
ferent variances and high correlations were estimated, rendering substantial
differences between the array- or patient-specific weights. Furthermore, the
empirical distributions of the respective resulting p-values were considerably
improved compared to the examined alternative methods.

In the present paper, a generalisation of Kristiansson et al. (2005) is
suggested, allowing for general paired experiments. This is now stated in
a generalised linear model framework (Arnold, 1980; Smyth, 2004). The
covariance structure is general, allowing correlations between all pairs. Tests
for contrast type linear combinations of parameters are derived, analogous to
the test for differential expression between conditions in the two-sample case.
This results in moderated t- and F -tests. Results from analyses of simulated
data are presented briefly to assess the benefit of the method in cases where
the model assumptions are true.

Two real datasets with multiple conditions are investigated, with inter-
esting results. In one case, a two-colour cDNA microarray experiment is
investigated, comparing gene expression of wild-type and knock-out mice to
a common reference pool. Here correlations may be expected, since one chan-
nel originates from the very same mRNA pool, sharing multiple sources of
variation. In the other case, 19 human patients divided into 3 groups are in-
vestigated before and after treatment with a ventricular assist device. Some
relatively high correlations between measurements from patients in different
groups are detected. In tests for differential expression within one group data
from other groups is therefore included. The results are compared with the
corresponding results of Kristiansson et al. (2005).
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2 The generalised linear model

2.1 Model assumptions and formulation

The model introduced in this paper is designed for microarray experiments
with paired observations from s different conditions (s ≥ 2). For each gene
g = 1, . . . , NG let the vector γg = (γg1, . . . , γgs)

T contain the expectation of
the logarithm (base 2) of the amount of mRNA from each of the s conditions.
Assume that n ≥ 2 pair-wise differences of some of these conditions are
observed, denoted by the vector

Xg = (Xg1, . . . , Xgn).

Let µg be the expectation of the vector Xg and let D be an n × s design
matrix with rank p such that

µg = Dγg.

Since all observations are pair-wise differences, D will have row sums equal
to zero.

As discussed in Kristiansson et al. (2005), there may exist both differ-
ences in precisions and systematic effects between the paired observations
and therefore, a gene-independent unknown covariance structure matrix Σ
is introduced. The gene-specific variability is modelled by scaling Σ with a
factor cg, which is assumed to be independent for different genes. The vec-
tors Xg are also assumed to be independent and, conditional on cg, normally
distributed, i.e.,

Xg | cg ∼ N
(
µg, cgΣ

)
. (1)

The subspace V ⊂ Rn will denote the p-dimensional vector space spanned
by the columns of D, thus µg ∈ V . Conditional on cg, this model is sometimes
referred to as a generalised linear model (Arnold, 1980).

Many microarray experiments consist of few observations for each gene,
which makes gene-specific variance estimates imprecise. Therefore, a prior
distribution for cg is introduced and assumed to be an inverse gamma distri-
bution with unknown shape parameter α and the scale parameter fixed to 1,
i.e.

cg ∼ Γ−1(α, 1).

This choice is motivated by the fact that the inverse gamma distribution is a
conjugate prior for the variance of a normal distribution. An empirical Bayes
approach will be used to estimate the hyperparameter α, a method that has
been proven successful in the context of microarray analysis (Baldi and Long,
2001; Lönnstedt and Speed, 2002; Smyth, 2004; Kristiansson et al., 2005).
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2.2 Examples of parametrisation

The model described above is suitable for a vast number of experimental
setups and two examples will now be given. Figure 1(a) shows an illustration
of a direct comparison (Churchill, 2002) where the conditions A1 and A2 are
compared against B1 and B2 respectively. Two observations are used for
each pair of conditions resulting in four observations in total. One way to
parametrise such a design is to let

γg = (γA1 , γA2 , γB1 , γB2)
T

and use the design matrix

D =


1 0 −1 0
1 0 −1 0
0 1 0 −1
0 1 0 −1

 .

����
??

����
����
??

����
A1 A2

B2B1

(a)

����
A

AAK
A

AAK

����
�
���

�
���

����
A B

CR

(b)

Figure 1: Two examples of experimental setup in microarray analysis; (a) is a
direct comparison and (b) a common reference design. Circles corresponds to
different conditions and arrows corresponds to pair-wise observations between
the conditions. The heads of the arrows indicate which of the conditions that
are numerators in the pair-wise log-ratios (i.e. colored ”red”).

Note that the model suggested in Kristiansson et al. (2005) only works
for direct comparisons between two conditions and is a special case of the
more general model described here.

Another widely used experimental setup is the common reference design
where two or more conditions are compared through one or more references
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(Churchill, 2002; Steibel and Rosa, 2005). In Figure 1(b) conditions A and
B are compared through a single reference called CR. A suitable parametri-
sation for this setup is obtained by putting

γg = (γA, γB, γCR)T

and then choosing the design matrix D as

D =


1 0 −1
1 0 −1
0 1 −1
0 1 −1

 .

2.3 Notation

We end this section with some words about notation. In this paper, Rn will
be regarded as a vector space and ‖X‖ will denote the Euclidean norm,

‖X‖2 =
n∑

i=1

X2
i ,

for a random vector X ∈ Rn. For any subspace V , the projection on V based
on the Euclidean norm will be denoted PV X. This projection is by definition
the unique element Y ∈ V such that ‖X−Y‖ is minimised. Moreover, V ⊥

will denote the subspace consisting of all elements in Rn orthogonal to all
the elements in V .

3 Theory

In this section, estimators of the parameters Σ and α are derived together
with a test procedure for linear restrictions of the elements in γg. Many
of the details, especially in Section 3.1 and 3.2, are parallel to Section 4 of
Kristiansson et al. (2005) and are therefore excluded. Implementations in
the statistical language R (R Development Core Team, 2004) for all methods
presented here are available from http://wame.math.chalmers.se.

3.1 Estimation of the covariance matrix

The estimation of the covariance matrix Σ is complicated for a number of
reasons. First there is a scale factor cg that for each gene g scales Σ uniquely.
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To remove this dependence of cg, a scale-independent method is used. More-
over, estimating a covariance matrix when the mean value is unknown is
generally not straight forward since there are trivial solutions that give in-
finite likelihood (e.g. take the mean value equal to one observation and the
corresponding variance equal to zero). To circumvent this problem, no reg-
ulated genes between any pair of conditions is assumed, i.e. µg = 0 for all
g. This assumption is temporary for this section and of course not true in
general, but it turns out to be good enough to generate results for data where
a clear majority of the genes are not differentially expressed.

The estimator of Σ can now be derived in a similar way to Kristiansson
et al. (2005). Fix a gene g and put

Ugi =

{
Xg1 if i = 1
Xgi/Xg1 if 2 ≤ i ≤ n.

The distribution of Ug = (Ug1, . . . , Ugn) can be calculated, and by integration
over Ug1, the distribution of (Ug2, . . . , Ugn) is obtained,

fUg2,...,Ugn(ug2, . . . , ugn) = C|Σ|−1/2
(
vT

gΣ
−1vg

)−n/2
,

where vg = (1, ug2, . . . , ugn). This is a multivariate Cauchy distribution,
which is a special case of the multivariate t-distribution (Tong, 1990). Note
that the covariance matrix multiplied by an arbitrary scalar determines the
parameters of this distribution uniquely. Numerical maximum likelihood can
therefore be used to estimate a positive definite matrix Σ∗, which is Σ scaled
by an unknown scalar λ, i.e.,

Σ∗ = λΣ. (2)

To make Σ∗ and λ unique the upper left element in Σ∗ is fixed to one.

3.2 Estimation of the shape and scale parameters

In this section, estimators of the scale λ introduced in the previous sec-
tion and the hyperparameter α are derived. The provisional assumption of
µg = 0 made in the last section is henceforth dropped. Moreover, the scaled
covariance matrix Σ∗ is assumed to be known.

Since both λ and α are associated with the variance of the genes, the esti-
mator will be based on the information available in the vectors independent
(conditionally on cg) of the projection of Xg on V (the maximum likelihood
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estimate of µg). To simplify understanding, we start by transforming Xg

with the square-root of the scaled covariance matrix, i.e.,

X∗
g = Σ∗−1/2Xg,

where Σ∗−1/2 is a positive definite matrix such that Σ∗−1/2Σ∗−1/2 = Σ∗−1

holds. This results in a new model where the variance heterogeneity and
correlations are removed, i.e,

X∗
g | cg ∼ N

(
µ∗

g,
cg

λ
I
)

,

µ∗
g = Σ∗−1/2µg ∈ V ∗ = {Σ∗−1/2v : v ∈ V } for all g. Let S∗

g be the square

length of the projection of X∗
g on V ∗⊥, i.e.,

S∗
g = ‖PV ∗⊥X

∗
g‖2.

Conditional on cg, the distribution of S∗
g will be a scaled chi-squared distri-

bution with n− p degrees of freedom,

S∗
g | cg ∼ cg/λ× χ2

n−p

(Theorem 3.12, Arnold (1980)). Using the model assumption that cg follows
an inverse Γ-distribution, the unconditional distribution of S∗

g can be shown
to be a scaled β′-distribution with parameters (n − p)/2 and α (Johnson
et al., 1995, page 248), i.e.,

S∗
g ∼ 2/λ× β′ ((n− p)/2, α) .

From this, the parameters α and λ can be estimated by numerical maximum
likelihood and Σ can then be estimated from (2). Due to the large number
of genes, the estimates of Σ and α are expected to be precise, so Σ and α are
from now on assumed to be known.

3.3 Inference about γg

Statistical tests of linear hypotheses based on γg will now be derived. For
a fixed gene g, such a hypothesis H0 and the corresponding alternative hy-
pothesis HA can be written as

H0 : Cγg = 0

HA : Cγg 6= 0,
(3)
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where C is a matrix of rank k. We assume that this hypothesis is testable,
i.e., for each row c in C there should exist a vector a ∈ Rn such that aTXg

is an unbiased estimator of cγg. In other words, it should be possible to
estimate the linear combinations of parameters that will be tested. From
testability, it follows that there exists a matrix A with rank k such that

Cγg = Aµg.

Furthermore, let V0 ⊂ V be the null space of A, that is the space of all
possible µg ∈ V such that Aµg = 0. The hypotheses in (3) can then be
stated as H0 : µg ∈ V0, HA : µg ∈ V \ V0.

Two likelihood ratio tests will be derived. First a weighted moderated
F -test, which under the previously described assumptions will work for any
testable hypothesis. Moreover, a weighted moderated t-statistic will be devel-
oped for the case when C only has a single row. In this case, the hypothesis
concerns one linear combination of the elements of the vector µg. This t-test
will of course generate p-values equivalent to the F -test but the form of the
statistic itself has some advantages, such as a sign to indicate up and down
regulation just like the ordinary t-statistic. We start with the more generally
applicable F -statistic.

As in the previous section, the model will be transformed to make the
theory more straight forward. This time Σ is known, so we let X̃g = Σ−1/2Xg.
It follows that

X̃g | cg ∼ Nn

(
µ̃g, cgI

)
where µ̃g = Σ−1/2µg. Moreover, let D̃ = Σ−1/2D and define the spaces Ṽ and

Ṽ0 analogous to V and V0, i.e., let Ṽ be the space spanned by the columns
in D̃ and Ṽ0 be the space with all µ̃g ∈ Ṽ such that Ãµ̃g = 0. As before,

Ã = AΣ1/2 is a matrix with rank k such that Cγg = Ãµ̃g holds.
The likelihood ratio test will be derived as in Kristiansson et al. (2005).

The likelihood function L of the transformed model is calculated by integra-
tion over the prior distribution, resulting in

L(µ̃g|x̃g) =

∫
fX̃g | cg

(x̃g)fcg(cg) dcg = K

[‖x̃g − µ̃g‖2

2
+ 1

]−n/2−α

,

where K is a normalisation constant not depending on x̃g or µ̃g. The likeli-

hood ratio test can now be formed; we reject µ̃ ∈ Ṽ0 if

sup
µ̃g∈Ṽ

L(µ̃g|X̃g)

sup
µ̃g∈Ṽ0

L(µg|X̃g)
> κ (4)
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for a suitable constant κ. The suprema are achieved when µ̃g is the projection

of X̃g on the spaces Ṽ and Ṽ0 respectively,

arg max
µ̃g∈Ṽ

L(µ̃g|X̃g) = P Ṽ X̃g and

arg max
µ̃g∈Ṽ0

L(µ̃g|X̃g) = P Ṽ0
X̃g.

Using some algebra and the Pythagorean theorem it is possible to write the
likelihood ratio test (4) as

‖P Ṽ X̃g − P Ṽ0
X̃g‖2

‖X̃g − P Ṽ X̃g‖2 + 2
=

‖P Ṽ ⊥0 ∩Ṽ X̃g‖2

‖P Ṽ ⊥ X̃g‖2 + 2
> κ′, (5)

where κ′ is a new constant. The subspace Ṽ ⊥
0 ∩ Ṽ consists of all elements

that are in Ṽ and are orthogonal (in the metric induced by the Euclidean
norm) to the elements in Ṽ0, and the subspace Ṽ ⊥ consists of all vectors in
Rn orthogonal to the vectors in Ṽ .

Under the null hypothesis, the distribution of the statistic (5) can be
deduced. Using Theorem 3.11 and Theorem 3.12 in Arnold (1980) it follows
that conditionally on cg, the squared norms of the projections in (5) are
independent and χ2 distributed. The space Ṽ ⊥

0 ∩ Ṽ has dimension k and Ṽ ⊥

has dimension n− p so, conditionally on cg,

‖P Ṽ ⊥0 ∩Ṽ X̃g‖2 ∼ cg × χ2
k

‖P Ṽ ⊥ X̃g‖2 ∼ cg × χ2
n−p.

If we let

T =
n− p + 2α

k

‖P Ṽ ⊥0 ∩Ṽ X̃g‖2

‖P Ṽ ⊥ X̃g‖2 + 2
,

and divide both the numerator and the denominator by cg and use the facts
that 2/cg ∼ χ2

2α and that the sum of two independent χ2 distributed random
variables is χ2 distributed itself, it follows that

T ∼ Fk,n−p+2α.

Explicit formulas for ‖P Ṽ ⊥0 ∩Ṽ X̃g‖2 and ‖P Ṽ ⊥ X̃g‖2 are straight forward
to derive, i.e,

‖P Ṽ ⊥0 ∩Ṽ X̃g‖2 =

XT

gΣ
−1D(DTΣ−1D)−CT

[
C(DTΣ−1D)−CT

]−
C(DTΣ−1D)−DTΣ−1Xg
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and
‖P Ṽ ⊥ X̃g‖2 = XT

g(Σ
−1 − Σ−1D(DTΣ−1D)−DTΣ−1)Xg,

where for any matrix M , M− is used to denote the generalised inverse.
When the matrix C has a single row and thus k = 1, it is also possible to

derive a t-test equivalent to the F -test. Define

X̄w
g = C(DTΣ−1D)−DTΣ−1Xg.

Since C only has one row, X̄w
g is a weighted mean value and hence, condi-

tionally on cg, normally distributed,

X̄w
g ∼ N

(
Cγg, cgC(DTΣ−1D)−CT

)
. (6)

Define the weighted moderated t-statistic as

T ′ =

√
n− p + 2α

C(DTΣ−1D)−CT

X̄w
g√

Sg + 2
,

where
Sg = ‖P Ṽ ⊥ X̃g‖2. (7)

Under the null hypothesis where Cγ = 0, it is possible to show by using
similar arguments as for the F -statistic that

T ′ ∼ tn−p+2α.

4 Simulations

In this section, a simulated time course experiment is used to evaluate the
derived statistics. First, the performance is compared with two other com-
mon methods; the moderated F -statistic (Smyth, 2004) and the ordinary F -
statistic. Then, effects of correlation between arrays at different time-points
are examined.

4.1 Description of the simulated dataset

The simulated experiment consists of three conditions that each is compared
to a common reference condition by three replicates. We will think of this
setup as a time course with three time points and we call the conditions T1,
T2 and T3. An illustration of the design can be seen in Figure 2.
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Figure 2: The experimental design used for the simulation studies.

