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JOHAN SVENSSON

Department of Mathematical Sciences

Chalmers University of Technology and Géteborg University

Abstract

The problem of rational maintenance of aircraft engines is studied with respect to the
influence of random events. Aircraft engines can be more economically maintained
and resources can be saved if the maintenance process is improved. The starting
point is an optimization model suggesting what parts in the engine that should be
replaced at each maintenance time. The input data is the age of the details in the
engine. Statistical models are developed that estimates the remaining life of the
components in the engine. The models work with different kinds of data. The first
data set only contains times between repairs and is modeled with a non-stationary
renewal process and a non-homogeneous Poisson process. With our data the non-
stationary renewal process works better. Different repair stations affect the life of
the components, which the non-stationary renewal process manages to model. This
model also manages the aging component problem in an effective way. However, in
this case no aging is present other than substantial degeneration after the first repair.
The second dataset contains crack growth data. The remaining life is modeled with
a empirical crack growth model. With data directly indicating the condition of the
detail a more precise estimate of the reaming life can be made. In order to get an
interface with the optimization model the distributions need to be discrete. Four
methods to make discretizations are discussed and adapted to suit the model. The
methods are compared and the choice concerning the number of points of support
is discussed. Finally the consequence of using a narrow scenario tree is commented
upon.

Keywords: non-stationary renewal process; non-homogeneous Poisson process; sur-
vival; optimal maintenance; discretization; points of support; crack growth
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1 Introduction

Aircraft engines can be more economically maintained and resources can be saved if
the maintenance process is improved. Volvo Aero Corporation (VAC) is a company
in Trollhdttan that, among other things, maintains aircraft engines. Two connected
projects were initiated to improve the maintenance process. One project aimed at
optimizing the maintenance, that is create a tool that decide what components in the
aircraft engine to replace at a given maintenance occurrence. The other project aimed
at estimating the survival of one kind of components in the engine with available
data from VAC . This thesis describes the work that has been carried out from
the life estimation point of view, which also includes an attempt to incorporate the
components with the stochastic lives into the maintenance optimization model.

The criterion for optimality is the expected cost to maintain the engine. Input
data for the optimization model contains a description of the age of the deterministic
details and the stochastic details. A deterministic detail is a component that has a
predetermined limited time in service which must not be exceeded. Deterministic
details are components that are vital for safety. If a deterministic component fails,
there is a risk that the engine will stop functioning. In practice the upper limit on the
service time means that most deterministic parts will be replaced long before they
are even close to failure. A stochastic detail is a component that is not deterministic.
Stochastic components are allowed to operate in the aircraft engine until they break.
If a stochastic component breaks during a flight the engine will still work but with
reduced performance.

In the Volvo military engines RM8 and RM12 there are about 50 components
that are not expected to last the pre-specified life of the engines. About 75% of
them are deterministic and 25% stochastic. More than one third of all cases when
the engines are taken to be repaired are unplanned, triggered by the failure of a
stochastic component.

A model that describes the properties of the stochastic components is needed.
Such models are developed with the type of data that exists at VAC. There are
mainly two kinds of data types available, and they are discussed in a later section.
Paper B and C suggest models that can be used to model the life of the stochastic
components.

To get the stochastic components to interface with the optimization model, ap-
proximations need to be made. The optimization model and the type of approxima-
tions carried out are discussed in a later section and in paper D. Paper A relates the
results obtained in paper B, C and D to the optimization model. Figure 1 illustrates
the relationship between the models.
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Figure 1: Illustration of the relationship between the models. The optimization model
requires input in the form of the life of the stochastic and deterministic components.
The life of the stochastic components needs to be estimated with statistical models
that need data to work. Approximations need to be carried out to get the stochastic
details to interface with the optimization model.

Deterministic details

2 The maintenance process

There are two principles at VAC whit regard to maintenance. The first principle is
to maintain the engine at certain fixed predetermined times. The second principle is
to maintain the engine only when maintenance is required.

If the engine is maintained according to the first principle the maintenance times
are known in advance but not the parts which are to be replaced.

If the maintenance process is ruled by the second principle, the engine is obtained
for control only if there are any signs of failure or lacking performance. In this case
neither maintenance times nor maintenance needs are known in advance.

The older RM8 miilitary engine was mostly maintained according to the first prin-
ciple but some components were checked after every flight mission. New construction
solutions allow the newer RM12 engine to be examined more carefully on the hangar
floor using pipe holes and advanced fiber optics. This opens the possibility for the
RM12 engine to be maintained according to the second principle.

When the aircraft lands and the engine is still near the hangar it is examined for



broken components. A component is considered to be broken if it fails to comply with
a set of fitness rules when it is observed. If a component is broken the entire engine
or possibly a module of the engine is sent to a repair station. Not all components are
examined after each flight so in practice this means that the components are checked
at certain intervals. These intervals are typically shorter than the predetermined
intervals used in the first principle.

If maintenance is carried out according to the second principle there is an oppor-
tunity to replace more than the failed components when the engine arrives at the
repair station. Such a replacement may decrease the time to next repair and the
overall cost of maintaining the engine. An optimization model is developed in order
to get suggestions asto what parts in the engine should be replace.

3 Survival analysis and Data at VAC

The main aim of survival analysis is to determine the life of a population of individuals
with the help of data. We will focus on deciding the life for a class of components.
At VAC there are mainly two different kinds of data, which we call survival data and
state data.

By survival data we mean some measure of the life of the component in terms
of, e.g., flight hours, cycles or the number of afterburner ignitions. The number of
afterburner ignitions may influence the life of the components in the afterburner. A
cycle for a civilian aircraft is one takeoff and one landing. An equivalent cycle for a
military aircraft engine is a more complex function based on the number of heat and
pressure cycles.

By state data we mean information related to the current state of the component
relevant for the future life. Using the information of the state of the component
and a model of the change of the state it is possible to predict when the state of
the component is so critical that the component needs to be replaced. Examples of
state data are crack length of a component or number of parts burnt away from a
component.

With survival data we can answer questions about the population. We can also
use the data for estimating the remaining life of a specific component. However, to
get a better estimation of the remaining life of a specific component we use state
data. The knowledge of the state of a component gives more information about the
remaining life than survival data alone, cf. Section 3.3

3.1 Survival data

The life T of the stochastic components at VAC is measured by several variables.
Unfortunately all of those variables are highly correlated. This is a consequence of
the fact that over longer time periods the engines fly in a similar way (measured in
the above variables). This implies that it is not feasible to use regression models, such



as the Cox regression (5) model, to find the effects of covariates in the distribution
of component life. In paper B we will therefore limit ourselves to studying only one
variable.

3.1.1 Survival estimation with one variable

The methods for estimating survival can be divided into parametric and non-paramet-
ric methods. Standard non-parametric estimators are the Nelson-Aalen estimator and
the Kaplan-Meier estimator. The Nelson-Aalen estimator estimates the cumulative
hazard rate while the Kaplan-Meier estimator estimates the survival function S(t) =
1 — F(t) where F(¢) is the cumulative distribution function.

The cumulative hazard rate is defined as

H(t) = /Ot h(u)du,

where

. PA<T<t+At|T>t) f(t) d
= 1 = =7 = =——1 1
he) = s At s@ = a0 M)
where T is the stochastic variable we wish to describe. The Nelson-Aalen estimator
is defined as

A 0 ift<ty
{ (2)

H(t) = S
Zi:t,-gt Y%S,-) if ¢t >t
and the Kaplan-Meier estimator is defined as

& 1 ift <t
S(t) = oy
{Hi:tigt(l - vhy) ift>t,

where ¢; are the observation times, Y (¢;) are the number of individuals at risk just
before time t;, and d; the number of failures at time ¢;.
There exist several parametric distributions that are known to work well for sur-
vival data, e.g. the Weibull distribution
Ft)=1-e"GD"  t>0, (6>0,a>0),

and the Log-normal distribution

F(t):@(bgtT_u>, t>0, (0>0).

For parametric models likelihood based estimation approaches are common. The
likelihood function for survival data can generally be written as

L) = [[ fott:) I So(es) JT(So(te) — So(rs)) (3)
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where D is the index set for the failure times, R is the index set for the right-censored
observations, and I is the set of incides for the interval-censored observations. If indi-
vidual j is right-censored we know that individual j is alive at time c;. If individual
k is interval-censored we do not know the exact time of the failure but we know that
individual k has failed between times [, and rr. The parameter vector 8 is estimated
as .

6 = argmax L(0). (4)

6

A comparison between the parametric and non-parametric estimates can be made by
comparing their hazard rates through hypothesis testing, example one-sample test,
cf. Moeschberger and Klein [19].

Inherent in such a comparison is that the parametric distribution is often rejected
if the data set is large. The true distribution of the individuals follows no common
parametric distribution but has its own distribution. This does not necessarily mean
that the parametric distribution is a bad model. This must be taken into account
when deciding if the parametric distribution is a good enough model for our applica-
tion. A visual comparison can be made in several ways. One way is to compare the
distribution or density functions between the non-parametric and parametric estima-
tions. An advantage of a visual comparison of the density functions compared to the
distribution function is that properties like several humps may be easier to discover
which may indicate multiple cause of failures. A non-parametric estimation of the
density function can be obtained by performing a kernel smoothing, see further Klein
and Moeschberger [19].

3.1.2 Survival estimation with several variables

Assume that we have n observations of the type (7},6;, Z;(t)) where T} is the time
on study for component number j and J; is a indicator if the component j has
failed (§; = 1) or is right censured (6; = 0) and Z;(t) = (Zj1,...,Z;p) is a vector
of covariates or risk factors. Covariates are variables that are believed to affect
the survival of the components. Covariates can be fixed in time, for example an
indicator for which country the component is flying in. Different countries affect
flying conditions and mission profiles and hence the survival. The covariates can
also be changing in time, for example the number of afterburner ignitions. Cox [11]
suggests the following semi-parametric proportional hazard model

(t | (1)) = ho(1)e("0) = hoft)e( it M7, )

where h(t | Z(t)) is the hazard rate for a component at risk at time ¢ with covariates
Z(t) and hg(t) is the baseline hazard. The resulting estimation problem is to esti-
mate the parameter vector § and the baseline hazard ho(t). Let R(t) be the set of
components at risk just before time ¢. The Cox partial likelihood for the parameter



vector 3 is then given by

n (k=1 BrZin(t:))

L(B) = . _
il;[l 2 jeR(t) e(Xk=1 PrZjn (t:))

and the estimate is .
B = argmax L(f3).
B

Note that this is not the full likelihood, cf. equation (3). The baseline hazard cannot
be estimated directly but the cumulative baseline hazard

¢
Ho(t):/0 ho(u)du

can be estimated with Breslow’s estimator
. d
Hy(t) = .

i<t ZjeR(t,-) e(F"%;)

where ¢; are the observation times and d; the number of failures at time ¢;. Note that
this estimator reduces to the Nelson-Aalen estimator (2) when there are no covariates
present.

An alternative to proportional hazard models is using an additive hazard model.
A nonparametric additive hazard model is of the form

P

h(t | Z(t)) = Bo(t) + D Bk Zk(2),

k=1

where the parameters 3(t) = (f1,...,08p) are a function of time rather than single
parameter values as in the proportional hazard model, cf. Andersen et al. [1]. To be
able to compare with the cox regression model the restricted additive model

h(t | Z(1)) = Bo(t) + Y BrZi(1), (6)

can be used. Using a martingale approach (6) can be seen as a regression model,
and estimations of the parameters can be obtained by least square estimates, cf.
Andersen et al. [1].

The survival function is obtained from (1) as

S(t) — e fot h(u) du_



3.1.3 Components and repair

Some stochastic components in the engine are repaired when they fail to comply
with the set of fitness rues. Some components are repaired at the military hangar
and some are transferred to the repairbay at VAC. In the literature there are two
extreme cases of repair, repair to a state as good as new or as bad as old.

The repair of a component to a state as good as mew is often modeled with
a renewal process. The idea of a renewal process is that we have a sequence of
operating intervals of the length 77,75, .... Each operating time ends with a failure
and starts with a repair. If we have a stationary renewal process, each T; has the
same distribution. An alternative is to model with a non-stationary renewal process
(NSRP). Then the T;:s are modeled with different distributions, c¢f. Hdyland and
Rausand [17] and Nachlas [24]

The as bad as old or minimal repair is a repair process that repairs the component
to the condition the component had just before the failure and is modeled with a non-
homogeneous Poisson process (NHPP). Assume that N is a counting process that
counts the number of repairs of a component and let the intensity (or hazard) function
w be a function of time. If the process has independent and Poisson distributed
increments, NN is called a Poisson Process. If w is non-constant the process is non-
homogeneous. If the number of repairs is Poisson distributed then N is called a
non-homogeneous Poisson Process. For examples of NHPP with applications, cf.
Hoyland and Rausand [17], Nachlas [24] and Barlow and Hunter [5].

Imperfect repair models are models that describe component behavior somewhere
between renewal and simple continuation. For examples of imperfect repair models,
see Pham and Wang [26], Brown and Proschan [9], Bhattacharjee and Manish [7].

3.2 State data

The stochastic components in the aircraft engine are considered broken when they
fail to comply with a set of fitness rules, e.g. limit of a crack lengths but also limits
of damage made by corrosion or number of pieces burnt away. A component can be
considered broken when any of those rules are violated. This means that the same
type of components can fail in different ways. To make an observation of the state of
the component is to observe the properties that make the component fail or possibly
something that is related to those properties. When the properties are observed an
estimate of the survival of the component can be obtained by using a model that
predicts how the property is changing over time. It is possible to divide such models
into two classes, empirical and mechanistic models. Empirical models aim to model
the phenomena without using physical models while mechanistic models aim to model
the physics behind the phenomena. All models are approximations, and this applies
to mechanistic models as well as to empirical models.

In paper C an empirical model is constructed. The reason for choosing an empir-
ical model instead of a mechanistic model is that the environment is to complicated



to model.

3.2.1 Empirical models

Empirical models are based on observations. When you one uses empirical model
one believes that the future will behave the same way as the past. The strength of
empirical models is that they can model and make predictions in an environment that
is hard to model using known physics. Phenomena in reality are often stochastic in
nature and with an empirical model it is possible to catch this randomness in a simple
way by introducing stochastic variables. Empirical models are essential to use when
the phenomena that we want to model are so complicated that known physical laws
cannot model them or the modeling gets to complicated. The downside of empirical
models is that since they do not care about the physics, they can seldom be moved
to similar problems. Another downside is that they are based on observations and
can hence not be used in an early phase where no observations are available, example
the design phase of a component. It is also dangerous to extrapolate the models and
use them in areas where they have not been supported by observations.

3.2.2 Mechanistic models

Mechanistic models are used when the phenomena that we attempt to model are well
known, often in a more general perspective than the case we are trying to model.
Mechanistic models have the advantage that they can be moved to other problems
since they tend to be based on physical properties instead of observations. They
can also be used in a very early planning phase of a product when no observations
are made. Mechanistic models require knowledge about the environment boundary
conditions.

3.3 Illustration of life estimation with state and survival data

For a specific component, state data gives considerably more information about the
time when the component is going to fail than knowledge about survival data alone.
We illustrate how the model in paper C can be used to improve the precision of
the input distribution of the optimization model in paper D. Assume we are in a
situation where we want to estimate time to failure for a component. We want to
predict when the crack of the component reaches a length of 30 mm. At this crack
length the component is considered to be so damaged that it has to be replaced.
We want to make predictions at different times and with different amount of state
data and we want to compare the predictions we get by using survival data alone.
Assume that a large amount of survival data and a large amount of state data have
led us to believe that the density function for the survival for new components is
the one described in Figure 2. For new components the density is the same for both
data sets. We now update this distribution with the new information we get. In
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Figure 2: Distribution of the time to failure for new components.

the first case, the survival data case, we only know if the component is still alive.
We will thus update the distribution with that information. In the second case
we observe the crack length of the component and we will use that information to
update the distribution. The observations of the crack are, [0,20,25,27,33] mm
at time [200, 400, 600, 800,1000] FH respectively. From the crack observations we
understand that the crack growth speed is decreasing with time and that the crack
passed the length of 30mm between 800 and 1000 FH. Hence this specific component
should be considered broken somewhere between 800 and 1000FH.

Figure 3 illustrates the distribution of remaining life when the information known
at 200 FH (to the left) and 400FH (to the right) has been processed. The upper left
part of the picture illustrates the reaming life when only the the fact that component
is alive at 200 FH has been considered. In the lower left part the information that
the crack length is 0 has been used, as the component is young and there is still
no indication of a crack and the distributions are similar. At 400 FH the crack has
started to grow and it is observed to be 20 mm. The upper right picture does not
take the knowledge of the arising crack into account. It only acts as a model based on
survival data would. The picture below is updated with the new information about
the crack length and the estimated survival is lowered considerably.

Figure 4 illustrates the distributions after 600 FH (to the left) and 800 FH (to the
right). More information about the crack growth is now known and the estimation
of the time when the crack is going to reach 30 mm is even more precise. At 800
FH the crack observation says that the crack is almost 30 mm, and updating the
estimation with that information gives a great advantage in comparison to not using
it. The variation of the estimated distribution when the crack reaches 30 mm is large
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Figure 3:  Distribution of the time to failure at 200 FH to the right and 400 FH
to the left. The distributions in the upper pictures have been updated with only the
information of that the component is alive and the distributions in the lower pictures
are based on crack observations and a crack growth model.

even if we have a large number of observations. This is the combined result of the
fact that the crack growth speed is decreasing and the fact that the observations are
associated with an observation error.

4 Maintenance optimization

There exist numerous maintenance models in the literature, for a review see Barlow
and Prochan [4], Pierskalla and Voelker [27], Sherif and Smith [30], Cho and Par-
lar [10], Frenk Dekker Kleijn [15], Aven and Dekker [3], Deeker and Wildman [12],
Moraru and Popescu [23] and Andréasson [2].

The optimization model studied in paper A and used in a stochastic version in pa-
per D is meant to be used for opportunistic maintenance. Opportunistic maintenance
refers to the situation where preventive maintenance is carried out at opportunities.

In the problem at hand we have an engine system consisting of two kinds of
components, deterministic components with a fixed life and stochastic components
which fail randomly. The goal is to minimize the cost of maintaining the engine during
a fixed predetermined time period. The fixed period may correspond to the planned
life of the engine or the period where the company is responsible for maintaining the
engine. There is a cost for replacing a component with a new one that corresponds
to the value of the component and the work carried out to replace it. There is also
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Figure 4:  Distribution of the time to failure at 600 FH to the right and 800 FH
to the left. The distributions in the upper pictures have been updated with only the
information of that the component is alive and the distributions in the lower pictures
are based on crack observations and a crack growth model.

a cost triggered for replacing any component at all, related to the cost of having the
engine out of service and transport it to the repair bay and initiate repairs.

When a deterministic component has reached its predetermined life or a stochastic
component has failed, the engine is forced to undergo maintenance at the repair bay.
At this time a decision of what components should be replaced has to be made.
There is an opportunity to do preventive maintenance and replace more than the
failed component and hence increase the time to the next repair. What an optimal
solution is depends on the relative costs of the components and the cost of bringing
the engine to service.

The optimization problem above is stochastic because the life of the stochastic
components are random and can be formulated

> = min / () dG(u) = min BLf(x, U)] (7)

where f(x,u) is the cost when using action z and the random outcome is u. We want
to find the minimal expected cost z when G is the distribution of U and X some
restriction of z.

It is possible to solve this type of problem with dynamic programming, see Bell-
man [6], but when the number of possible system states increases, dynamic program-
ming becomes unsatisfactory to use. The problem can then be represented as a 0-1
linear programming problem cf. Andréasson [2].

11



4.1 Discretization and scenarios

In the formulation of the optimization model, the time span is divided by several
equidistant points. The discretization impacts how the stochastic components can
be represented in the optimization since the continuous life distribution has to be
replaced by a discrete version.

When a suitable discretization has been found on the form (p;, u;) where w; is the
point of support with mass p;, problem (7) reduces to

z= gél)f(lz f(@,u;)p;. (8)

Even with this representation there is a need to decrease calculation time by
decreasing both the time resolution, that is longer distance between the equidistantly
points, and also decrease the number of points of support in the representation of
the life distribution. Furthermore, as the point of support has to coincide with the
equidistant points this constrains the discretization even more. The issue of finding
a discretization that suits the optimization model is addressed in paper D.

Finding a discretization of U and model with it as in (8) is called to create
scenarios. Each outcome u; is a possible future scenario. Creating a scenario tree
for a component that covers the entire planned life of the engine involves not only
discretization of the first stochastic component but also the stochastic component
that replaces the first and so on. In paper D only discretization of the first stochastic
component was considered. The replacing stochastic component was modeled as
deterministic with u; = E[U] and p; = 1.

For further discussion of stochastic optimization with scenarios, see Kall and
Wallace [18].

4.2 Multistage problems

Modeling over time where decisions have to be made on several occasions makes it
natural to introduce stages. Assume we have to make decisions today that influence
the decisions tomorrow that affect the future. We can then introduce a multi-stage
model with three stages: today = 0, tomorrow = 1 and future = 2. Let fy denote our
cost function today and let f;,, denote the cost function tomorrow, which depends
on o, the decision today. The cost function in the future f5|,, ., depends on both
the decisions we make today and tomorrow. In this case the three-stage problem can
be written.

2= mip fo(zo) 9)
where
fo(zo) = zlen)lcif(lzo)f”””o (z1) (10)

12



and
T1) = min T 11
f1‘$0( 1) ;EzEXg(zo,zl) f2|zo,w1( 2) ( )
where 1, %9,z are variables and X7, X», X3 are their domains.

The optimization model used in paper D is formulated as a two-stage problem
which has integer restrictions on the z variables. A problem with integer restrictions
is much harder to solve than the problem arising if the integer restrictions are re-
moved. For further discussion of stochastic optimization with stages, see Kall and
Wallace [18].

5 Summary of Paper A

In the aircraft industry maximizing availability is essential. Maintenance sched-
ules must therefore be opportunistic, incorporating preventive maintenance activities
within the scheduled as well as the unplanned ones. At the same time, the mainte-
nance contractor should utilize opportunistic maintenance to enable the minimization
of the total expected cost to have a functional aircraft engine and thus to provide
attractive service contracts.

This paper provides an opportunistic maintenance optimization model which has
been constructed and tested together with Volvo Aero Corporation in Trollhdttan,
Sweden, for the maintenance of the RM12 engine. The model incorporates compo-
nents with deterministic as well as with stochastic lives.

The replacement model is shown to have favorable properties; in particular, when
the maintenance occasions are fixed the remaining problem has the integrality prop-
erty, the replacement polytope corresponding to the convex hull of feasible solutions is
full-dimensional, and all the necessary constraints for its definition are facet-inducing.

Assuming that fatigue crack is the underlying failure mechanism, the model from
Paper C that calculates the distribution of remaining life using an empirical crack
growth model, is presented. Furthermore the empirical study in Paper B is presented
and indicates that a non-stationary renewal process with Weibull distributed lives is
a good model for the recurring maintenance occasions.

Assuming that fatigue crack is the underlying failure mechanism, and using the
empirical crack model in Paper C is presented. Furthermore the empirical study
in Paper B is presented and indicates that a non-stationary renewal process with
Weibull distributed lives is a good model for the recurring maintenance occasions.

Using only one point of support for the distribution yields a deterministic re-
placement model; it is evaluated against classic maintenance policies from the litera-
ture through stochastic simulations. The deterministic model provides maintenance
schedules over a finite time period that induce fewer maintenance occasions as well
as fewer components replaced compared to the classic policies.

The error measure from paper D is presented and a study with several points
of support showing that even more can be gained by using more than one point of
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support.

6 Summary of Paper B

Military aircraft engines can offer greater operational availability and be more eco-
nomically maintained through the use of better models to predict times to failure.
Two models are used to analyze data gathered from Volvo Aero Corporation in Troll-
hattan. We are interested in the failure time distribution of the flame holder in the
new RM12 engine. We have limited knowledge about it due to the limited number
of RM12 engines currently in service. We have a large data set containing repair and
maintenance times for the same type of details in the older RM8 engine. This paper
will not discuss how to transform knowledge of the RM8 engine to the RM12 engine
but will instead predict repair or maintenance times for the RM8 engine.

The first model is a non-stationary renewal process (NSRP) and the second is
a non-homogeneous Poisson process (NHPP). We are interested in estimating the
survival function and the hazard rate. In the NSRP we make a non-parametric
estimation of the survival function with the help of the Kaplan-Meier estimator, cf.
Hgyland and Rausand [17]. We use kernel smoothing, cf. Klein and Moeschberger
[19], to make a visual illustration of the density function. When the density function
has been estimated, a parametric model is chosen to describe the times between
repairs. Different estimation methods are discussed. In the NHPP we use the Nelson
Aalen estimator to estimate the cumulative hazard function, cf. Andersen et.al. [1].
The NHPP is using the minimal repair assumption, cf. Hgyland and Rausand [17],
while in the NSRP the time to first repair is independent of the time to second repair.

An error measure is defined to compare how well the different models are suited
to model current data, and we conclude that the NSRP process is the better model.

The NSRP process is developed to model different kinds of repair stations. There
is one repair station at VAC and smaller repair stations closer to the hangars. With
data we show that if engines are repaired at the smaller repair stations the time to
next repair is generally shorter compared to if the engines are repaired at the VAC
station. Finally we make two tests to see if the components are aging, but no aging
is present other than a substantial degeneration after the first repair.

7 Summary of Paper C

In laboratory studies the stress strain cycles and other similar parameters are often
considered known. In real word applications this is not always the case. Still we
want to predict the remaining life of components.

In a case study of the crack growth of the low pressure turbine nozzle is studied.
The historical data we have is limited and we do not know the exact nature of the
crack growth. The temperature cycles in the engine result in the nozzle experiencing
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fatigue and ultimately cracking. A nozzle is considered broken when the largest crack
is above a certain level described in a set of fitness rules.

If we know what missions the plane is going to experience in the future, we
can use those mission profiles and a thermodynamic model to try to estimate the
loads. In this case we are not sure about future missions and we do not have a
complete understanding of the thermodynamic environment. When a crack starts
growing we get airflow through the crack that complicates the heat profile even more.
Moreover, the property of the material changes through oxidation in the crack further
complicating the physics behind the crack growth. Even without the difficulties above
crack growth is stochastic in nature, c.f Virkler et al. [32], Bolotin [8], Yang [34]. If
we want to predict the crack growth and control uncertainties we need a stochastic
model.

Observations of the nozzle cracks show that the crack growth rate decreases as
the crack length increases. D. B. Garcia et al. [16] study decreasing crack growth in
an aircraft nose landing gear drag brace fitting by using a mechanistic model.

In order to model the crack growth and make predictions of the distribution
of the remaining time to failure, a new empirical crack model is constructed. The
variation of the basic components of the model is described by two stochastic variables
describing the initiation time of the crack and the crack growth rate. A profile
likelihood approach is used to determine both the distribution of the time when the
crack reaches a certain size and the distribution of the crack size at a certain time.
Related work using a profile likelihood approach has also been used in Lorén and
Lundstrom [21].

8 Summary of Paper D

Aircraft engines can be more economically maintained and resources can be saved if
the maintenance process is optimal. It can be a hard decision to decide what compo-
nents in an engine to replace when the engine is being maintained. Several optimiza-
tion models have been developed to deal with this problem. Epstein and Wilamowsky
[13] and Dickman et al. [14] have developed models for modeling components with
predetermined deterministic lives. Andréasson [2] has developed a model for details
with deterministic lives as well as details with stochastic lives. Another approach
to the problem is to construct a maintenance policy that is not always optimal but
hopefully good. A survey of replacement and maintenance polices can be found in
Wang [33].

We use the model presented in Andréasson [2] and formulate it as a two-step
model. In order to use stochastic components in the optimization, the density func-
tions need to be in a discrete form and there are also restrictions on what points
of supports are allowed. An error measure closely related to the model is formu-
lated. The error measure quantifies the cost of using different kinds of discretizations
and the size of the error is related to the sup-distance between the distribution and
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discretization. Four discretization methods will be presented and adapted to the
constraints. The first method is the bracket mean method, c¢f Smith [31], the second
method minimizes the Wasserstein distance, cf. Pflug [25] and the third method
keeps the moment of the distribution, cf. Miller and Rice [22]. The last method is a
method that minimizes the sup-distance.

In order to keep down calculation times we want as few points of support as
possible. Test runs with a Weibull distribution are done to compare the different
discretization methods and conclude how the choice of number of points of support
affects the accuracy. In the test the method that minimizes the Wasserstein and Sup-
distance performed best. The method that preserved the moments performed worse.
The error decreases with the number of support points. The minimum number of
points of support that is suggested is three.

Finally the consequence of using a narrow scenario tree is discussed. A component
that is exponentially distributed is sometimes replaced although the component is
not aging.

