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Abstract

Evolutionary dynamics of escape is a recent development in theore-
tical biology. It is an attempt to predict possible patterns of population
dynamics for a certain strain of viruses placed in a hostile environment.
The only way to escape extinction for the virus is to find a new form better
adapted to the new environmment. This is usually achieved by mutations in
certain positions of the genome.

In this thesis we use multitype Galton-Watson branching processes to
model the evolution of such virus populations and provide answers to some
of the most relevant questions arising in them.

We determine the asymptotic probability of escape for a population
stemming from a single progenitor. The calculations are obtained assu-
ming mutations are rare events and generalize results previously known for
particular reproduction laws.

We also give a description of the random path to escape, that is the chain
of mutations leading to the escape form of the virus. Using this description,
we also study the waiting time to escape, i.e., the time it takes to produce the
escape form of the virus. We start by deriving results for simple populations
allowing for two-types of individuals and simple mutation schemes. Later
we perform asymptotic analysis, again assuming mutations are rare, for
populations with quite general reproduction and mutation schemes.

Keywords: Galton-Watson branching processes, multitype, decompo-
sable processes, population dynamics, extinction, mutation, path to escape,
waiting time to escape.
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1 Introduction

Evolutionary dynamics of escape is a recent development in theoretical bio-
logy mainly due to Iwasa and coauthors. It is an attempt to predict possible
patterns of population dynamics for a certain strain of viruses placed in a
hostile environment. The only way to escape extinction for the virus is to
find a new form better adapted to the new environment. This is usually
achieved by mutations in certain positions of the genome.

The different forms of the virus can be labeled by binary sequences,
5= (81,...,87) of a given length, L. The initial form, of the virus placed in
the new environment, is conveniently described by sequence 1 = (1,...,1)
and the escape form (the one allowing for non-extinction) is then denoted by
0 = (0,...,0). Hence, in total there will be 2© possible forms of the virus.
With the exception of 0, all the forms are vulnerable in the sense that, if
no mutations occur, a reproduction process stemming from any of them is
doomed to extinction. So, in order to survive, the virus has to perform a
chain of mutations starting from 1 and leading to (. This can be illustrated
with a graph, see Figure 1 below, where the vertices represent the different
forms of the virus and the edges stand for the possible mutations.

The major issues arising in this setting are:

Question I What is an appropriate reproduction-mutation model?

Question IT Within the chosen model compute (asymptotically) the proba-
bility of escape for a population stemming from a single progenitor.

Question IIT Describe the random path to escape, that is the chain of mu-
tations leading to the escape form of the virus.

Question IV Assess the time to escape, that is the waiting time to produce
the escape form of the virus.

When addressing the principal Question I, Iwasa et al. have chosen
the framework of branching processes to model biological populations of
interest, see [3] and [4]. This choice seems relevant for two reasons. Firstly,
the key assumption of no interaction between individuals is not restrictive,
since viruses reproduce asexually and, under the hostile environment, the
population size is expected to be low enough to neglect possible interaction
caused by overpopulation. The other obvious reason is that the theory of
branching processes is well developed and provides with various deep results
concerning a broad range of population models. In particular, the use of
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Figure 1: The network of sequences of length L = 4. Here the edges re-
present single point mutations of probability u(1 — p)“~!, where y is the
mutation probability per site. In the full network of possible mutations
every pair of sequences is connected by an edge. The mutation probability
between any two sequences 5 and £ equals pst(1 — p)" ="t where hy is the
Hamming distance between 3 and ¢.

multitype branching processes is appropriate since the different forms of the
virus can be associated with different types of individuals.

The branching model considered by Iwasa et al. was limited to two par-
ticular reproduction laws, Poisson and geometric. They addressed Question
IT and touched slightly Question I11; see Section 2 for a description of their
work.

One of the goals of this thesis is to extend the scope of the branching
processes leading to the same kind of results. We believe this is important
since in most of the applications the reproduction law is not really known.
Another goal is to perform deeper analysis of Questions II-I11 and use the
results to address Question IV for the first time.

Our approach is restricted to discrete time processes, known as multi-
type Galton-Watson branching processes (GWBP). We assume that each
individual lives one unit of time and gives birth to a random number of
offspring that may be of a different type. Their descendants will form the
next generation and so on. Besides independence, individuals of the same
type are assumed to reproduce according to a common distribution.

The use of discrete time models is questionable and this time structure
seems artificial. Yet, mathematically discrete time models are much easier
to handle than the ones in continuous time and for some problems, like
extinction, it is possible to deduce results that hold for the continuous time
processes.



Obviously, at a later stage, it would be interesting to extend the results
of this thesis to continuous time branching processes. It is also desirable
that other models allowing for density dependence, recombination and gene
transfer are explored.

The example of the virus population introduced in the beginning of this
section captures the essence of the problem of the evolution to escape, but
it is not unique; sce [3], [4] and Paper B of this thesis. Next we mention
some more examples.

A typical example is that of cancer cells submitted to chemotherapy. The
alm of the therapy is to reduce the basic reproductive ratio of the infected
cells to less than one and eliminate cancer from the patient. Unfortunately,
mutations in the cells often provide resistance to the therapy. This new
type of cells has a higher reproductive ratio and can lead to failure of the
trecatment.