Each time point had 1% of the genes regulated exclusively. Genes reg-
ulated at more than one time point were also chosen; time point one and
two had 1% genes regulated, time point two and three had 1% regulated
genes and finally, time point one, two and three had 1% regulated genes.
All groups of regulated genes were mutually exclusive and the genes were
selected randomly. Thus, totally 3% of the genes at time point one, 4% of
the genes at time point two and 3% of the genes at time point three were
chosen to be regulated. The expected values of the regulated genes were
sampled independently from a uniform distribution between −2 and 2. For
genes regulated at several time points, the expected values were the same for
all those time points.

T1 1 T1 2 T1 3 T2 1 T2 2 T2 3 T3 1 T3 2 T3 3
T1 1 1.00 0.57 0.61 0.14 0.38 0.34 0.00 0.12 0.34
T1 2 0.40 2.00 0.73 0.28 0.64 0.54 0.10 0.23 0.56
T1 3 0.35 0.30 3.00 0.44 0.90 0.73 0.24 0.35 0.78
T2 1 0.10 0.14 0.18 2.00 0.98 0.49 0.24 0.31 0.68
T2 2 0.22 0.26 0.30 0.40 3.00 0.52 0.42 0.45 0.93
T2 3 0.34 0.38 0.42 0.35 0.30 1.00 0.31 0.30 0.59
T3 1 0.00 0.04 0.08 0.10 0.14 0.18 3.00 0.69 0.86
T3 2 0.12 0.16 0.20 0.22 0.26 0.30 0.40 1.00 0.42
T3 3 0.24 0.28 0.32 0.34 0.38 0.42 0.35 0.30 2.00

Table 1: The covariance matrix Σ used for the simulation studies. Variances
are underlined and correlations are written in italic below the diagonal.
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The total number of genes used was 10000 and the hyperparameter α
was fixed to 2. These values are typical for real datasets. The covariance
matrix for the experiment was chosen so that there are moderate correlations
between the arrays within time points and low to moderate correlations be-
tween arrays from different time points (Table 1). Observations for each gene
g were then simulated according to the model.

4.2 Comparison with other methods

To investigate if the assumption of a general covariance matrix results in a sig-
nificantly improved performance, WAME was compared to two other meth-
ods; the moderated F -statistic (Smyth, 2004) and the ordinary F -statistic.
The moderated F -statistic is based on a linear model with an empirical Bayes
approach similar to WAME but variance homogeneity and uncorrelated ar-
rays are assumed. This method is available as an R-package called LIMMA
(Smyth et al., 2005) and can be retrieved from the Bioconductor repository
(Gentleman et al., 2004). Since this package contains a function to calcu-
late weights used in the estimation of the expected values, LIMMA was used
both with and without this feature and will be referred to as weighted and
unweighted LIMMA respectively.

First, a test of regulation in time point two was used, i.e. a contrast ma-
trix with a single row was used. All methods were applied to the simulated
time course experiment (as described in Section 4.1) and by counting the
number of true positives as a function of the number of false positives, Re-
ceiver Operating Characteristic (ROC) curves were plotted. The simulation
results (see Figure 3) show that WAME clearly performs better than the
other methods. Moreover, the performance in LIMMA is only marginally
improved when weights are used. The ordinary F -statistic has the worst
performance.

Next, the test of no regulation at any time point was performed and
the corresponding ROC plots were plotted (Figure 4). As in the previous
simulation, WAME performs better than the other methods.

4.3 The effects of correlations between conditions

To investigate the impact of correlations between arrays from different time
points, the simulated time course experiment was used once more. This
time, three different versions of WAME were compared, each with the scaled
covariance matrix Σ∗ given instead of estimated. The scale λ and the hyper-
parameter α were estimated as usual.
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Figure 3: Receiver Operating Characteristic curves for testing regulation at
time point two. Four methods are compared on simulated data; WAME,
LIMMA with and without weights and the ordinary F -statistic. The figure
to the right is a magnification of the dashed box to the left.
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Figure 4: Receiver Operating Characteristic curves for testing regulation at
all time points. Four methods are compared on simulated data; WAME,
LIMMA with and without weights and the ordinary F -statistic. The figure
to the right is a magnification of the dashed box to the left.
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The first version used the true matrix shown in Table 1, the second version
used the true matrix altered by setting the correlations between groups to
zero. Finally, the third version used an identity matrix which results in
a model equivalent to the model presented in Smyth (2004) and will thus
perform similar to LIMMA. The setup of this simulation is summarised in
Table 2.

WAME version 1 True covariance matrix including both different
variances for different arrays and correlations between
all pairs of arrays.

WAME version 2 True covariance matrix but all correlations between
pairs of arrays from different time points set to zero.

WAME version 3 Identity matrix, i.e. same variance for all arrays and
no correlations. Equivalent to LIMMA.

Table 2: The experimental setup used in the simulation study to investigate
the impact of the correlations. The result can be seen in Figure 5.

The test used is the same as in the first simulation study, i.e. a test
for regulation in time point two and the results can be seen in Figure 5.
As expected, the version with the true covariance matrix performs best,
followed by the version with independence between time points and finally
the version which uses an identity matrix. It is interesting to see that the
performance loss when correlations between the time points are ignored, is
relatively large. This shows that a potential method that focuses on each of
the groups independently will be far from optimal.

5 Results from real data

Here, two real datasets are examined. First, the apoAI dataset (Callow
et al., 2000) is analysed, where two-colour spotted cDNA microarrays are
used to compare eight knockout mice to eight control mice through a common
reference. Then the Cardiac dataset (Hall et al., 2004) is investigated. In
this experiment heart biopsies was harvested from 19 patients before and
after treatment with a ventricular assist device. One-channel oligonucleotide
microarrays from Affymetrix Inc. have been used to create this dataset.
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Figure 5: Simulated Receiver Operating Characteristic curves for testing
three versions of WAME, all using given covariance matrices. Version 1 uses
the correct covariance matrix, version 2 uses the correct covariance matrix
but with all correlations between the time points set to zero and finally,
version 3 uses an identity matrix.

5.1 The apoAI dataset

The apoAI dataset (Callow et al., 2000) comes from a study of high-density
lipoprotein (HDL) metabolism in mice. In the study, mRNA from eight mice
with the apolipoprotein AI gene inactivated were compared to mRNA from
eight control mice through a common reference, which was created by pooling
mRNA from the controls (see Figure 6). The samples from the knockouts and
controls were labeled with Cy3 and the samples from the common reference
were labeled with Cy5. In total, 16 two-channel cDNA microarrays were
hybridised.

The pre-processing of this data is described in Callow et al. (2000) and
is summarised here. ScanAlyze was used to analyse the scanned arrays and
the background estimation and correction were done in Spot (Buckley, 2000).
The resulting files containing background corrected raw intensities are pub-
licly available at

http://www.stat.berkeley.edu/users/terry/zarray/Html/apodata.html

Array elements with missing values were removed (totally 158 genes out of
6226) and print-tip loess normalisation (Yang et al., 2002) was used to remove
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Figure 6: Experimental design for the apoAI dataset. The conditions C and
K correspond to the control mice and knockout mice respectively. CR is
the common reference which was created by pooling the mRNA from the
controls. The mRNA from the control mice and the knockout mice were
labeled with Cy5 and the mRNA from the common reference were labelled
with Cy3. In total 16 arrays were used in this experiment.

systematic errors.
In the present paper, the linear model developed in Section 3 will be

used to analyse this dataset. Three conditions are used to parametrise this
experiment; the control (C), the knockout (K) and the common reference
(CR). The contrast of interest is the difference between the knockout and
control. Note that due to the experimental design, this dataset could not be
analysed by the simpler model presented in Kristiansson et al. (2005).

WAME was applied to the normalised values and the estimated covariance
matrix (see Table 3) reveals differences in the variance structure between the
two groups. In the first group, which consists of the eight control mice, all
arrays have fairly similar variances (between 0.16 and 0.10). In the knockout
group however, there are several arrays with quite high variances, e.g. array
1 (0.29), array 5 (0.24) and array 6 (0.23).

The estimated covariances are positive for all pairs of arrays. In fact,
only a few pair of arrays have a correlation lower than 0.10 and the majority
have a correlation above 0.20. These correlations can be verified by exami-
nation of the high density parts of the clouds in Figure 7. These moderate
correlations can be a result of the common reference design that is used in
the experiment. By hybridising mRNA from the same pool on all the arrays,
sources of variation will undoubtedly be shared.

The weights that correspond to the contrast comparing the knockouts
to the controls are shown in Table 4. As mentioned earlier, the variance
in the control group is homogeneous which results in fairly equal weights.
In the knock-out group however, the variance and thus the weights differ
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Figure 7: Pair-wise plots of the log2-ratios for all the 16 arrays in the apoAI
dataset. The lower left half shows kernel density estimates of the two-
dimensional distribution according to the colour-scale: white, grey, black
and red (in increasing level of density). A standalone image in the lossless
PNG format can be found at http://wame.math.chalmers.se.
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c1 c2 c3 c4 c5 c6 c7 c8 k1 k2 k3 k4 k5 k6 k7 k8
c1 0.16 0.03 0.04 0.04 0.05 0.02 0.03 0.04 0.08 0.03 0.03 0.04 0.05 0.05 0.05 0.05
c2 0.23 0.11 0.05 0.06 0.02 0.04 0.03 0.03 0.04 0.06 0.06 0.02 0.05 0.02 0.02 0.03
c3 0.32 0.50 0.11 0.06 0.02 0.05 0.03 0.03 0.04 0.06 0.08 0.02 0.06 0.02 0.02 0.03
c4 0.26 0.45 0.52 0.14 0.02 0.04 0.04 0.03 0.04 0.07 0.08 0.02 0.07 0.03 0.02 0.04
c5 0.31 0.13 0.15 0.12 0.14 0.03 0.05 0.05 0.07 0.01 0.02 0.04 0.04 0.06 0.08 0.07
c6 0.19 0.42 0.44 0.37 0.26 0.10 0.04 0.04 0.03 0.05 0.06 0.02 0.05 0.03 0.03 0.04
c7 0.21 0.28 0.29 0.33 0.40 0.39 0.11 0.04 0.04 0.04 0.05 0.02 0.06 0.04 0.05 0.05
c8 0.27 0.28 0.28 0.26 0.45 0.41 0.40 0.11 0.06 0.03 0.04 0.03 0.05 0.05 0.06 0.07
k1 0.38 0.20 0.25 0.18 0.34 0.19 0.21 0.32 0.29 0.05 0.04 0.06 0.07 0.08 0.08 0.09
k2 0.22 0.43 0.50 0.50 0.09 0.42 0.30 0.26 0.24 0.15 0.08 0.03 0.07 0.04 0.02 0.04
k3 0.21 0.45 0.59 0.54 0.12 0.47 0.36 0.29 0.21 0.56 0.15 0.02 0.08 0.03 0.02 0.03
k4 0.27 0.18 0.19 0.17 0.25 0.12 0.16 0.23 0.29 0.20 0.13 0.15 0.05 0.08 0.04 0.05
k5 0.24 0.29 0.38 0.38 0.22 0.30 0.34 0.28 0.27 0.36 0.40 0.28 0.24 0.07 0.05 0.06
k6 0.24 0.14 0.15 0.19 0.35 0.22 0.25 0.30 0.30 0.21 0.13 0.43 0.28 0.23 0.07 0.08
k7 0.32 0.18 0.20 0.15 0.60 0.28 0.37 0.48 0.41 0.14 0.17 0.29 0.28 0.38 0.14 0.08
k8 0.34 0.25 0.21 0.24 0.49 0.35 0.37 0.51 0.44 0.25 0.21 0.32 0.29 0.43 0.55 0.16

Table 3: Estimated covariance matrix for the apoAI dataset. The variances
are underlined and correlations are written in italic below the diagonal.

substantially. Here, the arrays 1, 5 and 6, which all have a large variance,
get heavily down-weighted.

Array c1 c2 c3 c4 c5 c6 c7 c8 Sum
Weights -0.08 -0.09 -0.16 -0.13 -0.15 -0.13 -0.11 -0.16 -1

Array k1 k2 k3 k4 k5 k6 k7 k8 Sum
Weights 0.01 0.17 0.25 0.10 0.05 0.03 0.23 0.15 1

Table 4: The weights used in testing difference in gene expression between
the knockouts and the controls in the apoAI dataset.

For all array elements p-values were calculated for three different meth-
ods; the weighted moderated t-statistic (WAME), the moderated t-statistic
(LIMMA) and the ordinary t-statistic. The 15 most extreme elements accord-
ing to WAME can be seen in Table 5. The first entry in this list corresponds
to the removed apoAI gene and it is found to be heavily down-regulated as
one would expect. The next seven entries correspond to three other genes,
which all have been verified to be differentially expressed (Callow et al.,
2000).

Two quantile-quantile plots are shown in Figure 8. To the left, the ob-
served t-values from WAME are plotted against the theoretical values under
the null hypothesis. The eight verified elements are marked with crosses and
they clearly stand out compared to the other elements. To the right, a blow
up of the dashed box is shown. In this figure, quantile-quantile curves for
the weighted moderated t-statistic (WAME) and the moderated t-statistic
(LIMMA) are plotted. WAME seems to follow the diagonal line well while
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LIMMA deviate slightly towards higher observed absolute t-values. A simi-
lar deviation can also be seen in the quantile-quantile curve of the ordinary
t-statistic (results not shown).

Name Average Ord. t-test LIMMA WAME
log2-ratio p-value p-value p-value

Apo AI, lipid-Img -3.18 1.51× 10−12 4.98× 10−15 6.11× 10−15

Est, highly similar to apolipoprotein A-I precursor, lipid-UG -2.96 1.21× 10−8 1.63× 10−10 2.53× 10−10

Catechol O-Methylthansferase, membrane-bound, brain-Img -1.76 1.21× 10−8 3.14× 10−10 1.95× 10−9

Est, Weakly similar to C-5 Sterol Desaturase, lipid-UG -0.96 3.39× 10−9 7.52× 10−10 5.24× 10−9

Est, Highly similar to Apolipoprotein C-III precursor, lipid-UG -1.01 3.30× 10−7 4.56× 10−8 2.47× 10−8

Apo CIII, lipid-Img -0.90 5.53× 10−8 1.22× 10−8 2.99× 10−8

Est -0.92 3.01× 10−7 4.65× 10−8 6.27× 10−8

Similar to yeast sterol desaturase, lipid-Img -0.94 4.50× 10−6 7.09× 10−7 3.79× 10−7

Similar to Hypothetical protein 1 - fruit fly -0.57 4.62× 10−3 2.63× 10−3 2.52× 10−4

Fatty acid-binding protein, epidermal, lipid-UG -0.48 5.66× 10−4 2.49× 10−4 3.06× 10−4

BLANK 0.44 5.65× 10−3 4.65× 10−3 4.13× 10−4

estrogen rec 0.42 1.43× 10−3 1.03× 10−3 7.10× 10−4

Cy5RT 0.71 4.14× 10−3 1.68× 10−3 1.03× 10−3

Tbx6 -0.33 5.62× 10−3 7.93× 10−3 1.18× 10−3

Est 0.47 1.30× 10−2 9.63× 10−3 1.32× 10−3

Table 5: The 15 genes in the ApoAI dataset with smallest p-values according
to WAME. The table also shows the corresponding fold-changes and p-values
for the ordinary and moderated t-statistics.

To highlight the impact of the generalised linear model used in WAME,
the empirical distributions of the weighted mean (WAME) and the ordinary
(i.e. unweighted) mean (LIMMA) were compared. Under the model as-
sumptions, the weighted mean should have a smaller variance and thus the
distribution should have a smaller spread. This is in fact observed when the
empirical distributions are estimated by a kernel density estimator (see Fig-
ure 9). This suggests that the estimator of the fold-changes in WAME has
higher precision than the corresponding estimator in LIMMA.

5.2 The Cardiac dataset

In Hall et al. (2004) heart biopsies from 19 patients with heart failure were
harvested to investigate differences in gene expression before and after treat-
ment with a ventricular assist device. The role of the study was to identify
genes involved in vascular signaling networks. The patients were divided
into three groups; the ischemic group (I) with 5 patients that had evidence
of coronary artery disease, the acute myocardial infarction group (IM) with
6 patients that had an acute myocardial infarction within 10 days of the
implant and finally the nonischemic group (N) where the 8 patients did not
show any evidence for coronary artery disease. Each mRNA sample was
prepared and hybridised to one Affymetrix one-channel oligonucleotide array
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Figure 8: To the left a quantile-quantile plot comparing the estimated
weighted moderated t-statistic (WAME) to its corresponding theoretical null
distribution. The eight elements marked with a cross corresponds to the four
genes that were verified to be differentially expressed. To the right is a blow
up of the dashed box. This plot also contains the quantile-quantile curve for
the moderated t-statistic (LIMMA).