9 Improvement of data gathering

In order to make better predictions and more accurate models, improvements in the
data gathering and storing can be made.

In the current work description at VAC, the state of the stochastic components
is observed if the engine is dismantled in the repairbay. However, the observations
are not stored unless the observations state that the component has broken a fitness
rule. The state data used in this thesis was an exception and comes from a few
pri-engines. A pri-engine is an engine that is used to a great extent to catch critical
errors before the main fleet reaches the same usage level. Conditions of pri-engines
are stored more carefully. If a system for handling and storing state data information
was created it would be possible to make models predicting remaining life for more
components.

Observations of the state of the components are also to some extent made at the
military hangar. If this information was to become available it would further increase
possibility to make models.

The survival data for covariates consists of accumulated numbers of events that
a detail has experienced from creation to death or censoring, no matter if the detail
has been repaired several times. Better analysis could be performed if we knew the
accumulated value of the parameter at every repair.

Storing more than the accumulated value of the parameters would facilitate the
use of more advanced models, cf. e.g. Roemer and Ghiocel [28] and Roemer and
Kacprzynski [29]. The advantage of the extension to those ideas is that the informa-
tion collected during flight can directly predict the remaining life. Possible problems
with such models is the high level of noise and variation in data, cf. Krok and Ashby
[20].
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10 Future work

In order to get the optimization model to work with the stochastic components from
RM12 more work needs to be done. The following are some suggestions for future
research.

The lives of the stochastic components may be dependent among themselves but
also affected by the age of deterministic components and the age of the engine itself.
It is not obvious how to get this information from the existing data. There is also
dependence between some parts because they were observed when the engines were
sent in for repairing other failures.

If and when new data becomes available, new empirical or mechanistic models
can be created for the remaining stochastic components. The accuracy of the current
empirical model for the low pressure turbine nozzle may be increased by using a more
mechanistic approach. Such an approach would need to evolve a combined stress,
heat and fluid model in additional to statistic model.

The question of how to handle several competing failure nodes on one component
has not been addressed in this thesis. When more data is available it is possible that
some components will experience different kinds of failures. Competing risk models
would be able to model this behavior. Competing risk models deal with the concept
that a component is subject to failure as a result of the action of failure processes,
which are competing to be the cause of the failure.

In the first years of the project the calculation to solve the optimization problem
was time-consuming. Recent research in finding faster algorithms and new software
has made solving more complex problems possible but it is still problematic to solve
the optimization problem with stochastic details. A first step is to be able to model
stochastic details with several points of support in a larger problem than the problem
in paper D. A second step would be to model more than the first failure of a stochastic
component with several points of support. A third step would be to reformulate the
model from a second stage model to a model with more stages.

When modeling several stochastic components with several points of support,
questions would arise how the joint distribution should be represented in the opti-
mization model. There would also be questions about what the scenario tree should
look like.
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Optimization of opportunistic replacement
activities:
A case study in the aircraft industry
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Abstract

In the aircraft industry maximizing availability is essential. Maintenance
schedules must therefore be opportunistic, incorporating preventive mainte-
nance activities within the scheduled as well as the unplanned ones. At the same
time, the maintenance contractor should utilize opportunistic maintenance to
enable the minimization of the total expected cost to have a functional aircraft
engine and thus to provide attractive service contracts. This paper provides
an opportunistic maintenance optimization model which has been constructed
and tested together with Volvo Aero Corporation in Trollhdttan, Sweden for the
maintenance of the RM12 engine. The model incorporates components with de-
terministic as well as with stochastic lives. The replacement model is shown to
have favourable properties; in particular, when the maintenance occasions are
fixed the remaining problem has the integrality property, the replacement poly-
tope corresponding to the convex hull of feasible solutions is full-dimensional,
and all the necessary constraints for its definition are facet-inducing. We present
an empirical crack growth model that estimates the remaining life and also a
case studied that indicates that a non-stationary renewal process with Weibull
distributed lives is a good model for the recurring maintenance occasions. Using
only one point of support for the distribution yields a deterministic replacement
model; it is evaluated against classic maintenance policies from the literature
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through stochastic simulations. The deterministic model provides maintenance
schedules over a finite time period that induce fewer maintenance occasions as
well as fewer components replaced.
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Introduction

Industrial activities are often characterized by the use of very expensive equipment
that needs to be utilized as efficiently as possible to pay back the cost of investment.
This essentially means that the equipment should be used with as few and short
interruptions as possible. Typical examples are power plants (e.g., nuclear plants),
processing industry (e.g., paper plants) and the aviation industry. A vital part of the
latter case is concerned with the maintenance of aircraft engines.

When an aircraft engine is removed for overhaul, it needs to be replaced by a spare
engine to facilitate the use of the airframe as it is the operator’s main interest to
have access to operational aircrafts during the maintenance period. This is normally
achieved by the use of spare engines. These engines could be owned by the operator or
the maintenance supplier, but also be leased from a third party. The cost for the spare
engine is always high, irrespective of how it is obtained. Every maintenance event is
therefore associated with a large, more or less fixed, cost in addition to the variable
cost (e.g., material costs). As this fixed cost is independent of the actions that are
performed, there is a need to consider that the maintenance event is an opportunity
for preventive maintenance—an opportunity that should be used in an optimum way!
In essence the cost for production interruption must be balanced versus the variable
cost of the maintenance event. (This is often denoted opportunistic maintenance, cf.

[11].)

An aircraft engine consists of thousands of parts. Some of the parts are safety-
critical, which means that if they fail there will be an engine breakdown, possibly with
catastrophic consequences. Therefore, the safety-critical parts have fixed life limits,
and must be replaced before these are reached. Hence we consider the safety-critical
parts as having deterministic life limits. These limits are measured in "cycles" and
are strictly regulated. All other parts of the engine are considered to have stochastic
lives. The problem with them is that their lives need to be estimated, which makes it
difficult to compute a reliable replacement schedule. For some of these parts failure
distributions may be computed from historical data and monitoring observations.
This information could then be discretized and be used as an input into optimization
models. Section 4 contains a detailed discussion on this topic.

When a deterministic life limit is reached, or when there is another indication that
the engine is not performing as it should, the engine must normally be taken out of
service and sent to the workshop. This is, as earlier indicated, an opportunity for
preventive replacements of non-failed parts with stochastic lives and of deterministic
parts that have not yet reached their respective life limits! An issue at this point is
thus to know which actions should be taken and which parts should be replaced.



A current trend in service workshops in the aircraft industry is to offer the complete
undertaking of the maintenance of all engines belonging to the customer. This results
in contracts where the customer pays a fixed price per flight hour and the maintenance
supplier ensures access to a working fleet of engines throughout the contract period.
The ability to offer attractive contracts is therefore to a large extent dependent on
the actual flight hour cost that can be achieved by the use of good planning practices.
When the maintenance contract has been signed, the profit for the supplier obviously
is directly related to how well the maintenance is carried out.

When the time period for a maintenance contract runs out it is typically advantageous
for the workshop that the remaining lives of the parts of the engine are small (at least
if a sequel contract has not been signed). Contracts however often describe how the
difference in engine status, between start and end of contract period, should be
regulated. How the value of this status should be computed must therefore be stated
within the contract, so that it can be taken into consideration when the maintenance
is planned.

In this article we develop maintenance optimization models to minimize the total
expected cost to have a functional aircraft engine (consisting of parts with determin-
istic life limits and stochastic lives) during a finite time period (such as the contract
period or the expected life span of the engine). The output from these models is
replacement schedules for each maintenance occasion. The optimization models are
however primarily intended to be used to determine a preliminary work scope when
the aircraft engine is taken to the service workshop.

1 Maintenance activities at Volvo Aero Corporation

1.1 Preliminaries

VAC (Volvo Aero Coroporation, Trollhdttan, Sweden) manufacture and maintain the
RM12 engine, which is the engine of the military aircraft JAS 39 Gripen. Gripen
is mainly used by the Swedish Air Force (SAF), whose fleet encompasses about 200
RM12 engines. The discussion below is mainly restricted to the RM12 and the
relationship between VAC and SAF where SAF and VAC jointly strives for as low
total flight hour cost as possible.

The RM12 engine consists of several modules, each comprising several components
(the modular concept is briefly discussed in [14]). The modules, that each contain
a number of components or parts, can individually be removed (and replaced), and
shipped to and from the workshop. When a component is to be replaced the corre-



sponding module is, if required, sent to the service workshop.

Some of the parts in the RM12 engine are life limited. The life limits of these parts
are measured in the number of "cycles" they may be used. For a given part this
number depends on the load profile during the use of the engine up to that time
point, so when the engine is driven hard the number of cycles accumulates faster.
The life limits are calculated such that the probability that a part fails before its
estimated life limit is over is lower than one per mille.

1.2 The structure of the RM12 engine

In order to remove a specific part from a module it is most often necessary to remove
other parts as well. Figure 1 illustrates the structure of the deterministic parts of
the RM12 engine. Often there are several ways to reach a specific part. According

5 e s b
7\
9 ® @ © ®
o s | b b |, o
@ @ \ 9) =10 PRESSURE TURBIN
k03| (o6 D PRESSURE
FAN COMPRIESSOR Bl
@
GEAR BOX

Figure 1: A graphical representation of the deterministic parts of the RM12 engine.
FEach box represents a module, each node part, and each arc a possible path to reach
the part towards which the arc is pointing.

to Figure 1 there are two possible ways to remove part 8 in the fan module. First,
one has to remove parts 1, 2, and 3 (in this order), then either part 5 or part 6, and
finally part 8.

1.3 Components and maintenance schedules

The maintenance of aircraft engines is either planned or un-planned (on condition).
In each engine there are sensors at different locations that continuously measure, for
example, pressure, temperature, the number of ignitions, and the number of cycles



accumulated for each part, which are also kept on record. This data is used to
establish when on condition maintenance need to be performed, but also supplies the
basis for the life usage calculations.

A need for maintenance (or replacement) appears when a part reaches its life limit,
fails or if the engine monitoring system indicates that the engine does not perform
as well as it should. Unplanned maintenance also occurs due to unexpected events
as accidents—sometimes birds are sucked into the turbine and through the engine,
causing heavy damages—or the failure of a part with stochastic life. When this
happens SAF places a maintenance order at VAC. The engine or module(s) that
needs to be serviced is then sent to the service workshop.

When a module arrives at the service workshop at VAC the preliminary work scope
is determined. Inspection, using advanced techniques, such as fiber optics, can be
used at this stage. The module is then disassembled to the level required; parts are
removed, cleaned and further inspected. A decision of the final work scope (e.g.,
which components to replace etc) is then decided jointly by SAF and VAC.

Repair times, but especially the delivery times, for new replacement parts, are often
very long. Because of this, components are often replaced by components from stock
to save time. Both new and used components are kept in stock, where the used parts
generally have a shorter remaining life span.

When the engine is taken to the workshop in order to replace any part there is an
opportunity to replace also parts with stochastic lives that have not yet failed and
deterministic parts that have not yet reached their estimated life limits. This is often
denoted opportunistic maintenance ([11]) and is mainly motivated by the fixed cost—
independent of which parts that are replaced—associated with taking the engine to
the workshop.

When the engine is at the workshop the parts with stochastic lives are inspected and
their respective conditions are estimated. Based on this estimation and historical data
their failure distributions can be computed using methods described in Section 4. The
optimization model computes what to replace at the specific maintenance occasion in
order to minimize the total expected maintenance cost within the planning horizon,
given inputs from the failure distributions and the remaining lives of the deterministic
parts, as well as material costs of new parts, work-cost to replace parts, etcetera.

At every maintenance event a new optimization of the maintenance schedule is per-
formed. Each time a part with a stochastic life is inspected more information is
also received about its condition; its failure distribution can then be updated, which
results in a smaller variance.



To summarize, the optimization model described in this paper aims at minimizing
the total expected cost during a given time period. The developed optimization
model is designed to consider the cost for interrupted production while minimizing
the cost of maintenance. In practice meaning that the model will strive to create
a maintenance plan with as infrequent maintenance occurrences as possible while
maintaining a sound use of replacement parts, new as well as used parts.

1.4 Contracts

When the time period for a maintenance contract runs out it is typically advantageous
for the workshop that the remaining lives of the parts of the engine are small (at least
if a sequel contract has not been signed). The earlier a customer signs a new contract
the better the maintenance activities can be planned. A reasonable policy for the
workshop is to give the customer some type of discount if a new contract is signed
before the current contract runs out.

An optimization model aims at minimizing the total expected cost during a given
time period, so if this equals the contract period the model will tend to make use of
the values of the parts as well as possible. The required status of the engine at the
end of the contract period (which depends on the remaining lives of the parts) can be
given in the contract. It can then be considered as a constraint in the optimization
model (in fact, this is a type of availability constraint). It is also possible to assign a
value to the engine (for the workshop) at the end of the contract period that depends
on the remaining lives of the parts. How this value shall be computed must then be
given in the contract, so that it can be taken into consideration when the maintenance
is planned.

1.5 Maintenance principles

The literature on maintenance principles has been reviewed; see [3, Chapter 8]. We
provide here a brief summary of our findings. (For general reviews, see [6], [27], [29],
[91, [16], [5], [12], [23].)

Under an age replacement policy a component is replaced at failure or at a specified
age, whichever occurs first. The basic age replacement policy is described in [6]. Fox
[15] refines the age replacement policy by incorporating discounting, that is, the loss
incurred at a replacement decreases with time. This model is further investigated
by Ran and Rosenlund [28], who also perform a sensitivity analysis, and give some
numerical examples. Age replacement policies can also be governed by condition
monitoring devices; see, e.g., Kumar and Westberg [20].



Under a block replacement policy the components of a system are replaced at failure
or at fixed times kT (k = 1,2,...), whichever occurs first. The basic block replace-
ment policy is described in [6]. The main drawback of the block replacement policy is
that practically new items might be replaced at planned replacement times. Berg [7]
presents a modified block replacement method where failed items are still replaced
after failure, but items possessing the age b € [0,T") or less at a scheduled block
replacement point are not replaced by new items. The objective is to find b and T
such that the expected cost per unit time and item over an infinite time horizon is
minimized. Archibald and Dekker [4] extend the modified block replacement policy
presented in [7] in two ways. They consider (i) a discrete time framework which
allows the use of any discrete life distribution, and (ii) multi-component systems.
The case when the system consists of identical components is treated in detail, and
an example with a Weibull life distribution is presented. The authors outline how to
extend the model to multi-component systems with nonidentical components.

Sometimes failed components can be detected and replaced only by inspection. There
is a cost related to the time a component is not operative. Under an inspection policy
the objective is to find the inspection schedule that minimizes the expected average
cost.

Maintenance policies such as age and block replacement are examples of scheduled
maintenance policies. These policies are easy to implement since they have a clear
structure. Nevertheless, often condition based maintenance can be better and more
cost, effective. Under a condition based maintenance policy a technical state of the
system is monitored or inspected, and when a specific threshold value is reached
the system is replaced or preventive maintenance is performed. The principles and
implementations of condition-based preventive maintenance are discussed by Mann
et al. [19], who also compare the age replacement and condition-based policies.

Opportunistic maintenance refers to the situation in which preventive maintenance
is carried out at opportunities. In the literature it is sometimes assumed that these
opportunities arise independently of the failure process; sometimes the opportunities
are by definition equal to failure epochs of individual components. In the latter case,
due to economies of scale (for example, fixed costs at each maintenance occasion
independent of what is replaced), the unpleasant event of a failing component is at
the same time considered as an opportunity for the preventive maintenance of other
components. This situation is typical for the maintenance of aircraft engines.

Finally, we refer to previous application work on aircraft engine maintenance. (A
deeper treatment of the theory and the applications presented below in [17] and [18]
can be found in [21].)

Hopp and Kuo [17] study the maintenance of an aircraft engine by dividing the parts



into non-safety-critical and safety-critical parts. The non-safety-critical parts do not
fail, but the cost of loss of performance increases with age. A safety-critical part
has a life distribution, and when it fails it destroys the whole system but it has
no associated cost for loss of performance. The authors draw the conclusion that
optimal policies are likely to be extremely difficult to compute and—since their form
is complex—very difficult to communicate and use in practice. Therefore, heuristics
are suggested for the case of a system with zero or one safety-critical component
and multiple non-safety-critical components. Lower bounds on costs are computed
to evaluate the performance of the heuristics.

In [18] the maintenance of the compressor of an aircraft engine is considered. It is
assumed that fatigue crack is the underlying failure mechanism and the crack growth
is due to the number of “shocks” monitored by sensors. The available information
about the crack growth process is the crack size observed at the most recent inspec-
tion /replacement and the number of shocks experienced since then. At the beginning
of each flight it is decided—based on the observed state and the number of shocks
to be incurred during the flight—whether or not to schedule an inspection at the
end of the current flight. After inspection the true crack size will become known,
and it must be decided whether a blade replacement is needed or not. A dynamic
programming recursion for the problem is developed. The authors point out that
a general policy from a complex dynamic program can be difficult to compute and
communicate, and therefore it is useful to characterize the optimal policy as having
some kind of simple structured form. This turns out to be possible for the compressor
maintenance problem. (Crack growth modelling and monitoring is also a basis of our
maintenance model.)

1.6 Scope and outline

The main part of this article deals with the development of optimization models for
the maintenance of multi-component systems consisting of parts with deterministic
or stochastic lives. In the main part of the related literature one assumes that the
systems consist of parts with stochastic lives only, the time horizon is infinite, and a
policy is used to find a replacement scheme. Also, it is clear from the literature that
it is extremely hard to find an optimal replacement schedule when the number of
parts is large, and hence different replacement policies are developed. Such policies
reduce the complexity of the problems, but the solutions found are most often not
optimal. Further, the literature points out that the case of a finite time horizon is
even harder than the infinite time horizon case.

In our aircraft application the time horizon is finite and the number of parts is
large, so if all of them were stochastic it would be necessary to use replacement
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policies. However, about 75% of the components considered in an aircraft engine
are deterministic, so our problem is more structured than the completely stochastic
systems considered in the literature.

The contribution of this paper is three-fold. First, we provide a linear integer oppor-
tunistic maintenance model for aircraft engine modules, based on the replacement
model presented in [13]; we establish its advantages over simpler policies from the
literature and current practice at VAC in providing good schedules. Second, we es-
tablish attractive mathematical properties for its efficient solution; this is especially
important because in a future development, maintenance schedules are to be opti-
mized for entire engine fleets, wherein the model developed here will be a sub-model.
Third, we establish statistically valid methodologies for encorporating parts with
stochastic lives in our model, through the estimation of their remaining lives.

The remainder of the paper is organized as follows. In Section 2 we present a mathe-
matical model for generating optimal replacement schedules over finite time horizons
and provide a numerical example showing the influence of fixed costs for the main-
tenance of a module on the importance of opportunistic maintenance. In Section 3
we perform a polyhedral study of the convex hull of the set of feasible solutions to
this model, referred to as the replacement polytope. We show that the replacement
polytope is full-dimensional under general assumptions. Also, we show that if the
variables associated with the fixed costs in the model are fixed to integers, then the
polyhedron arising from the continuous relaxation of the variables associated with
the replacement of the parts is integral. The inequality constraints in the original
formulation are studied and we show that several of them are facet-defining. Fur-
ther, we show that the inequalities in the original formulation are not sufficient to
completely describe the replacement polytope. By using Chvatal-Gomory rounding
we construct a new class of valid inequalities and show that these inequalities (in
some cases) are facet-defining. In Section 4 we outline survival estimation models,
and show how measurements of crack development in parts with stochastic lives can
be used to define, and enrich, Weibull distributions for the estimation of conditional
life distributions. Section 5 presents the current maintenance policy used at VAC, as
well as an age replacement policy; Section 6 is devoted to a numerical study of the
stochastic properties of the optimization model and of the above-mentioned policies
in the form of stochastic simulations; it shows that the optimization model always is
to prefer to simple policies, even when the uncertainty in the lives of the stochastic
parts is quite substantial.
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2 A deterministic, opportunistic maintenance
model for an engine module

Consider a system consisting of N deterministic parts and a finite time horizon
discretized into 7' + 1 time steps t = 0,1,...,T > 2. At time step t = 0 all of the
parts of the system are new and at time step ¢ = T the system will be discarded. We
introduce the set N’ = {1,..., N}. The life of a new part of type i € N is T; > 1
time steps and its purchase cost is ¢; > 0 monetary units. There is a fixed cost of
d > 0 monetary units associated with each replacement occasion, independent of the
number of parts replaced at that occasion. The objective is to minimize the cost of
having a working system between the time steps 0 and T'.

2.1 The model

In order to formulate a linear integer programming model that solves the replacement
problem, we introduce the variables

[

, if part 4 is to be replaced at time t,

Tit = ) ieN,t=1,...,T -1,
0, otherwise,

—_

, if any of the parts i € N is to be replaced at time ¢,
Rt = . t:].,,T—].
0, otherwise,

The variables z;; and z; are not defined for ¢ € {0,T}, since it will never be beneficial
to replace any part at these time points. To force the replacement of a part before
its life limit is exceeded we define constraints considering the lives of the parts and
fixed costs. Each part of the system has a fixed life limit and at the very latest, when
this is reached the part must be replaced. A part ¢ € N with life limit T} time steps,
where 1 < T; < T — 1, must be replaced at least once every T; time steps yielding
the constraints

Z zp>1, 4=1,....T-T; i€eN.

Every time the replacement of some part ¢ € N is triggered, a fixed cost must be
paid, indicated by the variable z; having the value 1, leading to the constraints

Ti < 2, ieN, t=1,...,T—1. (1)
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REMARK 1 (strong formulation) The model presented in [13] includes the constraints

 zu<N-z, t=1,..,T-1, (2)
1EN

instead of (1). However, as discussed in Section 3, the constraints (1) are stronger in
the sense that the linear programming relaxation of the formulation including these
constraints has a smaller feasible set than the one including the constraints (2). 0O

If a part of type ¢ € NV is replaced at time step ¢, the cost ¢; must be paid. Further,
if any of the parts i € N is replaced at time step ¢, the fixed cost d must be paid.
A complete model of the minimization of the total cost for having a working system
between the time steps 0 and 7' is then given by

T-1
minimize Z (Z iy + dzt> , (3a)

t=1 \ieN
subject to (z,2) € S, (3b)
where
T;+£—1
S:{(x,z)G]BN(T_l)XIBT_l Z g >1, £=1,....,T-T;, ieN;
t=t

The model (3) is called the replacement problem.

2.2 Numerical illustration

We illustrate how the fixed cost d in the model (3) affects the structure of the optimal
maintenance schedule.

Consider an instance of (3) with T =60, N =4,T, =13, T> =19, T3 = 34, Ty = 18,
c1 = 80, c; = 185, c3 = 160, and ¢4 = 125. The data is chosen so that the relations
between the life limits and the costs are similar to those for the fan module of the
RM12 engine. The model (3) is then solved for each of the fixed cost values d = 0,
d =10, and d = 1000 (in a real maintenance situation d = 10 is the most reasonable
value among the three).
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For d = 0, the total number of replacement occasions becomes 11. Since the fixed
cost is zero there are no advantages with replacing components before their respective
life limits are reached.

For d = 10, compared to the case d = 0 the total number of replacement occasions
has decreases from 11 to five. It is now beneficial to replace the components in larger
groups and they are often replaced before their respective life limits are reached.

Consider finally the case d = 1000. Since the fixed cost is high compared to the costs
of the components themselves it is very important to utilize the opportunity to replace
several components at the same time. The total number of replacement occasions
is four. Actually, since 77 = 13 and T = 60 there exists no feasible replacement
schedule for which the total number of replacement occasions is less than four.

Figure 2 shows the maintenance occasions for the three cases. The horizontal axis
represents the 60 time periods and each maintenance occasion is represented by a
vertical bar, where a dot at a certain height represents a component of the correspond-
ing type being replaced. The figure clearly illustrates how opportunistic maintenance
becomes more beneficial with an increasing fixed cost.

U B AT
S R T R

t=0 t =60

Figure 2: An illustration of the differences between optimal maintenance schedules
ford =0, d =10, and d = 1000. When the fixed cost increases from 0 to 10 the first
three replacement occasions for d = 0 are grouped into one for d = 10. The fourth
replacement occasion for d = 0 is moved to an earlier time point, but still it is just
component one that is replaced. Further, the replacement occasions 5—8 for d = 0
are grouped into two replacement occasions for d = 10. The three last replacement
occasions for d = 0 are grouped into one for d = 10. Similarly, when the fixed cost
is increased from d = 10 to d = 1000, the replacement occasions 2—4 for d = 10 are
grouped into two replacement occasions for d = 1000.
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3 The replacement polytope

In this section we study the structure of the set S, defined in (4), of feasible solutions
to (3). The convex hull of S, denoted conv S, is called the replacement polytope.
The main goal of studying the facial structure of S is to completely describe its
convex hull by a finite set of linear inequalities which will make it possible to solve
the problem using linear programming techniques. Our ambition here is to take the
first steps towards such a complete linear description of the replacement polytope.

We first review some basic results on polyhedral combinatorics. Then we compute
the dimension of the replacement polytope and conclude that some of the inequalities
in the original formulation (4) define facets of the replacement polytope. However,
using an example we show that these basic inequalities do not completely define
conv.S. We then derive a new class of facets by using Chvéatal-Gomory rounding.
We conclude the section with suggestions on further studies on the facial structure
of the replacement polytope.

3.1 DPolyhedral combinatorics

We here review the results on polyhedral combinatorics necessary for the derivation
of our results on the facial structure of the replacement polytope. A comprehensive
survey of polyhedral combinatorics is given in [24].

Let X be a subset of R™. The set X is an affine set if Ax + uy € X whenever z,y € X
and A\, x € R are such that A+ ¢ = 1. A point z € R” is an affine combination of
the points z!,...,2™ € R if there exist scalars Ai,..., Ay, With Ay +---4+ X, =1
such that £ = A\jaz! + --- + A\,,z™. The affine hull of X, denoted by aff X, is the
set of all (finite) affine combinations of points of X. The set X is affinely dependent
if there exists an € X such that = € aff (A \ {z}). Finally, the dimension of the
set X, denoted by dim X, is one less than the maximum cardinality of an affinely
independent set K C X.

A polyhedron in R" is a set of the form
P={zeR"| Az <b}, (5)

where A € R™*™ and b € R™. The equality subsystem (A=,b~) of P is defined by
the rows of the system Az < b that are fulfilled with equality for all x € P. The
matrix A= will be referred to as the matrix corresponding to the equality subsystem
of P.
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PROPOSITION 2 (dimension of a polyhedron, [24, p. 87]) If P C R™ is a polyhedron,
then

dim (P) + rank (A=,b) =n.

If dim P = n we say that P is full-dimensional.

ProPOSITION 3 (]33, p. 81]) Let V be a finite set in R" and let X = convV. Then
each extreme point of X lies in V. d

PROPOSITION 4 ([10, p. 206]) Every polytope equals the convex hull of its extreme
points. ad

Another useful result is that every polytope is a polyhedron.

PROPOSITION 5 ([33, p. 114]) A set is a polytope if and only if it is a bounded poly-
hedron. a

There is an obvious relation between the dimension of a set X C R" and that of
conv X.

PROPOSITION 6 Let X C R™, then dim X = dim(conv X). 0

If all of the extreme points of a polyhedron are integral the polyhedron is called
integral. A matrix is said to be totally unimodular (TU), if all of its square subma-
trices have the determinant 0, 1, or —1. A sufficient condition for a polyhedron to
be integral is given by the following.

PROPOSITION 7 ([10, p. 221]) Let A € R™*™ be a totally unimodular matrix and
let b € R™ be integral. Then the polyhedron defined by Ax < b is integral. d

We will utilize the following characterization of total unimodularity.

PROPOSITION 8 (characterization of the TU property, [24, pp. 542-543]) Let A be a
matrix in Z™>™. The statements (i) and (ii) are equivalent:
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(i) Ais TU;

(ii) For every J C {1,...,n} there exists a partition Ji, J» of J such that

E ars_E Grs

s€J1 s€J2

<1, r=1,...,m. (6)

Let P be given by (5). The inequality mz < mg is called a valid inequality for P if it
is satisfied by all points in P. If 7 < 7 is a valid inequality for P, and

F={zeP|nzx=m},

then F is called a face of P, and we say that mx < mg defines F'. A face F of P is said
to be properif F' ¢ {0, P}. A face F of P is called a facet of P if dim F = dim P—1. It
holds (cf. [24, p. 89]) that if F is a facet of P, then there exists some affine inequality
defining F'.

We now arrive at the crucial result that every full-dimensional polyhedron can be
uniquely represented by its facets.