Figure 9: Kernel density estimates of the distributions of the mean values
from WAME and LIMMA. The spread of the former is smaller which suggests
that the estimator in WAME is more precise.
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(HG-U133A) resulting in two arrays for each patient, i.e. 38 arrays in total.
The resulting raw data was made publically available by the authors and can
be found at the Gene Expression Omnibus repository (Edgar et al., 2002).

The .CEL-files for all 38 arrays were retrieved and then pre-processed and
normalised by RMA (Irizarry et al., 2003). The paired observations were used
to form log2-ratios according to the experimental design shown in Figure 10.
The ischemic group (I) of this dataset was analysed in Kristiansson et al.
(2005) where patients with different variances and substantial correlations
were identified.

In the present paper the ischemic group will be analysed once more, but
this time using the more general model. In this framework, all patients will
be incorporated, even if we only test for differential expression for patients
in a single group. This is a major difference to the model in Kristiansson
et al. (2005) which can only take advantage of the arrays from one group of
interest, i.e. it can only analyse direct comparisons with two conditions. In
this section, the results from the new analysis are presented and compared
to the corresponding old results.

After

Before ��
��
IB

��
��

IA

?
×5

��
��
IMB

��
��
IMA

?
×6

��
��
NB

��
��
NA

?
×8

Figure 10: Experimental design for the cardiac dataset. All three groups have
a condition before the treatment (IB, IMB and NB) and a condition after
the treatment (IA, IMA and NA). The dataset consists of 19 observations in
total.

The estimated covariance matrix for all 19 pairs of arrays is shown in
Table 6. The variances in this dataset differ considerable, both between and
within the three groups. For example, the IM group has three arrays with
high variance and three arrays with rather low variance, while the variances
in I and N group are more homogeneous.

The correlations in this dataset are in general small, but there are ex-
ceptions. The first patient in the IM group (IM1) has a high positive cor-
relation with IM4 (0.54) but also negative correlations with I7 (−0.64) and
IM7 (−0.55). These correlations can also be seen in Figure 11. A closer
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I12 I13 I4 I7 I8 IM1 IM3 IM4 IM5 IM6 IM7 N2 N22 N3 N4 N6 N7 N8 N9
I12 0.04 0.00 0.00 0.01 0.00 -0.01 0.01 -0.00 -0.01 0.00 0.01 -0.01 0.00 0.01 0.00 0.01 -0.00 0.00 0.01
I13 0.03 0.17 -0.01 0.01 -0.00 0.10 0.11 0.08 0.07 0.02 -0.05 0.01 -0.06 -0.01 0.03 -0.02 -0.06 -0.05 0.01
I4 0.04 -0.13 0.06 0.01 0.00 -0.03 0.00 -0.01 -0.01 0.00 0.02 -0.01 0.01 0.00 0.01 0.02 -0.01 0.02 -0.00
I7 0.11 0.07 0.09 0.23 -0.02 -0.26 0.07 -0.04 0.03 -0.01 0.04 -0.06 0.01 -0.00 0.02 0.05 -0.03 0.05 0.01
I8 0.03 -0.02 0.04 -0.16 0.04 0.04 -0.02 0.01 -0.00 0.00 -0.00 0.01 0.00 0.01 -0.00 0.00 0.01 -0.01 0.00

IM1 -0.04 0.29 -0.15 -0.64 0.22 0.73 -0.06 0.18 0.10 0.06 -0.14 0.14 -0.07 0.02 -0.02 -0.10 -0.04 -0.18 0.00
IM3 0.11 0.41 0.02 0.22 -0.12 -0.11 0.43 0.04 -0.04 0.02 -0.02 -0.07 -0.04 -0.01 0.06 -0.01 -0.06 -0.01 0.03
IM4 -0.01 0.50 -0.06 -0.24 0.12 0.54 0.17 0.14 0.07 0.02 -0.04 0.02 -0.04 -0.01 0.00 -0.00 -0.04 -0.05 0.01
IM5 -0.09 0.29 -0.05 0.09 -0.00 0.19 -0.09 0.32 0.35 0.01 -0.03 0.05 -0.03 -0.01 -0.00 0.03 -0.03 -0.05 -0.00
IM6 0.10 0.20 0.02 -0.13 0.08 0.29 0.15 0.22 0.06 0.06 -0.01 0.00 -0.01 0.01 0.00 -0.01 -0.01 -0.02 0.00
IM7 0.09 -0.41 0.27 0.31 -0.06 -0.55 -0.09 -0.39 -0.20 -0.20 0.08 -0.03 0.03 0.01 0.00 0.04 0.03 0.05 -0.00
N2 -0.12 0.06 -0.08 -0.29 0.10 0.40 -0.25 0.15 0.22 0.05 -0.28 0.17 -0.01 0.00 -0.02 -0.02 -0.01 -0.05 -0.01

N22 0.04 -0.49 0.12 0.04 0.02 -0.28 -0.20 -0.36 -0.19 -0.08 0.38 -0.10 0.09 0.01 -0.01 0.01 0.03 0.02 -0.00
N3 0.11 -0.10 0.04 -0.01 0.14 0.07 -0.04 -0.06 -0.05 0.10 0.09 0.03 0.20 0.06 -0.00 0.00 0.01 -0.00 0.01
N4 0.03 0.20 0.08 0.12 -0.03 -0.08 0.28 0.04 -0.01 0.04 0.05 -0.11 -0.08 -0.02 0.10 0.01 -0.01 0.01 0.00
N6 0.09 -0.14 0.21 0.30 0.03 -0.35 -0.03 -0.04 0.14 -0.13 0.36 -0.15 0.13 0.03 0.10 0.11 0.02 0.05 0.01
N7 -0.06 -0.41 -0.07 -0.18 0.07 -0.15 -0.27 -0.27 -0.15 -0.14 0.28 -0.04 0.31 0.14 -0.05 0.16 0.12 0.03 -0.01
N8 0.01 -0.28 0.20 0.21 -0.06 -0.46 -0.03 -0.27 -0.17 -0.17 0.41 -0.28 0.16 -0.04 0.04 0.36 0.21 0.20 -0.01
N9 0.26 0.13 -0.01 0.09 0.06 0.02 0.22 0.10 -0.01 0.00 -0.01 -0.08 -0.04 0.09 0.06 0.10 -0.12 -0.05 0.05

Table 6: Estimated covariance matrix for the cardiac dataset. The variances
are underlined and correlations are written in italic below the diagonal.

examination of the log2-ratios revealed that both IM1 and I7 have skewed
distributions, IM1 towards positive values and I7 towards negative values.
This may be a result from either the experiment itself or from pre-processing
steps and can explain the unexpected negative correlations. However, we
will still keep these arrays in the further analysis, since their high variance
will result in a low weight and thus a low impact on the final result. The
hyperparameter α was estimated to 1.73 which means that the resulting t-
distribution will gain approximately 3.5 degrees of freedom.

The weights used in the test for differential expression in group I can
be seen in Table 7. Not surprisingly, the patient I7 gets the lowest weight,
while I12 and I8, which both have low variance and small correlations, get
the highest weights. Note that these weights sum to 1.

It is also interesting to examine the weights in the IM and N group. Due
to correlations between patients from different groups, these weights will be
non-zero but sum to zero. Due to the high variances in the IM group, the
corresponding weights are relatively low. In the N group, N7 and N6 have
relatively high weights (0.10 and −0.06), which stems from that the fact
that they both have a low variance and correlates with group I (N7 mostly
negative and N6 mostly positive).

To test for differential expression in group I, the weighted moderated t-
statistic was calculated. Figure 12 show the resulting quantile-quantile plot
where the theoretical t-distribution has approximately 19.5 degrees of free-
dom. Most genes follow the diagonal line well which suggest relatively few
regulated genes and a good model fit. A few genes have a larger absolute
t-value than can be explained by the null distribution which points towards
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Figure 11: Pair-wise plots of the log2-ratios for all the 19 patients in the
cardiac dataset. The lower left half shows kernel density estimates of the
two-dimensional distribution according to the colour-scale: white, grey, black
and red (in increasing level of density). A standalone image in the lossless
PNG format can be found at http://wame.math.chalmers.se.
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Patient I12 I13 I4 I7 I8 Sum
Weight 0.28 0.13 0.21 0.10 0.28 1
Patient IM1 IM3 IM4 IM5 IM6 IM7 Sum
Weight 0.03 -0.01 -0.02 -0.00 -0.01 0.01 0
Patient N2 N22 N3 N4 N6 N7 N8 N9 Sum
Weight 0.03 0.05 -0.05 -0.02 -0.06 0.10 0.01 -0.05 0

Table 7: Weights for the patients in the cardiac dataset when differential
expression in the ischemic (I) group is studied.

some of them being regulated. Note that the gene expression in this experi-
ment is asymmetric with more genes seemingly up-regulated than seemingly
down-regulated.

Figure 12: This figure shows the quantile-quantile plots of the weighted mod-
erated t-statistic for the test of differential expression in group I.

When the results are compared to the corresponding analysis restricted
to the arrays from group I (the analysis in Kristiansson et al. (2005)) there
are both similarities and differences. The estimated scaled covariance matrix
for the 5 patients in group I are similar and both the scaled variances and
the correlations above 0.10 change less than 10%. The hyperparameter α is
estimated to 1.92 when only the patients from group I are used instead of
1.73 when all 19 patients are used. This results in a slightly different scaling
factor λ (0.046 instead of 0.042) and thus a different covariance matrix.
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Moreover, there are interesting differences between the weights from the
two models. Under the general model (Table 7), the weights are more con-
servative than under the restricted model (Table 8). For example, the weight
for patient I7 increases from 0.05 to 0.10.

Patient I12 I13 I4 I7 I8 Sum
Weight 0.30 0.09 0.23 0.05 0.33 1

Table 8: The weights from the I group calculated by the old model in Kris-
tiansson et al. (2005). These weights are less conservative than the weights
in Table 7.

Ranking lists sorted by the p-values were produced for both models.
Among the top 100 and 500 genes, 38% and 52% respectively, appear on
both lists. To compare the deviating genes, quantile-quantile plots of the
p-values on a logarithmic scale (base 10) were made (Figure 13). In the plot
to the left (general model), fewer genes deviate from the diagonal line than in
the plot to the right (restricted model). Since the number of regulated genes
is unknown it is hard to say which plot that is more correct but a better
overall fit makes the extreme genes more distinct.

6 Discussion

The experimental design of microarray gene expression assays are often com-
plex and several conditions are usually involved. The arrays in these exper-
iments are produced through a series of steps, each inducing differences in
precision and systematic effects. This generates data with varying quality,
which is desirable to take into account.

In this paper, a generalisation of the paired two-sample analysis method
introduced in Kristiansson et al. (2005) is described. The new method, which
as its predecessor, is referred to as WAME, is based on a linear model capable
of analysing paired microarray experiments with any number of conditions.
The observations are assumed to measure the differences in mRNA levels
on a logarithmic scale (log-ratios) between pairs of conditions. This means
that the method will be applicable to most experiments using two-channel
cDNA microarrays and many experiments with one-channel oligonucleotide
microarrays from Affymetrix.

For each gene, the vector of all the pair-wise log-ratios are assumed to
follow a multidimensional normal distribution. A covariance matrix Σ is used
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Figure 13: This figure shows two quantile-quantile plots of the log10 p-values
for the test of differential expression in group I. The plot to the left is based
on the general paired model using all 19 patients and the plot to the right is
based on the restricted model from Kristiansson et al. (2005) using only the
patients in the I group.

to catch the differences in quality of the different pairs, such as correlations
and unequal precision. Gene-specific variances are modelled through a factor
cg, scaling the covariance matrix uniquely for each gene. Since microarray
experiments often consist of few gene-wise repetitions, cg is modelled by an
inverse gamma distribution random variable with shape parameter α and
fixed scale parameter β. This is analogous to Lönnstedt and Speed (2002),
Smyth (2004) and Kristiansson et al. (2005).

To estimate the covariance matrix Σ, an assumption that most genes are
not differentially expressed is made. Then, after cg is removed by a trans-
formation, Σ scaled with an unknown scale λ can be estimated by numerical
maximum likelihood. Point estimators for λ and α are also derived based
on the residual sum of squares. All these steps parallel Kristiansson et al.
(2005).

For any testable linear hypotheses, a likelihood ratio test is derived, re-
sulting in a weighted moderated F -statistic. In the special case of a one-
dimensional null hypothesis restriction, a weighted moderated t-statistic is
formed. In both cases, correlations give rise to array-specific weights, that
can be non-zero for parts of the data that would not be included under the
assumption of independent arrays. The weighted moderated statistics can be
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seen as generalisations of the moderated F - and t-statistics found in Smyth
(2004).

The model was evaluated on a simulated time course experiment with
three time points. The improvement in performance, compared to LIMMA
(Smyth et al., 2005) was shown to be substantial. Moreover, when the time
points were (wrongly) assumed to be independent, the effect on the perfor-
mance was shown to be relatively large.

Two real datasets were analysed. The first was the apoAI dataset (Cal-
low et al., 2000) which consists of eight knockout mice that are compared
to eight controls through a common reference. The estimated covariance
matrix contains moderate positive correlations for almost all arrays. This is
probably a result of the common reference design, where sources of variation
undoubtedly are shared between the arrays. Quantile-quantile plots of the
t-statistic revealed that WAME fitted the diagonal line well, while LIMMA
tended to over-estimate the t-values. A similar effect was observed for the
model in (Kristiansson et al., 2005). Moreover, the precision for the esti-
mated fold-changes was shown to increase when variances and covariances
were taken into account.

The other dataset investigated was the cardiac dataset (Hall et al., 2004)
which contains paired measurements for 19 patients, divided into three groups
(I, IM and N) based on their medical condition. One-channel oligonucleotide
microarrays from Affymetrix were used to produce the data. The covariance
matrix revealed differences between the groups. The variances were homo-
geneous in both the I and N group in contrast to the IM group where both
high and low variances were found. The IM group also contained several high
correlations, both to patients within the group and to patients in the other
groups.

Differential expression in the first group was investigated and the results
compared to Kristiansson et al. (2005). The weights with the general model
suggested in this paper resulted in more conservative weights and quantile-
quantile plots for the p-values showed that fewer genes deviated from the
diagonal.

When using WAME, it is important to keep in mind that the model is
far from perfect. The noise structure may be different for different genes and
the assumption of normality may not be valid. The gene-specific variance
might also be different for different groups of conditions, leading to erroneous
variance estimates. The effect of a potential dependence between expression
level and variance is unknown.

In principle we may adapt the weighted moderated F - or t-tests to test
null hypotheses that the linear combinations in question are equal to arbitrary
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constants. Confidence intervals and ellipsoids can then be constructed based
on the correspondence theorem between hypothesis testing and confidence
sets (Casella and Berger, 2002, Theorem 9.2.2). However, since the assumed
variance structure is hard to validate for regulated genes, we have refrained
from developing this topic at this stage.

It should also be noted that the restriction to models with pairwise ob-
servations in Section 2.1 may be relaxed. A crucial step, preceding the hy-
pothesis testing in Section 3.3, is the estimation of the covariance matrix
in Section 3.1 where we assume that the expected value of the observation
vector Xg has approximately mean zero for a majority of genes. This seems
reasonable if Xg consists of pair-wise differences as assumed in Section 2.1
leading to a design matrix with row sums zero, but the assumption may also
be satisfied in other designs such as in some regression models.

A further generalisation of WAME is currently being developed, extend-
ing the procedure from paired to general microarray experiments. A linear
transformation can there be used to first remove the information explainable
by the null hypothesis. Assuming that the null hypothesis is true for most
genes, the transformed covariance structure can then be estimated and the
weighted statistics formed from the transformed data similar to the meth-
ods in the current paper. Work is underway to derive the properties of this
procedure and to verify its usefulness on real data. An R-package providing
easy access to the WAME procedure is also under development.
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Abstract

Background: In DNA microarray experiments, measurements from different biological samples are often

assumed to be independent and to have identical variance. For many datasets these assumptions have been

shown to be invalid and typically lead to too optimistic p-values. A method called WAME has been proposed

where a variance is estimated for each sample and a covariance is estimated for each pair of samples. The

current version of WAME is, however, limited to experiments with paired design, e.g two-channel microarrays.

Results: The WAME procedure is extended to general microarray experiments, making it capable of handling

both one- and two-channel datasets. Two public one-channel datasets are analysed and WAME detects both

unequal variances and correlations. WAME is compared to other common methods: fold-change ranking,

ordinary linear model with t-tests, LIMMA and weighted LIMMA. The p-value distributions are shown to differ

greatly between the examined methods. In a resampling-based simulation study with few regulated genes, the

p-values generated by WAME are found to be substantially more correct than the alternatives. WAME is also

shown to have higher power than the other methods. WAME is available as an R-package.

Conclusions: The WAME procedure is generalized and the limitation to paired-design microarray datasets is

removed. WAME is shown to have higher power and more accurate p-values when few genes are regulated

compared to four other common methods.
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Background

Introduction

The DNA microarray technique involves a series of steps, from the harvesting of cells or biopsies to the

preprocessing of the scanned arrays, before analysable data are obtained. During several of these steps the

quality can be affected by random factors. For instance, depending on the handling of a biological sample

the mRNA can be more or less degraded [1], and the cell-type composition of a biopsy can be more or less

representative for the tissue in question. When arrays share sources of variation the deviations from the

nominal value will be correlated. For example, two arrays from sources with degraded RNA will both tend

to underestimate the expression of easily degradable genes, and two biopsies with a similar and

non-representative cell-type composition will deviate in a similar fashion from the average expression for

the ideal cell-type composition.

The procedure Weighted Analysis of Microarray Experiments (WAME) [2,3] introduced a model where a

covariance-structure matrix common for all genes aims at catching differences in quality by differences in

variances and covarying deviations by correlations between arrays. For computations of test statistics and

estimators this resulted in weighting of observations according to the estimated covariance-structure

matrix, giving lower weight to imprecise or positively correlated arrays.

In order for the estimation of the covariance matrix to work in the current WAME method, the

measurements of most genes must only measure noise, i.e. have an expected value of zero. This is the case

in experiments where pair-wise log-ratios are observed and where few genes are differentially expressed

between any of the pairwise measured conditions. In the present paper, this crucial constraint will be

relaxed to only require that most genes are non-differentially expressed between the conditions actually

being compared. Thus, non-paired experiments can be analysed, e.g. many additional ones based on

one-channel microarray data. The relaxation is realised by transforming the data to remove irrelevant

information in a manner yielding transformed data with expectation zero for non-differentially expressed

genes, after which the current WAME method is applied. The transformed data are shown to give

equivalent tests and estimates to those of the original data, given the corresponding covariance-structure

matrices.
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Problem formulation and current methods

Given a microarray experiment with n arrays and m genes, we observe for each gene g an n-dimensional

vector Xg of log2 transformed values measuring mRNA abundance. In WAME the vector Xg is assumed to

have expectation µg described by a design matrix D and a gene-specific parameter vector γg, typically

having one dimension per studied condition. A covariance-structure matrix Σ, common for all genes, is

used to model differences in quality between arrays as different variances and shared sources of variation

between arrays as correlations. A gene-specific variance-scaling factor cg is assumed to have inverse gamma

prior distribution with a global shape parameter α. Conditional on cg the vector Xg is assumed to have a

normal distribution with covariance matrix cgΣ. A matrix C specifies the differential expression vector δg,

describing the linear combinations of the parameters that are of main interest. Formally,

µg = D γg ,

Xg | cg ∼ N(µg, cgΣ) ,

cg ∼ Γ−1(α, 1) ,

(1)

and variables corresponding to different genes are assumed independent. We want to estimate the

differential expression

δg = C γg (2)

or we want to test for differential expression

H0 : δg = 0

HA : δg 6= 0 .
(3)

In the current version of WAME [2,3] the estimation of the covariance-structure matrix Σ is based on a

temporary assumption of expectation zero, µg = 0, for all genes, which is shown to give reasonable results

if the expectation is close to zero for most genes. Thus, this is a suitable assumption for data with paired

observations and few regulated genes between the pair-wise measured conditions.

The WAME model can be compared with the ordinary linear model (OLM) [4],

Xg ∼ N(µg, cgI) (4)

which gives rise to the ordinary t- or F-tests, and with a widely used empirical Bayes model proposed in [5]

and implemented in the LIMMA package [6],

Xg | cg ∼ N(µg, cgI) ,

cg ∼ Γ−1(α, β) .
(5)
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The novel feature of WAME was thus the introduction of the quality modelling covariance-structure matrix

Σ.

After the introduction of WAME, a weighted version of LIMMA was proposed [7], which we will refer to as

wLIMMA. There, a model with array-wise variance scales but no correlations is used,

Xg | cg ∼ N(µg, cgdiag(σ2
1 , . . . , σ2

n)) ,

cg ∼ Γ−1(α, β) .
(6)

The parameters are estimated using a restricted maximum-likelihood (REML) approach.

A widely used approach is to only consider the ordinary least-squares estimated differential expression,

often referred to as the log fold-change, here abbreviated as FC, or as the average M-value. In the present

paper, the ranking of the genes imposed by this method will be included in comparisons, when applicable.

Results

The new version of WAME

In the current version of WAME [2,3] the covariance-structure matrix Σ is estimated using a temporary

assumption that µg = 0 for most genes, i.e. that the measurements of most genes consist solely of

biological and technical noise. In the new version of WAME we relax this to only assume that most genes

are non-differentially expressed, i.e. δg = 0. This allows a much larger class of experimental designs and

design matrices D, most notably unpaired designs.

The trick used is to transform the data and consider

Yg = Xg −µ̃0
g (7)

where µ̃0
g is a suitable linear estimator of µg which is unbiased under H0 and which preserves the

estimability of the differential expression δg, based on only the transformed data (see Methods for details).

An example is (8) below where for each gene the mean value of all arrays is subtracted.

Since the transformed data contain only noise for non-differentially expressed genes by construction, the

current version of WAME can essentially be applied to the transformed data Yg. As before, the

covariance-structure matrix (now ΣY ) and the hyperparameter α are first estimated under a provisional

assumption (now δg = 0). The maximum likelihood estimates of δg and the likelihood ratio test statistics

of (3) are then computed. The tests and estimators are in fact unchanged by the transformation (7), if the
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covariance-structure matrices for the transformed and untransformed data are known (details given in

Methods). WAME is implemented as a package for the R language [8] and is available at

http://wame.math.chalmers.se/ .

Evaluation on real and resampled data

To investigate the properties of the new version of WAME, two real datasets are examined. Briefly, they

are analysed both using WAME and the current methods described in Background. Array-specific weights,

p-value distributions and rankings are produced showing clear differences between the procedures, most

notably in the p-value distributions. To investigate the power of the different procedures and to look at

p-value distributions in a controlled but realistic setting, we also analyse simulated data with real noise

from the studied datasets and synthetic signal.

Description of the real datasets

Two public one-channel microarray datasets are analysed. The datasets are selected from the NCBI GEO

database [9] with the criteria of having unpaired design and being sufficiently large to allow for the

resample-based simulations in Resampled data below.

In the first dataset [10], biopsies were taken from the left atrium from 20 human hearts with normal sinus

rythm and 10 hearts with permanent atrial fibrillation. It is here referred to as Atrium. In the second

dataset [11], mechanisms in chronic obstructive pulmonary disease, COPD, were investigated by taking

lung tissue biopsies from 12 smokers with mild or no emphysema and from 18 smokers with severe

emphysema. In both datasets one Affymetrix HGU-133A array was used for each patient. In the present

paper RMA [12] is used to obtain expression measures from the raw probe-wise intensities. The analyses

are performed using the R language and the Bioconductor framework [13] .
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Analysis of the real datasets

A natural parameterisation of the included datasets is to have one parameter per condition, yielding design

and hypothesis matrices

D =



1 0
...

...
1 0
0 1
...

...
0 1


and C =

[
−1 1

]
.

Under the null hypothesis, for each gene g and array i, an unbiased estimator of the expected value of the

measurement Xig is obtained by the gene-wise mean value over all arrays from both groups. The

transformation then becomes a subtraction of that mean value, cf. (7),

Yig = Xig −
1
n

n∑
j=1

Xjg . (8)

Note how the transformation preserves the difference in mean value between the two groups of arrays.

If the elements in Xg from the different arrays had in fact independent and identically distributed noise for

each fixed gene g as assumed in OLM and unweighted LIMMA, the noise in Yg would have equal variances

for all arrays. In Figure 1 array-wise density estimates for the transformed expression values are shown. For

arrays from the same condition the distributions should be identical, reflecting the combined variability of

signal and noise. For unregulated genes the expectation of Yg is zero, so if the assumption of few regulated

genes holds the densities from all arrays should furthermore be essentially equal. Examination of Figure 1

reveals that neither of these statements are true, indicating that some variances are highly unequal.

Analogously, all pairs of arrays within each condition should have a common joint distribution and when

few genes are regulated all pairs of arrays should essentially have a common joint distribution with a small

negative correlation of −1/(n− 1). Examination of scatter plots for all pairs of arrays shows that this is

clearly not the case (some obvious examples are shown in Figure 2, all pairs are included in the web

supplement).

As expected from the observations above, unequal variances and non-zero correlations are estimated in the

analyses with WAME, giving rise to highly unequal weights in the estimates of the differential expressions

(shown in Table 1). In fact, the sign of the weight for some arrays even get switched compared to the sign

of the weight of the other arrays from the same condition. This is an effect of strong correlations combined

with unequal variances. It is an issue which is further addressed in Discussion.
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The analysis methods described in Background are applied to the data and p-values and ranks computed.

The respective probability plots are shown in Figure 3, demonstrating that there are substantial differences

in the distribution of p-values between the different statistics. Since correlations and unequal variances are

observed, the model assumptions of the alternative standard methods do not seem to hold. The p-values

could thereby have become optimistic. On the other hand, it cannot be ruled out that the temporary

assumption in WAME of no regulated genes makes its p-values conservative, which could also partly

explain the differences. These problems are studied below by use of resampled data.

A common alternative to using the p-values as measures of significance is to consider the ranking of the

genes, induced by the p-values or test statistics, and to select a fixed number of top ranked genes for

further investigations. In Table 2 the concordance of the ranked lists are shown. The results from the

included methods differ, for instance those from WAME compared to the other methods. This is not

surprising since high correlations and highly unequal variances were identified by WAME, giving rise to

highly unequal weights.

Resampled data

To examine closer the effect of violated assumptions of independence and identical distribution, we

repeatedly selected two random subgroups of four arrays from within one group in the original data and

performed tests between those groups. This was performed 100 times for the largest group in each of the

two real datasets. Differentially expressed genes have unequal expected values in the two populations being

sampled (cf. (2)). Since we now sample twice from the same condition, no differentially expressed genes

exist.

Figure 4 shows the empirical p-value distributions for the resampled COPD data analysed with the four

methods, together with the respective average empirical distribution,

F (p) =
1

100

100∑
i=1

Fi(p) ,

where Fi denotes the empirical CDF from the ith of the 100 resamples. For WAME, the p-value

distributions are very close to the expected uniform. For OLM, LIMMA and weighted LIMMA there is a

high variability between the p-value distributions and they are in many cases substantially different from

the expected uniform. For WAME, OLM and LIMMA, the respective average empirical distribution is

approximately correct, while for weighted LIMMA it is clearly optimistic. The results for the Atrium
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dataset (see the web supplement) are very similar.

Evaluation of power

To evaluate the power of the tests in the studied datasets, a known regulation is added to randomly

selected genes in one of the resampled groups, created according to the previous section. Thus, the noise is

obtained from the real data and only the signal is synthetic. Ideally, the power can then be estimated by

the proportion of differentially expressed genes that have a computed p-value less than a fixed level.

However, valid p-values of the test statistics cannot be obtained from the respective models since, as

demonstrated above, the corresponding assumptions are typically not valid. Ideally, the p-values would be

determined by the true null distribution of the respective test statistics, given the array-wise quality

deviations. In the simulation study, the critical value of the test statistics are therefore estimated from the

empirical distribution of the test statistic for the unregulated genes. This is used to estimate the power of

the different statistics (details are given in Methods).

The power estimates for the different methods are shown in Figure 6, for a level 0.1% test. The 0.1% level

yields approximately 22 false positives if relatively few genes are in fact differentially expressed. For

WAME, Σ is estimated both before and after adding a signal to 2228 genes (10%), thereby substantially

affecting the estimate of Σ (cf. Figure 5). The powers of the two versions are nevertheless very similar

(difference less than 0.003) and only the latter version is included in the plot.

When the covariance-structure matrix Σ is estimated in WAME it is assumed that no genes are

differentially expressed. Figure 5 includes the average empirical distribution for the p-values of the

unregulated genes when different proportions of the genes have a log2 differential expression of 1. It is clear

that the distributions are biased for high proportions, giving conservative p-values, which should be an

effect of biased estimates of Σ.

The results from the studied datasets indicate (i) that WAME offers a relevant power increase compared to

the included alternatives, (ii) that weighted LIMMA does not offer an advantage compared to LIMMA and

(iii) that the moderated statistics (WAME, LIMMA and wLIMMA) are superior to the traditional

methods of ranking by ordinary t-statistic (OLM) or estimated differential expression (FC).
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Discussion

The WAME model and the simulations

The WAME model aims at catching quality deviations by one covariance-structure matrix common for all

genes. This is certainly simplistic in some cases, e.g. when only certain physical parts of an array or certain

types of mRNAs are of decreased quality. The estimated covariance structure can then only be expected to

reflect a mixture of the qualities of the different genes. However, examining the simulations (Figure 6), we

see a clear power gain in the WAME model compared to the other models. Also, WAME succeeds in

catching enough of the quality deviations to make the p-value distributions more correct, thus providing

increased usefulness of the p-values (Figure 3).

The models of LIMMA, weighted LIMMA and WAME are nested, where weighted LIMMA adds unequal

variances and WAME adds unequal variances and correlations. Examination of Figure 1 shows that there

are evident differences in variability between arrays. It is therefore interesting that we have not found a

power increase of weighted LIMMA compared to LIMMA. Further, the p-values of weighted LIMMA

turned out to be too optimistic (Figure 4). Comparison with the results of the WAME method, where the

power increases and the p-value distributions get substantially more correct, suggests that the correlations

are crucial in the model.

In the simulations, noise is taken from real data through resampling within a fixed group. This procedure

provides data with fewer assumption on the noise structure compared to a fully parameterised simulation

and should hopefully better reflect realistic situations. To evaluate the power of the different methods, a

synthetic signal which is constant within each condition is added to the resample-based noise. This follows

the assumption in the models of both WAME, OLM, LIMMA and weighted LIMMA, that the noise

structure is equal for genes that are differentially expressed and non-differentially expressed. However, the

biological variability of the expression of differentially expressed genes might be different under the

different conditions due to the changed rôle of those genes. For complicated conditions such as complex

diseases, the problem is more severe (cf. [14–16]) since crucial genes might only be differentially expressed

in a subset of the studied arrays. Further work is needed to evaluate the performance of WAME in such

settings, as well as to possibly expand it to better fit these situations.

A relevant question regarding the modelling of quality deviations by the covariance-structure matrix Σ is

whether biologically interesting features may be hidden by this model. In the present datasets, the
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question can partly be answered by examining the pairwise plots (cf. Figure 2) and noticing that a large

proportion of the genes show similar deviations, which should speak against a specific interesting biological

explanation. Also, the estimated covariance structure matrix Σ can be inspected with the goal of finding

relevant correlations between arrays and thus highlighting interesting features in the data. Possible future

work is to use such inspections to reveal unwanted features in normalisation or in preprocessing wet-lab

steps that give rise to correlated errors for a large proportion of the genes.

Weights with switched signs

In the studied datasets, strong correlations combined with unequal variances make some weights within a

group switch sign, in essence meaning that it is beneficial to partly subtract some arrays within a group in

the estimate to be able to add more of the others in the same group (cf. Table 1). Since this might seem

counter-intuitive, an elucidating example of possible mechanisms behind such weights follows.