PROPOSITION 9 ([24, p. 91]) A full-dimensional polyhedron P has a unique (to with-
in scalar multiplication) minimal representation by a finite set of linear inequalities.
In particular, for each facet F; of P there is an inequality o'z < b; (unique within
scalar multiplication) representing F; and P = {z € R" | a’z < b;, i=1,...,k}. O

Propositions 4 and 5 imply that if X C R™ is a finite set, then the polytope conv X
is a polyhedron. Hence, if conv X is full-dimensional, from Proposition 9 it follows
that the union of all facet-defining inequalities of conv X defines a linear description
of it. Therefore, it is of interest to find facets of a polytope defined by inequalities
and integrality constraints. The following characterization, based on the uniqueness
property in Proposition 9, is useful when proving that a certain valid inequality is a
facet.

PROPOSITION 10 ([24, pp. 91-92]) Let P be a full-dimensional polyhedron and let
F ={x € P|mx =mg} be a proper face of P. Then the following two statements
are equivalent:

(i) F is a facet of P;
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(ii) If \x = A for all x € F, then (A, \g) = a(w, mo) holds for some a € R. O

We close this section by remarking that it follows from Proposition 3 that all of the
extreme points of conv .S belong to S. Hence, if we can find a polyhedral descrip-
tion of conv S, then the replacement problem (3) can be solved by standard linear
programming techniques.

3.2 The dimension and basic facets of conv S

In this section we derive the dimension of the replacement polytope conv.S and
investigate the inequalities used to define S in (4). Under natural assumptions we
show that the replacement polytope is full-dimensional. Further, we show that all
inequalities that are necessary in the original definition of the replacement polytope
are facets of the same. Since the proofs are rather long, they are relegated to the
Appendix.

LEMMA 11 The polyhedron defined by

T;+£—1
Yo omu>1, (=1,...T-T, ‘€N, (7a)
t={
—zy > —1, t=1,....,T—1, i€N, (7b)
is integral. O

PROPOSITION 12 (dimension of the replacement polytope) If T; > 2 for all i € N,
then the dimension of conv S is (N + 1)(T' — 1), that is, conv S is full-dimensional.0

REMARK 13 The replacement polytope is not full-dimensional if T; = 1 for some
i € N, since it then holds that z;; = 2 = 1,t=1,...,T — 1, for all (z,2) € conv S.
Letting A= denote the matrix corresponding to the equality subsystem of conv S,
this would yield that rankA= > 2T — 2 and, by Proposition 2, that dim(conv S) <
(N —=1)(T —1). However, the case that T; = 1 is not interesting in practice since it
would mean that component ¢ must be replaced at every time step. d

PROPOSITION 14 If T; > 2 for i € N, then each of the inequalities
T;+€—1

Yo ozw>1, tLefl,...,T-T}, i€N,
t=¢

defines a facet of conv S. a
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PROPOSITION 15 If T; > 2 for all i € N, then each of the inequalities
xz’tszta t:17"'7T_17 i€N7

defines a facet of conv S. a

PROPOSITION 16 IfT; > 2 for all i € N, then each of the inequalities
ze <1, t=1,...,T -1,

defines a facet of conv S. a

PROPOSITION 17 If T; > 2 for all i € N/, then each of the inequalities
Ty > 0, kGN:TkZB, t=1,...,T -1,

defines a facet of conv S. a

REMARK 18 The inequalities in Proposition 17 do not define facets for k € A/ such
that Tj < 2 due to the following. If T}, = 2 then, for each s € {1,..., T —2}, 24s =0
implies that zx,s41 = 2541 = 1 (likewise, z,7—1 = 0 implies that 4172 = 272 = 1)
which yields that rankA= > 2, where A= denotes the matrix corresponding to the
equality subsystem of conv S. Letting Fj, = { (z,2) € conv S | zxs = 0}, it follows
that dim Fs < (N +1)(T — 1) — 2, which implies that F}, is not a facet of conv S. O

Now, the set S is defined by the constraints

Ti0-1
Yo my>1, £=1,...T-T;, i€\, (8a)
t=¢

OS.Z'itSZtS]., t=1,...,T—1, iEN, (Sb)
xit;ztGZ; t:1,...,T—1, Z'GN, (SC)

and it follows from Propositions 14-17 that all of the inequalities necessary in the
description of the set S define facets of conv.S. A natural question then arises: Is
conv S completely described by the continuous relaxation of (8)? Unfortunately, this
is not the case, which is shown by the following example.

EXAMPLE 19 (continuous relaxation) Consider a system with N =2, Ty =3, T, =4,
and T' = 5. Then the problem to

minimize %11 + T12 + 2213 + T14 + 21 + 100220 + 100223 + T24
+ 1021 + 1029 + 23 + 1024
subject to  (8),
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has the optimal solution

(@11, 212, 13, 214) = (0,0,1,0), (9a)
(T21, T22, T23,24) = (1,0,0,0), (9b)
(Zl,ZQ,Zg,Z4) = (1:071;0)7 (9C)

with objective function value 14. However, if we relax the integrality requirements,
we get the optimal solution

(.’23'11,2[312,55‘13,51714) = (05,0,05,05), (10&)
(@21, T22, T23, T24) = (0.5,0,0,0.5), (10b)
(21,22,Z3,z4) = (05,0,05,05), (100)

with objective function value 13.5. Hence the convex hull of feasible solutions to (8)
is not completely defined by the inequalities in (8). O

3.3 A new class of facets: An example

Example 19 shows that the inequalities in (8) are not sufficient to describe conv S.
However, according to the Propositions 14-17 all of the inequalities in (8) define
facets of conv S. Since by Proposition 12 conv S is full-dimensional (under reasonable
assumptions) the minimal description of conv S is unique. Therefore, all of the
inequalities in (8) are necessary in the description of conv S.

To completely describe conv .S we need however also facets other than those in (8).
We study the replacement polytope that arises in Example 19, that is, the convex
hull of the set of all z € {0,1}?** and z € {0,1}* such that

T11+T12+T13 > 1, (11a)
T12+T13+T14 > 1, (11b)
To1+T22+To3+T24 > 1, (11c)

T11 <z, (11d)
12 < 23, (11e)

T13 < 23, (111)

T14 < 24, (11g)

To1 <z, (11h)

Too < 29, (111)

Ta3 < z3, (11j)

Toy < 24. (11k)
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We denote this set by Sex.

By using Chvatal-Gomory rounding (see [24, p. 210]) we construct a new valid
inequality:

PRrOPOSITION 20 The inequality
21+ Z12 + T13 + oz + T2z + 24 > 2 (12)

is a valid inequality for Sex. d

We see that the inequality (12) is not satisfied by the optimal solution (10) to the
continuous relaxation of the replacement problem in Example 19. In fact, if we add
the inequality (12) to the continuous relaxation in Example 19 we get the optimal
solution

(1711,1512;-7713,1514) = (0;0; 1;0);
(@21, T22,T23,T24) = (1,0,0,0),
(21,212,213,2’4) = (1707170)

This is the solution in (9), that is, it is an optimal solution to the original problem!
The valid inequality (12) in fact defines a facet of conv Sex:

PROPOSITION 21 The valid inequality (12) defines a facet of conv Sex. 0

3.4 Conclusions

We have made an introductory study of the facial structure of the replacement poly-
tope. It was shown that the replacement polytope is full-dimensional (if the life
limits of the components are greater than or equal to two time steps) and found
that the inequalities that are necessary to formulate the replacement problem also
define facets of the replacement polytope. Unfortunately, these facets are not suf-
ficient to represent the replacement polytope, as was shown by an example. By
using Chvatal-Gomory rounding we have shown how to find a new class facets for
the example problem. It is straightforward to generalize this class to any instance
of the replacement problem. However, it still remains to investigate the strength of
the continuous relaxation when the new class of facets is added to the replacement
problem.
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4 Towards a model for the stochastic optimization
problem

Assume that {z(t),t € [0,T]} is an RP-valued stochastic process modeling the crack
size of a component in an aircraft engine E during the life span [0,T] of E. When we
have several units F4,...,E, the R? valued processes z(t),...,z,(t) describe the
crack sizes in the units.

During E;’s life the unit will be serviced, at some times t;1,;2,.... Of particular
interest is therefore the time to service of a unit, which could be but is not necessarily
determined by the time to failure, cf. the discussion in Sections 4.1 and 4.1.1. In
general the times to service can be defined as

tin = inf{t >0: :c,(t) € C},
ti,k-‘,—l = inf{t >tk : .’I?z(t) € C} — tig, for k> 1, (13)

where the critical region for the feature process C' is a subset of R’. We make the
assumption that C is independent of ¢t. Thus we make the simplified assumption
that the time dynamics of the feature process does not influence the reliability or
the choice to make a repair. In a real physical situation this is typically too strong
an assumption; C' will depend on time but also on possibly other components in the
feature process, e.g., the rate z and acceleration z of change in z;: In this particular
special case e.g., the first time to failure would rather be

ti = inf{t > 0: (2:(t), 2i(t), 2{ (t)) € C(B)},
where C(t) is a subset of R®P.

Furthermore C is assumed to be the same for all units i, i.e., we assume homogeneity
between units. An interesting first question is whether C' can be assumed to be the
same for all cycles k in (13), corresponding to a renewal type condition. This can be
tested, cf. Svensson [30]. The last assumption could however be loosened by allowing
the critical regions to depend on the cycle, so C' would be a function C}, of the cycle
number k, cf. Section 4.1.2 in the sequel.

The main objective of Section 4.1 is the transfer of structural information: There
are two different types of engines, I and II. These are structurally different, have
different types of laws governing their features, their features are observed in a slightly
different manner and most importantly the amount of data differs significantly; for
type I there exists a large data set whereas for type I the amount of data is limited.
However, the more interesting engine type is the type II engine, being a replacement
of the type I engine. The approach to addressing this is by the use of transfer of
structural information from type I to type II. The underlying assumption behind
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this approach is that the same mathematical model describes the distributions of
the lives for both engine types. Let z(t) be a random element (a real number or a
finite-dimensional vector) with unknown distribution F' = F'(;0) parameterized by a
parameter § € © C R®, with s < co. The distribution for type I engines is denoted
Fy and that of type I engines by Fr;. We assume that the distribution functions
are completely unknown except for the parameter values . A natural assumption on
the relation between Fr and Fjr are that they belong to the same parametric class
of distributions P = {F(;6) : 8 € ©}, and that only the values of the parameters 6;
and 0py differ; this means that F; = F(;HI) and Frr = F(;GI[).

In Section 4.1.4 we use a more specific modeling of the lives: The observations of the
feature processes are of two main types. The first and more crude type of data consists
of times to service, t;, for the units, with or without the corresponding feature values,
z;(t;r). The second and finer type of data consists of repeated measurements in the
same cycle k of the feature process z;(s;1), ;i (8i2), . .., with time points s;; possibly
passing the time to repair so that possibly s;; > t;; for some j, k; this last possibility
is a necessity if we are to make inference on the time to repair for this type of data.
Thus assume that the feature process z(t), which in our application is crack size in a
component, is a stochastic process with a distribution F, = F,(-,0,), with unknown
parameter 6,. Typically, this feature process is not completely observed, but rather
it is observed with some measurement error €;, with distribution F.(-,0,) at times
ik, S0 that observations consist of g(z(s), €;), for some function g, which therefore
has the distribution F(-;8,,6.). Let C be some critical region for z such that the
component fails the first time x hits C, so that ¢;, = inf{¢ : z(¢) € C} is the failure
time. Using the form of z it is possible to obtain the distribution F}, = Fy,, (-, 0,,0.)
of t;5. We then treat the parameter # as a nuisance parameter, and t;; as the
interesting random variable for which we want to obtain the distribution based on
the data g(z(s;k),€;); this is possible using likelihood techniques and in particular
predictive profile likelihood techniques, cf. Mathiasen [22] and Bjornstad [8].

The resulting estimators of life distributions are continuous. However, since the opti-
mization model only treats discrete data it is necessary to make a discretization of the
distributions, using as few points of support as possible for the resulting discrete dis-
tribution, in order to keep the complexity of the corresponding optimization problem
within tractable limits; this is the topic for Section 4.2.2. Finally, we draw some con-
clusions and discuss the implications of the stochastic modeling for the optimization
problem.
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4.1 Structural models for time between repairs

Assuming that the only data at hand are the times between repairs, it is of interest
to study parametric models that describe these well, with a view of transformation
of structural information from type I to type II engines. We will study the fit of two
classes of models: non-stationary renewal processes (NSRP) and non-homogeneous
Poisson processes (NHPP).

The data consists of times between replacements for three details in the flameholder
component. For every detail k we observe a sequence t* = {tf, ..., t¥} of times between
repairs where the last observation is possibly (right-) censored, meaning that for the
last observation we may have the information that the time to next replacement is
longer than the time observed. We model different details as independent, that is,
the corresponding random vectors t* and #* are independent if k # i.

Detail 1 Detail 2 Detail 3
T T T

60

60

60

Figure 3: Histogram on repaired components of each detail. The horizontal axes
correspond to the number of repairs and the vertical ones to the number of component
individuals that have been repaired the corresponding number of times.

Assume that we have an arbitrary but fixed component. We introduce next the two
types of stochastic processes we use to analyze the data: Let ¢; be the time between
the j — 1’th and the j’th repair, and let Fj(t) = P(¢t; < t) be the corresponding
distribution function. Let N(t) = #{¢t; < t} be the corresponding counting process
that counts the number of events that have occured by time ¢.

DEFINITION 22 (renewal process) An independently but not necessarily equally dis-

24



tributed sequence {t;};>1 is called a non-stationary renewal process (NSRP); it is
called stationary if F; = F for all j and some F'.

The inference problem consists of finding appropriate functions F; and assessing
whether in fact F; = F.

DEFINITION 23 (Poisson process) Let {N(t) : t > 0} be a counting process with
intensity function w(t). If the process has independent and Poisson distributed in-
crements it is called a non-homogenous Poisson process (NHPP); if w(t) = w is a
constant function the process is a homogeneous Poisson process.

The NHPP is an appropriate model when one can suspect that there is dependence
between repiar times.

4.1.1 Survival analysis

To describe the distribution of the times between repairs ¢; = t; y+1 — t;,% for a unit
E;, we introduce the survival function S;(t) = P(ty > t) =1 — F;(t) for unit ¢. The
hazard function h;(t) is defined as h(t) = —S'(t)/S(t), if S is absolutely continuous,
and is interpretable as the time dependent conditional failure rate of unit ¢ via the
(formal) relation h;(t)dt = P(t; <t +dt|t; > t). The relations between the hazard
and survival functions are given by

h(t) = —% log S(t),

S(t) = exp (— /0 h(u) du). (14)

For a particular unit that is active, meaning that its feature process x; is not stopped,
the last observation is possibly incomplete in that the unit does not yet satisfy the
criteria for repair. In this case the unit’s last observation time is censored, i.e., it is
only known that the time until failure is larger than the observed time. Thus the
data consists of pairs (¢, ;) with t; the observed k’th time for unit ¢ and §;; an
indicator variable for whether the observed time is a failure or a censoring. One
typically assumes that censoring is due to other mechanisms than the ones governing
the failure time, cf. Andersen et al. [2].

Assume that we have (possibly right censored) data (¢;,0;). The standard estimator
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of the survival function for right censored data is the Kaplan-Meier estimator

so=I(-5em)T-5e5) o

i<t

where Y, (t) = Y1, 1{t; > t} are the number at risk at time ¢, and N,(t) =
S 1{ti < t,6; = 1} are the number that have failed by time t. The hazard
can not be estimated directly from data, since it is a (conditional) density, and nei-
ther can the density f. However, the integrated hazard function H(t) = f(f h(u) du,
can be estimated by the Nelson—Aalen estimator

8; |
Hn(t) = Z Yn(ti_) = /0 Yn(u—) dNn(u)7

t: <t

Using kernel smoothing techniques it is possible to estimate the hazard function as

* F(5)
hn(t) = 22— dN, 16
)= [ A ), (16)
where k is a positive function integrating to one, typically with compact support
(e.g., [-1,1]) and h is the so called bandwidth.

The repeated measurements for one unit E; are typically so few that it is not feasible
to make separate inference for each individual unit based on data only from that unit.
One approach could be to disregard possible differences between units and treat the
gathered data as coming from one homogenous unit E. In this instance S; = S and
h; = h are not assumed to depend on what particular unit E; is being observed.

4.1.2 Model fit

Given a sample ti,...,t, with unknown distribution F' we make a formal test of
the hypothesis H : F = Fp. Since we want to use an adequate model to make a
prediction of the time when the component fails, with the prediction of the expected
failure time according to the model as the relevant prediction; the test statistic

M == (Br(T) - t:)*,

i=1

S|

seams reasonable.

For the NSRP model it is straightforward to calculate M since T; is Weibull dis-
tributed and E[T;] then has a known parametric form. Table 1 shows the observed
M and expected M, squared error for the four first repairs of details 1, 2, and 3.
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Table 1: Prediction error of the NSRP model for details 1, 2, and 3 for the four first
failures and total time to failure.

Detail Failure 1 Failure 2 Failure 3 Failure 4 Average
10 M M, M M., M M M M, M M,
1 3.28 341 192 212 1.57 1.89 161 2.50 2.12 245
2 2.02 2.02 0.06 0.06 0.06 0.06 0.06 0.06 0.34 0.34
935 3 720 745 0.22 021 0.29 026 0.28 0.26 1.05 1.08
329

As is evident M, is mostly bigger than M, which may be a consequence of the fact
that the true distribution has shorter tails than the Weibull distribution.

In the NHPP model the prediction at time tg of the time to the next failure T is
given by

E[T] = /OO e [W (to+t) =W (to)] g;
0

where W is the cumulative intensity

t
W(t) = /0 w(u) du

It is not possible to estimate W for values of ¢ larger than the largest observed life
without assuming parametric models; one remedy for calculating E(T) is to stop
integration at the largest observation. An alternative method, given in Svensson
[30], is exact if W is linear and an approximation if W is close to linear, cf. Table 2.

Table 2: Prediction error of the NSRP model for details 1, 2, and 3 in the four first
failures and total time to failure.

Detail Failure 1 Failure 2 Failure 3 Failure 4 Average
10%x M M M M M
1 4.71 1.89 1.65 1.43 2.39
2 2.23 0.42 0.28 0.16 0.43
3 9.77 0.94 0.88 0.72 1.60

Table 3 shows that the NSRP model seems to be a better model for this data set.

There are two different repair stations: repair stations within close range of the
aircraft A and the main central repair station B. To investigate if there is a difference
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Table 3: Relative error for the two models.

Detail Mnsrp X 104 MnappP X 104 %
1 2.12 2.39 1.13
2 0.34 0.43 1.26
3 1.05 1.60 1.48

between the repairs performed at A and B respectively we estimate the mean time to
repair for the three details but distinguish between repair A and B. In Figure 4 this
is shown for the first five repairs with 95% confidence interval for the mean. There
seems to be a difference between the repair A and B, at least for details 1 and 3, cf.

also Table 4.

400 -

Confidence interval 0.95% of mean Detail 1

300 - 3 j{ ;ik }
200 - %
100 B o 8 % i
0 1 1 1 1 1 1 1 1 1 |
0.5 1 15 2 25 3 35 4 4.5 5 55
Confidence interval 0.95% of mean Detail 2
100
80
60 - { %
o g 8 % fe B
20 1 1 1 1 1 1 1 1 1 |
0.5 1 1.5 2 25 3 35 4 4.5 5 55
Confidence interval 0.95% of mean Detail 3
150 -
100+ 116 jIG ;L 9IL 11‘
50 8 8 8 g g8
0 1 1 1 1 1 1 1 1 1 |
0.5 1 1.5 2 25 3 3.5 4 4.5 5 55

Figure 4: Confidence interval on expected time to failure after repair number 1 to 5.
Stars represent repair type B and rings represent repair type A.

Next we test whether F), depends on n. In Table 4 estimates of 6, a, of the mean
of Weibull distribution ., and of the mean of non-parametric distribution u, are
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Table 4: The parameters 8 and o and the mean p, of the Weibull distribution, and
the non-parametric estimated mean p.

Detail Failure no. Repair Type 6 a bw
554  3.09 496 498

—
—

1 2 A 145 148 131 131
1 3 A 159 146 144 142
1 4 A 109 1.26 101 102
1 5 A 125 198 110 110
1 6 A 119 137 109 109
1 2 B 359 3.00 321 323
1 3 B 330 3.14 295 295
1 4 B 335 2.83 298 296
1 5 B 331 3.69 299 297
1 6 B 297 331 266 272
2 1 - 355 236 315 315
2 2 A 45 1.76 40 40
2 3 A 43 169 38 38
2 4 A 43 1.76 38 38
2 5 A 41 169 37 37
2 6 A 40 176 36 35
2 2 B 41 220 36 36
2 3 B 52 1.04 51 51
2 4 B 62 164 55 56
2 5 B 37 084 41 39
2 6 B 44 229 39 39
3 1 - 589 1.99 522 526
3 2 A 76 177 67 67
3 3 A 58 1.61 52 52
3 4 A 54 143 49 49
3 5 A 65 149 58 58
3 6 A 59 166 53 53
3 2 B 101 191 90 90
3 3 B 106 147 95 95
3 4 B 98 127 91 92
3 5 B 103 139 94 94
3 6 B 119 1.68 106 106

shown for the time to first failure and for the following five times to failure after
repair for details 1, 2, and 3. We notice that the estimates of # and a do not change
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very much between successive repairs if we disregard new components, which makes
it natural to suggest a model with the same distribution for T;, ¢ > 2. Thus there
seems to be two classes of repairs: repair of new components and repair of old ones.

An interesting hypothesis is whether the time to next repair decreases with the
number of repairs. To test this we use the model

Fr.t)=1-—e @D t>0, (6>0,a>0,p>0), (17)

where n is the repair number, implying that the expected time to failure after repair
number 7 is

1
E[T,) = 6p"- I‘(a +1),

and p < 1 thus indicates aging. Maximum likelihood estimates of the parameters
(8, a, p) are shown in Table 5 together with 95% confidence interval over the true
parameter p based on profile likelihood. It seems that if we use p = 1 the resulting
error is very small; no aging parameter is therefore necessary.

Table 5: Parameters in modified Weibull distribution when T;, i > 2 have the same
distribution and a 95% confidence intervals over the parameter p.

Detail Repair type 0 o' p 95% confidence interval
1 A 164 1.43 0.92 (0.8412 , 1.0146)
1 B 371 3.04 0.95 (0.9205 , 1.0026)
2 A 45.7 1.79 0.98 (0.9666 , 0.9902)
2 B 470 1.36 1.01 (0.9205 , 1.0026)
3 A 61.8 1.51 0.99 (0.9794 , 1.0058)
3 B 101.9 1.55 1.01 (0.9846 , 1.0426)

4.1.3 Parametric modeling and likelihood based inference

A refinement of the above inference approach is possible if there were variables that
would influence the distribution of the time between failures. Thus assume that
for each unit E; we are able to measure a vector of covariates z; = (2i1,...,2ip)
and that these affect the survival and hazard functions so that S;(t) = S(¢; z;) and
h(t) = h(t; z;). The standard approach to modeling for inclusion of covariates is the
Cox proportional hazards model. In this one makes the assumption

h(t;z;) = ho(t)ePr#itthrzip,

with hg an unspecified function, the so called baseline hazard, that is the hazard for
an individual that has no covariate load, and g = (f4,...,08,) a vector of unknown
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parameters that determine the size of the effect of the covariate z;, on the hazard
function h and thus on the survival function S. However, in our case the potentially
interesting covariates are highly correlated with the lives, and therefore not amenable
to analysis.

Another approach to modeling the underlying causes for the distribution of lives is
via a physical model; this is more informative than a Cox regression model, since the
latter does not have any physical justification; the great sucess of the latter depends
to a large extent on the generalizability of and ease of calculation in the model.

Assuming that the feature process {z(t) : t > 0} follows a particular form, e.g., based
on physical modeling, it is possible to derive formal expressions for the distribution
of the time between repairs.

4.1.4 The one dimensional case: Crack length modeling

In particular let {z(t) : t > 0} be a real valued stochastic process that describes the
growth of a crack in a component that is crucial for the reliability of a unit. Assume
that a failure occurs when the crack grows past a critical point cp, so that the critical
region is C' = [¢p, 00).

The stochastic model we use for crack growth is

ao, ift <S8,
t) = 18
a(t) {a0+0(t—5)b, if t > S, (18)

where a(t) is the crack length at time ¢, C and S are two stochastic variables and
b > 0 is a parameter, cf Svensson [31]. The parameter b is assumed constant for all
cracks, while C' and S are particular to the crack in question: Thus for crack number
1 we have outcomes ¢;, s; of C, S and the crack is assumed to follow the model above
with C, S replaced by ¢;, s;.

However, we do not observe the cracks directly but rather with some measurement
error: Thus for each crack i =1, ...,k we have n; observations z;; = x;(¢;;) at times
t;1 < ... < tin;- The observations are assumed to follow the model

ao if tij < Si,
max {ag,a(t,-j) + E,’j} if t,'j > Si,

Xi(tiz) = {

with £;; being a sequence of independent N(0,02) distributed random variables.
Thus the distribution of X;(t;;), is conditionally on (c;, s;), a mixture of a discrete
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and continuous distribution, the discrete random variable having a point mass ag at
Sj-

Let 6 = (v,02,b). For crack i we want to find the the distribution of the time
T = inf{t : a(t) > Gmax}-

Assume that we are given previous observations x; of crack ¢, and assume the pa-
rameters 6 of the model are known to us.

Using model (18), it is possible to get an expression for the conditional distribution
and density

P(T <t]X;=x),
frix (txs;6), (19)
which via Bayes’ formula implies

Ixic,s(xi | ¢,8:b,02) fo,s(c,s5)
) i Q) = /2 ’ ) 2
f(C,S)\X, (C,S | X’Ho) in (Xue) ( 0)

Using the model descriptions it is possible to obtain expressions for all factors in
(20), and thus for the parameters in the crack model given observations of cracks.

Let A be the crack length of crack 7 at a fixed time ¢. Similarly we have
_ in\A(Xz' | a;0)fa(a;0)

(a,| x4;0) = 21
Fapei(e, ] 336) . G ) ey
and it is possible to obtain expressions for all factors in 21.
The likelihood for the parameters given data of cracks x = {x1,...,X,} is
n
L(6) = fx(x;6) = [ fx: (x:;0), (22)
i=1

In order to take the parameter uncertainty in account we use a profile likelihood
approach, c.f Pawitan [25], and define the predictive profile likelihood for T' given z;

f,(t | Xi;z—i) = Slgp fT\xi (t | x;;0) fx_i(zfﬁe)- (23)
It is common to normalize (23) to obtain a density function

_ Lt | xi5x_5)
S LG xix ) dt

.fT|Xi (t]xs)
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and use it for inference of T' given x;.

If the number of cracks k is large the predictive profile likelihood in (23) is numerically
demanding to compute. We then suggest to ignore the uncertainty in the parameter
estimation and use 6 = 6 for all times ¢. The likelihood then becomes

L@t xi5x_;) = frix, (¢ | xi50) fx_ (x_i50) = frix, (t | xi30) K,

where K is a constant eliminated by a normalization. The predictive profile likelihood
for inference on the crack length at a specific time is given by

LA | x;x_,) = sup fapx; (a|x:;0) fx_,(x_;;6). (24)

4.1.5 Case study

We use the above model to make predictions on crack growth in a low pressure turbine
nozzle component, for a small data set. We present estimates of the joint distribution
of C and S. and an illustration of the difference of estimating the remaining life with
and without taking the uncertainty in the parameter estimation into account.

The data available is from pri-engines. Pri-engines are engines that are used exten-
sivly so they accumulate a large number of flight hours and flight missions. The
engines have been observed every 200 flight hours.

We first determine the joint distribution of C' and S. Figure 5 illustrates the cracks
and the crack model (18) fitted to the cracks with a least square method. From
each picture we get an observation of S (censored if no crack was detected) and an
observation of C if a crack was detected.

Using a similar procedure for all cracks (more than the four in Figure 5) indicates that
S and C are uncorrelated, which makes it feasible to assume independence between
S and C. Furthermore, by examining the empirical distribution of S and C' we find
that the log normal distribution gives a reasonable fit; we therefore assume that both
S and C are log normally distributed with parameters us, o5 and p., 0., respectively.

4.1.6 Model illustration

Assume that we have observed the cracks on the three first components and we want
to predict when the crack on the fourth component reaches the length amax = 30
mm, that is to find the distribution of T" given the observations of component four.
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Figure 5: Model (18) with ag = 0 fitted to the four cracks.

It is also possible to update the distribution of 7" each time we get new observations,
at 200, 400, 600 and 800 flight hours.

Assume that we know from experience that . = 1 mm, and the other parameters are
unknown. We use the observations from components one, two and three to estimate
the remaining parameters (us, 05, pic, 0¢, b) using equation (22). First we calculate the
distribution of T' using (19), ignoring the uncertainty in the parameter estimation.
The solid line in Figure 6 illustrates the distribution of 7' when ignoring parameter
estimation uncertainty and 6 = 6.