Consider an example where two two-colour arrays are observed, X1 and X2. Let the two arrays have two

sources of variation, one that is mutually independent (ε1, ε2) and one consisting of different proportions,

a1 and a2, of one common source of variation η. Let ε1, ε2 and η be independent and normally distributed

with expectation 0 and variances σ2
ε and σ2

η, respectively. Furthermore, let µ be the parameter to be

estimated. The model becomes

Xi = µ + aiη + εi , i ∈ {1, 2} .

Then, X1 gets a negative weight if and only if

a1 > a2 +
σ2

ε

a2σ2
η

,

i.e. if array 1 includes a large enough contribution from the common source of variation. When a negative

weight is allowed instead of removing the array, a smaller proportion of the common source of variation is

included in the final estimate. Its precision is thus increased.

Validity of the p-values and derived entities

Varying quality of arrays and correlated errors were demonstrated in [2, 3] and in the present paper

through examination of the data. These questions are typically neglected in microarray analyses, since

independence and identical distribution or exchangeability are generally assumed under the null

hypothesis. Thus, the validity is questionable of the corresponding p-values and their derived entities, e.g.
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false discovery rates and estimates of proportions of differentially expressed genes. This problem is obvious

in the resample based simulations.

A number of experiments have been analysed (data not shown) in addition to those published in the

present paper and in [2, 3]. In almost all cases relevant unequal variances and correlations have been

identified, indicating that the problem is common.

In the resample based simulations with added signal, WAME is shown to be conservative, which is an effect

of the biased estimate of Σ. Further work on an estimator of Σ with better characteristics under regulation

is therefore needed. However, the simulations indicate (i) that the power of the test is basically unaffected

by the bias and (ii) that hundreds of genes may be differentially expressed (two-fold) with only mildly

conservative p-values as result.

Correlations between genes or between arrays?

It has recently been argued that the expression of different genes are highly dependent, making the law of

large number normally inapplicable [17] and standard estimators of e.g. the false discovery rate (FDR)

imprecise [18]. In [18], a latent FDR is introduced, being the conditional FDR given a random effect b that

captures the correlation effects between genes. The FDR is then the marginal latent FDR, that is the

average over the random effect b.

For the datasets examined in the present paper, the model assumptions of e.g. the ordinary linear model

are shown not to hold (cf. Figure 1 and Figure 2). This can be expected to result in invalid p-values, which

is indeed observed in Figure 4. Interestingly, the p-value distribution seem to be valid marginally, i.e. on

average over the different resamples, which would yield valid but imprecise estimates of the FDR. This

type of failed model assumptions is not taken into account in e.g. [17,18]. Since for a performed

experiment, the p-values from the ordinary t-statistic (OLM) share a common bias conditional on the

experiment (see Figure 4), the different p-values may be highly dependent. However, this dependency is

due to failure of taking array-wide quality deviations into account in the model and not due to the nature

of microarray data per se, e.g. through substantial long-range gene-gene interactions.

Consequently, the strong observed dependencies between statistics from different genes might largely be

explainable by quality deviations between the arrays in the experiment, e.g. correlations between arrays.

Since WAME models these deviations such that the p-values are essentially correctly distributed when few
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genes are differentially expressed in the studied datasets, the dependency between genes should be greatly

decreased. The covariance structure matrix Σ is therefore in a sense a parallel to the random factor b

in [18]. It remains as future work to evaluate the gene-gene dependencies and estimates of e.g. the FDR in

the context of the WAME model.

In the WAME model, the data from different genes are assumed independent, which is unrealistic, e.g.

since genes act together in pathways. However, this is only used in the derivation of the maximum

likelihood estimaties of the covariance structure matrix Σ and the shape parameter α. The assumption

could thus be relaxed to a dependence between the different genes that is weak enough that the estimates

of Σ and α become precise, and accurate under H0. This holds if the law of large numbers is applicable for

averages of certain functions of the gene-wise observed data (cf. the likelihood functions in [2, 3]). Given

the large number of genes and the observed p-value distributions in Figure 4, this relaxed assumption

seems plausible.

It can be noted that for the studied data, WAME has higher power and considerably more valid p-values

than weighted LIMMA. Since the difference between the weighted LIMMA and WAME models is the

inclusion of correlations between arrays, this emphasises the importance of the correlations in the model.

Conclusions

Statistical methods in microarray analysis are typically based on the often erroneous assumption that the

data from different arrays are independent and identically distributed. An exception is Weighted Analysis

of Microarray Experiment (WAME) where heteroscedasticity and correlations between arrays are modelled

by a covariance-structure common for all genes. In the present paper, WAME has been extended to handle

datasets without a natural pairing, e.g. data from one-channel microarrays, and corresponding estimates

and test statistics have been derived. In the examined one-channel microarray datasets WAME detected

unequal variances and nonzero correlations.

WAME was compared with four other common methods: an ordinary linear model with t-tests, LIMMA,

weighted LIMMA, and fold-change ranking. The comparison was performed using resampling of the

different arrays within the datasets. Here, WAME had the highest power. When a relatively small

proportion of the genes are regulated, WAME also generates close to correct p-value distributions while the

p-value distributions from the other methods are highly variable. However, when many genes are
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differentially expressed, the p-values from WAME tend to be conservative.

In conclusion, p-values from the standard methods for microarray analysis should in general not be trusted

and any result based on p-values, e.g. estimates of the number of regulated genes and false discovery rates,

should be interpreted with care. The analyses of the examined datasets showed that WAME gives a

powerful approach for finding differentially expressed genes and that it produces more trustworthy p-values

when a relatively small proportion of genes are differentially expressed.

Methods

Details on the new version of WAME

Model Framework

For g = 1, . . . ,m, let Xg be an n-dimensional vector with expectation µg = D γg, where D is the design

matrix, having rank k, and γg ∈ Rq is the parameter vector. Furthermore, let

Xg | cg ∼ N(µg, cgΣ) ,

cg ∼ Γ−1(α, 1) ,

where Σ is the non-singular covariance-structure matrix, cg is the variance-scaling factor, α is the shape

parameter for cg and (c1,X1), . . . , (cm,Xm) are assumed independent. The differential expression vector is

defined as

δg = C γg ,

where C is a matrix of rank p such that δg is estimable. Here, an estimator of δg and a test for

H0 : δg = 0

HA : δg 6= 0
(9)

are in focus.

As mentioned in Background, one main obstacle is that Σ is hard to estimate. In fact, Σ and δg cannot be

maximum likelihood estimated simultaneously, since there are trivial infinite suprema of the likelihood, e.g.

when the variance of one observation is set to zero and the corresponding mean is selected so that it equals

that observation.
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The current WAME method

In the current version of WAME [3], Σ is estimated as follows. First, temporarily assume that µg = 0 for

all genes, which is reasonable for paired experimental designs with few differentially expressed genes

between any pairwise measured conditions. For each gene, the variance scaling factor cg is removed by

dividing the n measurements with the first measurement, yielding a random vector distributed according to

a multivariate generalisation of the Cauchy distribution. A scaled version of Σ is then maximum likelihood

estimated numerically. Second, the unknown scale and the hyperparameter α of the prior distribution of cg

are maximum likelihood estimated numerically without the assumption of µg = 0. The parameters Σ and

α are subsequently treated as known in the maximum-likelihood estimates and likelihood-ratio tests for the

different genes.

The new WAME method

The new version of WAME relaxes the assumption from µg = 0 to δg = 0, which incorporates many

designs without a natural pairing. This is performed by subtracting an arbitrary estimator µ̃0
g of µg, which

is unbiased under H0 and has as image the space V0 of possible values for µg under H0,

Yg = Xg −µ̃0
g . (10)

It can be shown that this transformation preserves the estimability of δg.

By construction, the transformed data Yg will have expectation zero for non-differentially expressed genes

and the current WAME method can be applied on Yg, including the estimation of the covariance-structure

matrix ΣY for Yg. It will now be proved that the likelihood ratio tests of (9) and the maximum likelihood

estimates of δg based on Xg or Yg are identical, if α and Σ or ΣY respectively are considered known.

We shall henceforth consider a fixed gene g and drop the g index.

Equality of tests and estimators

Before beginning, some further definitions are needed. Define the Mahalanobis inner product

corresponding to a symmetric n by n matrix A as

〈x1,x2〉A = xT
1 A− x2 , (11)
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and the norm ‖ · ‖A as

‖x ‖2
A = 〈x,x〉 = xT A− x ,

where x,x1,x2 lies in the rowspace of A and the generalised inverse A− is any matrix satisfying

AA−A = A. Let X denote the n-dimensional inner product space with 〈·, ·〉Σ as inner product. Define

V ⊂ X as the space of possible values for µg,

V = {µ : µ = D γ, γ ∈ Rq}

and let V0 ⊂ X denote the corresponding space restricted by the null hypothesis,

V0 = {µ : µ = D γ, C γ = 0, γ ∈ Rq} .

Proposition Let µ̃0 be an arbitrary linear estimator of µ, which is unbiased under H0 and which has

image V0. Let

Y = X−µ̃0 ,

and let ΣY be the covariance-structure matrix of Y. Then the likelihood ratio test of (9) and the maximum

likelihood estimate of δ based on X with Σ and α known are identical to the ones based on Y with ΣY and

α known.

Proof of the Proposition

The proof is divided into two steps which combined conclude the proof.

1. The likelihood ratio test (LRT) of (9) and the maximum likelihood estimator (MLE) of δ does not

depend on the choice of µ̃0.

2. The proposition holds when µ̃0 is the MLE of µ under H0.

Proof of step 1

Let µ′ and µ′′ be two valid choices of µ̃0, i.e. they are both unbiased estimators of µ under H0 and have

V0 as image. Let Y′ = X−µ′ and Y′′ = X−µ′′. Recall that a matrix P is a projection matrix projecting

on V0 if and only if for all x ∈ Rn, Px ∈ V0 and for all x0 ∈ V0, P x0 = x0. It can be shown that µ′ and

µ′′ can be written as µ′ = P ′X and µ′′ = P ′′X for some projection matrices P ′ and P ′′ projecting on V0.
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Since P ′ and P ′′ project on the same space it follows that P ′P ′′ = P ′′ and P ′′P ′ = P ′, and thus

(I − P ′)Y′′ = Y′ and (I − P ′′)Y′ = Y′′. Hence there is an invertible map between Y′ and Y′′ and

likelihood methods based on Y′ and Y′′ respectively will give equal results. Consequently, the MLE of (9)

and the LRT of δ will not depend on the choice of µ̃0

Proof of step 2

Since δ is estimable based on X, there exist a matrix A such that C = AD and thus δ = A µ. The

likelihood of µ can therefore be examined instead of the likelihood of δ.

The likelihood of µ based on X can be shown to be

L (µ |X) =
∫ ∞

0

f(X |µ, c) · f(c) dc

∝
[
‖X−µ ‖2

Σ/2 + 1
]−n/2−α

,
(12)

where ∝ denotes proportionality. Using the Projection Theorem [19], the MLE of µ is the orthogonal

projection of X on V,

µ̂ = PV X ,

where the orthogonality is according to the inner product of X . When H0 is true, µ is restricted to V0 and

thus the MLE of µ becomes

µ̂0 = PV0 X .

Note that µ̂0 is a valid choice for µ̃0, i.e. µ̂0 is unbiased under H0 and has V0 as image. Let

Z = X−µ̂0 ,

which gives Z = PV⊥0 X, where V⊥0 denotes the orthogonal complement of V0 in X . Standard properties of

the normal distribution gives

Z | c ∼ N(µz, cΣz) ,

where µz = Dz γ with Dz = PV⊥0 D, and where Σz = PV⊥0 ΣPT
V⊥0

.

The likelihood function of µz (with respect to the Lebesgue measure on the space of possible values of Z

spanned by the column vectors of Σz) can be written as

L (µ |Z) ∝
[
‖Z−µz ‖2

Σz
/2 + 1

]−n/2−α
.
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Since, δ is estimable based on Z, the likelihood of µz can be examined instead of the likelihood of δ.

The likelihood ratio statistic of (9) based on X is defined by

T =

sup
µ∈V

L (µ |X)

sup
µ∈V0

L (µ |X)
,

which can be rewritten (cf. [3]) as a strictly increasing function of

T ′ =
n− p + 2α

k

‖PV X−PV0 X ‖2
Σ

‖X−PV X ‖2
Σ + 2

=
n− p + 2α

k

‖PV ∩V⊥0 X ‖2
Σ

‖PV⊥ X ‖2
Σ + 2

,

(13)

where V⊥ and V⊥0 are the orthogonal complements of V and V0 respectively.

Note that the space of possible values for µz is V ∩V⊥0 and that µz = 0 under H0. Let Pz denote the

orthogonal projection according to 〈·, ·〉Σz
. Then, the likelihood ratio statistic of (9) based on Z can in

analogy with (13) be shown to be a strictly increasing function of

T ′z =
n− p + 2α

k

‖Pz
V ∩V⊥0

Z ‖2
Σz

‖Z−Pz
V ∩V⊥0

Z ‖2
Σz

+ 2
. (14)

The Lemma below yields that for all W ⊆ V⊥0 and all z ∈ V⊥0 , ‖ z ‖2
Σz

= ‖ z ‖2
Σ and Pz

W z = PW z. The

equivalence of the test statistics (13) and (14) is now straight-forward,

T ′z =
n− p + 2α

k

‖Pz
V ∩V⊥0

Z ‖2
Σz

‖Z−Pz
V ∩V⊥0

Z ‖2
Σz

+ 2

=
n− p + 2α

k

‖PV ∩V⊥0 PV⊥0 X ‖2
Σ

‖(PV +PV⊥)(PV⊥0 X−PV ∩V⊥0 PV⊥0 X)‖2
Σ + 2

=
n− p + 2α

k

‖PV ∩V⊥0 X ‖2
Σ

‖PV⊥ X ‖2
Σ + 2

= T ′ .

(15)

Lemma Let W be a subspace of X and let PW be the orthogonal projection from X onto W. Then for

any x1, x2 ∈ W,

〈x1,x2〉Σ = 〈x1,x2〉ΣW ,

where ΣW = PW ΣPW .

Proof Let A be a matrix of a change of basis [19] from the standard basis to an orthonormal basis of X

such that the first l basis vectors span W. Let I(l) denote the identity matrix with all but the l top left
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diagonal elements set to zero. It follows that ATA = Σ−1 and APW = I(l)A and therefore,

〈x1,x2〉Σ = xT
1 Σ−1 x2

= xT
1 ATAPW x2

= xT
1 AT

(
I(l)

)−
Ax2

= xT
1 AT

(
I(l)AΣATI(l)

)−
Ax2

= xT
1 AT (APW ΣPT

W AT)−Ax2

= xT
1 (PW ΣPT

W)− x2 ,

where the last equality uses the fact that (AB)− = B−A−1 when A is invertible .

2

The next step is to show that the MLE of δ when X is observed is identical to the MLE of δ when Z is

observed. The former is defined by

δ̂ = Cγ̂ = C argmin
γ

‖X−D γ ‖2
Σ .

Define G0 = {γ : D γ ∈ V0} and G1 = {γ : D γ ∈ V⊥0 } and note that for any γ there exist γ0 ∈ G0 and

γ1 ∈ G1 such that γ = γ0 +γ1. Thus,

δ̂ = C argmin
γ0 +γ1:γ0∈G0,γ1∈G1

‖X−D(γ0 +γ1)‖2
Σ .

Now, since PV⊥0 +PV0 = I,

δ̂ = C argmin
γ0 +γ1:γ0∈G0,γ1∈G1

(
‖PV0(X−D(γ0 +γ1)) + PV⊥0 (X−D(γ0 +γ1))‖2

Σ

)
= C argmin

γ0 +γ1:γ0∈G0,γ1∈G1

(
‖PV0(X−D γ0)‖2

Σ + ‖PV⊥0 (X−D γ1)‖2
Σz

)
,

where the second equality follows from the generalised Theorem of Pythagoras [19], the Lemma, and the

fact that PV⊥0 D γ0 = 0 and PV0 D γ1 = 0. Now since γ0 and γ1 minimise the expression independently of

each other and since C γ0 = 0 by construction,

δ̂ = C

(
argmin
γ0∈G0

‖PV0(X−D γ0)‖2
Σ + argmin

γ1∈G1

‖Z−Dz γ1 ‖2
Σz

)
= C argmin

γ1∈G1

‖Z−Dz γ1 ‖2
Σz

.