Using the profile likelihood approach (23) we see how much the uncertainty in the
parameter estimates affects the results. In Figure 6 the line with stars is a plot of
the distribution of 7' when we consider the uncertainty of the parameters, the stars
indicating where the distribution has been calculated.

The crack length distribution at a fixed time is obtained similarly. Figure 7 shows
the crack growth over time given the information in our observations.

34



x10™* Time to failure at 200 FH x10°  Time to failure at 400 FH

5
15
4
3 1
2 ¥
0.5
1
o
0b—* 0 Hek
0 500 1000 1500 2000 0 500 1000 1500 2000
Time: FH Time: FH

. x 10  Time to failure at 600 FH c x 10  Time to failure at 800 FH

4
3

3
2

2
1

1
0 e 0

0 500 1000 1500 2000 0 500 1000 1500 2000
Time: FH Time: FH

Figure 6: Distribution of the time when the crack of component four will reach 30mm
both considering uncertainty in parameter estimation (line with stars) and without
uncertainty (solid line). The distribution is updated with the observations at 200
flight hours (upper left), 400 flight hours (upper right), 600 flight hours (lower left)
and 800 flight hours (lower right).

Integrating the function in Figure 7 with respect to crack length we get marginal
function of value 1 for all times. The high values in the upper part of the pictures
is the point mass that indicates that the crack length is below size ag. In the case
of one observation, the upper left picture, we can observe how the probability of a
crack length of length ag decreases as time increases. At 0 FH this probability is
zero. The observation that we have no crack at 200 FH gives a very slim chance
that there would be a crack at this time, hence the probability is almost one. In
the other pictures in Figure 7 we get a feeling that even if we are fairly certain of
the crack length at a fixed time the distribution of when the crack reaches a specific
crack length will have a large variance.

If we combine the probability model with the profile likelihood based approach we
get a comparison of the effect of the uncertainty in the parameters on the distribution
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Figure 7: Three dimensional illustration of how the distribution of the crack length
at a fixed time of component four changes over time. The distribution is updated
each time a new observation is made: first observation at 200 flight hours (upper
left), second observation at 400 flight hours (upper right), third observation at 600
flight hours (lower left) and fourth observation at 800 flight hours (lower right). The
values at crack length 0 corresponds to the probability point mass that there are no
cracks.

of crack length at fixed time. This is plotted in Figure 8 for times 500 FH and 1000
FH.

4.2 An optimal discretization of a continuous distribution

We will treat the case with one stochastic component, which can be extended to
several stochastic components. The life U of a new stochastic component is modeled
with a distribution G and the remaining life of a functioning stochastic component
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Figure 8: Distribution of the crack length at times 500 and 1000 flight hours of com-
ponent four both considering uncertainty in parameter estimation, line with stars,
and without uncertainty, solid line. The distributions are updated with the observa-
tions at 200 flight hours (upper left), 400 flight hours (upper right), 600 flight hours
(lower left) and 800 flight hours (lower right). The observations are marked in the
pictures with "z ".

of age of up is modeled with a distribution G defined by

Gu) = G(u + uo) — G(uo)
l—é(uo) -

We assume that G (u) > 0 if w > 0 and that U is a non-negative random variable.

There are two main simplifications made: The first is that in the sequence of life
distributions for the stochastic component only the first life distribution is modeled
as a random variable, the remaining life distributions are replaced by a functional of
the distribution such as the expected value or the median. The second simplification
necessary is due to the fact that the optimization model does (at least in practice)
not work with continuous time, since it is defined using discrete time points.
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In the sequel we distinguish between the first and second stage models. The first
stage takes into consideration all possible future events, while the second stage model
contains one model for each future event.

Overall we wish to minimize the expected cost of maintaining the engine during a
fixed time period containing 7' equidistant time points. Thus components are only
allowed to be replaced at these time points. The life limits of the deterministic
components are T;, i € A/, as defined in Section 2. The time to the first failure of the
stochastic component is modeled with the distribution G: The life U of the stochastic
component currently in the engine is defined as 7(u) € {1,...,T — 1}. The life of
each replacing stochastic component is defined as 7 & ExU (see Altenstedt [1]) such
that 7 € {1,...,T — 2} (if 7 > T — 1 the stochastic component is replaced at most
once during the time horizon T'). In addition to the costs defined in Section 2, ¢
denotes the cost for a replacing stochastic component.

The binary variables z;;, representing the replacement of the deterministic compo-
nents, and z;, representing maintenance occasions, are defined as in Section 2.1. The
binary variables s; are defined as

1, if the stochastic component is replaced at time ¢

s = ’ . 10 COMPORCITL 15 16p et te{l,...,T—1}.
0, otherwise,

The first stage binary variables are z;; for the deterministic components i € N, s;
for the stochastic component, and z; for the maintenance occasion. We introduce
the replacement strategy vector x; = (z11,---,%nN1,51,21) and define an optimal
replacement strategy for the first stage as

X1 € argmin F(x1),
x1 EBV +2

where

Flx) = / " f(,u) dG(u) = Balf(x1, V)] (25)

The second stage function f(x1,u) represents the cost for the maintenance schedule
conditioned that the replacement strategy for the first stage is fixed to x; and that
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the life of the stochastic component currently in the enginge is u. It is defined as

T—1
f(X1,7(u)) = min Z (Z ciTi + csy + dzt> , (26)
t=1 \ieN
T;+£—1
subject to Z Ty > 1, £=1,....,T-T;, i€eN,
t={
7(u)

Z St 2 17
t=1

T+L—1
> os>1,  L=max{2,7#(u)-7+1},...,T -,
t=¢

T+4—1

£=2,...,7(u) — T,
; 8t 2 8e-1, if F(u)—1 > 2,

Tit < 2, t=1,...,T—=1, ieN,
StSZt, tzl,...,T—l,
Xlzila

Tit, Sty 2 € B, t=1,...,T—1, ieN.

The computation of the second stage function (26) requires a discretization of the
distribution G. Let n € {1,...,T — 1} and define x, = {k1,...,kp} C{L,...,T -1}
such that kj4y1 > kj, j € {1,...,n — 1}. An n-discretization G, of the distribution
G has the probability mass function

pj, fu=k; j=1,...,n,
u) = 27
9n () {o, if u ¢ fo. @7)
A number of methods for defining k,, and p;, j = 1,...,n, are described in Sec-

tion 4.2.2.

4.2.1 Error measure

To reduce the solution time for the optimization requires a discretization with as
few points of support as possible. The n-discretization (27) yields the replacement
strategy

X7 € argmin F,(x1), (28)
x1EBV+2
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with F,, defined as F in (25) with G replaced by G, so that

n

Fu(xi) = Y fx1, k) - py.

Jj=1

As Gr_; is a distribution using the maximum number of support points in the model
we compare the quality of G,, to that of Gy by introducing the error measure for
the expected cost between the two discretizations as

(G, Gr_1) = Fr_y (&%) — Fr_y (&7 ). (29)

In order to get a small error we use the following result (cf. Svensson [32] for a proof).

THEOREM 24 The error measure is bounded by the following:

e(Gn,Gr-1) <2- sup |Fo(x1)— Fr_1(x1)| < C-sup|Gn(u) — Gr_1(u)|, (30)
x1 €BN+2 uER

where C' € Ry is bounded. O

4.2.2 Discretization approaches

When approximating a discretization of G(u),u € [0,00) with n < T — 1 points of
support, the following questions arise: 1) How many points of support to use? 2)
Which points of support &, C k7—1 should we choose? 3) How should we place
the probability mass? Answering the questions 2) and 3) simultaneously may lead
to optimization problems that are as difficult to solve as the original problem. In
Section 4.2.3 we try to answer question 1) using simulation. In Svensson [32] four
different approaches were described: (i) Minimizing the supnorm distance, (ii) us-
ing means in brackets, (iii) minimizing the Wasserstein distance, and (iv) moment
preserving discretization.

Method minimizing the supnorm-distance. A simple calculation
(Svensson [32]) shows that

sup |Gr(u) — Gr—1(u)| — e < sup |Gp(u) — G(u)| < sup |Gr(u) — Gr-1(u)| + &,

where € = sup,, |Gr—1(u) — G(u)| is small when T is large.

We next describe two approaches to bound the supnorm-distance:
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(a) If both the probabilities p = {p; ... pn} and the n support points &, C kr_; are
free, we define

(D, k) € argmin {s%p |G(u) — Gn(u)|} . (31)

PknCRT—1

The solution is not unique since it only considers the greatest difference between G
and G,. (b) Instead of the above optimization we suggest the following approach:

b

: 2(1 = G(k;i—1))
k; € argmin {‘Gu—_——Gki_
uEKT_l\%kl,...,ki_l} ( ) 2(” —1 + 1) + 1 ( 1)

1. Choose the first point of support as

ky € argmin { ‘G(u) _ L

uEKT_1 2n

2. Choose the i’th point of support as

Then choose probabilities as

G(k1) + G(k2)

2 b
G(ki) + G(kiy1) G(ki—1) + G(ki) _ G(kit1) — G(ki—1)
pi= 2 N 2 - 2 ’
pn=1-— )
2
wherei=1,...,n— 1.
Bracket means method. Partition G into n intervals {[to,t1],-..,[tn_1,tn]},

where t; > t;_1, j = 1,...,n, tp = 0, and ¢, = oo, and assign the probability
masses

t;
tj—1
to the time points
1 (b
uj:—-/ tdG(t), j=1,...,n. (34)
Dj ti—1

The intervals can be chosen in many ways, e.g., so that p; = 1/n for all j. In the case
where the points of support have to be in the set k7_1, it is not always possible to
find subintervals such that the mean in each subinterval corresponds to a time point
in kp_1. We present two approximations.
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Approach 1 Let u;(a,b) be a metric measuring the distance between the point
sets a and b. Choose a subset k, C kr—1. Let &, = {ki1,...,kn} € k7—1. The
solution p = {p1,...,pn} is obtained by finding times {t;,...,t,—1} such that

P € argmin pq (kn, Kn) (35)
PEP
where
tj - 1 [ti
6= per |p= [ dct, k= [t
tj—1 bpj ti—1

ti>tii, j=1,...,n,tg=0,t, =00 }. (36)
Solving (35) yields the discretization (27).

Approach 2 Let us; measure the distance between probability vectors and let uao
measure the distance between point sets. Let q = {q1, ..., ¢n} be a probability vector
with desirable probabilities and let &, = {k1,...,kn} € £7—1. Then a discretization
p = {p1,--.,pn} with points of support &, = {k1,...,k,} is obtained as the solution
(D, ) to the optimization problem

(f)a i{;n) S argmin [,U/Zl (pa q) + H22 (K'na R’n)] ) (37)
PEP, knCrT—1
where ¢ is defined in (36). The solution of (37) yields the discretization of the
distribution as in (27).

Method minimizing the Wasserstein distance In Pflug [26] the following dis-
cretization was suggested:

pJ:/ dG(t)a .7:175“)

j—1
where where ag = 0, a; = k"zﬁ, j=2,...,n—1,a, = o0, and {ky,...,k,} =
Kn are the points of support of the given G,,, derived as the discrete distribution
minimizing the Wasserstein distance.

Moment preserving method If there are no constraints on the points of support
and the first 2n — 1 moments of the distribution G are finite, then it is possible to
create a discrete approximation with n points of support that correctly matches 2n—1
moments. Let

Mk:/ uFdG (u),

—0o0
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be the k’th moment. The discretization can be obtained by searching u; and p; that
satisfy

> pjub =M, k=0,...,2n—1. (38)
j=1

We must choose points from the set k7_;. In order to compare the methods we will
use the same points as for the method that minimizes the sup-distance. Rewriting
the problem it can be seen that one may need to remove moment constraints. Then
the solution to the problem is not necessarily unique. In order to choose one solution
we use a function z that represents some desired properties of the discretization (the
function z can, e.g., be formulated to promote p; of the same sizes) and solve

p € argmax z(p),
pPEy

where
n

p=< peR? iju;?:Mk, k=0,....n=1-m, p; >20,j=1,...,n
=1

and m is the number of removed moment constraints.

4.2.3 Test results

We describe the life of the stochastic component with the parametrization,
Gu)=1—e W 4 >0, (39)

where 6 > 0 is the characteristic life and a > 0 is the shape parameter. The maximum
number of time steps is 7' = 30, the distance between the time steps equals one, and
6 = 9. Tests were made with a € {1,2}.

We model the engine with two components, one stochastic and one deterministic.
In each time step there are hence four alternatives: (1) Replace the deterministic
component, (2) replace the stochastic component, (3) replace both components, or
(4) do not replace any components. Optimal replacement alternatives were calculated
using the optimization model (28) with n € {1,...,10} points of support.

The points of support were chosen as in (32). The probabilities were chosen using the
method that minimizes the sup-distance, the method that minimizes the Wasserstein
distances, the method that preserves the moments, and the bracket meansmethod
approach 1.
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The best discretization possible had T'— 1 = 30 points of support, one in every time
point, for which an optimal replacement strategy was calculated according to (28)
with n = T — 1. The difference between the two discretizations, using the error
measure (29), was calculated. The parameters and remaining lives of the components
used are shown in Table 6.

Table 6: Parameters for the optimization model (28) and the distribution (39).

Parameter Alternatives

7(u) 4,6
T 6,10
c 60, 70,100,130, 150
d 70,100, 150
a 1,2

These results indicate that the method that preserves moments seems worse and
the methods that minimize the Wasserstein and the supnorm-distance seem better.
Furthermore, it seems that using two points of support is worse than just using the
expected value of the distribution. Also it seems that there is a large gain in going
to three points of support and that there is not a large gain in going further to more
than three points of support, if we disregard the moment method with a = 1.

Further tests showed that the error measure decreases as a increases. With con-
stant €, the variance of the Weibull distribution (39) decreases with an increasing
value of the parameter a. If the variance is large then it is difficult to get a good
approximation of the distribution with just a few points of support.

Finally, in Svensson [32] it was shown, using a so called narrow scenario tree scheme,
that many details were replaced even if they did not need replacement, which seems
to be due to the approximation that only the first life of the stochastic component
is treated as stochastic, and approximated with a discrete distribution, while the
remaining lives are treated as deterministic with lives equal to the expected value
under the true distribution.

4.3 Output and relation to the optimization problem

The results of the mathematical modeling of the time between failures consist of
three main components:

The first is an empirical evaluation of the distribution of the observed times, with
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Error measure as function of number of points of support, alpha=1
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Figure 9: The vertical axis represents the mean error measure with parameters as in
Table 6. The horizontal axis representss the number of support points. S means the
method minimizing the sup-distance, B means the bracket method, W means the
method minimizing the Wasserstein distance, and M means the moment preserving
method.

respect to the problem of finding possible models that accurately describe the process
of failure times. The main objective in this is to find a more narrow description of
occuring distributions for the lives, that incorporates finite-dimensional parameters.
The goal is to be able to transform structural information from one type of engine—
for which there is a large set of empirical data—to another type of engine—for which
the amount of data is more limited. Therefore, tests were made for two different types
of stochastic processes, the non-homogenous Poisson process and the non-stationary
renewal process, to see which was the better fitting.

The second part consists of physical modeling of, e.g., the growth of cracks with which
one obtains more specific descriptions of the time until failure, which is defined as the
first time the crack reaches a critical length. This part can be seen as a refinement
of the standard approach when using more information.

Finally, since the optimization model for finding a replacement strategy is not devel-
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oped to deal with probability distributions as inputs, but rather with discrete data,
it was necessary to discretize the continuous distributions to discrete oned with only
a few support points. Methods for the discretization were presented, using different
strategies, and they were evaluated in a simple simulation study. Although the sim-
ulations were performed for a simple model they clearly indicate that increasing the
number of support points can make a dramatic change in the cost savings. In the
case studied, typically three support points seem adequate. This seems promising
for the type of optimization problems that we consider.

The random modeling of the lives is decisive for the performance of the optimization
model. An empirical study of the lives indicated that a non stationary renewal process
with Weibull distributed lives was a good model for the recurring maintenance times.
This suggests the use of that model directly on the type II engine data. Using physical
modeling of the crack size and finer measurements gave a better description of the
time to failure/maintenance.

In the example studied, using a discrete distribution for the first life of a stochastic
component, resulted in decreased maintenance cost Here, only a few points of support
were necessary for a substantial gain. Further studies are needed to draw conclusions
for more realistic situations; however the results seem promising for improving the
performance of the optimization model.

Only modeling the first life in the stochastic component as random gives inefficient
maintenance decisions, sometimes replacing new components. This calls for develop-
ing a finer optimization model treating all recurrent lives in the stochastic compo-
nents as random. This potentially may blow up the complexity of the optimization,
because of the discretization: If one treats the subsequent lives, ti,...,t; say, as
independent random variables the resulting multivariate discretized distribution will
have n = nq - ... ng points of support, where n; is the number of support points for
the discretized distribution of ¢;.

5 Maintenance policies

Currently VAC do not utilize an optimization model for the determination of mainte-
nance schedules. In this section we present the policy that VAC use for this purpose
as well as an age replacement policy, which is classical in maintenance planning (cf.
Section 1.5). In Section 6 we then evaluate these policies against the optimization
model through stochastic simulations.
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5.1 A value policy

The methodology currently applied at VAC is a combination of a value policy and
manual adjustments.

A tentative replacement schedule for the current maintenance occasion is provided
by the following value policy. If the remaining life of component i € N is T; the
value of the component is v; = T; - ¢; /T;. Letting d be the fixed cost per maintenance
occasion, according to the value policy, a component with v; < d is replaced. If
v; > d, component i is not replaced.

A problem with this policy is that if component ¢ has a price ¢; which is lower than
d, then the policy dictates that component i is to be replaced at every maintenance
opportunity, regardless of its remaining life. Therefore, the policy is adjusted using
a life limit Thn;, (this value is typically based on customer requirements on the re-
maining life of the complete engine after maintenance). The adjusted value policy
then dictates that if ¢; < d and T; > Timin, then component i is not replaced.

The resulting tentative maintenance schedule is then illustrated graphically in an
Excel sheet and the user can make manual adjustments in order to provide a cheaper
schedule, if possible. At best, this policy may provide schedules that are as good as
the ones provided by the optimization model (3), but it would take very great skills
to achieve this.

The value policy is developed for safety critical (deterministic) components. On
condition (stochastic) components are included by replacing the deterministic life
limits with the estimated lives from the conditional expectation.

5.2 An age replacement policy

Age replacement policies are popular in the maintenance literature, e.g., [6]. Each
component ¢ € N is here given a life limit a;; if the age of component 4 is higher
than a; then the component is replaced. Finding good values of the life limits is a
difficult problem, for which we have implemented the following heuristic procedure.
Let a; := T; — 6, where § > 0. An optimal value of § is found by calculating the total
maintenance cost using the age replacement policy for the values 6 =0,1,...,T and
picking the value of § that corresponds to the cheapest maintenance schedule.

Stochastic components are included in this policy analogously as in the value policy.
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6 Simulations

We investigate how the three models and methods developed above behave in stochas-
tic situations. For this purpose we create 200 scenarios representing the low pressure
turbine’s real behaviour. Table 7 shows its ten components, and indicates which ones
are safety critical (SC) or on condition (OC).

Table 7: Components of the low pressure turbine.

No. Component SC/0C
1 Stator 0oC
2 Exhaust frame SC
3 Roller SC
4  Seal segment, HPT ocC
5 Case oC
6 Nozzle segment oC
7  Shaft, conical SC
8 Seal, air SC
9 Disk ocC

10 Blade ocC

The value of the fixed cost d is based on an estimate of the real cost for transport,
inspection, administration, etcetera, associated with every maintenance activity re-
gardless of which components are replaced. The value of the time horizon, T', has
been set to 1500 flight hours, which is standard procedure at VAC when calculating
maintenance prognoses. We do not specificy costs explicitly, since this information
is classified.

Each SC component has a deterministic life limit. Each OC component is given a
Weibull distributed life, which we vary across the simulations.

In order to appreciate the value of performing opportunistic maintenance at all we
also compare with the “method” of never replacing an SC component which has
not reached its life limit or an OC component which is not considered broken, that
is, no opportunistic maintenance is performed. Unless we discretize time this is an
unrealistic strategy, since it means that components having only a very small fraction
of their lives left still are not replaced during maintenance with the effect that the
module must be taken back to the work shop almost the instant it is being used
again. Thanks to the discretization made, each time interval consisting of 50 flight
hours, it means in our instance that SC components that have a life less than 25
flight hours left will be replaced.
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6.1 The deterministic problem

We begin by assuming that all components have deterministic life limits in order to
produce a first, deterministic, problem. We hence associate also all OC components
with deterministic life limits. Figure 10 shows the results from the four methods.
Here, “None” refers to the use of no opportunistic maintenance, as explained in the
previous section, “Integer”to the optimization model (3), “Age” to the age replacement
policy, and “Value” refers to the value policy currently used at VAC. The notation
“Cost” refers to the total maintanence cost over the time interval studied, in relation
to the total cost of using no opportunistic maintenance.

Number of maintenance occasions
15 Cost

15

1k - None
- Integer
5 [:lAge
osf I:| Value
o
o J .

Figure 10: Number of maintenance occasions and cost for the deterministic problem.

Figure 11 shows for each component 1-10 how many individuals are replaced for each
of the four methods.

Number of parts replaced

I None
[ Irteger ||

Figure 11: Number of components replaced for the deterministic problem.

If no opportunistic maintenance is performed the module is repaired 14 times; each
of the opportunistic methodologies reduce this number considerably. The integer
model provides the best solution by far in terms of total maintenance costs, whence
we see that its use is motivated twofold: both the number of maintenance occasions
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and the total cost is reduced considerably. The age replacement policy has a similar
behaviour but reduces the number of maintenance occasions even further, however
at the cost of replacing components 1, 9, and 10 once too often. (There is no optimal
maintenance schedule with less than four maintenance occasions.) Still, the total
cost is much lower than when no opportunistic maintenance is performed. The value
policy also reduces the number of maintenance occasions, but at the cost of a large
number of replacements of components 6, 7, 8, and 9. This is due to the fact that
the fixed cost is similar to the cost of each of these components, which has the effect
that the value policy dictates that these components are to be replaced (too) often;
a close look at the solution shows that 6 replacements of component 6 simply can
be stricken. This effect will also be present in our stochastic simulations to follow.
Note finally that the total number of replacements of each component is the same
in the optimal solution to the integer model and in the case of no opportunistic
maintenance, which is also a lower bound on the total number of replacements; the
integer model is simply better at grouping these occasions together.

6.2 Stochastic simulations

We next provide results for stochastic simulations with the purpose of learning how
opportunistic maintenance fairs when components have stochastic lives. A scenario
for an OC component is defined as a sequence of values of (real) lives of the com-
ponents that may replace an old component at each maintenance opportunity. A
scenario for the whole system of OC components is made up by scenarios for each
component. In simulations we create 200 such sets of scenarios by drawing deter-
ministic life limits from the respective OC component’s life distribution. Following
the creation of these 200 scenarios we run the three methods for each scenario and
calculate the means of total costs, etcetera. The optimal §-value obtained in the age
replacement policy for the above deterministic problem is utilized in these stochastic
simulations. We also apply the method of using no opportunistic maintenance over
these scenarios in a similar fashion.

The uncertainty becomes more serious with lower values of the parameter 3 in the
Weibull distribution, and with more stochastic components. Our selection of values
of 8 is based on the knowledge that 2 < 8 < 6 for aircraft engine components.
In order to investigate the role of the size of 8 as well as the presence of a larger
number of stochastic components, we have run simulations with values 6, 4, and 2
of B, and for each such value we have run tests with a varying number of stochastic
components.

First, Figure 12 summarizes the experiments where we have, for components 1, 4,
5, 9, and 10 let the value of § vary among the values 6, 4, and 2, thus gradually
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increasing the level of uncertainty.

Number of maintenance occasions - None
20 i I teger
4.

Jlmﬂ I!pﬂ I!HH i

Cost
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il _
5 . . s
B-8

B4 B2

Figure 12: Number of maintenance occasions and cost. Averages from simulations
where 8 = 6, 4, and 2 for components 1, 4, 5, 9, and 10.

Clearly, maintenance planning becomes more and more difficult as the value of 8
decreases; however, while the uncertainty is quite substantial in the last example,
the integer model still reduces the total cost by 7 % compared to performing no
opportunistic maintenance, and for higher values of § the gain is significantly higher
still.

Assume finally that components 1 and 4 have f = 2, components 5 and 6 have
B = 4, and components 9 and 10 have 8 = 6. The result of the simulation is shown
in Figures 13 and 14.

While the uncertainty is quite substantial in this last example, and therefore the
maintenance difficult to plan successfully, the integer model still reduces the total cost
by 17 % compared to performing no opportunistic maintenance. The age replacement
policy fares less well, and is only marginally better.

In summary, we see that maintenance planning should be performed in an opportunis-
tic manner, even when the uncertainty in the life estimates for the OC components
is quite substantial. Using the optimization model always provides a quite large im-
provement over the current VAC method (no opportunistic maintenance), while the
age replacement policy in some cases is even more expensive than the latter. The
optimization model provides the best maintenance schedule in each and every case;
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Figure 13: Number of maintenance occasions and cost. Averages from simulations
where 8 = 2 for components 1 and 4, = 4 for components 5 and 6, and = 6 for
components 9 and 10.
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Figure 14: Number of components replaced. Averages from simulations where 3 = 2
for components 1 and 4, 8 = 4 for components 5 and 6, and 3 = 6 for components 9
and 10.

the effectiveness of the age replacement policy is however problem dependent—it is
not difficult to construct examples when this heuristic provides solutions that are
than 50 % more expensive than that provided by the optimization model.

The optimization model also has the clear advantage over all the other ones that it is
general, in the sense that more general setting can be relatively easily incorporated.
Such extensions could include subsets of the following: additional (side) constraints
on the life limits of some (or all) components at the end of the planning period;
the presence of a warehouse of cheaper, used spare parts; the consideration of the
complete engine, including the associated work costs in disassembling the different
modules; and so on. It is not obvious how to extend, for example, the age replacement,
policy to such additional information.
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7 Conclusions

The optimization model described in this paper aims at minimizing the total expected
cost during a given time period. The optimization model developed is designed to
consider the cost for interrupted production while minimizing the cost of mainte-
nance, in practice meaning that the model will strive to create a maintenance plan
with as infrequent maintenance occurrences as possible while maintaining a sound
use of replacement parts, new as well as used components.

This is obviously a very useful feature for any organization that needs to operatively
schedule and plan the maintenance of any expensive equipment. This type of tool
may also be used to create such values that its use can be sold as an additional
service product. The described method has been developed and tested for a military
aircraft engine, but the potential for use in a commercial context is also encouraging
and depends on the kind of agreement between the maintenance provider and the
customer. The flight hour agreements mentioned earlier in the text are fairly common
within the aero industry.

The usefulness, however, does not end at operative aspects. It also has strategically
and tactical uses, for instance, when performing analyses about which components
would gain the most on product development, i.e., to get its expected life span
prolonged. The engineering work, and cost, required to prolong the life span of a
component can be significant. The outlined methodology offers, for example, the
opportunity to perform tests in order to select better development projects.
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A Proofs of the main results of Section 3

Proof of Lemma 11

We derive the result by showing that the constraint matrix of (7) is TU using the
characterization in Proposition 8. The inequalities (7) separate over i € A; therefore
it suffices to show that the constraint matrix of the inequality system

T;+6—1
> mu>1, £=1,...,T-T, (40a)
t=¢

rg > -1, t=1,...,T—1, (40b)
is TU for each i € .

Let AP € RIT-T:)x(T-1) he the constraint matrix defined by the left hand sides of
the inequalities (40a), that is,

ai =1 sefr..Titr—1}, re{l,...,T-T;}
i 0, se{l,...,r—1}U{T;+r,...,T -1}, T '

(here, {1,0} and {7, T — 1} should be interpreted as @)). The essential property of the
matrix A° is that the ones appear consecutively in each row, that is, if al, = al, =1
and 1 < £ <k <T—1,thenal, =1 for all s € {¢,...,k}; this property is closed
under column deletions. Let B € R(T-Dx(T-1) he the constraint matrix defined by
the left hand sides of the inequalities (40b). Then B equals minus the identity matrix,
—IT-1; if columns are deleted from B, each row will consist of zeros and at most a
single —1. Therefore, it is enough to show that the assumptions in Proposition 8 are
satisfied for J = {1,...,T —1}. Let J1 = {j € J | j odd} and J5 = J \ J;. For each
Le{l,...,T —T;} it holds that

(i i i i _
tap =Gyt =g o O e =1,
if £ odd and T; odd,

i i i i _
tap =yt Y0 — e =0,

i i if £ odd and T; even,
Zaes—zaes:<_ai +d e _ gt +da -0
scdh s€Js 2,0 T Qg o4 0,Ti+—2 T O riqe—1 =Y
if £ even and T; even,
=G+ Qo — A0 — Qg1 =1,
if £ even and T; odd,

\
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and for each £ € {1,...,T — 1} it holds that

1, if £ even,
D b= bee=4-1, if£odd,
s€J1 sEJ> 0, if column £ deleted.

It follows that the assumptions of Proposition 8(ii) are fulfilled. Hence, the constraint
matrix ((A%)T, BT)T of (40) is TU. Since the right-hand sides of (40) are all integral
it follows from Proposition 7 that the corresponding polyhedron is integral. O

Proof of Proposition 12

First note that since § C RN+D(T=1) it holds that
dim(conv S) < (N + 1)(T —1). (41)

Then consider the set @ C R¥Y(T=1) consisting of all 2 € RN(T=1) such that

T;+0—1
Y my>1, £=1,....,T-Ti i€N,
t=¢

zp <1, t=1,....T—1, ieN.
Let Ty = 1foralli € NV andt =1,...,T. Then T € @ and since T; > 2 for all

i € NV, it follows that

T;+4—-1
Y mu>2, (=1,..,T-T, i€N.
t=¢

Further, for a given i € N and t € {1,...,T — 1}, since T; > 2 there exists a vector
Z € @ such that Z;; = 0. Hence rankA= = 0, where A= denotes the rank of the
matrix corresponding to the equality subsystem of (). Proposition 2 then yields that

dimQ = N(T - 1).

From Lemma 11 it follows that @) is integral and by Proposition 4 we have that @
equals the convex hull of its extreme points. Hence from Proposition 6 it follows that
there exists N(T' — 1) + 1 affinely independent integral vectors y',...,yN(T-D+1 ¢
Q. But this implies that the N(T' — 1) + 1 vectors ¢',...,¢V T~ are affinely
independent vectors in S, where

yk
¢ = (1) k=1,...,N(T -1) +1,
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and 1 € RT~! is a vector of 1’s (corresponding to the z-variables). Now, since T; > 2,
i € N, there exist T — 1 vectors ¢V(T—D+2  ¢N(T-1D+T in S given by

yN(T—1)+1+k

gV T-D+1+E ( ), k=1,...,T -1,

1- (97
where e = (0,...,0,1,0,...,0)T € RT~! is the kth unit vector. Moreover, it holds
that ¢V(T—U+1+k ¢ aff {¢',... ¢VT-D+k)} k =1,...,T — 1, which in turn implies
that the vectors ¢!, ...,¢NT—U*T are affinely independent. Hence, it holds that
dim(conv S) > N(T' —1)+T — 1. Together with (41) this implies that dim(conv S) =
(N+1)(T-1). 0

Proof of Proposition 14

Since T; > 2 for ¢ € N, conv S is full-dimensional (Proposition 12). Hence, we can
use the uniqueness characterization of the facet description from Proposition 10 to
show the assertion.

For each r € N and each £ € {1,...,T — T,}, let }?’M = {(z,2) € convS |
Zw;—y*l zr = 1 }. Further, let

9, =20=1, d€eN, te{l,..., T—1}. (42)

Since T; > 2 it follows that (2°,2%) € S'\ F,4. Then, defining the point (z*,2z4) =

(2°,2°) except that 2 = 0,t € {£+1,..., T, +£—1}, it follows that (z*,2%) € F,,

and hence that F,., is a proper face of conv.S. Moreover, there exists values on
Ae RVX(T=1) e RT-! and p € R such that the equation

T—1
Z (Z Ait Tt + Mt%) =p (43)

t=1 \ieN
holds for all (z,2) € F,.. We will show that for any value of o € R it holds that
a, fi=randte{l,.... T, +0—-1}, =0, te{l,..., T -1},
Ait = . -
0, otherwise, p=a.

For each i € N\ {r} and each t € {1,...,T — 1}, let (2',2') = (2*, 2*) except that
z}, = 0. It follows that (z',2') € F.. (z*,2*) and (2, 2'), respectively, inserted
in (43) then yields that Ay =0 for alli e N\ {r} and t € {1,...,T — 1}.

For each! t € {1,...,—1}U{T,+£+1,...,T—1},let (22,22) = (z*, 2*) except that
x2, = 0. Tt follows that (z2,22) € Frp. (z*,2%) and (22, 22), respectively, inserted

For £ € {1,T — T, — 1,T —T,} the sets {1,...,£— 1} and {T, + £+ 1,...,T — 1}, respectively,
should be interpreted as @ (and analogously for analogous cases).
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in (43) then yields that A,y = 0 for all ¢t € {1,....4 -1} U{T, +¢+1,....,T —
1}. Further, let (zP,2P) = (2*,2*) except that a8, = 0 and 28, ., ; = 1, and
let (2°,2%) = (2,2") except that 28, , = 0. Tt follows that (z°,2°) € Ely.
(2B, 2B) and (23, 2%), respectively, inserted in (43) then yields that A, 1,1, = 0. The
equation (43) can then be rewritten as

T-1 Tr+£—1
Z Mz + Z )‘rtmrt =p (44)
t=1 t=¢

Foreacht € {1,....4 -1} U{l+1,..., T+ £ -1} U{T. +£+1,...,T — 1}, let
(z*,2%) = (z*,2*) except that = = z# = 0, i € N. Tt follows that (z*,2%) € F,.
(™, 2%) and (2*,2*), respectively, inserted in (44) then yields that u; = 0 for all
te{l,....0—1}U{{+1,..., T, +£—-1}U{T.+¢+1,...,T — 1}. Further, for each
t € {6, T + £}, let (z°,2°) = (2B, 2B) except that 23, = 2 = 0, i € N. It follows
that (z°,2%) € Fp. (2P, 2B) and (2, 25), respectively, inserted in (44) then yields
that uy = 0 for all t € {¢, T, + £}. Equation (44) can then be rewritten as

T,4+£—1

Z ArtTry = P (45)
t=¢{

For each t € {{+1,..., T, + £ — 1}, let (25,2%) = (z*,2%) except that 2%, = 0 and
28, = 1. Tt follows that (z%,2%) € Fy. (z*,2%) and (2%, 25), respectively, inserted
in (45) then yields that A, = A.;. Hence, Ay is constant over t € {¢,...,T. +£—1}
and we define A,y = A\, t € {£,..., T, +£—1}. Since (z*,2%) € F\M it follows that
A = p. Then, letting a = p, the equation (45) can now be expressed as

T, +0—1
a- Z Trg = Q. (46)
t=t
Proposition 10 then yields that the inequality Ez;je_l T > 1 defines a facet of
conv S. 0

Proof of Proposition 15

Since T; > 2 for 4 € NV, conv S is full-dimensional (Proposition 12). Hence, we can
use the uniqueness characterization of the facet description from Proposition 10 to
show the assertion.

For each r € N and each s € {1,...,T — 1}, let F.; = {(z,2) € convS | 2,5 = 25 }.
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Further, let

0 {0, ifi=randt=s, ieN, and 20=1, te{l,...,T—1}.

xy = .
it 1, otherwise,

It follows that (2°,2°) € S\ Fys. Then, defining the point (z*,2%) € F,; as

A=A =1,  ieN, te{l,...T—1}. (47)

it follows that F,s is a proper face of convS. Moreover, there exists values on
Ae RV*(T-1 e RT-1 and p € R such that the equation

T—1
(Z ity + Nt%) =p (48)

t=1 \ieN

holds for all (z,z) € F,s. We will show that for any value of a € R it holds that

a, ifi=randt=s, —a, ift=s,

0, otherwise, 0, otherwise,

For each ¢ € {1,...,T — 1} \ {s}, let (z',2') = (z*,2*) except that z!, = 0. It
follows that (z',2') € Frs. (2, A) and (x!, 21), respectively, inserted in (48) then
yields that Ap, = 0 for all £ € {1 —1}\ {s}.

Similarly, for each k € N\ {r} and each £ € {1,...,T — 1}, let (22, 2%) = (2", 2%)
except that 22, = 0. It follows that (22, 22) € F,. (z?,2%) and (22, 22), respectively,
inserted in (48) then yields that Ay =0 forallk e N\ {r}and all £ € {1,...,T—1}.

For each £ € {1,...,T — 1} \ {s}, let (2%, 2°) = (z*, 2*) except that 23, = 0, i € N,
and 2} = 0. It follows that (z°,2%) € F,s. (24, zA) and (z3, 23), respectively, inserted
in (48) then yields that u, = 0 for all £ € {1,.. — 1} \ {s}. Equation (48) can
now be rewritten as

ArsTrs + MHsZs = pP- (49)

Let (z*,2*) = (2™, 2%) except that 2%, = 0, i € N, and 22 = 0. Tt follows that
(z* ) € F.y. (x%,2%) inserted in (49) yields that p = 0 and (z*,2%) inserted
in (49) then yields that A.s + ps = 0. Letting o = p, the equation (49) can now be
rewritten as

a(trs — 25) = 0. (50)

Hence, Proposition 10 yields that the inequality x,s < 25 defines a facet of conv S. O
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Proof of Proposition 16

For each s € {1,...,T — 1}, let F, = {(2,2) € convS | z, = 1}. Let (z4,2%) € F,
be defined by (47). Further, let

o o {1, te{l,..., T —1}\ {s}, -~

To = 2, =
it 0, t=s,

It follows that (2°,2°) € S\ F; and hence that Fj is a proper face of conv S. Moreover,
there exists valueson A € RV *(T-1) ', ¢ RT~1 and p € R such that the equation (48)
holds for all (z,z) € Fs. We will show that for any value of @ € R it holds that

Aie=0, ieN,te{l,..., T —1}, [ a, t=s,
p=a Fe=10, te{l,...,T—1}\{s).
For each r € N and each £ € {1,...,T — 1}, let (2',2') = (2*,2*) except that
zy, = 0. It follows that (¢',2') € Fy. (2%,2%) and (2", 2'), respectively, inserted

1

x
in (48) then yields that A, = 0forall7 € N and all£ € {1,...,T—1}. Equation (48)
can then be rewritten as

T-1
> ez = p. (51)
t=1

For each £ € {1,...,T — 1} \ {s}, let

AL

It follows that (22, 22) € F,. (z*,2*) and (22, 2?), respectively, inserted in (51) yields
that gy =0for all £ € {1,...,T — 1} \ {s}. Equation (51) can then be rewritten as

WsZs = p- (52)

Since z; = 1 for all (z,z) € F; it follows that us = p. Letting a = us, the equa-
tion (52) can now be rewritten as az, = a. Hence, Proposition 10 yields that the
inequality z; < 1 defines a facet of conv S. d

Proof of Proposition 17

For each r € N such that T, > 3 and each s € {1,...,T — 1} let F.,= {(z,2) €
convS | z,s =0}. Let

z9 =20 =1, ieEN, te{l,...,T—1}, (53)
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and let (z*,2%) = (2°,2°) except that z2, = 0. Since (2°,2°) € S\ F,, and
(z*,2%) € F,,, it follows that F,, is a proper face of conv S. Moreover, there exists
values on A € RVX(T=1) 1, ¢ RT=1 and p € R such that the equation (48) holds for
all (z,2) € Fys. We will show that for any value of a € R it holds that

)\it_{a, ifi=7randt=s, ie€N, p=0, Yt and p=0.

0, otherwise,

Foreachi € N andeacht € {1,.. .,T—l}, let (z',2') = (24, 2%) except that z}, = 0.
Since T, > 3, it follows that (2',2') € F,,. (z*,2%) and ( ,21), respectively,
inserted in (48) then yields that A\ = 0 for all (i,t) € {NV x {1,. T LI\ {(r,s)}.
Equation (48) can then be rewritten as

T-1

ArsTrs + Z Wz = p. (54)
t=1

For each t € {1,...,T — 1}, let (22, 2%) = (¢*,2*) except that 2% = 27 =0, i € N.
Since T, > 3, it follows that (22,2%) € F,,. (z*,2z") and (2?,2?), respectively,
inserted in (54) then yields that y; = 0, t € {1,...,T — 1}. Since z,, = 0 for all

(z,z) € E,s we have that p = 0. Letting a@ = \,, the equation (54) can be rewritten
as az,s = 0 and the proposition follows. d

Proof of Proposition 20

Aggregating the constraints (11a)—(11d), (11g)—-(11h), and (11k) yields the inequality
221 + 2212 + 2213 + x22 + Taz + 224 > 3,

which is valid for Sex. Multiplying this inequality by % results in the valid inequality

1 1
21 + X192 + 213 + 2$22 + 255'23 + 24 >

l\DIC»J

Rounding the coefficients in the left-hand side of this inequality up to the nearest
integer yields the valid inequality

N

21+ T2 +T13 + Tz + Taz + 24 >
We observe that the left-hand side of this inequality will be integral for all points in

Sex, so the right-hand side can also be rounded up to the nearest integer, resulting
in the inequality (12), which is hence valid for Sey. O
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Proof of Proposition 21

Since T; > 2 for i = 1,2, conv Sex is full-dimensional (Proposition 12). Hence, we
can use the uniqueness characterization of the facet description from Proposition 10
to show the assertion.

Let F = {(,2) € conv Sex | 21 + T12 + T22 + T13 + Taz + 24 = 2}. Letting 29, =
29, = 20 = 1fort = 1,...,4 it follows that (z°,2°) € Sex \ F. Then, defining
the point (z*,2%) € F as

A A 17 te 1747 A
mlt::v%:{ 0. te}m%- and z; =1, te{l,...,4},

it follows that F is a proper face of conv Sex. Moreover, there exist values of A € R?**,
p € RY and p € R such that the equation

4

Z (Are1e + Aoeor + peze) = p (55)
=1

holds for all (z,2) € F. We will show that for any value of a € R it holds that

a, te€{2,3}, a, te{l,4},

R E e RS it P LS

For each s € {2,3}, let (z',2') = (z*,2%), except that z! = 0. It follows that
(z',2') € F. (z*,2") and (z', 2'), respectively, inserted in (55) then yields that
po = pz =0.

For each s € {1,4}, let (22,2%) = (2*,2%), except that 23, = 0. Tt follows that
(z%,22) € F. (z%,2%) and (22, 22), respectively, inserted in (55) then yields that
A21 = A4 = 0. Equation (55) can then be rewritten as

4 3
Hiz1 + Z AT + Z A2tTag + pazg = p. (56)
=1 t=2

We define the point (zB,2B) € F as

B _ 1, te{1,2}, 2B 1, t=1 B 1, te{1,2,3},
1t 0, te{3,4}, 2 0, te{23,4}, 0, t=4.

and let (z3,2%) = (2B, 2B), except that 23, = 0. It follows that (23, 23) € F. (28, 2B)
and (2%, 2°), respectively, inserted in (56) then yields that A\;; = 0.
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We let the point (z¢,2°) € F be defined by

.’L'C — ]., t € {2,4}, xc — ]., t = 4, ZC — ]., t S {2,3,4},
1t 0, te{1,3}, 2 0, te{1,2,3}, “ 0, t=1.

and let (z%, 2*) = (2©, 2°), except that z, = 0. It follows that (z*,2%) € F. (2, 2°)
and (2%, 2%), respectively, inserted in (55) then yields that A;4 = 0. Equation (55)
can now be expressed as

H121 + A12Z12 + A13T13 + A2aoo + Ao3Za3 + Hazs = p. (57)
Let the point (2P, 2P) € F be defined by

.'ED _.'ED _ 1, t=2, ZD _ 1, te {2,3},
12 0, te{1,3,4}, "t | 0, te{1,4}.

and let (z°,2°) = (2P,2P), except that 23, = 0 and z3; = 1. It follows that
(25,2%) € F. (zP,2P) and (x°,2°), respectively, inserted in (57) then yields that
A2z = Aoz

°)

Let (28, 28) = (2B, 2B), except that z§, = 0 and 2§; = 1. It follows that (2%, 2%) € F.
(xB, 2B) and (2%, 29), respectively, inserted in (57) then yields that Ao = Aq3.

Since (2P, 2P) € F and (2©, 2°) € F it follows that pu; + A2 = pa + A2 = p. Hence,
w1 = pa and Aja = p — u1. We define a = py and rewrite equation (57) as

az1 + (p — )(@12 + 213) + Ao2(T22 + @23) + aza = p. (58)

Since (z?,2z%) € F it follows that a + a = p. Since (zP,2P) € F, we have that
A22 + p— a = p so that A2 = « and rewrite equation (58) as

(21 4+ 12 + T13 + Taz + X2z + 24) = 20 (59)

Proposition 10 then gives that the inequality (12) defines a facet of conv Sey. O
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Abstract

Military aircraft engines can offer greater operational availability and be
more economically maintained through the use of better models that predict
times to failure. In this paper, real data consisting of times between repairs
of a flame holder in an aircraft engine is used and two models that predict
the time to next failure are suggested. The first model is a non-stationary
renewal process and the second model is a non-homogeneous Poisson process. A
measure to compare the models is defined and with our data the non-stationary
renewal process works better. Different repair stations affect the life span of
the components but the non-stationary renewal process manages to model this.
This model also manages the aging component problem in a effective way.
However, in this case no aging is present other than substantial degeneration
after the first repair.

Keywords: non-stationary renewal process; non-homogeneous Poisson pro-
cess; survival;

1 Introduction

Military aircraft engines can offer greater operational availability and be more eco-
nomically maintained through the use of better models that predict times to failure.
Some models exist that use different strategies. Roemer and Ghiocel [12] describe
an model that is based on a resistance variable R and a stress variable S. When
R — S < 0 failure occurs. Tinga and Visser [15] suggest a model that involves a
fatigue model, a gas turbine simulation program, fluid dynamic model and a finite



element model. This is combined with a statistical reliability model. Roemer and
Ghiocel [13] present a set of tools for health monitoring, diagnostic and prognostic
of turbo machinery. One nice tool define two indices and use multivariate process
control methods to monitor engines. They also suggest a simple fatigue model for
individual components. All of the above models require continuous monitoring of
several parameters that are relevant for the life span of the component. They also
require that the parameters have historically been stored in such a way that it is
possible to make any use of them. Krok and Ashby [10] states that it is hard to
develop models based on most of the monitored parameters due high levels of noise
and large variation in data.

In other parts of the literature, hundreds of repair and maintenance models can
be found. Basic mathematical models and methods can be found in, for instance
Hgyland and Rausand [5], Klein and Moeschberger [9], Kalbfleisch and Prentice [6]
or Andersen et al. [1]. A statistical model that involves physical laws can be found
in Yang [19]. Also, pure statistical models can be found in Kaminskiy [7] or Kijima
and Masaaki [8]. A survey of some maintenance and reliability models can be found
in Weiss, George H. [18].

Based on existing models, this paper will present two models in the class of non-
stationary renewal process and non-homogeneous Poisson process to predict failures.
The models use historical data for calibration and are suitable for modeling time to
failure of stochastic components. A stochastic component is a component that is
allowed to operate in the aircraft engine until it breaks. If the component breaks
under a flight mission the engine will still work but with reduced performance. A
deterministic component is a component that is only allowed to function in the air-
craft engine a predetermine specific time. If a deterministic component breaks under
a flight mission there is a risk that the engine will stop functioning. In practice this
means that the deterministic component is replaced long before its life span is con-
sumed. Methods for calculating the preset times for deterministic components are
not discussed here.

There are only two states a component can be in, either functioning or broke.
Hence we have a two state system. Recently a lot of work have been made on
multistage systems, a survey of multistage system can be found in El-Neweihi and
Proschan [3]. A detail is considered broken if it fails to comply with a set of fitness
rules when it is observed. The flight mission time is short and the details studied here
are observed after every flight mission and therefore the time to failure is considered
to be the time when the component is observed and fails to comply with the set of
fitness rules. In other scenarios, mission times may not be short, or the details are
just observed on a few special occasions due to the fact that they are positioned deep
inside the engine. The method discussed can still be applied but the derivation of
the estimations of the distribution functions may be slightly different.

The data used in this work is gathered from Volvo Aero Corporation in Troll-
hittan and we are interested in the failure distribution of the flame holder in the



new RM12 engine. We have limited knowledge about this due to the limited number
RM12 engines currently in service. We have a large data set containing repair and
maintenance times for the same type of details in an older version of the RM8 engine.
This data will be of some help in predicting maintenance times for the RM12 engine.
This paper will not discuss how to transform knowledge of the RM8 engine to the
RM12 engine but will instead discuss two models that predict repair or maintenance
times for the RM8 engine.

In the following sections, we present the data material and define two different
models. We discuss existing methods to analyze the unknown parameters in the
models. An error measure is defined and a comparison between the models is made,
using this measure. We modify one of the models so that it can handle different
kinds of repairs. Data from the older version of the engine is used. We believe that
the models when applied to the new engine design will help us understand the life of
the newly designed details.

2 The models

In the literature there are many models, both simple and more complex, that can be
applied to predict the time to the next repair. Here we use two models that are in
the classes of NSRP (Non-Stationary Renewal Processes) respectively NHPP (Non-
Homogeneous Poisson Processes) to analyse data. We discuss existing methods to
analyse the unknown parameters in the models, and close the section with a discussion
on measures of goodness of fit.

2.1 The set of data

The data used in this paper originate from a detail called the flame holder which is an
essential part in the after burner system. The flame holder consists of two parts called
the inner ring and outer ring. The outer ring exists in two versions. We call the inner
ring detail 1 and the outer ring detail 2 and 3. We observe the times between repairs.
Every time a component fails, a decision is made whether the component should be
repaired or scrapped. For every component ¢ we observe a sequence of times between
repairs {T},...,T{ }, i = 1,...,n, where the last observation possibly is censored,
meaning that for the last observation we may have the information that the time to
next repair is longer than the time observed. For more information on censoring see
Klein and Moeschberger [9]. We model different components as independent, that is
{T*} and {T7} are independent vectors if i # j. We also assume that the censoring
process is noninformative, see i.e Kalbfleisch and Prentice [6].

We have more observations of repairs in details 2 and 3 than in detail 1. Doing
simple descriptive statistics, we get histogram plots of the number of repairs for each
component in Figure 1. The x-axis corresponds to the number of repairs and the
y-axis to the number of components that have been repaired x times.



Detail 1 Detail 2 Detail 3
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Figure 1: Histogram on repaired components of each detail. The z-axis corresponds
to the number of repairs and the y-axis number of components that have been repaired
T times.

2.2 NSRP-model

A non-stationary renewal process (NSRP) is defined in the following way (cf. e.g.
Hgyland and Rausand [5]): Let T}, be the time between the n — 1’th and the n’th
repair, and let F,(t) = P(T,, < t) be the corresponding distribution function. If
we assume that the T}, are independently but not equally distributed, the sequence
{Tn}, ., is called a non-stationary renewal process.

A stationary renewal process is a process that has the same distribution between
repairs, whereas the model we use might have different distributions for the successive
times between repairs. At this point the question we have to answer is what distri-
bution is suitable to model the time between repairs, that is, what is the distribution
of T,.

We will estimate the distribution between repair times without making any as-
sumptions, that is we will carry out a non-parametric estimation of F,,. The standard
approach for censored data goes via the Kaplan-Meier estimator of the survival func-
tion R, (t) = P(T,, > t). This gives us an estimator F}, of the cumulative distribution
function Fj, as follows

A~

Ep(t) =1 — Ry (t).

The Kaplan-Meier estimation of R, is




where Y (¢;) is the number at risk just before time ¢; and d; is the number of failures at
time ¢;, see Hgyland and Rausand [5] or Klein and Moeschberger [9]. The estimator
F, is a step function. Note that when there are no censoring events, E, is the
empirical cumulative distribution function.

In order to get an estimate of the probability density function f,, of T,, we can
use a kernel estimator

mo=52x (5

where K is a kernel function and b is the bandwidth, see Appendix A. The kernel
smoothing function used here is

15
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“) a ) )

K(.’L‘) (1_1' ) T € [_171]: (3)
but others may also work well.

A kernel estimate can be informative. If there is no prior knowledge about the
distribution, a non-parametric estimate is good as a visual confirmation of the choice
of parametric distribution. The advantage of a parametric model is that we automat-
ically extrapolate and get knowledge about the distribution outside the field where
we observed data. The parameters may sometimes also have a physical meaning. It
is more easy to transfer knowledge from RM8 to RM12 if the model is parametric.

Here the Weibull distribution is used with the following parameterization,

Fi)=1-—¢e G t>0, (6>0,a>0), (4)

where 6 is the characteristic life and « is the shape parameter. Let n be the number
of repairs we are modeling. Then each time between repairs is modeled as a Weibull
distributed random variable with its own parameters {ai, Hi}, so that the parameters
to be estimated are {f1,...,6,} and {ai,...,an}. In a later section we will place
restrictions on these parameters.

The parameters were estimated by means of the method of maximum likelihood
and the method of least sum of squares, see appendix C and D. To see if the Weibull
distribution is a reasonable assumption and get an idea of what estimation method
to prefer, density functions from all three estimation methods are plotted in Figure
2.

In Figure 2 kernel functions can be seen as the estimates that are closer to current
data. The Maximum likelihood estimate appears closer to the non-parametric esti-
mate than the Least Square estimate. There exist several other formal ways to reach
a conclusion, for example the One-sample Test, which with one particular choice of
weight function yields the One-sample log-rank test, see Klein and Moeschberger [9].
Another visual way of showing if the choice of parametric distribution function is
satisfactory is to plot the function F~1(F(t)) where F is the empirical cumulative
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Figure 2: Mazimum likelihood, Least Square and a non-parametric estimation of the
density function.

distribution function from the Kaplan Meier estimation and F' is the parametric cu-
mulative distribution function. If F' is a good approximation to the data, this should
be a straight line. In Figure 3 we see the F~!(F(t)) function for the four first repair
times, with F equal to the Weibull distribution function.

According to this figure Weibull looks like a reasonable approximation for this
data set. We see that the Maximum likelihood estimation is closer to the straight
line and hence a better approximation. That the maximum likelihood estimator is
a better estimator is also indicated in Beretta and Murakami [2]. The choice of
the Weibull distribution is not obvious. Other distributions could give a similar
approximation of the empirical distribution.

2.3 NHPP-model

Assume that N is a counting process that counts the number of repairs of a component
and let the intensity (or hazard) function w be a function of time. If the process has
independent and Poisson distributed increments, N is called a Poisson Process. If w
is non-constant the process is non-homogeneous. If the number of repairs is Poisson
distributed then N is called a non-homogeneous Poisson Process (NHPP).
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Figure 3: The F~1(F(t)) function. If the estimation is good the curve should be close
to the straight line y=z.

If this process is used, there will be dependence between repair times. In reality,
modeling with NHPP is the same as assuming minimal repair. That means that
when a component is repaired it is repaired to the condition just before the failure
occurred. More complicated assumptions can be modeled, see Pham and Wang
[11] and Valdez-Flores and Feldman [16]. See Hgyland and Rausand [5] for a more
theoretical description of Poisson processes and applications.

In this model we can estimate the cumulative intensity directly from the data set.
The cumulative intensity is defined as

and W is estimated by the Nelson-Aalen estimator
N 1
W(t) = —_—, 5
(t) tzsjt Y (5)

where Y (¢;) is the number of components at risk just before ;. The times ¢; are all
times when failures occur. The distribution of T}, the time to the first failure is given



by
P(Ty >t) = P(N(t) = 0) = ¢ WO = ¢~ o wwidv,

and the distribution of the time T; to the next failure given a failure at T;_1 = t;_1
is given by

P(Ti >t | T;1 = ti—l) = P(N(Si_l +t) - N(Si_l) = 0) =

i—1tt
— ef(W(si_1+t)7W(si_1)) — e :1'_11 w(u)du,

where s; = Y 7_, tx is the absolute time. The function W represents the mean
number of repairs for one component until time ¢. Estimators of these distributions
can be obtained by replacing W with W, these are related to the Kaplan-Meier
estimator but not identical.

Using a kernel smoother we can estimate the intensity function w itself, the
quantity is also known as the hazard rate, see Klein and Moeschberger [9]. In Figure
4 estimates of W (¢t) and w(t) are shown for detail 1, 2 and 3.

W(t), Detail 1 W(t), Detail 2 W(t), Detail 3
10 25
8 20 I
-
6 15 |
4 10
2 5
0 0 0
0 1000 2000 0 500 1000 1500 0 1000 2000
x 107 W(t), Detail 1 w(t), Detail 2 w(t), Detail 3
8 0.035 0.02
0.03
6 0.025 0.015
0.02
4 0.01
0.015
2 0.01 0.005
0.005
0 0 0
0 1000 2000 0 500 1000 1500 0 1000 2000

Figure 4: The Nelson Aalen estimate of W with 90% confidence intervals and kernel
estimate of w with kernel function as in (3).