For all γ0 ∈ G0, C γ0 = 0 and Dz γ0 = 0, so the area of minimisation can be extended,

δ̂ = C argmin
γ

‖Z−Dz γ ‖2
Σz

,
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which is the MLE of δ based on Z by definition. 2

Remark 1 Using the invertible map between any two choices of Y, Y and Y′, as defined in Step 1

above, the respective maximum likelihood estimates of α, Σy and Σy′ can be shown to be identical based

on Y or Y′. In this sense, the choice of µ̃0 is thus truly irrelevant.

Remark 2 Sometimes, additional linear combinations of γ can be assumed to be zero for most genes,

C∗ γ = 0 for some matrix C∗ with rowspace being a superspace of the rowspace of C. Let P ∗ be any

projection matrix on the corresponding space V∗ = {µ : µ = D γ, C∗ γ = 0, γ ∈ Rq} and let

Y∗ = X−P ∗X. It is straight forward to show that a variant of the Proposition still holds, so given the

covariance structure matrices the inference results concerning C γ will be identical, based on Y or Y∗

respectively. However, the estimates of the covariance structure matrices for Y and Y∗ might not be

coherent and the results are expected to differ slightly.

The estimator of power

Consider a certain experimental design, a level 1-λ test and a differential expression δ. Let a realisation of

the experiment be given, which e.g. results in certain quality deviations between arrays. The conditional

power is defined as the probability of identifying a random gene in the current experiment, i.e. conditional

on e.g. the quality deviations, when the gene has differential expression δ. The power is then defined as the

average conditional power over all possible realisations of the experimental design. The power is thus

related to an unperformed experiment while the conditional power is related to a specific performed

experiment. Here, the test is assumed to be valid conditional on the experiment, i.e. to have conditional

power λ when δ = 0.

In Evaluation of power, the aim is to estimate the power for a hypothetical experiment where the

distribution of the data under the null hypothesis is obtained by resampling of real data. For a given

resample, a constant differential expression is added to randomly selected genes and the statistics tg are

computed. The estimate t̂c of the conditional critical value is computed so that a proportion λ of the

unregulated genes satisfy |tg| ≥ t̂c. The conditional power is then estimated by the proportion of regulated

genes satisfying |tg| ≥ t̂c. The power is finally estimated by averaging the estimated conditional power over

the resamples.
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Figures

Figure 1 - Density plots

Distribution of transformed expression values, Y, for the different arrays, in the two datasets.

Colour-coding according to sample variance is used for increased clarity (blue for low variance, red for high

variance). Differences in variability can be noted for both datasets.
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Figure 2 - Pairwise plots

Transformed expression values, Yg, for selected pairs of arrays within the same group. Different pairs

within the same group have distinctly different correlations. Upper triangle contains scatterplots. Lower

triangle contains heatmaps of the corresponding two-dimensional kernel density estimates, where the

majority of the genes are in the red portion of the plot, revealing important trends inside the black clouds.

Off-diagonal numbers show estimated correlations from WAME. Diagonal boxes contain sample names and

weights as well as estimated variances from WAME.
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Figure 3 - Observed probability plots

Empirical distribution of p-values compared to the distribution expected for non-differentially expressed

genes. The OLM curve is largely hidden by the LIMMA curve.
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Figure 4 - Probability plots

Empirical distributions of p-values for LIMMA, weighted LIMMA, OLM and WAME from tests on 100

resamples from the COPD dataset. Average empirical distribution indicated. Since no signal is added, the

curves should ideally follow the diagonal.
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Figure 5 - Average empirical p-value distribution for WAME under regulation

Average empirical p-value distribution of the unregulated genes, calculated using WAME, when 0%, 0.1%,

1%, 5% and 10% of the genes have a log2 differential expression of 1, i.e. a two-fold change. When genes

are regulated the estimate of Σ is biased, leading to conservative, non-diagonal curves.
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Figure 6 - Estimated power

Estimated power in the simulated data for level 0.1% tests, based on resamples from the respective larger

group in the Atrium and COPD datasets. Power is estimated at the marked points and spline interpolation

is used in between.
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Tables

Table 1 - WAME weights

Weights in percent from estimate of differential expression using WAME.

Atrium
Sinus rythm Atrial fibrillation

3.0 -0.8 -2.7 -1.9 -4.6 -0.7 14.9 8.5 21.0 12.2 10.7
-9.4 1.9 -5.1 0.3 -5.2 -18.3 7.5 16.6 2.1 11.8 5.3
-10.6 -8.9 -9.9 -19.8 -9.4 -20.4 6.5 5.2

COPD
No/mild emphysema Severe emphysema

-18.0 -6.7 -3.9 -8.9 11.8 2.6 12.0 4.0 12.6 7.6
-10.6 -7.3 -8.0 -5.6 7.1 9.0 6.7 0.9 6.2 5.5
-8.3 -3.6 -14.9 -4.3 -0.3 1.6 3.2 7.6 4.3 -2.5

Table 2 - Concordance of top lists

Number of mutually included genes in the top-100 lists as determined by the different methods.

Atrium WAME LIMMA wLIMMA OLM FC
WAME 100 47 45 44 15
LIMMA 47 100 80 88 26
wLIMMA 45 80 100 76 21
OLM 44 88 76 100 21
FC 15 26 21 21 100

COPD WAME LIMMA wLIMMA OLM FC
WAME 100 46 47 41 22
LIMMA 46 100 77 78 35
wLIMMA 47 77 100 66 32
OLM 41 78 66 100 25
FC 22 35 32 25 100
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ABSTRACT Enlarged adipocytes are associated with
insulin resistance and are an independent predictor of
type 2 diabetes. To understand the molecular link
between these diseases and adipocyte hypertrophy, we
developed a technique to separate human adipocytes
from an adipose tissue sample into populations of
small cells (mean 57.6�3.54 �m) and large cells (mean
100.1�3.94 �m). Microarray analysis of the cell popu-
lations separated from adipose tissue from three sub-
jects identified 14 genes, of which five immune-related,
with more than fourfold higher expression in large cells
than small cells. Two of these genes were serum
amyloid A (SAA) and transmembrane 4 L six family
member 1 (TM4SF1). Real-time RT-PCR analysis of
SAA and TM4SF1 expression in adipocytes from seven
subjects revealed 19-fold and 22-fold higher expression
in the large cells, respectively, and a correlation be-
tween adipocyte size and both SAA and TM4SF1 ex-
pression. The results were verified using immunohisto-
chemistry. In comparison with 17 other human tissues
and cell types by microarray, large adipocytes displayed
by far the highest SAA and TM4SF1 expression. Thus,
we have identified genes with markedly higher expres-
sion in large, compared with small, human adipocytes.
These genes may link hypertrophic obesity to insulin
resistance/type 2 diabetes.—Jernås, M., Palming, J.,
Sjöholm, K., Jennische, E., Svensson, P.-A., Gabriels-
son, B. G., Levin, M., Sjögren, A., Rudemo, M., Lystig,
T. C., Carlsson, B., Carlsson, L. M. S., Lönn, M.
Separation of human adipocytes by size: hypertrophic
fat cells display distinct gene expression. FASEB J. 20,
E832–E839 (2006)

Key Words: cell size � serum amyloid a � transmembrane 4 L
six family member 1 � leptin � insulin resistance

Obesity-related disease is the leading cause of death
in the industrialized world. Abdominal obesity in par-
ticular increases the risk of several metabolic disorders,
including type 2 diabetes and cardiovascular disease
(1). Obesity and type 2 diabetes both have features of

acute-phase activation and low-grade inflammation (2,
3). Adipocytes produce a number of cytokines and
other bioactive molecules, together termed adipokines
(4). Some act predominantly in an autocrine or para-
crine manner, while others are released into the sys-
temic circulation and act as signaling molecules in
other tissues. Therefore, the production and secretion
of bioactive molecules by adipocytes may underlie
many components of obesity-related disease.

The risk of metabolic complication is increased not
only by the amount and location of adipose tissue, but
also by the size of the fat cells. Human fat cells can
change �20-fold in diameter and several thousand-fold
in volume. Enlargement of subcutaneous (s.c.) abdom-
inal adipocytes is associated with insulin resistance and
is an independent predictor of type 2 diabetes (5).
Lipid mobilization and glucose metabolism are in-
creased in enlarged adipocytes (6). In contrast, the
stimulating effect of insulin on the rate of glucose
metabolism is inversely related to the size of the fat cell
(7, 8). Cytokine release within adipose tissue also
appears to be correlated with adipocyte size (9–12),
and hypertrophic adipocytes may contribute to lipotox-
icity (13).

In most studies of the impact of adipocyte size, fat
cells or biopsies with different mean adipocyte diame-
ters were obtained from different tissue locations or
even from different donors (6–10). Therefore, differ-
ences in environmental conditions or genetic factors
that affect adipocyte gene expression and metabolism
could not be excluded. Thus, it is not clear whether the
functions of the fat cell vary with adipocyte size per se.

In 1972, a procedure was developed to separate
human adipocytes of different sizes from the same
adipose tissue sample by exploiting differences in the
flotation rates of large and small fat cells. Analysis of
small and large adipocytes obtained by this rather
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SE 413 45 Göteborg, Sweden. E-mail: malin.lonn@medic.gu.se

doi: 10.1096/fj.05-5678fje
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complicated procedure, which required vertical dialysis
tubes several meters long, showed that triglyceride
turnover increases with cell size (14). In studies of rat
adipocytes from a single tissue sample, also separated
by size using techniques based on cell buoyancy, various
metabolic functions including leptin gene expression
were dependent on cell size (15, 16).

The aim of the present study was to detect factors
linking human adipocyte hypertrophy to insulin resis-
tance/type 2 diabetes. We developed a simple and
accurate procedure for separating human adipocytes
from an adipose tissue sample into two populations:
large cells and small cells. Using a computerized image-
analysis technique that allows the assessment of 10-fold
more cells than conventional methods (17), we charac-
terized the size distribution of these populations in
detail. Gene expression profiles were analyzed to iden-
tify genes differentially expressed in small and large
adipocytes. Classification of the genes with markedly
higher expression in large compared with small cells
revealed that the majority were immune-related, with
importance for cell structure, or with unknown func-
tion. These genes may connect hypertrophic obesity to
metabolic disorders.

MATERIALS AND METHODS

Human adipose tissue samples

Subcutaneous abdominal adipose tissue from 12 subjects, 3
men and 9 women (2 postmenopausal), was obtained after an
overnight fast. The subjects were 24–57 yr of age (mean
39.8�3.1 yr) and had BMIs of 23.0–28.7 kg/m2 (mean
25.4�0.6 kg/m2). Surgical biopsies were taken from 8 pa-
tients undergoing abdominal surgery for nonmalignant con-
ditions and from 1 healthy volunteer. Needle aspirations were
obtained from 3 healthy volunteers. One patient had type 2
diabetes. The study protocol was approved by the Regional
Ethical Review Board in Göteborg, and all participants gave
written informed consent.

Adipocyte isolation and separation

The tissue (4–52 g) was cut into small pieces and treated with
1.05 mg/ml collagenase (Type A, Roche, Mannheim, Ger-
many) in minimum essential medium (Invitrogen, Carlsbad,
CA) containing 5.5 mM glucose, 25 mM HEPES, 4% bovine
albumin (Fraction V, Sigma, St. Louis, MO), and 0.15 �M
adenosine, pH 7.4, for 60 min at 37°C as described (18). After
filtration through a 250 �m nylon mesh, the adipocytes were
washed three times and suspended in fresh medium (cells
from �1 g tissue/45 ml medium) in 50-ml Falcon tubes. After
gentle agitation of the suspension, cells that resurfaced within
30 s were transferred to new tubes; this procedure was
repeated once. These more buoyant cells were then filtered
with a 70 �m nylon mesh and rinsed with fresh medium. Cells
not passing through the mesh were resuspended in medium
as the final preparation of large adipocytes. The denser cells
that did not resurface within 30 s were filtered with a 50 �m
nylon mesh. Cells that passed though the mesh were consid-
ered the final preparation of small adipocytes. The medium
and the adipocyte suspensions were maintained at 37°C.

Adipocyte size

The mean adipocyte size and the size distribution of the cell
populations, before and after separation, were determined by
computerized image analysis (KS400 software, Carl Zeiss,
Oberkochen, Germany) (17). In brief, the cell suspension was
placed between a siliconized glass slide and a coverslip and
transferred to the microscope stage. Nine random visual
fields were photographed with a CCD camera (Axiocam, Carl
Zeiss, Oberkochen, Germany). The surface of the relevant
areas was measured automatically, and the diameter of the
corresponding circles was calculated. Uniform microspheres
98.00 �m in diameter (Bangs Laboratories, Fishers, IN) were
used as a reference. Because of technical problems, the
adipocyte size of the cell populations in one of the 12
separations was determined by a conventional method (18).

RNA preparation

Total RNA was prepared with the phenol-chloroform extrac-
tion method of Chomczynski and Sacchi (19) and the RNeasy
lipid tissue kit (Qiagen, Chatsworth, CA). After further puri-
fication with RNeasy clean-up columns, the RNA concentra-
tion was measured spectrophotometrically; the A260/A280
ratio was 1.8–2.0. The quality of the RNA was verified by
agarose gel electrophoresis before reverse transcription into
cDNA.

Microarray analysis

cRNA was prepared and hybridized as recommended in the
Affymetrix Gene Chip Expression Analysis manual. In brief,
biotin-labeled target cRNA was prepared by in vitro transcrip-
tion (Enzo Diagnostics, Farmingdale, NY) and hybridized to
Human Genome U133A arrays (Affymetrix, Santa Clara, CA),
composed of 22,283 probe sets representing �14,000 ex-
pressed genes. Arrays were scanned with a confocal laser
scanner (GeneArray scanner G2500A Hewlett Packard, Palo
Alto, CA). Gene expression levels were calculated by the
Robust Multiarray Average (RMA) method (20). To identify
differences in gene expression between small and large
adipocytes, Weighted Analysis of paired Microarray Experi-
ments (WAME) was used (21), weighting samples according
to precision in calculation of (geometric) signal means and P
values for differential gene expression.

Tissue expression analysis

Gene expression in different human tissues and cell types was
assessed with DNA microarray. Duplicate GeneChip HG-
U133A expression profiles from 17 different tissues were
downloaded from the SymAtlas dataset (22). The expression
profile for each tissue was obtained by calculating the average
signal value for each duplicate and gene, respectively. For
comparison of gene expression in different tissues, the signal
value for each gene was normalized by dividing the signal by
the average signal of the entire array for each tissue. In
addition, our own expression profiles, originating from small
and large adipocytes, were included and normalized as out-
lined above.

RT-PCR analysis of gene expression

Reagents for real-time RT-PCR analysis of LDL receptor–
related protein 10 (LRP10), TM4SF1 and leptin (Assays-on-
Demand, TaqMan Reverse Transcriptase reagents, and Taq-
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Man Universal PCR Master Mix) were from Applied
Biosystems (Foster City, CA) and used according to the
manufacturer’s protocol. Since SAA1 and SAA2 have highly
similar sequences and cannot be studied separately, probe
and primer sequences for SAA (Cybergene, Huddinge, Swe-
den) were designed to span an exon-exon boundary to avoid
genomic DNA amplification and to detect both isoforms (23)
(sequences available on request). cDNA was synthesized from
500 ng of total RNA in a total reaction vol of 50 �l. cDNA
corresponding to 10 ng of RNA per reaction was used for
real-time PCR amplification. Specific products were amplified
and detected with the ABI Prism 7900HT Sequence Detection
System (Applied Biosystems) using default cycle parameters.
A standard curve was plotted for each primer-probe set with a
serial dilution of pooled adipocyte cDNA. Based on our
previous report (24) and expression profiles in the present
study, human LRP10 was used as reference to normalize the
expression levels between samples. All standards and samples
were analyzed in triplicate.