2.4 Times between failures independent?

When choosing a model it is interesting to know if the times between failures are
independent or not. Are the times between repairs related to each other? If the time
to first repair comes early is there a greater chance that the component holds longer
next time or will the component break early again? Is there any sort of dependency
between times of repairs? If the repair times are dependent the NHPP is probably
better than the NSRP. In the NSRP the result in the first distribution is independent
of the result in the second distribution.

2.5 Which model is the best one?

To decide which model fits data best we must construct some sort of error measure-
ment. There are plenty of measures of fit that are reasonable, e.g.

sup | Fut) — F() | (6)
[0 - Fat ()
[18.0-Fa) | ®)
é(E[Ti] — 4y, )
Z | EIT] 4, (10)

where F},(t) is the distribution function according to the model, and F(t) is the true
distribution function, E[T;] is the expectation of the model and ¢; is the observation.
Measure (6) focuses on the greatest difference between the model and the data, (7)
and (8) are measures of the overall fit. Measure (9) is a measure of difference in
squared mean of the expected outcome and the real outcome, measure (10) is similar
to (9) but without square difference penalty. Which measure is the best choice
depends on what question we want to answer. In this case we want to use the model
to make a prediction of the time when the component fails. As prediction we use the
expected failure time according to the model. We want the difference between our
prediction and the outcome to be as small as possible. We want a big difference to
be more than linear worse that a small difference. This makes it natural to pick (9)
as our error measure.

If T; is the stochastic variable that describes the time to failure, then the error
measure m; for a failure is the quadratic loss function

m; = (B[T3] - t;)?, (11)



where t; is the observed failure time. Finally we take the mean of all components to
get the mean square error
1 n
1=

NSRP: It is straightforward to calculate m; in the NSRP model since T; is Weibull
distributed and E[T;] then has a known parametric form. With the parameterization
as in (4) we have

1
E[T;]=0;-T(— +1),
(&7
where T is the gamma function. The expected squared error in the Weibull distribu-

tion is
2 1
M, = E[mi] = E[(E[T] - T)") = V[T = 6 - (0= + 1) -T*( + 1)) (12)
The reason why the expected error happens to coincide with the variance of the
Weibull distribution is a consequence of the fact that we chose the error measure as

we did. Table 1 shows the observed and expected squared error for the four first
repairs of detail 1,2 and 3. Note that the total error here is the mean of more errors

detail parameter failure 1 failure 2 failure 3 failure 4 Total

1 M % 10* 3.28 1.92 1.57 1.61 2.12
1 M, *10* 3.41 2.12 1.89 2.50 2.45
2 M *10* 2.02 0.06 0.06 0.06 0.34
2 M, «10* 2.02 0.06 0.06 0.06 0.34
3 M % 10* 7.20 0.22 0.29 0.28 1.05
3 M, «10* 7.45 0.21 0.26 0.26 1.08

Table 1: Calculated error in prediction of the NSRP model for detail 1,2 and 3 for the
four first time to failure.

than in the four first failure times. It is the mean of all errors to the last failure. As
we can see M, is mostly bigger than M. This may be a consequence of the fact that
the true distribution has shorter tails than the Weibull distribution. We can also see
the lack of fit in the tail area in Figure 3.

NHPP: In the NHPP the prediction at time ¢ of the time to the next failure T is
computed by

E[T] — /’00 e_(W(t°+t)_W(t0))dt.
0

Because we do not have any estimation of W for large values of ¢ this is impossible
to calculate. The standard way of doing this is to stop integration at the largest
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observation. Here we present an alternative method of solving this. This method is
exact if W is linear and an approximation if W is close to linear. An advantage of
this method is that it gives the possibility to check if the NHPP model is appropriate.
If we compare the alternative method of calculating with the standard method the
total error became 7% bigger with the alternative way for detail 1 but 4% smaller
for detail 2 and 3. The idea behind the alternative approach is to transform the
NHPP to a HPP with intensity one. This transformation is given by ¢ = W (t) where
t is the real time and % is the transformed time, c.f. Hgyland and Rausand [5]. In
the HPP the times between errors are independently and exponentially distributed
with intensity one. This results in the expected time to next failure being one in the
transformed time. We calculate E[T | T > to] by means of

1. transform ¢ to ﬂ),
2. calculate E[T | T > fy] = (j+\1)7
3. transform back (154-\1)

We use the alternative way and calculate M for the four first failures. Results are
shown in table 2.

detail parameter failure 1 failure 2 failure 3 failure 4 Total

1 M x10* 4.71 1.89 1.65 1.43 2.39
2 M % 10* 2.23 0.42 0.28 0.16 0.43
3 M % 10* 9.77 0.94 0.88 0.72 1.60

Table 2: Calculated error in prediction of the NHPP model for detail 1,2 and 3 in the
four first and total time to failure.

If the alternative method is used it is possible to visually control the fact that times
between failures are exponentially distributed. Plot the function F~'(F(t)) where F
is the cumulative distribution function of the exponential distribution with intensity
one and F(t) is the distribution of transformed times between failures. In the data
set analysed this is really not the case, especially not for detail 1, as shown in Figure
5. In the HPP, times between failures should be independently distributed if the
NHPP is a good model. This can be checked by calculating the correlation between
the repair times. The times between repairs are not independently distributed in the
data sets examined. This observation indicates that the NHPP-model is not suitable
for modeling the behavior of these components.

Comparison A comparison of failure measure between the two models shows that
the NSRP model is better modeling this dataset. See Table 3.

11
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Figure 5:  The F~Y(F(t)) function. If the model fit is good the plot follows the
straight line y=z.

detail NSRPM %10* NHPPM,10¢ XNHPDM

NSRPum
1 2.12 2.39 1.13
2 0.34 0.43 1.26
3 1.05 1.60 1.48

Table 3: Calculated quotient of error measure in the two models

3 Development of the model

Of the two models presented, the NSRP is the better for this type of data. Remember
that the main reason for calculating failure times of components for the older engine
is that this will help us to understand how similar components of the newer engine
will behave. In this section we will see if we can develop the model. A further
investigation showed that there are two classes of repairs. We will investigate if
theses two repairs influence the life of the components differently.

In Figure 2 we can see that the failure distributions seem to be very similar after
the first repair. We will use this to refine the model. In Figure 2 we also notice
that the time to failure after first repair seemed much longer than the times to the
following repairs. This can also be seen in Table 4 | if we look at the # parameter,
the characteristic life.

3.1 Different repair stations

There are two different repair stations that repair the details: repair stations within

close range of the aircraft A and the main central repair station B. There is reason to

believe that the main repair station repairs better than the smaller repair stations.
To investigate if there is a difference between A and B without making any as-
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sumptions we estimate the mean time to repair, u. Let R be the Kaplan Meier
estimation (1) of the survival function. The mean u can be estimated by

i= [ R (13)
0
where 7 is the biggest observed time. The variance of this estimator is
N d
A1 — ? 2 ( 14
Vi = 3 RSt (14)

where N is the number of observations, Y; the number at risk in time ¢; and d; the
number of failures at time #;. A 100(1 — «) confidence interval for u is expressed by

fit Zy_g VT (15)

The process R(t) is asymptotically normal distributed so the distribution of /i is also
asymptotically normal distributed. Theoretical results can be found in Andersen et
al. [1].

We estimate p and calculate the confidence interval according to (13),(14) and
(15) but distinguish between repair A and B. In Figure 6 this is shown for the first
five repairs with 95% confidence interval for the mean. Note that new details are not
shown in this figure. (Repair type B is displayed as a dot and repair type A as a
ring. The dots and rings indicate upper and lower confidence bounds. There is also
a dot or ring in the middle of the confidence region indicating the point estimation
of the mean.) We can see in the figure that there is a difference between the repair
A and B, at least for details 1 and 3. The non-parametric estimate f is shown in
Table 4, p. 15. There it is possible to compare this mean with the mean achieved
if the Weibull distribution was assumed. In Table 4 we see that the means are very
close, which is an indication that the Weibull distribution is a good approximation.

3.2 Simplify the model

Now when we are aware of the difference in survival depending on where the com-
ponent has been repaired we model time to next failure with different parameters
depending on where the component has been repaired, but we still use different fail-
ure distribution after every repair time, that is F,, depends on n. In Table 4 the 8 and
a parameters are shown for the time to first failure and for the following five times
to failure after repair for detail 1,2 and 3. Also p,,, the mean of Weibull distribution,
and p, the mean of non-parametric distribution, are shown.

We notice that the estimates of § and a do not change very much between suc-
cessive repairs if we disregard new components. This makes it natural to suggest a
model with the same distribution for T}, ¢ > 2. Maximum likelihood estimates of 8
and « are shown in Table 5. Note that these values are close to those in Table 4.

13
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Figure 6: Confidence interval on expected time to failure after repair number 1 to 5.
Dots are repair type B and rings are repair type A.

When the details in the new engine design begin in service little is known so this
may be a good model to start with. Bayesian updating principles may be usable as
well, see e.g. Shimi and Tsokos [14], survey or e.g. Michael and Giuntini [4], Weibull
example.

3.3 Aging

An interesting question to ask is if the time to next repair decreases with the number
of repairs. If we look at the points in Figure 6, do we see a downward trend? A
simple test can be made to answer this question. We test the hypotheses that all u
are equal versus that they are not. To carry out this test we must know the numbers
of degrees of freedom. This is a complex thing to find out when we have censored
data. If we assume that the f is estimated with many observations the estimated
variance of fi is near the true variance. We also assume that the variance of each
ji is equal. We can then perform a ordinary x? test, described in appendix B. The
results turn out to be that we can only reject the hypothesis in the case detail 3 repair
type A. Note that this test only includes the five first repairs. If we only look at the
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detail failure nr rep type 0 Q b M

1 1 - 554 3.09 496 498
1 2 A 145 148 131 131
1 3 A 159 1.46 144 142
1 4 A 109 1.26 101 102
1 ) A 125 198 110 110
1 6 A 119 1.37 109 109
1 2 B 359 3.00 321 323
1 3 B 330 3.14 295 295
1 4 B 335 2.83 298 296
1 5 B 331 3.69 299 297
1 6 B 297 331 266 272
2 1 - 355 2.36 315 315
2 2 A 45 1.76 40 40
2 3 A 43 169 38 38
2 4 A 43 176 38 38
2 5 A 41 169 37 37
2 6 A 40 1.76 36 35
2 2 B 41 220 36 36
2 3 B 52 1.04 51 51
2 4 B 62 164 55 56
2 5 B 37 0.84 41 39
2 6 B 4 229 39 39
3 1 - 589 1.99 522 526
3 2 A 76 197 67 67
3 3 A 58 1.61 52 52
3 4 A 54 143 49 49
3 ) A 65 149 58 58
3 6 A 59 166 53 53
3 2 B 101 191 90 90
3 3 B 105 147 95 95
3 4 B 98 127 91 92
3 5 B 103 139 94 94
3 6 B 119 1.68 106 106

Table 4: Parameters 6 and « in the Weibull distribution ,u,, the mean in this Weibull
distribution and p the non-parametric estimated mean.

estimated values of i in Figure 6 we may think that there is a larger difference in u
in detail 2 repair type B, but the confidence interval is much bigger, which indicates
that we are less certain of the true value.
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detail repair type 6@ a

1 A 134 141
1 B 341  2.98
2 A 41 1.77
2 B 49 1.36
3 A 59 1.51
3 B 107  1.55

Table 5: Parameters 6 and « in the Weibull distribution if all T3, i > 2 were considered
to belong to the same distribution.

Another approach to the aging problem is to assume that the components dete-
riorate a little every time they are repaired. If they do not, they may in theory be
repaired an infinitum number of times and still have the same failure distribution.
We suggest the following Weibull model for the T;, i > 2

Ft)=1—e@ D" >0, (6>0,a>0,p>0), (16)

where n is the repair number. This means that the expected time to failure after
repair number n is

1
E[T,] =6p™- I‘(a +1),

and p < 1 thus indicates aging. Maximum likelihood estimates of the parameters
(0, a, p) are shown in Table 6.

detail repair type 0 Q P 95% confidence-interval
1 A 164 1.43 0.92 (0.8412 , 1.0146)
1 B 371 3.04 0.95 (0.9205 , 1.0026)
2 A 45.7 179 0.98 (0.9666 , 0.9902)
2 B 47.0 1.36 1.01 (0.9205 , 1.0026)
3 A 61.8 1.51 0.99 (0.9794 , 1.0058)
3 B 101.9 1.55 1.01 (0.9846 , 1.0426)

Table 6: Parameters in modified Weibull distribution (16) and a 95% confidence intervals
over the parameter p.

Here some p are bigger than 1. This is an indication that this may not be a good
model. If we make a 95% confidence interval over the true parameter p based on
profile likelihood we see that in all cases except one we can not reject that p=1. In
the case where we could reject p = 1, p is very close to one. This means that if we
use p = 1 the resulting error is very small. No aging parameter is necessary. If the
aging parameter is admitted the model gets one extra parameter that will complicate
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the model but add little new information. Profile likelihood is shortly described in
appendix E, more can be found in Venzon and Moolgavkar [17].

4 Discussion and conclusion

We have used two models to predict the time between failures on a data set con-
taining failure times of components in an aircraft engine. The model used was a
Non-Stationary Renewal Process (NSRP) and a Non-Homogeneous Poisson Process
(NHPP). A question arises with model is preferably to use.

In order to understand and measure what model was most suitable to model
current data a couple of error measures were considered. The use of the NSRP
model was better for this dataset, see Table 3. In the NSRP model non-parametric
estimators as Kaplan-Meier (1) and Nelson Aalen (5) were used at an early stage to
avoid making any assumptions on parametric distributions. Kernel smoothing (2)
was used to analyse times between successive repair times. With the help of the non-
parametric estimations a parametric distribution was chosen. Several plots, Figure
2 and 3, showed that the Weibull distribution modeled the data set well enough
to make reasonable predictions. For the choice of error measure (11) the expected
error in the NSRP model is equal to the variance of the Weibull distribution (12).
However, the error was somewhat smaller, which can be a consequence of the fact
that the real distribution has smaller tails than the Weibull distribution.

Looking closer at the model, we found that different repair stations had an impact
on the times between repairs, see Table 6. We would like to model the time to
next failure with different distributions depending on where the component has been
repaired. We also noted that the first time to failure was much longer than the
following times. However, the following times were from the same distributions. A
more advanced model (16) that suggested that the components deteriorated with
time, was suggested, but it was rejected by data.

The model we suggest has a distribution to the first failure F,,¢,, and then two dif-
ferent distributions to the following failures F4 and Fg depending on where the com-
ponent was repaired. We have 6 parameters to estimate, {0pew, Qnew,04,04,08,a8}
see Table 5. We use {0, Qnew } to model the time to next failure if the component
is new and {04, a4} if the component has been repaired at station A, and finally we
model with {6p,ap} if the component has been repaired at station B.

The models used data from an older version of an aircraft engine called RMS8.
A newer engine called RM12 is available but little data exist for that engine. The
models in this work can of course be used for RM8 but the main goal was to use them
for RM12. That is one of the reasons why a parametric model was chosen since a
parametric model may be easier to transfer to the RM12 case than a non-parametric
model. However, more work needs to be done in this area.

17



Acknowledgements

The author wants to thank Dragi Anevski and Thomas Svensson at Fraunhofer
Chalmers Center and Jacques de Maré at Chalmers for supervision. Furthermore
I own a debt of gratitude to Fredrik Plym and Maud Osterman at Volvo Aero Cor-
poration for data support. This work was financed by NFFP.

Appendix

A: Kernel smoothing; Let H(t) be a step function with jumps at the event times
t1 <ty < ...<t,. Let AH(t;) = H(t;) — H(t;_1) denote the magnitude of the jumps
in H(t;) at time t;. The kernel smoothed estimator of h(t) is a weighted average of
values of AH (t;) for t; close to t. Closeness is determined by a bandwidth b so that
t; € [t—0b,t+b] are included in the weighted average. The bandwidth is chosen either
to minimise some measure or to give a desired degree of smoothness. Let K (t) be
the kernel function that describes how much weight is given to points at a distance
from ¢t. Three common kernel functions for z € [—1,1] are
1 3 2. 15 242
K@) =5  K@=40-27);  K@)=-0-27)"

The estimation is given by

h(t) = %éK (t ‘bt) AH(t;).

When ¢t > t, — b and t < t; + b this estimate is biased but can be corrected. More
information about kernel smoothing can be found in Klein and Moeschberger [9].

B: x? test; We have 5 estimated means {ji1, ..., {5}, each with an estimated vari-
ance {S%,...,52} . We want to test Hy : p; equal vs Hy : p; not equal. The number of
observations we used to estimate pu; varies because we use censured data. We assume
that y; is estimated with a great deal of data and hence S? is near the true variance.
We also assume that all the variances are equal. We calculate

5

5 5
1 1 . _ 1 .
Sw=:> Sh Sy=7> (li-m)?% where =<3 i
i=1

i=1 i=1
and

15

S 4

The P-values of this test is shown in Table 7. We can only reject the Hy hypothesis
in the detail 3 repair type A case.
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detail repair type P-values

1 A 0.245
1 B 0.530
2 A 0.226
2 B 0.599
3 A 0.001
3 B 0.712

Table 7: P-values of the test Hy : u; equal vs Hy : p; not equal.

C: Maximum likelihood estimator; We observe {¢;, ..., t,} as failures and {t; 11, ..., tn }
as censured times. We want to estimate the parameters in (4) by the maximum likeli-
hood method. If the censuring process is random the maximum likelihood estimator
is . .
L, a|t) =][F@alt:)- ] RO, a|t), (17)
i=1

i=r+1

and the maximum likelihood estimation, § and & of 6 and « is obtained by

(8,4) = argmax L(6,a | t;).

0,
D: Least Square Method; To estimate parameters in (4) by the least square
method we rewrite F' on a form that is linear in the parameters,
t
0

We handle the censured observations by estimate R(t) = 1 — F'(¢) with Kaplan-Meier
estimator (1). We denote

log(—log(l — F(t)) = log(-)* = alog(t) — alog(8). (18)

log(~ log(R(t1))) 1 log(t1)
: X = : ; P

Y = :
log(— log(R(tx))) 1 log(t,)

I
/N
o Q
N—

where
—alog(@)=a; —a=0b

and consider the equations ¥ = XP. Let f’ be the estimation of P and Y :AXIE'
the expected failures under P. The vector P that minimises (Y — Y)? - (Y —Y) is
called the least square estimation of P and is calculated by

P=XTX)"'xTY (19)
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The parameters 6 and « are obtained by
a=-b and f=e"%
One could argue that ¢; is the random component and not ﬁf(tz) In that case we

rewrite (18) to
log(— log(R(%))) + log(6) = log(t)

and define
log(t;) 1 log(—log(R(t1)))
Y = : ; X=| : : , P= ( s )
log(tn) 1 log(—log(R(tn)))
where 1
log(8) = a; o= b.

We may now minimise (Y — Y)7 - (Y — Y) by (19) and obtain 6 and a by

1
a:E and 6 =e°.

We have used the first approach in this report.

E: Profile Likelihood; To make a confidence interval of the parameter p in (16)
we first define the profile likelihood

L(p) = max L(p, ,6),
where L is defined in (17) and let
1(p) = log(L(p)),
be the log-likelihood function. Let
p = argmax|(p).
»

Then _ _
2(1(p) — U(p)) ~ X1,

and a 95% confidence region is
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Abstract

In laboratory studies the stress strain cycles and other similar parameters
are often considered to be known. In real word applications this is not always
the case. Still we want to predict the remaining life of components. In a case
study the crack growth of the low pressure turbine nozzle is studied. The
temperature cycles in the engine result in the nozzle experiencing fatigue and
ultimately cracking. A nozzle is considered broken when the largest crack is
above a certain level described in a set of fitness rules. The environment in
the engine is difficult to model as the temperature profile is unknown due to
small air flows through the cracks. Furthermore, the property of the material
changes through oxidation. Observations of the nozzle cracks show that the
crack growth rate decreases as the crack length increases. In order to model
the crack growth and make predictions of the distribution of the remaining time
to failure, a new empirical crack model is constructed. The basic components
of the model is described by two stochastic variables describing the initiation
time of the crack and the crack growth rate. A profile likelihood approach is
used to determine both the distribution of the time when the crack reaches a
certain size and the distribution of the crack size at a certain time.

Keywords: crack growth; empirical model; predictive profile likelihood, tur-
bine nozzle



1 Introduction

One of many activities at Volvo Aero Corporation (VAC) in Trollhittan is maintain-
ing military aircraft engines. Every time an engine enters the repair bay, a decision
on which components in the engine should be replaced must be made. One strategy
is to replace only broken components, another is to replace components that are soon
to break and hence increase the time to next maintenance occurrence.

In order to optimize the maintenance, there is a need to estimate the remaining
life of the components in the engine. When the distribution of the remaining life is
known we can use an optimization model, Andréasson [1], or some other policy, cf.
Wang [15], to minimize the expected cost of maintaining the engine.

A component is considered broken when it fails to comply with a set of fitness
rules. When a broken component is observed it must be replaced. The fitness rules
or the failure criteria are measured in quantitative variables, e.g. crack length. When
an engine is examined, observations of these variables become available and can be
used to estimate the life of a component.

We consider the low pressure turbine nozzle component in a military aircraft
engine. From experience we know that cracks are the most common cause of failure
of the low pressure turbine nozzle component. Old data, from similar components,
tells us that 96-98% of failures are due to cracks, and it is therefore natural to use a
model for crack growth.

The historical data we have is limited and we do not know the exact nature of the
crack growth. The component experiences thermodynamic cycles which means that
the crack growth is temperature driven. If we know what missions the plane is going
to experience in the future, we can use those mission profiles and a thermodynamic
model to try to estimate the loads. In this case we are not sure about future missions
and we do not have a complete understanding of the thermodynamic environment.
When a crack starts growing we get airflow through the crack complicating the heat
profile even more. There may also be oxidation in the crack further complicating the
physics behind the crack growth.

We only have measurements of the crack on a few occasions, but the observa-
tions show that the crack growth rate decreases as the crack length increases. Even
without the difficulties above, crack growth is stochastic in nature, cf Virkler et al.
[14], Bolotin [5], Yang [16]. If we want to predict the crack growth and control
uncertainties we need a stochastic model.

In our case we do not know the mission profiles but from experience and by ex-
amining logged thermodynamic cycles for different engines we know that the load
sequence is fairly similar over longer time periods, that is more than a few missions.
Since we only have limited knowledge about the physics involved we decide to con-
struct an empirical crack growth model that fits our observations. In the model
we assume that load cycles are correlated with the flight time. The modeling and
analysis done in this paper rest on the assumption that components that experience



similar loads will have similar crack growth behavior.

From observations we conclude that the crack growth rate decreases as the crack
increases. Retarding crack growth is uncommon but arises from that the stress in the
crack tip decreases when the crack growth longer often due to geometrical reasons.
D. B. Garcia et al. [7] study decreasing crack growth in an aircraft nose landing gear
drag brace fitting.

This paper is divided into two parts: one modeling part and one case study part.
In the modeling part a stochastic crack growth model is presented. We also derive
the formulas used to make predictions about the life distributions of the components
and the crack length distribution at a fixed time. The second part is a case study
where we use data from Volvo to learn how the model reacts.

2 Notation

We use the following Notations:

n number of cracks

n; number of observations of crack i

t time

Amaz a fixed crack length

T stochastic time when crack reaches length @44

A stochastic crack length of crack at fixed time ¢
N(u,0?) normal distribution with mean y and variance o2
d(z) N(0,1) cumulative distribution function at point z
F., distribution function of stochastic variables C and S
Tij the crack length observation of crack ¢ at time ¢;;
X n; observations of crack 4,{®;1,...,Zin;}

X observations {xi,...,Xn} of all n cracks

X ; observations {x1,...,Xi—1, Xi+1,---,Xn} excluding crack i

3 Modeling part

In the modeling part we define the crack growth model and derive estimates of the
parameters in the model. We also derive the distribution of time to failure and
the distribution of the crack length at a fixed time. First we consider all model
parameters known and make a probability model, then we consider the noise we have
in the parameter estimation and make a statistical model that takes the parameter
uncertainty into account. We use a predictive profile likelihood approach, cf. Pawitan
[12] and Bj6rnstad [4].



3.1 Crack model

The model we use for crack growth is

g, 1ft<S,
t) = 1
a(t) {a0+0(t—5)”, ift >, (1)

where a(t) is the crack length at time ¢, C and S are two stochastic variables and
b > 0 is a parameter that describes how the crack is growing over time. For each
crack we have, one outcome of S and C' while b is constant for all cracks. The variable
S is the time when the crack has grown beyond length ag. We are not intrested in
modeling crack growth below length ag. The reason for this is that it may be hard
to detect small cracks and also that the crack growth curve we suggest here may
not be applicable to small cracks. The C' variable is related to how fast the crack is
growing when it passes the length ap. We assume that both C and S are positive
continuous stochastic variables with a bivariate parametric distribution Fc s(c, s;¢)
with parameter vector .

For each crack i = 1,...,k we have n; observations x;; = x;;(¢;;) at times ¢;; <

5+, < tin;- The observations are assumed to follow the (conditional) model
ao if ty; < Si,
max(ao, a(tij) + €ij) if tij > Si,

Xij(tiy) = {

with ;; a sequence of independent N(0,02) distributed random variables. Thus
the distribution of X;;(t;;) is conditionally on (Cj, S;) a mixture of a discrete and
continuous distribution, the discrete random variable having a point mass at ao.

The observation model implies that we never detect a crack below length ag but
that we sometimes fail to observe a crack above length ag. We gather all parameters
in the model in § = (¢, 02,b).

3.2 Probability model: Time distribution until failure

For crack i we want to find the the distribution of the time 7" until the crack length
a(t) reaches a specified maximum length a4, > ao,

T =inf{t: a(t) > amaz}-

Assume that we are given previous observations x; of crack ¢, and assume the pa-
rameters 6 of the model are known to us.
Using model (1), we find

P(Tgt | Xi :Xi) :P(a(t) Zamaw | Xi :Xi)
[ [ 100 2 anas} fesyxiess | xis6) deds

//1{8 <= (MO0 £ (e | x5 6) de s )



When differentiating inside the integral in (2) we obtain the conditional density

ao

frxthit) = [ fesmlet— (=0 x0de (@)

Differentiating is possible since f(c s)x, is a bivariate density function, cf. e.g.
Apostol [2] p. 283.
Using Bayes’ formula we rewrite the integrand

Ixijo,s(Xi | ¢, 8b,02) fo,s(c, s;¢)
(c,s|x3;0) = ——= ’ . 4
fesxile s | xi;0) . (x5:0) (4)
In order to derive the joint density fx,(xi;6) of the crack lengths for crack i we
introduce t;0 = 0 and ¢; »,4+1 = oo and let < denote the partial order on R”.
(i) Assume first that xX; > ag- Note that if S; € (ti,j—lytij) for 7 <ng, then

{Xi <xi} = ML { X <z}
My ({tie < Si} U{tie > Sip){ X < zir}
= Mpiy ({ta < Sit{ao < wir}
U{tix > SiH{max(ao, a(tir) + €ix) < Tir})
= Mpilaltiu) +ein < zin}, (5)

where the last equality follows since {ag < z;x} = Q, {tix < Si} = 0 and {t;, >
S;} = Q. If S; > t;, we have instead

{Xi <xi} = Ml {Xir <zie} =Mpli{ao <zin} = (6)

since we assumed x; > ag.
(i) Assume next that z;; < ao for all j in some nonempty subset J; = {j} of
{1,...,n} and that x;, > a¢ for k € Jf ={1,...,n;} —J. Then

{Xi<x} = 0

since the observation x;;, are bounded below by ag.
Thus the sets {X; < x;} are nonempty only when x; > ag. This implies that the
distribution for X; = (X1, ..., Xin,) is nonzero only when x; > ag, which we assume



next. Then from (5) and (6) we obtain

i+1
P(Xi<x) = ”Z P<ti,j—1 <S8 <t X < Xi)

Jj=1
g
= ZP({tz’,jfl < Si <tig} Ml {alti) +e < wz’k})
=1
+P(tm,- <8; < ti,n,-+1)

o~ [ T« Zij — alti,

- Z/ /H q)(]ai(’]))fc,s(g s) dc ds,
j=178=tii-1Y/ p—j e
+1- P<Si < ti,ni)

= F® (x430), 7

where the next to last equality follows since x;; has, conditionally on (C;, S;) and on
the interval [S;, 00), a Gaussian distribution. Thus

Fx,(xi;0) = FY(xi;0)I{x; > ao}, (8)
where I{x; > ao} = 1{zs1 > ao} ...  1{zin, > ao}. Also introduce the notation
0ao(Xi) = 0ag(Zi1) « -+ . - 8ao(Tin; ), and note that this is a well-defined distribution
function on R™.

Introduce multi-indices « as tuples of elements from N,, = {1,...,n;}, e.g. a =

(1,4). Also let o' be the complementary indexes from N,,, so that a,a’ are both
tuples elements from N,,, whose union is all of N,,,. Let 9% denote partial derivation
with respect to the elements in o, e.g. 0" Yu(z) = & Zu(z), and let ([T, ui(z:))®
denote the partial product over «a, e.g. ([T, ui(z;))** = uy(21)ua(24), for u and
ui, i = 1,...,n, arbitrary functions.

The density function is then, via (8), given by

fx,(x;0) = S 0 FW (x5 0)I{x; > ao}*da, (x:)” . (9)

a:|al|+|a|=n;

Thus X; is an n;-variate r.v., that is a mixture of 2™ r.v.’s, say Z;1,..., 2o that
live either on the interval [ag, 00)*™, in which case the corresponding r.v. Z;; is a
continuous random variable, or live and on the edges of the interval [ag, 00)*™; in
particular one of the =;; is a discrete random variable with mass F®W(ag;0) in ag.



Using (7) we see that a typical term in (9) is of the form
6"‘F(1) (X,'; O)I{Xz'j Z ag}o‘éao (Xi)a,

= I{xy > ao}*0,(x;)” (2/

[ ﬁ l¢<xk —ag — c(tij — S)b)fc,s(c, ) de ds] a

g g,
k=3 € €

ﬁu ~Hkeah)+ [1-P(S <tin, )|t = @})

k=1

ti j

=ti,j-1

- —c(tij — 8)°
J (=5

)

’

(10)

where ch;i(l — I{k € a}) occurs due to the fact that for some j the terms in F(1)

disappear in the differentiation.

The numerator fx, c,s(Xi | ¢,s;b,02) in (4) is obtained from (i) and (ii) similar

to the derivation of (7) as

Uz
P(Xi<x |Ci=c;,Si=s:) = Y {tij1<si<ty}

=1

O¢

n:
7 PR —_ 5 ._t.' b

H‘I’(x” ao — ci(si — tij) )+ I{si > tin;}

k=j

= F®(x;| ¢, si;b,02).
Now

fxijo,s(xi | ¢, si50,02) =

> FO(x; | i, 5i3b,02){x; > a0} 0ay (x:)

a:|lal+|a’|=n
where a typical term looks like this
8 F (x5 0)I{x; > ao} oo (x:)*

n
= I{x; > ao}*de,(x:)* (Zf{tm‘—l < si <tijh

Jj=1

[kii[] ‘}(W)]a’ [ ﬁ ale‘b(xk —ag —;:(tij —5)®

k=j

J1:[(1 — I{k S Ot}) + I{SZ > ti’m}l{a = @}) .

k=1

)l

(11)

(12)

(13)

Having derived all factors in (4), we now have a expression for the distribution of

the time to failure.



3.3 Probability model: Crack distribution at a fixed time

Let A be the crack length of crack i at a fixed time t. We want to find the distribution
of A, given previous observations x; of crack 4. From model (1) it follows that A > ag.
We start by finding

Ixila(xi | a;0)fa(a;0)
Ix; (x5 6) '

We rewrite the second factor in the numerator in (14),

fax;(a, ] xi;0) = (14)

Ja@0) = Ia>a}oP(A<al6)+du@P(A=al0)
= Ifa> ao}d% / / I{a(t) < a} fs,0(s, c; 6) ds de
00y (@) P(S; > 1)
- Ia> ao}i//t Hao + c(t — 5)° < a} fs.o(s,;0) ds de
60 (@)(1 = P(S < )
= Ia>a}k // He < G2 fos(e,si6) d de

+34,(a)(1 — Fs(t;6)) (15)

I{a > ao} / L)"”)dsmo( )A-Fst:6)  (16)

where we assume that we can differentiate inside the integral. Differentiation is
possible if fc,s provided that we can find a nonnegative function G such that

fo,s(G=5%,8) t
| (t(—tis))z < G(s), and / 0G(s)ds < 00,
cf. Apostol [2] p. 283. If this is not the case we use (15) instead of (16).
The function fx,(xi;6) in the denominator of (14) is given in (9). Now we know
every function in (14) except fx; a(Xi | a;6). We start by deriving the distribution
P(X; < x; | a(t) = n) by splitting into the two cases n = ag and > ag. In the



derivation below, assume that x; > ag. When 1 = qq,
ni+1

PX; <xila(t)=m) = Y Itim <t <t}
j=1
n;+1
Z P({tim-1 < Si <timHXi <x:} | {t <Si})
m=1
n;+1
= Z I{tz’7j_1 <t< tz'j}
j=1
’il P({max(tin-1,1) < Si <tmHXi Sx:) 0y
— P(t<S;) ’

we use (5) and rewrite (17),

Z"’Hl{t” 1 <t <t}
P(S; <) (

( Zl: P({max(ti,m_l,t) <S; < tim} ﬂzi:m {(I(tk) +ep < .’L'k}))

m=j

P({max(tipe 1) < i < tinsn))

1 n;+1
= TR lel{t”1<t<t”}
Z/ /( H @(M))f&c(s’c) ds dc
s=max(tm_1,t) _ O¢

tn;+1

+/ /fscsc ) ds dc. (18)
s=max( tn ,t)

We define .
o (Lt —ollini)y _y (19)
O¢

and rewrite (18) as
1 n;+1 ni+1
P(Xigx”a(t):n)zm ;I{t” 1<t<t”}zj
n;+1

/stm /( H @(mzk ))>fs,c(3,c) dsdc

:max(ti,m_l ,t)

= F(x;;0) (20)



When n > ag we get

ni+1 ni;+1
P(X < x| a(t) Z{t”1<t<t”}2
lim P({tim-1 < S < t,-m}{Xi <x;}[n<af(t ) <n+e). (21)

We now use (5) and the fact that we know that S; < ¢, and rewrite (21)

n;+1 1 n;
tii—1 <t <t}
Z;{m Ltk PWSa@%<n+d<g;

P({tim—1 < S < min(t;m,t)} ﬂ"+1 {a(tir) +ex <z }{n < alt) <n+ e}))
+P({tin; <S < min(ti,mﬂ,t))] ) (22)

and use definition (19) to include the last term in the summation,

ni+1 ni+1

-21 {tij1 <t <tij} Z lim
J= =

fsrii:,,(tt?t)f - s)b ( nirl @(Wai‘z(tik)))fo,s(c,s) ds dc

(t 8)

(23)

n— a0+e

f::(] ¢ WS)ao fC S(C 3) ds dc

T =s)b

We denote
71— ao

sy D =a0tii-s),

¢=2¢(s) =

and

(I)(xi,m'+1 - a(t’i,ni+1)) -1

O¢

10



and rewrite (23),

ni+1 ni+1

Z {ti,j—l <t< tl’j} Z 11_%

j=1 m=1

f;iiz,(:’_"l’t) =N ( ritl g (H—Jia(m» fo,s(é,s) ds
Joo TS5 fo,s () ds

S b <t < tiy)
i ~
Jio e (s) ds

n;+1 min(t;m,t) ni+1 oot
3 / T _15)1; ( 11 @(73% Ua(tzk))>fs,o(s,é) ds
s k=m €

m=1 :ti,m—l

F®(x;;6)

Using (20) and (24) we can write the complete formula as

P(X; < x; | a(t) =n) = {a(t) = ag} F® (x:;0) + I{a(t) > ag} F (x;;6).

When removing the constraint that x; > ag we get

Fx,lap)(xi | a(t); 0) =
(I{a(t) = ao}F®) (x;;0) + I{a(t) > ao} F® (x,.;e))f{x,. > a},

and the density function

friawila®)) = Y 8%(Ha(t) = ao}F®)(x;;0)

a:|lal+|a’'|=n

+1{a(t) > ao}F ) (xi; 0) ) T{xi > ao}*6a, (x:)°".

(24)

(25)

(27)

We now know all the parts of (14), which concludes the derivation of the crack
distribution at a fixed time.

3.4 Statistical model

In the previous two sections we derived the distribution of the time until the crack
reaches a specific length and the distribution of crack length at a specific time. If
the parameters 6 are known we can use these distributions to make an inference
but since the parameters are estimated from data we have to take the uncertainty
in the parameter estimation into account. In this subsection we do this by using a

11



predictive profile likelihood approach. We also study likelihood based methods for
deriving point and interval estimators of the unknown parameters.

The likelihood for the parameters given data of cracks x = {x1,...,Xn} can be
formulated n
L) = fx(x;0) = [] fxi(xi:6), (28)
i=1

where the joint density fx,(x;i;6) is given in (9) 1.

To get confidence intervals for the parameters in § we use a profile likelihood
approach, cf. Barndorf-Nielsen and Cox [3]. A profile likelihood can be seen as an
ordinary likelihood and is generally used when the parameter can be split into two
parts 8 = (v, &) where £ is the nuisance parameter part of §. The profile likelihood
and log profile likelihood of v are defined as

L(y) = sup L(7,€),

I(v) = logL(v),

and the maximum profile likelihood estimate of v is defined as

4 = argmaxl(%).
¥

From Barndorf-Nielsen and Cox [3] we get

P 7 L
200(9) = 1(7) = Xaimey
and therefore a (1 — a) confidence region is
Re = {v:2(0%) = 1") < Xaim),1—a) }- (29)

We use (29) to get confidence intervals of the parameters in 6§ = (¢,02,b), i.e. if b is
the parameter of interest, then the nuisance part is (¢,02)

In order to take the parameter uncertainty into account when we make an infer-
ence about the time when the crack reaches a fix crack length or the crack length
at a fixed time, we use a predictive profile likelihood approach. A predictive profile
likelihood for a stochastic variable Y with data X is the likelihood

L(y) = sup L(y, 6) = sup fy.x(y,%;6) = sup I fr.x (v, x:;6). (30)

=1

Since a product of Dirac measures is ill defined, cf. Schwartz [13], we make a reformulation of
the likelihood, . .
fxi(xi; 0)d$ = fxi(xi;e)di‘ = fxi(xi;e)d(l(ao) + l)
where the Lebesgue measure dz is replaced by a mixed measure di containing the point mass
measure [(ag) at the point ap and the Lebesgue measure . The function fxi(xi;ﬁ) is similar to
fx;(xi;0) but with the Dirac function replaced by the indicator function I{x; = ao}. The same
goes for frx,(t|x;;0) and fax;(a | x;;0).

12



Normalizing (30) we obtain a density

and we view fy (y) as an estimate of fy (y) and use it for inference about Y.
We now let Y correspond to T given x; and use (30) to get

L(t| %) = Sl;P Ix,rx; (%, | x1;6).

To avoid the singular distribution fx 7x; we replace it by fx . 7/x;. Thus we study
instead

Lit|x) = sup fx_, i, (% 1ot | %30)
= sup frix_ x, (] x5 %i50) fx_x, (X5 | x3560)

sup frix (] x;0) fx_,(x_;50), (31)

—i

where the equality follows since both T and X; are independent of X _;, that is cracks
on different components grow independent of each other and T is the time until the
crack on component i reaches a fixed length @,,q,. The expression frx;(t | x;,6) is
obtained from the probability model (3) and fx_ (x_;;0) from (28) via (9).

We now normalize the likelihood (31) to obtain an estimate of the density function

L(t | x3)

fTIX;(t | xi) = W;

and use it for inference of T' given x;.

If the number of cracks k is large the predictive profile likelihood in (31) is numer-
ically demanding to compute. We can then ignore the uncertainty in the parameter
estimation and use 8 = @ for all times t. The likelihood then becomes

Lt xi) = frx,(t] xi30) fx_,(x_5;0) = fryx, (t | xi;0) K
where K is a constant independent of ¢. Normalization eliminates K and gives the
probability model (3) with § = 6.

If we want to find the distribution of the crack length at a specific time we follow
the same steps but use

L(A|xi) = sup fax;(a|xi;0) fx_, (x_;;0), (32)

instead of (31) where f4x,(a | x;;0) is (14).

13



Predictive likelihood methods have been examined by e.g. Hinkley [8], Lauritzen
[9] and Chib, Jammalamadaka and Tiwari [6]. A review of predictive likelihood
methods can be found in Bjornstad [4]. Mathiasen [11] has written more generally
about predictive functions. A predictive profile likelihood approach has also been
used in Lorén and Lundstrém [10].

4 Case study

We use the model in the theoretical part to make predictions on crack growth in a
low pressure turbine nozzle component. First a small data set is presented and then
we discuss a way to estimate the joint distribution of C' and S. Finally there is an
illustration of the difference of estimating the remaining life with and without taking
the uncertainty in the parameter estimation into account.

4.1 Data

The data available is from pri-engines. Pri-engines are engines that are used exten-
sivly so they accumulate a large number of flight hours and flight missions. The
engines have been observed every 200 flight hours. To illustrate the method, VAC
has allowed us to publish crack data from four components. The cracks used to
illustrate the model are found in Table 1.

Component OFH 200FH 400FH 600FH 800FH 1000FH

Nol 0 0 0 0 0 -
No2 0 0 0 16 17 -
No3 0 0 25 30 37 -
No4 0 0 20 25 27 33

Table 1: The length in mm of the largest cracks of 4 nozzles observed at 200,400,600,300
and 1000 FH (Flight Hours).

4.2 Estimation of the joint distribution of C' and S

In order to use the calculations in Section 3 we need to know the joint distribution of
C and S. Figure 1 illustrates the cracks and the crack model (1) fitted to the cracks
with a least square method. From each picture we get an observation of S (censored
if no crack was detected) and an observation of C if a crack was detected.

Using a similar procedure for all cracks (more than the four in Table 1) indicates
that S and C' are uncorrelated. We make the assumption that they are independent,
that is we assume that the crack growth speed is independent of the time when
the crack is initiated. By examining the empirical distribution of S and C' we find
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Figure 1: Model (1) with ag = 0 fitted to the cracks in Table 1.

that a log normal distribution is a reasonable approximation. We therefore assume
that both S and C' are log normally distributed with parameters us,o0s and p., o,
respectively.

4.3 Model illustration

Assume that we have observed the cracks on the three first components and we want
to state when the crack on the fourth component reaches length a,,4, = 30 mm, that
is to find the distribution of T" given the observations of component four. We update
the distribution 7" each time we get new observations at 200, 400, 600 and 800 flight
hours.

Assume that we know from experience that . = 1 mm but we do not know any-
thing about the other parameters. We use the few observations we have from com-
ponents one, two and three to estimate the remaining parameters (us, os, fic, o¢, b)
using equation (28). First we calculate the distribution of T' using (3), ignoring the
uncertainty in the parameter estimation. The solid line in Figure 2 illustrates the
distribution of T" when ignoring parameter estimation uncertainty and § = 6.

Since the data used to estimate the parameters is limited we can also see how
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much the uncertainty in the parameter estimation affects the results. We do this by
using the profile likelihood approach (31). The lines with stars in Figure 2 illustrate
the distribution of 7" when we consider the uncertainty of the parameters. The stars
indicate where the distribution has been calculated.

6 x10™* Time to failure at 200 FH , x 10  Time to failure at 400 FH
5
15
4
3 1
2 x
0.5
1
K
0 * 0 s
0 500 1000 1500 2000 0 500 1000 1500 2000
Time: FH Time: FH
. x10°  Time to failure at 600 FH . x102 Time to failure at 800 FH
4
3
3
2
2
1
1
0 e 0
0 500 1000 1500 2000 0 500 1000 1500 2000
Time: FH Time: FH

Figure 2: Distribution of the time when the crack of component four will reach 30mm
both considering uncertainty in parameter estimation, line with stars, and not con-
stdering uncertainty, solid line. The distribution is updated with the observations at
200 flight hours (upper left), 400 flight hours (upper right), 600 flight hours (lower
left) and 800 flight hours (lower right).

We notice that if we assume that we know the parameters, we seem to be more
certain about when the components are going to break than we should be. By plotting
both curves we also illustrate the difference. We notice that even if the measurements
at 800 flight hours indicate that the component is soon going to break, there is still
great uncertainty in the outcome of T'. This is due to the fact that each observation
has a variance o2, and a small change in the values of the crack length results in
a large difference in time when the crack length reaches @, = 30 mm. This
problem originates from the fact that we have decreasing crack growth speed and a
measurement variation. Whatever way is chosen to analyze the crack we will get a
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similar problem. The same principal works to our advantage if we wish to predict
the crack length at a fixed time.

This can be illustrated by using the theory in section 3.3 where we find the crack
length distribution at a fix time. If we do this analysis for all possible times we get a
three-dimensional picture of how the crack will grow over time given the information
in our observations, illustrated in Figure 3. We can update the picture as we get

Tobservation 2observations
B

T 1000
4800 1540

Cracklength Time Cracklength Time
3observations 4observations

fo %

4800 4800
Cracklength Time Cracklength Time

Figure 3: Three-dimensional illustration of how the distribution of the crack length at
a fized time of component four changes over time. The distribution is updated each
time a new observation is made: first observation at 200 flight hours (upper left),
second observation at 400 flight hours (upper right), third observation at 600 flight
hours (lower left) and forth observation at 800 flight hours (lower right). The values
at crack length 0 correspond to the probability point mass that there are no cracks.

more information and we notice that we get more and more certain as to how the
crack will behave in the future as well as how the crack has behaved in the past.
This type of picture is good if we want to evaluate the risk of an unplanned engine
maintenance occurrence due to the fact that the crack length exceeds a4, before
it is expected to. Note that if we integrate the function in Figure 3 with regard to
crack length we will get marginal function of value 1 for all times. The high values
in the upper part of the pictures are the point mass that indicates that the crack
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length is below size ag. In the case of one observation, the upper left picture, we can
observe how the probability of a crack length of length ag is decreasing as the time
increases. At 0 FH this probability is one. The observation that we have no crack at
200FH means there is a very slim chance that there is a crack at this time. Hence
the probability is almost one. In the other pictures in Figure 3 we get a feeling for
that even if we are fairly certain of the crack length at a fixed time the distribution
of the time when the crack reaches a specific crack length will have a large variance.

If we combine the probability model in Section 3.3 with the statistical profile
likelihood based approach in Section 3.4, we get a comparison of how the uncertainty
in the parameters affect the distribution of crack length at a fixed time. We plot
this for times 500FH and 1000FH as illustrated in Figure 4 where we also update the
illustration when we get more observations.
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40 40
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Figure 4: Distribution of the crack length at times 500 and 1000 flight hours of
component four both considering uncertainty in parameter estimation, line with stars,
and not considering uncertainty, solid line. The distributions are updated with the
observations at 200 flight hours (upper left), 400 flight hours (upper right), 600 flight
hours (lower left) and 800 flight hours (lower right). The observations are marked
in pictures with “z”.
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5 Summary

We have used real data and made an empirical model describing the crack growth on
an air craft engine nozzle component. With the help of the model we have presented
formulas to answer the question when a component is going to break. A component is
considered broken when the crack reaches a specific length a4, We have found the
distribution of the time when a crack will reach length a4, given earlier observations
of the crack. From the model we also get the distribution of the crack length at a
fixed but arbitrary time. This distribution is updated when more observations are
available. The distributions can be calculated both if we know the parameters in the
model and if we have to estimate them. If we have to estimate the parameters we use
a profile likelihood approach to take the uncertainty of the parameter estimates into
account when we calculate the distributions. Whatever way we choose to estimate the
distribution of time when the crack reaches length a4, it will get a relatively large
variation. This is due to the decreasing crack growth speed and the measurement
variation.

The methods illustrated can be used to predict a variety of other failures that
are not related to crack growth, e.g. corrosions failures, even if the choice of empir-
ical model is different. The main strength of an empirical approach compared to a
mechanistic approach is that hard environments can be modeled without a complete
understanding of the physics involved. The weakness is that the models may not
be moved, can not be extrapolated outside the observation space and may perform
incorrectly if the load characteristic changes.
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Abstract

Discretization of continuous random variables is used in a stochastic opti-
mization problem. We present a measure connected to an optimization model
that suggests what parts to replace in an aircraft engine. The optimization
model requires a discrete random variable with restrictions on the points of
support. Four methods to make discretizations are discussed and adapted to
the constraints of the model. The methods are compared and the choice of the
number of points of support is discussed. Finally the consequence of using a so
called narrow scenario tree is commented upon.

Keywords: optimal maintenance; discretization; points of support

1 Introduction

Aircraft engines can be more economically maintained and resources saved if the
maintenance process is optimal. The optimality is here defined in economical terms,
and the main factor for economical savings determines which components should be
replaced on each service occasion. Several optimization models have been developed
to deal with this problem. Epstein and Wilamowsky [5] and Dickman et al. [3] have
developed models for components with predetermined deterministic lives. Andréas-
son [2] has developed a model for details with deterministic lives but also details
with stochastic lives. Another approach to the problem is to construct a general
maintenance policy that is not always optimal but at least satisfactory. A survey of
replacement and maintenance polices can be found in Wang [14].



We will use the model presented in Andréasson [2], formulate it as a two-stage
model, and define an error measure. Different discrete approximations will be used in
order to incorporate components with stochastic lives into the model. With the help
of the error measure we will compare different approximations. Work on different
ways of making discretizations of continuous distribution functions for implementa-
tion in models has been done by Hgyland and Wallace [7], Keefer [9], Miller and Rice
[10] and Smith [12], [13]. Other work on discretization and tree reduction in multi-
stage problems has been done by i.e Dupacova et al. [4], Frauendorfer and Schiirle
[6] and Pflug [11]. We will make discretizations with restrictions on the points of
support of the density function.

This paper consists of three parts. In the first part we present the optimization
model and the error measure. The second part introduces different discretizations
methods, and the last part compares the different methods with respect to the error
measure. The objective is to conclude how many points of support are necessary and
what method of discretization to use. Furthermore, we discuss the consequence of
making a narrow scenario tree.

2 Optimization model

The aim of the optimization model is to minimize the expected cost of maintenance for
an aircraft engine. In order to describe the maintenance we classify the components
of the engines into two categories; deterministic details and stochastic details.

Definition 1: A deterministic detail is a component that has a predetermined
limited time in service which must not be exceeded.

Components that are vital for safety are deterministic. If a deterministic component
fails there is a risk that the engine will stop functioning. The predetermined time
limit is set so low that there is practically no risk the component will fail before this
time.

Definition 2: A stochastic detail is a component that is not deterministic.

Stochastic components are allowed to operate in the aircraft engine until they fail.
If a stochastic component fails during a flight the engine will still work but with
reduced performance. In this paper only one stochastic detail is used but it is possible
to extend the model to several stochastic details. The life U of a new stochastic
component is modeled with a distribution G and the remaining life of a functioning



stochastic component with an age of ug is modeled with a distribution G where

P(up < U < u+ug)

G(u) 1-P(U < uo)

P(USU+U0|U>U0)=

G (u + ug) — G (uo)
1-Gu)

We assume that G’ (u) > 0if u > 0 and U to be a non-negative random variable.

The engine is repaired for two reasons, either the stochastic detail has failed or
a deterministic detail has reached its predetermined time limit. The repair of the
engine is associated with a cost for bringing the engine to service. At service, there is
an opportunity to replace other components and consequently extend the time to the
next repair. Every time the engine is at the repair bay, an optimization is performed.
The input data is the state of the components in the engine and the output data is
a suggestion of what parts to replace. The optimization model is described in detail
in Andréasson [2].

In order to solve the optimization problem, for an engine consisting of many parts,
simplifications must be made. The main simplification in this paper is that in the
sequence of life distributions for the stochastic detail only the first life distribution
is modeled in a stochastic way, the remaining life distributions are replaced by the
expected value of the life distribution. This simplification makes the model easier to
formulate and solve, but there are some drawbacks, described in Section 4.2.

Another simplification inherent in the optimization model is that the time, dur-
ing which the maintenance cost is minimized, is divided into T discrete time points
instead of a continuous approach. The optimization model is formulated as a stochas-
tic two-step model. More information about stochastic optimization models can be
found in Kall and Wallace [8].

2.1 First stage model

In order to decide which components to replace we introduce the first step binary
variables z§ for deterministic details ¢ = 1,...,N and 3 for the stochastic detail.
The variables z}, . . .,:Uév , 8o take the values 0 or 1 with a 1 indicating replacement
of the detail. The lower index indicates the time point and zero indicates that this
is a decision we have to make now, hence a first step variable. We introduce the
replacement strategy vector xo = (z§,...,2),5) and we want to find the solution

X9 = argmin F(x),
x0€{0,1}N+1

with
F(xo) = / £(x0,u) dG(u) = Ealf (x0, V)], (1)

where f is defined in section 2.2.



2.2 Second stage model

In the second stage model we take into consideration possible future problems. Over-
all we want to minimize the expected cost of maintaining the engine during a fix time
period containing T equidistant time points. We denote the time points nodes. One
approximation of the optimization model is that components are only allowed to
break and be replaced at nodes. If T is large we get good resolution at the cost of
long calculation time, and if T is smaller the resolution gets worse but the calculation
time shortens.

The lives of the deterministic components that are currently in the engine corre-
spond to the node indices 7y,...,7n.

The life of the stochastic component currently in the engine U is transformed to
a node by 75 = 75(u), which is a function from U to an index set 1,...,T describing
which node corresponds to every u. For later convenience let us construct 7s(u) as a
step function in such a way that it is right continuous, increasing in u, and does not
jump at any nodes. Furthermore if U takes the exact time corresponding to node
i, we let 75(u) = i. This implies that f (defined in (2) below) for a fixed xq is a
right continuous step function in » and does not jump at any node. The reason for
this is that f only changes values when 75 (u) is changing values. The function f also
decreases in u (formulated as a lemma in section 2.4). The function 75 can be written
as

To(u) =1 if we€ [wimiui—1 + (1 — wi—1)us, win; + (1 — wi)uigr),

where u; is the time corresponding to node i and w; € (0,1). This definition means
that we treat components that are going to break some time after u; as broken at time
u; and we therefore replace them at time w;. This is an approximation since at time
u; we never know if the components will break in the near future. The motivation
for this approach is that we are interested in the first stage variables x¢ and not the
replacement schemes (the second stage variables) if we get the outcome u. Remember
here that the nodes do not correspond to any actual maintenance times. In reality
a stochastic component is replaced as soon as it is observed as broken, whether this
times corresponds to a node or not.

The lives of new (replacing) deterministic and stochastic details are described
with node indices 7;, . . . , 7w and 75 with 75 indicating the node closest to the expected
value of the life distribution G.

We introduce the second stage binary variables as (z},...,zN),t = 1,...,T for
the deterministic components, §;,t = 1,...,T for the stochastic component cur-
rently in the engine, and s¢,t = 1,...,T for the replacing stochastic components.
Furthermore, we let z; be binary variables indicating whether service is performed
on the engine at time ¢ = 1,...,7. Thus the vectors (z},...,x},3;, 8¢, 2;) describe
if replacement and service are performed at times ¢ = 1,...,7 with 1 indicating
replacement and service, respectively.

Costs associated with the maintenance are ¢;, cs, and d, where ¢; is the cost of



replacing component ¢ = 1,..., N, ¢; the cost of replacing the stochastic component
and d a fixed cost for the service process. Thus (ci,...,cN,cs,d) is the vector of
costs associated with the replacements and service made at each node.

In order to simplify the notation we introduce the set N = {1,...,N}. The
second stage function f describes the cost if we make replacement xg, when the
stochastic life is u and is defined as

T
= mi i 5 2
f(xo,u) 216111/} (Z ¢i%y + Cs(se + 8¢) + dZt) ) (2)
t=0 \ieN
where 1) is the set of points x = (@1, ...,2Y, 8¢, 84,2 t = 1,...,T) such that
. 7.:1: .
Th+ Y @ > 1, i€N, (3)
t=1
Ti+€—1 )
doai > 1, £=0,....,T—75, i€N, (4)
t=¢
< oz, t=0,....,T, i€N, (5)
If 75(u) > T constraints (6)-(13) shall be removed
T
ng = ]-; (6)
t=0
7
gt = 17 (7)
t=0
Ts+€—1 7s(u)
Z st + gt Z ]-a K:O,...,min(%s(u),T 7—8)’ (8)
t=¢ t=¢
Ts+£€—1
Z s > 1, l:%s(u)-l-l, ,T'— 5, (9)
t=¢
So = 07 (10)
t—1
St S Sk, t= 17 'J%S(u)7 (11)
k=0
gt S 2t t= 07 J%S(U)J (12)
St S 2t t= 07 7Ta (13)
20 = ]-7 (]‘4)
miastagtazt € {0,1}, t=07 7T7 ¢ GN (15)



The constraints (3) force the installed deterministic components to be replaced
before their lives 7; are consumed. The components that replace the current deter-
ministic components are not allowed to be in the engine more than 7; nodes. This
is regulated by constraints (4). Constraints (5) force the indicator variables z; to be
one if we replace any deterministic component at node t¢.

Constraints (6) to (13) are constraints regulating replacement of the stochastic
component and should be removed if 75(u) > T, because then replacement of the
stochastic component is not necessary. Constraint (6) tells us that the installed
stochastic component can only be replaced once and (7) tells us that the replacement
must occur before node 7,. The component that replaces the current stochastic
component is not allowed to be in the engine more than 7, nodes. This is regulated
by constraints (8) and (9).