Immunohistochemistry

Adipocytes were fixed in 4% buffered formaldehyde, embed-
ded in agar, dehydrated, embedded in paraffin, and cut into
5 �m-thick sections. The sections were incubated first with
monoclonal antibodies against SAA (HyCult Biotechnology)
or TM4SF1 (L6 tumor antigen, Chemicon International). As
secondary reagent for SAA, alkaline phosphatase antialkaline

phosphatase (Dako Cytomation, Glostrup, Denmark), fol-
lowed by NBT/BCIP (Roche) as substrate was used. After
counterstaining with Nuclear Fast Red, the sections were
mounted in glycerol gelatin. For TM4SF1, peroxidase anti-
peroxidase (Dako Cytomation, Glostrup, Denmark), followed
by diaminobenzidine as substrate was used before mounting
the sections in glycerol gelatin.

Statistical analysis

Values are expressed as means � sem Differences in gene
expression between cell populations were analyzed with the
Wilcoxon signed-rank test. Differences in adipocyte size dis-
tributions were analyzed with the Kolmogorov-Smirnov two-
sample test (25). Relationships between gene expression and
adipocyte size were analyzed with the Spearman rank corre-
lation test and plotted with a robust regression technique, an
M-estimator with Huber’s psi-function (26). Bonferroni cor-
rection of P values from the microarray analysis was used to
control for multiple comparisons.

RESULTS

Separation of small and large adipocytes

The mean size and the size distribution of adipocytes
were determined by computerized image analysis be-
fore and after separation of isolated adipocytes into
populations of small and large cells (Fig. 1A, B). In each
population, 305–3660 cells (mean 1046�135) were
analyzed. The mean diameters of small and large
adipocytes from 12 adipose tissue samples were 57.6 �
3.54 �m and 100.1 � 3.94 �m, respectively (Fig. 1C).
The mean diameter of the reference microspheres was
97.91 � 0.089 �m (range 97.18–98.22 �m), n � 12.
The cell size distributions of the small and large popu-
lations differed significantly (P�0.001).

Microarray analysis of gene expression in small and
large adipocytes

To identify genes with increased expression in large
adipocytes, we performed DNA microarray analyses of
small and large cells from three biopsies. Fourteen
genes were expressed at � 4-fold higher levels in the
large cells with P values that after Bonferroni correction
(multiplication with 22,283) were � 0.01 (Table 1).
Classification by cellular or organism function based on
Gene Ontology definitions (http://www.geneontology-
.org/) revealed that five of those genes were immune-
related. The remaining nine genes were referred to
structure (four), unknown function (three), growth
(one) and transport (one) (Table 1). Differences in
sample preparation or hybridization were excluded
since there was no difference between small and
large adipocytes in the expression of LRP10, CLN3,
or COBRA1, previously identified as suitable refer-
ence genes for studies of human adipose tissue (24).

One immune-related gene, SAA, and one gene with
unknown function, TM4SF1, were selected among the
genes with � 4-fold higher expression in large vs. small

Figure 1. Separation of human adipocytes by size. A) Repre-
sentative images of human adipocytes from one adipose tissue
sample before separation (All) and after separation (Small
and Large). Microspheres (98.00 �m in diameter) were used
for reference in the computerized image analysis. B) Size
distributions, determined by computerized image analysis,
and mean diameters in random samples of all adipocytes
(n�742), small adipocytes (n�1965), and large adipocytes
(n�2382) from one adipose tissue sample. Patient character-
istics; man, age: 41 yr, body mass index (BMI): 26.0 kg/m2. C)
Mean diameter of small and large adipocytes from 12 adipose
tissue biopsies. Error bars indicate sem.
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cells for further analysis (Table 1). SAA, a risk factor for
cardiovascular disease and in focus in one of our
previous studies (27, 23), was expressed at �8-fold
higher levels in large cells than in small cells. TM4SF1,
a highly expressed surface protein of various carcino-
mas and possibly implicated in signal transduction
events mediating cell proliferation and activation (28,
29) was 10-fold higher expressed in the large adipocytes
(Table 1). Leptin, being 3-fold higher expressed in the
large adipocytes (data not shown), and previously iden-
tified with higher expression in large compared with
small rat adipocytes (15, 16), was also included in the
following studies.

Expression of SAA, TM4SF1 and leptin determined
by real-time RT-PCR

The up-regulation of SAA, TM4SF1 and leptin expres-
sion in large cells was confirmed by RT-PCR analysis of
small (mean 59.3�4.47 �m) and large (mean
97.1�5.69 �m) adipocytes from seven different adipose
tissue samples. In all cases, SAA, TM4SF1 and leptin
were expressed at higher levels in large cells (P�0.018)
(Fig. 2A, C, E). The mean fold increase in expression
was 18.7 � 15.1 for SAA, 22.3 � 6.4 for TM4SF1, and
3.9 � 1.4 for leptin. In addition, adipocyte size corre-
lated with the expression of SAA (P�0.015), TM4SF1
(P�0.012), and leptin (P�0.0009) (Fig. 2B, D and F).

Tissue expression analysis

SAA, TM4SF1 and leptin expression levels in large
adipocytes were compared to the levels in other human
tissues (22) and small adipocytes. The three genes were

expressed at markedly higher levels in large adipocytes
than in all other tissues/cell types (Fig. 3A, B C).

Immunoreactivity

Expression of SAA and TM4SF1 in adipocytes was also
demonstrated immunohistochemically. Although SAA
immunoreactivity varied between cells of the same size,
it was generally greater in large than in small adipocytes
in the same sample (Fig. 4, upper). TM4SF1 immuno-
reactivity was demonstrated mainly in large but to some
extent also in medium-sized adipocytes. Positive
TM4SF1 signal appeared in a dot-like pattern in the cell
membrane. Small adipocytes were completely without
TM4SF1 immunoreactivity (Fig. 4, lower).

DISCUSSION

In this study, we developed a new technique to separate
populations of small and large human adipocytes from
a single adipose tissue sample. The two populations of
cells obtained with our technique differed significantly
in size, as determined with a computer-based image-
analysis method that allows rapid analysis of 10-fold
more cells than conventional methods (17). DNA mi-
croarray analysis of the two populations showed that
several genes were expressed at markedly higher levels
in the large cells, demonstrating that hypertrophy per se
can significantly alter gene expression and thereby
presumably adipocyte function.

Previous studies of the metabolic activity of small and
large adipocytes have indicated that adipocyte size
influences several metabolic functions (6–10). How-

TABLE 1. Genes detected with more than fourfold higher expression in large adipocytes than small adipocytes as analyzed by DNA microarray

Gene symbol Gene name ID Classification
Fold

change P value

Mean
signal
small

Mean
signal
large

SELE selectin E 206211_at defense 15.2 1.29E-09 11.5 174.4
SPARCL1 SPARC-like 1 200795_at unknown 14.9 1.22E-09 33.5 498.8
TM4SF1 transmembrane 4 L six family member 1 209386_at unknown 11.6 4.46E-11 50.6 586.3
TM4SF1 transmembrane 4 L six family member 1 209387_s_at 9.6 4.19E-09 22.5 216.1
TM4SF1 transmembrane 4 L six family member 1 215034_s_at 9.2 2.29E-10 26.7 245.5
DCN decorin 211896_s_at structure 9.4 8.18E-09 59.3 554.7
DCN decorin 201893_x_at 6.9 3.70E-09 156.8 1076.5
DCN decorin 211813_x_at 5.6 1.90E-09 118.4 659.1
IL8 interleukin 8 202859_x_at defense 9.0 4.44E-09 186.8 1682.5
IL8 interleukin 8 211506_s_at 7.5 3.54E-07 55.5 415.2
PALLD palladin 200897_s_at structure 8.7 2.53E-09 24.6 213.8
SAA2 serum amyloid A2 208607_s_at defense 7.8 3.82E-08 245.7 1918.5
SAA2 serum amyloid A2 214456_x_at 7.6 2.24E-07 529.1 4009.6
CLEC3B C-type lectin domain family 3, member B 205200_at growth 6.3 8.22E-09 55.8 353.5
C1QR1 complement component 1, q subcomponent,

receptor 1
202878_s_at defense 6.1 9.40E-10 30.0 183.9

COL1A1 collagen, type I, alpha 1 202310_s_at structure 5.9 2.27E-08 26.2 155.6
CXCL2 chemokine (C-X-C motif) ligand 2 209774_x_at defense 5.4 8.09E-09 184.4 998.2
COL1A2 collagen, type I, alpha 2 202403_s_at structure 5.3 2.44E-07 57.1 300.9
FLJ14054 — 219054_at unknown 4.2 4.65E-09 65.2 273.6
AQP1 aquaporin 1 209047_at transport 4.2 5.90E-09 43.2 179.7

E835GENE EXPRESSION AND HUMAN ADIPOCYTE SIZE



ever, the cells of different sizes were obtained from
different adipose tissue locations or from different
donors. Thus, it was not possible to exclude environ-
mental influences, such as nutritional/hormonal con-
ditions, or genetic factors that might have affected gene
expression and thus adipocyte metabolism. Our tech-
nique avoids these problems and will facilitate meta-
bolic studies of fat cells of different sizes. For example,
a positive correlation between human adipocyte size
and leptin expression/secretion has previously been
suggested after analysis of adipocytes from two depots:
omental fat cells and twice as large s.c. fat cells (9). In
the present study of human adipocytes from a single
adipose tissue sample, the previous findings were con-
firmed since leptin was indeed expressed at higher
levels in the large cells in all cases. Moreover, we
identified several genes that, compared with leptin,
showed a more pronounced differential expression in
large vs. small adipocytes.

Among the fourteen genes with markedly higher
expression in large compared with small adipocytes,
five were classified as immune-related; E-selectin, inter-
leukin (IL)-8, SAA, C1q receptor 1, and CXCL2 also
known as MIP-2 or macrophage inflammatory pro-
tein-2. Components of the metabolic syndrome, such as
obesity and type 2 diabetes, are associated with a
systemic increase in inflammatory markers (30–32).
The acute-phase proteins SAA and C-reactive protein
have attracted particular attention because they are
independent risk factors for coronary artery disease
(27, 33, 34). We (23), and others (35), have shown that
adipose tissue is a major site of SAA production and is

likely to be a major source of circulating SAA in obese
patients. Moreover, serum SAA concentrations were
correlated to fasting insulin levels indicating a link to
insulin resistance (23). The current study extends
previous findings by demonstrating that SAA is ex-
pressed at the highest concentration by the large
adipocytes. SAA has been implicated in inflammation,
insulin resistance and impairment of reverse choles-
terol transport. Our data may therefore suggest that
adipocyte-derived SAA, likely having both local effects
and endocrine functions, is a potential mediator of
the link between hypertrophic adipocytes and type 2
diabetes.

Further support for an association between obesity
and inflammation comes from studies showing macro-
phage infiltration of adipose tissue (36). Moreover, the
proportion of cells expressing CD68, a macrophage
marker, increases with increasing average adipocyte
area in human s.c. adipose tissue (37). This relation-
ship between adipocyte size and macrophage accumu-
lation suggests that hypertrophic adipocytes secrete
factors that attract monocytes. Again, SAA derived from
hypertrophic adipocytes may be involved in this process
because SAA activates the chemotactic formyl peptide
receptor like-1, which results in migration of blood
monocytes and neutrophils (38). IL-8, also found to be
expressed at high levels in hypertrophic adipocytes,
may act as an other potential monocyte recruiting
factor in adipose tissue (39). Accumulation of macro-
phages in adipose tissue is likely to further increase the
levels of inflammatory cytokines in adipose tissue and
thereby increase insulin resistance.

Figure 2. Expression of serum amyloid A (SAA),
transmembrane 4 L six family member 1
(TM4SF1), and leptin in small adipocytes (solid
bars) and large adipocytes (shaded bars) iso-
lated from adipose tissue samples from seven
subjects, measured by RT-PCR. The expression
of SAA, TM4SF1, and leptin in the large cells
from each sample was set to 1.0. In all cases,
SAA (A), TM4SF1 (C), and leptin (E) were
expressed at higher levels in the large cells.
Robust regression and rank correlation for SAA
expression and adipocyte size (B), for TM4SF1
expression and adipocyte size (D), and for
leptin expression and adipocyte size (F). Rho;
Spearman’s correlation coefficient.
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SAA in the circulation is primarily associated with
HDL and may modulate its role in cholesterol transport
(40). The presence of SAA on HDL has been reported
both to promote (41), and to reduce (42), cholesterol
efflux to HDL suggesting that SAA may alter choles-
terol removal from cells. Moreover, SAA reduces cellu-
lar uptake of cholesterol from HDL by inhibiting the

HDL receptor, SR-BI (scavenger receptor class B type I)
(43). Such an effect would be expected to impair
reverse cholesterol transport—the transfer of choles-
terol from peripheral tissues (vascular wall) to the liver
for excretion. Non-HDL-bound SAA has been reported
to promote cholesterol efflux from cells (44).

Recent studies suggest an intricate relationship be-
tween adipocyte size, cholesterol concentration and
insulin sensitivity (45). Cholesterol accumulates within
the adipocyte lipid droplet proportionally to the triglyc-
eride content. However, within an adipose tissue sam-
ple, large adipocytes have reduced membrane choles-
terol concentrations compared with small fat cells,
demonstrating that a changed cholesterol distribution
is characteristic of adipocyte hypertrophy. By reducing
adipocyte plasma membrane cholesterol it is possible to
reproduce part of the defects seen in hypertrophic
adipocytes such as insulin resistance (45). SAA may
impair adipocyte uptake of HDL cholesterol by the
same mechanisms described above for reverse choles-
terol transport. Furthermore, locally produced lipid-

Figure 4. SAA immunoreactivity of human adipocytes in a
paraffin section. Positive signal appears dark gray. Black
arrows indicate large adipocytes with strong SAA signal; white
arrows indicate small adipocytes with weak SAA immunoreac-
tivity that are barely visible. Scale Bar � 100 �m. (top).
TM4SF1 immunoreactivity of human adipocytes in a paraffin
section. Positive signal appears dark gray and in a dotlike
pattern as indicated by black arrows. White arrow indicates
small adipocyte completely without immunoreactivity. Scale
Bar � 100 �m. (bottom).

Figure 3. Expression of SAA (A), TM4SF1 (B), and leptin (C)
in large adipocytes and other human tissues/cell types, mea-
sured by microarray analysis. The relative expression levels of
SAA, TM4SF1, and leptin in each tissue were determined as
described in Materials and Methods.

E837GENE EXPRESSION AND HUMAN ADIPOCYTE SIZE



free SAA may reduce adipocyte levels of cholesterol
(44). Our findings may therefore suggest that the
insulin resistance in hypertrophic adipocytes could be
related to the high expression of SAA in these cells.
SAA has also been shown to bind to cell-surface recep-
tors, including Tanis/SelS, that have been implicated
in regulation of insulin sensitivity (46). Thus, SAA may
influence insulin sensitivity in adipose tissue by several
mechanisms, including interactions with receptors, re-
cruitment of inflammatory cells and local impairment
of cholesterol metabolism.

The significance of the increased expression of
TM4SF1 in large adipocytes remains to be elucidated.
TM4SF1 shares topological features with members of
the tetraspanin superfamily (29). However, recent anal-
ysis suggests that TM4SF1 belongs to a new transmem-
brane-4 superfamily comprising TM4SF1, TM4SF5, IL-
TMP and L6D (28). The biological properties of this
superfamily remain largely unknown while the activities
of tetraspanin proteins often are attributed to their
association with integrins and specific surface proteins
(29). We have previously identified TM4SF1 as one of
the genes with higher expression in visceral compared
to s.c. adipose tissue in obese men (47). Moreover,
genomic scans have identified loci linked to fasting
plasma insulin levels in Pima Indians (48) and BMI in
white, black, Asian and Mexican-American ethnic
groups (49) in the chromosomal region harboring the
TM4SF1 gene. We have analyzed a publicly available
DNA microarray dataset originating from isolated ab-
dominal s.c. adipocytes from obese and nonobese Pima
Indians (50). In comparison with the lean group, the
obese group had higher fasting glucose and fasting
insulin levels and higher 2-h insulin levels after an oral
glucose tolerance test. Interestingly, the TM4SF1 ex-
pression was significantly higher in adipocytes from the
obese subjects compared with adipocytes from the
nonobese subjects (50). Furthermore, in a recent study,
TM4SF1, together with several genes involved in inflam-
matory processes in the brain, was found to be up-
regulated in C/EBP�-overexpressing neuronal cells
(51). Thus, a potential role of TM4SF1 in immunolog-
ical processes in human adipose tissue, and in subse-
quent development of metabolic disturbances, may be
speculated.