Constraints (10) and (11) mean that no replacing stochastic component is allowed
to be installed before the current stochastic component is removed.

Constraints (12) and (13) force the z; variables to be one if we replace the stochas-
tic component at node t. The engine is at the repair bay at time zero, hence constraint
(14) sets zp = 1. In constraints (15) we have the binary restrictions.

Note that in this model it is only the time to first failure 75 of the stochastic
component that is modeled with distribution G. The remaining times are all assumed
Qmodeled) to be deterministic and equal to the node 75 closest to expectation under
G. This is sometimes called a narrow scenario tree, see Altenstedt [1]. In the model
there is no requirement that the components function at node 7'.

2.3 Maximum discretization

In the above formulation 7; corresponds to a discretization of G. The structure
of the second stage model requires discretization to work. In section 2.4 we will
measure how good a discretization is. In order to do that we introduce two kinds of
discretizations. The first discretization allows probability mass on all nodes and the
second allows probability mass only at a subset of the nodes.

Let kr = {u1,...,ur} be the maximal set of nodes where probability mass is
allowed, let n < T be a positive integer, and denote &, = {ky,...,k,} C k7.

Definition 3: The discretization Gt is a discretization of G that allows probability

mass in all T nodes in k7. We call this discretization the maximum discretization

Definition 4: The discretization Gy, is a discretization of G that allows probability
mass in at most n nodes in k7. We call this discretization the n-node discretization



A maximum discretization G has the corresponding probability mass function

Pip, if u=wu,
gr(u) =4 : (16)

PTr, if u= ur,
and a n-node discretization G, the probability mass function

P, ifu= k‘l,
gn(u) =9: (17)
Dn, ifu=k,.

We discuss different discretization approaches in section 3.

Nodes with non-zero probability mass are also called points of support for a
distribution. Points of support for a distribution H (u) are all points u such that, if
a < u <b,then H(b) — H(a) > 0, for any a,b.

2.4 Measure of error

In order to reduce the time needed to complete the optimization, we want a dis-
cretization with as few points of support as possible but we still want a good replace-
ment strategy. Using the maximum discretization (16) or the n-node discretization
(17) yields different replacement strategies. The maximum discretization gives the
replacement strategy
%' = argmin Fr(xo), (18)
x0€{0,1}N+1

where Fr(xg) is defined in (1) with G replaced by G, so that

T
Fr(xo) = Z J (%0, ) Piy -
i=1

The n-node discretization (17) gives the replacement strategy

%¢ = argmin F,(xo), (19)
xp€{0,1}N+1

with F, defined in (1) with G replaced by G, so that

n

Fr(x0) = Y f(xo0, ui)pi-

i=1



As Gr is a distribution using the maximum number of nodes in the model we
compare the quality of G,, to G by introducing the error measure for the expected
cost between two discretizations G and G,, as

e(Gn,Gr) = Fr(X) — Fr(X; ). (20)

Note that e(Gp,Gr) > 0. In order to make a discretization that has a small error
we use the following result.

Theorem 1: The error measure can be bounded with the following inequalities,

e(Gn,G1) < 28up | Fr(x0) — Fr(xo) |[< Csup | Gu(u) —Gr(u) [, (21)

where C' is a bounded constant.

The first inequality is proven in Pflug [11] but the short proof is stated here for the
convenience of the reader.

Proof:(First inequality) Set ¢ = sup,, | Fn(x0) — Fr(xo) | - Let M = {xq :
Fr(xo) < Fr(xY) + 2¢}. Suppose that X ¢ M, then

Fr(%3) +2e < Fr(X3) < Fo(X3) +e < Fo(%2) + e < Fr(x}) + 2e.
This contradiction establishes Xj € M, i.e.

e(Gn,Gr) = Fr(x{) — FT()?:OT) <2e=2sup | Fy(x0) — Fr(xo) | .O
X0

In the second inequality in (21) we use the fact that the second stage function f in
(1) is right continuous and does not jump at any nodes. We also use the following
lemma.

Lemma 1: The second stage function f decreases in u for any fix xg, i.e

f(xo0,u) > f(x0,u+¢), Ve>0

Proof: We will check that the point x = (x},...,z], 8,8, 2¢; t = 1,...,T), which
solves the minimization problem (2) when u = ug still satisfies the constraints when
u = ug +&. This means that f(xg,u) decreases in u since we can guarantee the same
cost at u = ug + € as when u = ug.

The relevant constraints to consider are (7),(8),(9) and (11). In the case when
7s(ug) = 7s(up + €), all constraints are the same. In the case when 7s(ug) < T



and 75(up +€) > T, x belongs to ¥ when u = ug + € since removing constraints
means less restriction on the second stage variables. We now consider the case when
Ts(uo) < Ts(uo +¢) <T.

We know from constraints (6) and (7) that x satisfies 5; = 0, t > 7s(ug) + 1. This
observation makes (7) true when u = ug + ¢

We now consider constraints (8) and (9) when u = ug+e but §; = 0, t > 7(up)+1.
The first 75(ug) + 1 constraints in (8) are identical to the constraints in (8) when
u = ug. The remaining 7(ug + €) — 7(uo) constraints in (8) are identical to the first
7(uo + €) — T(ug) constraints in (9) when u = ug. All the constraints in (9) when
u = ug + € can be found in (9) when u = uq.

The first 75(ug) constraints in (11) are identical when v = ug and v = ug + €.
When u = up + ¢ and we use §; =0, t > 7(up) + 1 the remaining 75 (uo + &) — 7s(ug)
constraints state

T (uo)

st < Z 5, t=7w)+1,...,7(u+e),
i=1

which is not really a restriction since Z:;(lu o) g
all variables are binary according to (15).

We have now checked that solution x does not violate any constraints when
u = ug + € since the constraints do no mean any restrictions or are identical to the

ones occurring when u = wug.0

+ = 1 according to constraint (7), and

A consequence of Lemma 1 is that the longer the life of the stochastic detail is the
cheaper it is to maintain the engine.

Proof:(Second inequality): Denote Y = f(x0,U) = f(U) and note that Y is a
non-negative stochastic variable. We rewrite

P(Y>y)=1-P(f(U) <y)=1-PU > f'(y) = PU < f}(y)),

where
00, if y< fmin;
[ y) = {inf{z: f(z) <y}, if frnin <Y < frmaz,
07 if y > fmaza

and fpin and fe; depend on x¢ and are the minimum and maximum costs of
maintaining the engine. Note that P(U < f~1(y)) = G(f~!(v)) if f does not change
values at node points, i.e. if f~!(y) ¢ k7. Note that this follows from the assumption
on .



Equation (1) can be rewritten

Falv] = /Om PV > y)dy = /OOOP(U< 1)) dy
oo fmaz
= [Teu s =i+ [ G0 W)
0 min
Now
2sup | Fy,(x0) — Fr(xo) |
= 2sup| Eg,[Y] - Eg,[Y] |
Frae
= 2sup| . Gr(f'(y)) — Gu(f ' (v) dy |
< Csup | Gr(u) — Gn(u) |a

with C' = 2supy, (fmaz — fmin).- Then

fmaszmazzmin{Z([%] +1)(c,-+d)+([T—z;] +1)(cs+d),

g (e ()]

Fmin > Fmin = [ﬁz(ﬂ)] d+§[ [%] Ci,

where [z] is the integer part of z. Thus C' is bounded.O

and

3 Different discretization approaches

When modeling a discretization of G(u),u € [0,00) with n < T points of support,
the following questions arise:

1. How many points of support should we use?
2. Which points of support &, C «7 should we choose?

3. How should we place the probability mass?

10



Answering questions 2 and 3 simultaneously may lead to optimization problems, that
are as difficult to solve as the original optimization problem. In section 4 we try to
answer question 1 by simulation.

We will describe four different approaches and describe how existing methods can
be adapted to our situation. The methods are first presented without any restrictions
and then with our restrictions.

3.1 Method minimizing the Sup-distance

Theorem 1 bounds the error measure (20) by a constant times the sup-distance
between G, and Gr. Here we discuss a discretization that minimizes the sup-distance
between G, and G. The reason is that when T tends to infinity, G tends to G
uniformly in order to be a sequence of discrete approximations of G. The triangle
and inverse triangle inequalities gives

up | Gaw) = G(w) | < sup | Gulu) = Gr(w) | +5up | Gir(w) = G(uw) |

= sup | Gn(u) — Gr(u) | +e,

and
sup | Gp(u) = G(u) | > sup|Gr(u) —Gr(u) | —sup | Gr(u) — G(u) |
= sup | Gulw) - Gu)r | -,

which gives

sup | Gn(u) — Gr(u) | —¢ < sup | Gn(u) — G(u) < sup | Gn(u) — Gr(u) | +e,

where ¢ = sup,, | Gr(u) — G(u) | is small when T is large.

Assume that we do not have a restriction that the points of support have to be in
the set k7. Then we can minimize sup,, | G(u) — G, (u) | where G, is a discretization
with n points of support with masses p; at u;, ¢ = 1...,n by choosing point of

support ¢ as
2i — 1 1
o ) and p; = o (22)

This can be realized by looking at Figure 1, where a,b,c,d,e and f indicate the greatest
difference between G and G,, in intervals 1,2,3 and 4. The overall sup-distance is equal
to the maximum distance of a,b,c,d,e or f and is minimized if all distances a,b,c,d,e
and f are equal. This gives a sup-distance of (2n)~!.

With our restrictions on the points of support we get a greater sup-distance.
Assume we fix the n points of support in k7 and form discretization (17). Let

U; = Gil(

11



Figure 1: A fictive distribution G and Gs where a,b,c,d and f are the mazimum
sup-distance between the functions in intervals 1,2,3 and 4.

p = (p1,...,pn) be the probability vector and p the solution to
p = argmin{sup | G(u) — G, (u) |}. (23)
P u

In most cases p is not unique. We then choose the solution that minimizes the sup-
distance in every interval [(0, k1), (k1, k2), .- ., (kn,00)]. The overall sup-distance is
the maximum of the sup-distance in those intervals so the solution also minimizes
the overall sup-distance (23). The solution is as follows

oy = Glk) + Glk)
2 7
_ G(ki) + G(kit1)  G(ki-1) + G(ki) _ G(kit1) — G(ki—1)
bi = 9 - 9 - 9 )
on =1 G(kn) + G(kn_1)

2 ’

where i = 1,...,n — 1. In the intervals (0, k;) and (k,,c0) the sup-distance will be
G(k1) and 1 — G(k,,) respectively regardless of p. In interval (k;, k;11) the minimum
sup-distance is (G(k;y+1) — G(k;))/2 and it is achieved since

Gu(ki) = ij:G(kl);rG(kz)+ZG(kj+1);G(k,-_1)
_ Gk +Glhir)
2 7

12



and
sup | Gulhi) — Gu) |= GFirt) = Gks)

w€ (ki kit1) 2
If we have the liberty to choose both p; and which n points of support k; €
Kkt we want to use we get the following problem. Let (p;, k;),i = 1,...,n be the
discretization with p; the mass in node k;. Let p, k,, be the solution to
(D, Kn) = argmin{sup,, | G(u) — Gp(u) |}- (24)
p,kiGNT

As above the solution is not unique. Solving this problem is the same as solving
problem (23) for all (*) choices of points of support. (Many combinations are unlikely
to be best and can be omitted.) In general a good set of points of support are points
that lie dense where G increases much.

Instead of the above optimization we suggest to choose points of support near the
points in (22). This can be achieved by choosing the n points of support as follows.

1. Choose the first point of support as

1
k1 = argmin | G(u) — — | .
1 = argmi | G(u) 2n|

2. Choose the i’th point of support as

. 2(1 — G(ki—1))
k; = argmi Gu) — -1\ el))
ue;ml:%g;?i_l |G 2(n—i+1)+1

G(ki-1) |- (25)
Here we try to spread G(k1), ..., G(ky) uniformly in the interval [0, 1] but since k; has
to be from set k7 this is not always possible. Equation (25) considers the remaining
part of the interval [0,1], namely [G(k;i—1),1] and spreads the points in it. Here
we start from the beginning of the interval [0,1], but it would be equally good to
start from the end. Note that if there is no restriction of possible points, this choice
coincides with (22). Now probabilities can be chosen by (23).

3.2 Bracket means method

This method consists of dividing G into n intervals {[to,t1],-. ., [tn—1,tn]} Where
to =0, t, = co. We now make a discretization by putting the mass

t;
ti—1
at the point
Ji tdG(t)

[ dG(t)

ti—1

i =

13



The intervals can be chosen in many ways. One common choice is that all points
of support have equal probability mass. A similar method is the bracket median
method, in which one uses the median in each subinterval instead of the mean, see
Smith [13].

In the case where the points of support have to be in the set k7, it is not always
possible to find subintervals so the mean in each subinterval corresponds with a node
in k7. A simple example that shows this is this: One interval [0,00) and mean in
distribution does not match node in k7.

We present two ways to find approximations that almost satisfy the bracket mean
condition. For the first approach we decide which points of support we should use.
In the second approach we use a probability vector that helps to choose points. Both
methods are expressed as optimization problems that are rewritten in a standard
form in appendix A.

Approach 1: Let pu; measure the distance between point sets. Fix the n preferred

nodes Kk, C k7. Let &Ky, = {@1,...,Un} be a set of points of support, that is not a
subset of k7. The solution p = {p1,...,pn} is obtained for the optimization problem
P = argmin pq (K, fn) (26)

pPEYP

where ¢ is the set of points p such that

t;
pi = / dG{t), i=1,...,n,

ti—1
1 (%

1],' = - th(t), i=1,...,n,
pi Ji,_,

ti > ti—1, 1=1,...,n,

to = O,

tn, = 00.

Solving (26) gives the discretization of the distribution as in (17). A possible choice
of py is p1 = Y1, wi(k; — G;)* where w; is a weight.

Approach 2: Let p2; measuring the distance between probability vectors and pao
measuring the distance between point sets. Let q = {q1,...,¢n} be a probability
vector with desirable probabilities and let %, = {d1,...,%n} be a set of points of
support, that is not a subset of k7. Then a discretization p = {p1, . .., pn} with points
of support k,, = {ki,...,k,} is obtained as the solution (p, &) to the optimization
problem

(D, kn) = argmin  p21(q,p) + po2(kn, Kn), (27)
PEP,kn CKT

14



where ¢ is the same set as in the first approach. The solution of (27) gives the
discretization of the distribution as in (17). Measures p21 and us2 need to be chosen
so that they do not completely dominate each other. If ps; dominates, we get the
brackets with the probabilities we desire but the mean in each bracket may be far
from a node. If us2 dominates, the mean in each bracket will be near a node but the
probabilities will be far from those desired.

3.3 Method minimizing Wasserstein distance

Pflug [11] suggests the following discretization

ky1tko
mo= [ 7 o,
0ki+:i+1
P = [y i4x dGt), i=2,...,n—1,
;

N (0}

where {k1,...,kn} € Kp are the points of support of the given G,, derived as the
discrete distribution minimizing the Wasserstein distance, see Pflug [11]. In Pflug
[11] an error measure similar to equation (20) is used, for which he presents a bound
depending on the Lipschitz continuity of f with respect to u. His result is not directly
applicable to our problem since f is not Lipschitz continuous but we will nevertheless
use this method to decide probabilities for comparison purposes.

3.4 Moment preserving method

If we have no constraints on the points of support and the first 2n — 1 moments of
the distribution G are finite, then it is possible to create a discrete approximation
with n points of support that correctly matches 2n — 1 moments. Let

M]-:/ uw! dG (u),

be the j’th moment. The discretization can be obtained by finding u; and p; that
satisfy

Y pul=M; j=0,..2n-1 (28)
i=1

For a solution see Miller and Rice[10] and Smith [12]. It can be shown that if all M;
are finite and from a probability distribution that spans [a, b] then all u; will be real
and lie in the interval [a,b] and all p; > 0.

15



In our problem, we must choose points from the set k7. In order to compare
the methods we will use the same points as for the method that minimizes the sup-
distance.

Another approach is to calculate points of support using (28) and then choose the
points of support in k7 that are closest to the points obtained. For some distributions
this method resulted in points very far out in the tail.

We have n fixed points of support u;,i = 1,...,n and we want to find probabilities
pi,i = 1,...,n so that the discretization matches as many moments as possible.
Following a simple argument of degrees of freedom we see that the maximum number
of moments we can approximate is n — 1, (if My is not counted as a moment). Thus
we look for a solution pi,...,pn to

n
d opwdl=M; j=0,..,n-1 (29)
i=1

There is no guarantee that there exists a solution with p; > 0,7 =1,...,n. If some

p; < 0 we suggest removing one constraint. The least important constraint is usually
the highest order moment constraint

n

n—1 __
E Diu; =M,_.
i=1

Removing this we obtain the equations (29) with j =0,...,n — 2. If the solution to
these satisfies p; > 0,7 = 1,...,n we are done. If not, we should remove one more
moment constraint and keep removing constraints until a solution is found resulting
inp; >0,i=1...n.

After removing moment constraints the solution to the problem is not necessarily
unique. (There are more variables than equations). In order to choose one solution we
can use a function z that represents some other desired properties in the discretization
and solve

p = argmax z(p),
PEy

where ¢ is the set of points p = (p1, - - ., pn) such that

n
Y opil = M;, j=0,...,n—1-m,
=1

Di Z 07 i=17"'7n7

where m is the number of removed moment constraints. The function z can ,e.g., be
formulated to promote p; of the same sizes if that is a desired property.

16



4 Test results

In this section we will present numerical results illustrating the different discretization
methods in section 3. We will use a Weibull distribution to describe the life of the
stochastic component. We use the following parameterization,

Gu)y=1-e @9 ¢t>0, (6>0,a>0) (30)

where 6 is the characteristic life and « is the shape parameter. The maximum number
of time nodes, T', was set to 30. The distance between the time nodes was set to one
and 6 was set to 9. Tests were made with the a parameter being both 1 and 2.

In the following we will make an attempt to establish a rule of thumb for how
many points of support are needed. We will also comment on the consequence of
using a narrow scenario tree.

4.1 Error measure

We study how the error measure depends on different discretizations methods and
different number of points of support. We model the engine with two components, one
stochastic and the other deterministic. When determining components to replace,
there are four alternatives:

1. Replace the deterministic component.
2. Replace the stochastic component.

3. Replace both components.

4. Do not replace any components.

The optimal replacement alternative was calculated in optimization problem (19)
with n = 1,...,10 points of support.

The points of support were chosen by equation (25). The probabilities were
chosen in four ways, by the method that minimizes the sup-distance, the method
that minimizes the Wasserstein distances, the method that preserves the moments,
and the bracket method approach 1.

The best discretization possible was a discretization with 30 points of support,
one in every node, for which the optimal replacement alternative was calculated
according to (18). Finally the difference between the two discretizations, using error
measure (20), was calculated. The calculation was performed in AMPL (a modeling
language for mathematical programming).

The parameters and remaining lives of the components used are shown in Table
1.

The expected life of the stochastic component 7, is connected to the shape pa-
rameter « in (30). The parameter 7, was set to 9 when o = 1 and 8 when a = 2. The

17



Parameter Alternatives

T1 4,6
T 6,10
c 60,100,130
Cs 70,100,150
d 70,100,150
a 1,2

Table 1: Parameters changed in the optimization model (2) and Weibull distribution
(30).

age of the stochastic component was changed from new to an age of 9 in four steps,
(new, 3,6,9). The error measure was calculated for all levels of the parameters, ages
of the stochastic component and discretization methods. In Figure 2 the result of
the test is presented.

The method that preserves the moments seems worse and the methods that min-
imize the Wasserstein and Sup-distance seem better. It seems that using two points
of support is worse than just using the expected value of the distribution. At three
points of support or more the error measure seems rather constant, compared with
using one or two points of support, if we disregard the moment method with o = 1.
Some work has been done on three points of support discrete distributions, cf. Keefer
[9]-

Further tests showed that the error measure decreases as « increases. With con-
stant 6, the variance of the Weibull distribution (30) decreases with the increasing «
parameter. If the variance is great it is harder to describe the distribution with just
a few points of support.

4.2 Narrow tree approximation

The greatest approximation is that only the first life of the stochastic component is
modeled with several points of support. After the stochastic component is replaced
it is modeled with the expected value of the life distribution, which is the same as
using one point of support. The reason why this approximation was invented in the
first place was that it was natural to think that what happens in the near future has a
greater impact on the decision we have to make today, than what is going to happen
a long time from now. The optimization model works in a different way. Basically
it tries to find a scheme with replacement times that, for the entire service period,
minimize the expected cost of maintaining the engine. The approximations sometimes
lead to irrational solutions, such as when a new stochastic detail is replaced.

A simple example that illustrates this is the following one. Assume we have one
deterministic and one stochastic detail. The engine is at the repair bay because the
deterministic detail needs replacement. For the sake of simplicity assume that the

18



Error measure as function of number of points of support, alpha=1
T T T T T T T T

x

(5 (2} ~
T
o
X O % +
TsOon

Error measure

Number of points of support

Error measure as function of number of points of support, alpha=2
10 T T T T T T T

x O % +
1%

Error measure

10

Number of points of support

Figure 2: Y-axis is the mean error measure with parameters as in Table 1. X-axis is
the number of points of support, S = method that minimizes the sup-distance, B =
Bracket method, W = method that minimize Wasserstein distance, M = Moment
preserving method.

stochastic component is new, that is G = G. We use the model to answer the question
if we should replace the stochastic detail. Assume the price for making repairs is
z¢ = 20 and that replacing a component costs ¢; = ¢, = 10. We model the stochastic
component with 2 points of support. It fails in node 3 with probability pa = 0.5
and in node 5 with probability pg = 0.5. The expected value of G corresponds to a
distance of 4 nodes. Consequently the stochastic component that replaces the first
stochastic component must be replaced at least at every four nodes. Assume that the
deterministic component has a life of 4 nodes. The total time we need to maintain
the engine is T' = 8 nodes. Note that there is no restriction that the engine needs to
function at node 8. In figure 3 we see three replacement schemes.

In node zero we see the first stage variables, that is the decision we make now.
Given that we have to replace the deterministic component we can either keep the
stochastic component (schemes A and B) or replace it (scheme C). For each scheme
a cost ¢ is calculated. The model will suggest a replacement of the stochastic com-
ponent if the cost go < paqa + ppqp. With our prices this is 80 < 90. Consequently
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Node 0 1 2 3 4 5 6 7 8
Det

‘ . . A Cost=110
Stoc ‘ ‘
Det

‘ ‘ B Cost=70
Stoc ‘
Det

‘ ‘ C Cost=80
Stoc ‘ ‘

Figure 3: Three replacement schemes in an optimization problem that contains one
deterministic and one stochastic component. A dot indicates replacement. The prices
of replacing a component is 10 and the cost of bringing the engine to service is 20

we replace the stochastic component even if it is assumed to be new.

In the case where o = 1 the Weibull distribution (30) becomes an exponential
distribution. The exponential distribution has a constant failure or hazard rate, which
means that the risk of failure is constant over time. Thus a stochastic component
with an exponential distribution never needs replacement. Table 2 contains results
on the percent of replacements from the test run with the exponential distribution.
It seems that the model very often replaces the component even if replacement is not
necessary. The problem is not solved by increasing the number of points of support.
When 30 points of support is used the stochastic component is still replaced in 18%
of the times. When only one point of support is used there is no replacement of the
stochastic component because the replacing component is modeled in the same way.
This model problem can probably be corrected if more than the first stochastic life
distribution is modeled with several points of support.

5 Summary and further work
An optimization model for replacement of parts in an aircraft engine containing
stochastic and deterministic components has been studied. We made a discretization

of the distribution of the life of the stochastic component. The structure of the opti-
mization model demands that the points of support of the discretization coincide with
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PoS S B W M

1 0 0 0 0

2 0.44 0.11 0.56 0.11
3 0.10 0.31 0.10 0

4 0.15 0.20 0.19 0.06
5 0.11 0 0.11 0.44
6 0.31 0.22 031 0.55
7 0.24 027 024 041
8 0.12 0.09 0.13 0.24
9 0.24 0.26 0.24 0.37
10 0.13 0.13 0.13 0.26

Table 2: The percent of times the optimization model replaced the stochastic component
even if it was not aging. PoS=Points of Support, S = method that minimizes Sup-
distance, B = Bracket method, W = method that minimizes Wasserstein distance,
M = Moment preserving method.

the nodes in the model. Four different discretization methods were presented, the
bracket mean method, the moment preserving method, a Wasserstein distance min-
imizing method, and a method that minimizes the Sup-distance. The discretization
methods were adapted to the constraints in the optimization model.

An error measure closely connected to the optimization model was defined and a
maximum limitation of the error was derived. With the help of the error measure and
test runs the different methods were compared. According to the test, the methods
that minimize the Wasserstein and Sup-distance were better. The moment preserving
method performed worse. The minimum number of points of support suggested is
three.

When using the narrow scenario tree many details were replaced even if they did
not need replacement. This model problem can probably be corrected if more than
the first stochastic life distribution is modeled with several points of support.

Possible future work is to model more lives with several points of support. Fur-
thermore we need to study a model with more stochastic details and how to make
discretizations if the lives of the components are correlated.
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Appendix

A: Bracket method. The optimization problems in section 3.2 is here rewritten

in a less explicit form. Let

t

Hi(t,t,) Ji dG(u)

H(t) = | Hi(tioast) | =| [, dG@) |,
o

Hn(tnfbt") tn_1 dG(U)

Jug tdG(w)

By (t1,t2) hR)

| B ey 2| fiiricw
B(t) = B;(ti—1,t;) - m ’

Bn(tn—latn) fttn"—l ;dG(u)

Hp (tn_1,tn)

where t = (¢1,...,t,). Problem (26), (fixed x,,) can now be formulated

t = argmin iy (kn, B(t)),
tel

and the problem (27) and be formulated

(t,kn) = argmin po1(p, H(t)) + pa2(kn, B(t)),
KnChr,tel

where I is the set of points t such that

t; Z ti—1+€7 7::1,...,”,

t() = 0,
t, = Gil(pz)a

(31)

(34)

where € is a positive small number and p, is a probability near 1. If us; and uao
are continuous the objective function will be continuous. The constraints form a
compact set in t. Problem (33) is solved by standard methods. Problem (34) can be
solved for every fix choice of k, C k7. We can make (Z;) different choices of k,, and
need to check which one minimizes the objective function in (34). For large T this is

computationally demanding.

22



References

[1]

2]

3]

[4]
[5]

[6]

7]
8]
[9]
[10]

[11]

[12]

[13]

[14]

F Altenstedt. Aspects on asset liability management via stochastic programming.
PhD thesis, Chalmers University of Technology, 2003.

N. Andréasson. Optimization of opportunistic replacement activies in deter-
ministic and stochastic multi-component systems. Licentiate thesis, Chalmers
University of Technology, 2004.

Jitka Dupacova, Giorgio Consigli, and Stein W. Wallace. Scenarios for multi-
stage stochastic programs. Ann. Oper. Res., 100:25-53 (2001), 2000. Research
in stochastic programming (Vancouver, BC, 1998).

Y. Epstein, S. Wilamowsky. Opportunistic replacemant in a deterministic envi-
ronment. Comput. and Opns. Res., 12:311-322, 1985.

B. Dickman et al. Modeling deterministic opportunistic replacemant as an intiger
programming problem. Amer. J.Math. and Mgmt., 11, 1991.

Karl Frauendorfer and Michael Schiirle. Term structure models in multistage
stochastic programming: estimation and approximation. Ann. Oper. Res.,
100:189-209 (2001), 2000. Research in stochastic programming (Vancouver, BC,
1998).

W. Hgyland, K. Wallace. Generating scenario trees for multistage decision prob-
lems. Managemant Science, 47(2):295-307, 2001.

Peter Kall and Stein W. Wallace. Stochastic programming. Wiley-Interscience
Series in Systems and Optimization. John Wiley & Sons Ltd., Chichester, 1994.

D.L. Keefer. Certain equivalents for three-point discrete-distribution approxi-
mations. Management Science, 40:760-773, 1994.

T.R. Miller, A.C. Rice. Discrete approximations to probability distributions.
Management Science, 29:352-362, 1983.

G. Ch. Pflug. Scenario tree generation for multiperiod financial optimization by
optimal discretization. Math. Program., 89(2, Ser. B):251-271, 2001. Mathe-
matical programming and finance.

J.E. Smith. Moment method for decision analysis. PhD thesis, Stanford Uni-
versity, 1990.

J.E. Smith. Moment methods for decision analysis. Management Science,
39:340-358, 1993.

H. Wang. A survey of maintenance policies of deteriorating systems. European
Journal of Operational Research, 139:469-489, 2002.

23