To summarize, we have developed a technique to
separate human adipocytes, from a single adipose tissue
sample, by size. The resulting populations of small and
large adipocytes have significantly different cell size
distributions. Gene expression profiling of the small
and large adipocytes identified genes, many of them
immune-related, with markedly higher mRNA expres-
sion in the large cells. Two of those genes, SAA (an
acute-phase protein implicated in inflammation, insu-
lin resistance and impairment of reverse cholesterol
transport) and TM4SF1 (a membrane protein with
unknown function), were �20-fold higher expressed in
the large cells, a difference reflected also at the protein
level. Moreover, in comparison with several other hu-
man tissues, large adipocytes displayed by far the high-

est SAA and TM4SF1 expression. In the light of previ-
ous studies reporting that adipocyte hypertrophy is
associated with insulin resistance and is an indepen-
dent predictor of type 2 diabetes, the findings in the
current work provide novel insights into the molecular
connection between hypertrophic obesity and insulin
resistance/type 2 diabetes.
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SPECIFIC AIMS

Enlargement of subcutaneous (s.c.) abdominal adipo-
cytes is associated with insulin resistance and is an
independent predictor of type 2 diabetes. The aim of
the present study was to detect factors linking human
adipocyte hypertrophy to insulin resistance/type 2 dia-
betes.

PRINCIPAL FINDINGS

1. Isolated human adipocytes, from a single adipose
tissue sample, can be separated into populations of
small cells and large cells

Most previous studies of the impact of adipocyte size,
have studied fat cells or biopsies with different mean
adipocyte diameters obtained from different tissue lo-
cations or even from different donors. Therefore, dif-
ferences in environmental conditions or genetic factors
that affect adipocyte gene expression and metabolism
could not be excluded. Thus, it is not clear whether the
functions of the fat cell vary with adipocyte size per se.

In the present study, a technique for separation of
human adipocytes by size was developed. The tech-
nique, based on cell buoyancy and mesh filtration,
separated isolated adipocytes from an adipose tissue
sample into populations of small cells (mean 57.6�3.54
�m) and large cells (mean 100.1�3.94 �m). The mean
size and the size distribution of the small and large
populations, determined by computerized image anal-
ysis, differed significantly (P�0.005 and P�0.001, re-
spectively) (Fig. 1).

2. Microarray analysis of the cell populations
identified genes with markedly higher mRNA
expression in large cells than small cells

Gene expression profiling (Affymetrix GeneChip HG-
U133A arrays composed of 22,283 probe sets) of the

cell populations separated from adipose tissue from
three subjects identified 14 genes with more than 4-fold
higher expression in large cells than small cells (P�
0.01) (Table 1). Classification by cellular or organism
function based on Gene Ontology definitions revealed
that five of those genes were immune-related. The
remaining nine genes were referred to structure (four),
unknown function (three), growth (one) and transport
(one) (Table 1). Differences in sample preparation or
hybridization were excluded since there was no differ-
ence between small and large adipocytes in the expres-
sion of LRP10, CLN3, or COBRA1, suitable reference
genes for studies of human adipose tissue.

3. SAA and TM4SF1 were �20-fold higher expressed
in the large adipocytes as determined by real-time
RT-PCR, and adipocyte size correlated with the
expression of both SAA and TM4SF1

One immune-related gene, serum amyloid A (SAA),
and one gene with unknown function, transmembrane
4 L six family member 1 (TM4SF1), were selected
among the genes with �4-fold higher expression in
large vs. small cells for further analysis (Table 1).
Leptin, being 3-fold higher expressed in the large
adipocytes (data not shown), and previously suggested
to be higher expressed in large compared with small
adipocytes, was also included in the following studies.

The up-regulation of SAA, TM4SF1 and leptin ex-
pression in large cells was confirmed by real-time
RT-PCR chain reaction analysis of small (mean
59.3�4.47 �m) and large (mean 97.1�5.69 �m) adi-
pocytes from seven different adipose tissue samples. In
all cases, SAA, TM4SF1 and leptin were expressed at
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higher levels in large cells (P�0.018). The mean fold
increase in expression was 18.7 � 15.1 for SAA,
22.3 � 6.4 for TM4SF1, and 3.9 � 1.4 for leptin. In
addition, adipocyte size correlated with the expression
of SAA (P�0.015), TM4SF1 (P�0.012), and leptin
(P�0.0009).

4. In comparison with 17 other human tissues/cell
types by microarray, large adipocytes displayed by far
the highest SAA and TM4SF1 expression

GeneChip HG-U133A expression profiles from 17 dif-
ferent tissues were downloaded from the SymAtlas
dataset (http://symatlas.gnf.org/Symatlas/). For com-
parison of gene expression in different tissues, the
signal value for each gene was normalized by dividing
the signal by the average signal of the entire array for
each tissue. In addition, our own expression profiles,
originating from small and large adipocytes, were in-
cluded and normalized as outlined above. SAA,
TM4SF1 and leptin expression levels in large adipocytes
were compared to the levels in other human tissues and
small adipocytes. The three genes were expressed at
markedly higher levels in large adipocytes than in all
other tissues/cell types.

5. The higher mRNA expression of SAA and TM4SF1
in large compared to small adipocytes was reflected
also at the protein level

Expression of SAA and TM4SF1 in adipocytes was also
demonstrated immunohistochemically. Although SAA
immunoreactivity varied between cells of the same size,
it was generally greater in large than in small adipocytes
in the same sample. TM4SF1 immunoreactivity was
demonstrated mainly in large but to some extent also in
medium-sized adipocytes. Positive TM4SF1 signal ap-
peared in a dot-like pattern in the cell membrane.
Small adipocytes were completely without TM4SF1 im-
munoreactivity.

CONCLUSIONS AND SIGNIFICANCE

In this study, we developed a new technique to separate
populations of small and large human adipocytes from
a single adipose tissue sample. The two populations of
cells obtained with our technique differed significantly
in size, as determined with a computer-based image-
analysis method that allows rapid analysis of 10-fold
more cells than conventional methods. DNA microar-
ray analysis of the two populations showed that several
genes were expressed at markedly higher levels in the
large cells, demonstrating that hypertrophy per se can
significantly alter gene expression and thereby presum-
ably adipocyte function (Fig. 2).

Previous studies of the metabolic activity of small and
large adipocytes have indicated that adipocyte size
influences various adipocyte metabolic functions. How-
ever, the cells of different sizes were obtained from
different adipose tissue locations or from different
donors. Thus, it was not possible to exclude environ-
mental influences, such as nutritional/hormonal con-
ditions, or genetic factors that might have affected gene
expression and thus adipocyte metabolism. Our tech-
nique avoids these problems and will facilitate meta-
bolic studies of fat cells of different sizes. For example,
a positive correlation between human adipocyte size
and leptin expression/secretion has previously been
suggested. In the present study of human adipocytes
from a single adipose tissue sample, the previous find-
ings were confirmed since leptin was indeed expressed
at higher levels in the large cells in all cases. Moreover,
we identified several genes that, compared with leptin,
showed a more pronounced differential expression in
large vs. small adipocytes (Fig. 2).

Among the fourteen genes with markedly higher
expression in large compared with small adipocytes,
five were classified as immune-related; E-selectin, inter-
leukin-8, SAA, C1q receptor 1, and CXCL2 also known
as MIP-2 or macrophage inflammatory protein-2. Com-
ponents of the metabolic syndrome, such as obesity and
type 2 diabetes, are associated with a systemic increase
in inflammatory markers. The acute-phase proteins
SAA and C-reactive protein have attracted particular
attention because they are independent risk factors for

Figure 1. Separation of human adipocytes by size. A) Repre-
sentative images of human adipocytes from one adipose tissue
sample before separation (All) and after separation (Small
and Large). Microspheres (98.00 �m in diameter) were used
for reference in the computerized image analysis. B) Size
distributions, determined by computerized image analysis,
and mean diameters in random samples of all adipocytes
(n�742), small adipocytes (n�1965), and large adipocytes
(n�2382) from one adipose tissue sample. Patient character-
istics; man, age: 41 yr, body mass index (BMI): 26.0 kg/m2. C)
Mean diameter of small and large adipocytes from 12 adipose
tissue biopsies. Error bars indicate sem.
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coronary artery disease. We, and others, have previously
shown that adipose tissue is a major site of SAA
production and is likely to be a major source of
circulating SAA in obese patients. The current study
extends these findings by demonstrating that SAA is
expressed at the highest concentration by the large

adipocytes. SAA has been implicated in inflammation,
insulin resistance and impairment of reverse choles-
terol transport. Our data may therefore suggest that
adipocyte-derived SAA, likely having both local effects
and endocrine functions, is a potential mediator of the
link between hypertrophic adipocytes and type 2 diabe-
tes (Fig. 2).

To summarize, we have developed a technique to
separate human adipocytes, from a single adipose tissue
sample, by size. The resulting populations of small and
large adipocytes have significantly different cell size
distributions. Gene expression profiling of the small
and large adipocytes identified genes, many of them
immune-related, with markedly higher mRNA expres-
sion in the large cells. Two of those genes, SAA (an
acute-phase protein implicated in inflammation, insu-
lin resistance and impairment of reverse cholesterol
transport) and TM4SF1 (a membrane protein with
unknown function), were �20-fold higher expressed in
the large cells, a difference reflected also at the protein
level. Moreover, in comparison with several other hu-
man tissues, large adipocytes displayed by far the high-
est SAA and TM4SF1 expression. In the light of previ-
ous studies reporting that adipocyte hypertrophy is
associated with insulin resistance and is an indepen-
dent predictor of type 2 diabetes, the findings in the
current work provide novel insights into the molecular
connection between hypertrophic obesity and insulin
resistance/type 2 diabetes.

Figure 2. Schematic diagram. Flow chart and summary of the
principal findings (A). Potential mechanisms by which serum
amyloid A (SAA) and transmembrane 4 L six family member
1 (TM4SF1), expressed at the highest levels by large adipo-
cytes, may mediate a link between hypertrophic obesity and
insulin resistance/type 2 diabetes (B).

TABLE 1. Genes detected with more than fourfold higher expression in large adipocytes than small adipocytes as analyzed by DNA microarray

Gene symbol Gene name ID Classification
Fold

change P value

Mean
signal
small

Mean
signal
large

SELE selectin E 206211_at defense 15.2 1.29E-09 11.5 174.4
SPARCL1 SPARC-like 1 200795_at unknown 14.9 1.22E-09 33.5 498.8
TM4SF1 transmembrane 4 L six family member 1 209386_at unknown 11.6 4.46E-11 50.6 586.3
TM4SF1 transmembrane 4 L six family member 1 209387_s_at 9.6 4.19E-09 22.5 216.1
TM4SF1 transmembrane 4 L six family member 1 215034_s_at 9.2 2.29E-10 26.7 245.5
DCN decorin 211896_s_at structure 9.4 8.18E-09 59.3 554.7
DCN decorin 201893_x_at 6.9 3.70E-09 156.8 1076.5
DCN decorin 211813_x_at 5.6 1.90E-09 118.4 659.1
IL8 interleukin 8 202859_x_at defense 9.0 4.44E-09 186.8 1682.5
IL8 interleukin 8 211506_s_at 7.5 3.54E-07 55.5 415.2
PALLD palladin 200897_s_at structure 8.7 2.53E-09 24.6 213.8
SAA2 serum amyloid A2 208607_s_at defense 7.8 3.82E-08 245.7 1918.5
SAA2 serum amyloid A2 214456_x_at 7.6 2.24E-07 529.1 4009.6
CLEC3B C-type lectin domain family 3, member B 205200_at growth 6.3 8.22E-09 55.8 353.5
C1QR1 complement component 1, q subcomponent,

receptor 1
202878_s_at defense 6.1 9.40E-10 30.0 183.9

COL1A1 collagen, type I, alpha 1 202310_s_at structure 5.9 2.27E-08 26.2 155.6
CXCL2 chemokine (C-X-C motif) ligand 2 209774_x_at defense 5.4 8.09E-09 184.4 998.2
COL1A2 collagen, type I, alpha 2 202403_s_at structure 5.3 2.44E-07 57.1 300.9
FLJ14054 — 219054_at unknown 4.2 4.65E-09 65.2 273.6
AQP1 aquaporin 1 209047_at transport 4.2 5.90E-09 43.2 179.7
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Figures





Cardiac

Figure 1: Figure 3 from Paper I, with estimates from WAME added. Pair-
wise plots of the log2-ratios of the patients in the ishemic group of the
Cardiac dataset. The plots to the lower-left show two-dimensional kernel
density estimates of the distribution of log2-ratios in each pair of patients.
This provides information in the central areas where the corresponding
scatterplots are solid black (cf. Figure 6 in (Huber et al., 2003)). The
colour-scale is, in increasing level of density: white, grey, black and red.
Off-diagonal numbers show estimated correlations from WAME. Diagonal
boxes contain sample name and weights as well as estimated variances
from WAME.



Polyp

Figure 2: Figure 6 from Paper I, with estimates from WAME added. Pair-
wise plots of the log2-ratios of the patients in the Polyp dataset. The plots
to the lower-left show two-dimensional kernel density estimates of the dis-
tribution of log2-ratios in each pair of patients. This provides information
in the central areas where the corresponding scatterplots are solid black
(cf. Figure 6 in Huber et al. (2003)). The colour-scale is, in increasing
level of density: white, grey, black and red. Off-diagonal numbers show
estimated correlations from WAME. Diagonal boxes contain sample name
and weights as well as estimated variances from WAME.



Swirl

Figure 3: Figure 8 from Paper I, with estimates from WAME added. Pair-
wise plots of the log2-ratios of the arrays in the Swirl dataset. The plots
to the lower-left show two-dimensional kernel density estimates of the dis-
tribution of log2-ratios in each pair of patients. This provides information
in the central areas where the corresponding scatterplots are solid black
(cf. Figure 6 in Huber et al. (2003)). The colour-scale is, in increasing
level of density: white, grey, black and red. Off-diagonal numbers show
estimated correlations from WAME. Diagonal boxes contain sample name
and weights as well as estimated variances from WAME.



Figure 4: Figure 1 from Paper III. Density estimates of transformed
expression values, Y, for the different arrays, in the two datasets. Colour-
coding according to sample variance is used for increased clarity (blue for
low variance, red for high variance). Differences in variability can be noted
in both datasets.



Atrium

Figure 5: The Atrium part of Figure 2 in Paper III. Pairwise plots of
transformed expression values, Yg, for selected pairs of arrays within the
same group. Different pairs within the same group have distinctly dif-
ferent correlations. Upper triangle contains scatterplots. Lower triangle
contains heatmaps of the corresponding two-dimensional kernel density es-
timates, where the majority of the genes are in the red portion of the plot,
revealing important trends inside the black clouds. Off-diagonal numbers
show estimated correlations from WAME. Diagonal boxes contain sample
names and weights as well as estimated variances from WAME.



COPD

Figure 6: The COPD part of Figure 2 in Paper III. Pairwise plots of
transformed expression values, Yg, for selected pairs of arrays within the
same group. Different pairs within the same group have distinctly dif-
ferent correlations. Upper triangle contains scatterplots. Lower triangle
contains heatmaps of the corresponding two-dimensional kernel density es-
timates, where the majority of the genes are in the red portion of the plot,
revealing important trends inside the black clouds. Off-diagonal numbers
show estimated correlations from WAME. Diagonal boxes contain sample
names and weights as well as estimated variances from WAME.



Figure 7: Empirical distributions of p-values for LIMMA, weighted
LIMMA, OLM and WAME from tests on 100 resamples from the Atrium
dataset. Average empirical distribution indicated. Since no signal is
added, the curves should ideally follow the diagonal. The results are very
similar to those from the COPD dataset (see Figure 4 in Paper III).



Figure 8: Pair-wise plots of the log2-ratios between large and small
adipocytes for the three patients in Paper IV. Upper triangle contains
scatterplots. Lower triangle contains heatmaps of the corresponding two-
dimensional kernel density estimates, where the majority of the genes are
in the red portion of the plot, revealing important trends inside the black
clouds. Off-diagonal numbers show estimated correlations from WAME.
Diagonal boxes contain sample name and weights as well as estimated
variances from WAME. Note the high variance for Patient 13.