Another interesting example concerns the RNA first hypothesis. It
claims that in the primordial ”soup” there existed free-floating nucleotides
which formed bounds with one another. The majority of these chains broke
down and were not capable of replication. However certain sequences of base
pairs had catalytic properties that allow them to stay together for longer
periods of time. These chains are proposed to be the first primitive forms
of life. Hence, in the RNA world, different forms of RNA competed with
each other for free nucleotides and were subject to natural selection. The
most efficient molecules of RNA, the ones capable of of efficiently catalyze
their own reproduction, survived and evolved, forming todays RNA.

An important environmental problem is the spread of insecticide resis-
tance due to hybridization between resistant and susceptible insects. Al-
though matings between different biotypes are rare, hybrid formation can
occur. The initial hybrids have low fitness, but after several backcrosses
between resistant and sensitive biotypes, a successful resistant hybrid may
be produced.

Finally, in agriculture there are situations where introgression may occur
between genetically modified or cultivated organisms with the established
wild populations. Usually the first backcrosses are not viable or fertile, but
eventually a successful type may be produced.

The examples above have the following common features. Due to a
small reproductive ratio of the individuals, the populations are in princi-
ple doomed to extinction. Yet, changes occurring during the reproduction
process may lead to the appearance of individuals with higher reproductive
ratio, making it possible for the population to escape extinction. In a ge-



neral way, these are the kind of populations we had in mind while developing
this work.

The outline of the thesis is the following. In Section 2 we give an overview
of previous work done by Iwasa et al. Some background on GWBP is given
in Section 3. In Section 4 we summarize the results of the three papers
forming the main body of this thesis.

2 Principles on Evolutionary Dynamics of Escape

This section is dedicated to a detailed description of the results in Iwasa
et al. papers, [3] and [4], that are relevant for the thesis. When possible
and appropriate, we will also indicate the connection with the results in the
appended papers.

Iwasa et al. use multitype GWBP where the offspring distribution is
either geometric or Poisson, but the results apply also to continuous time
branching processes where individuals either die or produce just one child.

In the more general setting, they consider a population where it is pos-
sible to distinguish between &k + 1 types of individuals, labeled 0,1, ..., &,
with reproductive ratios mqg, m1,...,my, respectively. Suppose the number
of offspring of a type 7 individual follows a geometric distribution with mean
m;. Types 1,...,k have reproductive ratio less than 1 but mg > 1. The
mutation scheie is the following: each one of the daughters of type ¢ either
mutates to a type j # 4 with probability 0 < u;; < 1 or remains in type ¢
with probability

k
Uqq == 1- Z Ugg-
=0
J#i
Mutations are assumed to be independent and therefore, if type ¢ produces
n daughters, the number of daughters which are of type j has binomial
distribution with parameters n and wu;;.

For the asymptotic analysis a key parameter u, characterizing the overall
mutation rate, is introduced. It tends to 0 reflecting the fact that muta-
tions are rare. In the virus population described earlier this parameter
can be replaced by p, the probability of mutation per site. Assuming that
ui; = O(u), as u — 0, it is proved that the column vector = = [¢], ..., &]T,
where &; denotes the probability of non-extinction of a population starting
with a single individual of type 7, satisfies approximately the following linear



system of equations

E:DUE—FDUO&] (1)
with up = [u1g,...,ugo]’, I the diagonal matrix with diagonal elements
parel N li";ljlk, U= ']ﬁjzl the k& x k matrix with clements

Uij = wijliz;

and &y the probability of non-extinction if the processes starts with a single
type 0 individual. Observe that &y is approximately equal to 1 — mLO, which
is precisely the non-extinction probability of a single-type GWBP with a
geometric reproduction law with mean mg. This means that, asymptotically,
there will be no mutation from type 0 to any other types.

If the number of offspring follows a Poisson distribution, the linear sys-
tem (1) still holds but & is now, approximately, the unique solution of
equation

log(1l — 8) = —smy

in interval (0, 1).
The solution of system (1) is given by the formula

E=[D+DUD+DUDUD + .. ]Jug & (2)

which provides a clear picture of how a population starting from a single in-
dividual manages to escape extinction. Suppose the population starts with
one type 4 individual. The 4-th diagonal clement of matrix D when multi-
plied by wu;; represents, asymptotically, the expected number of mutants of
type 7 produced during the progenitor’s lifetime. The first vector, Dug &,
represents the direct mutation from type 7 to the escape type 0. Hence, on
average there will be 1:”,‘”1 uip straight mutations and at least one of them
should lead to non-extinction, &. Second vector, DU D ug &, stands for
the possibility of mutation from ¢ to an intermediate type j # 0 followed
by direct mutation from j to 0. Again, on average, there will be 11”;711 Ui
individuals mutating from 7 to 7 and each one of them produces, on ave-

rage, 11% ~u40 escape type individuals. Therefore, the i-th element of vector
DUDug &
k
m; mj
E Uij uj0éo
1—m; 7‘71—mj J

I

Jj=1
J#i,0

is the asymptotic probability of escaping extinction with one intermediate
mutation. The third vector represents the possibility of reaching the escape



type trough two intermediate mutations and so on. Summation over all the
vectors represents sumimation over the number of intermediate types visited
before reaching the escape type and gives the total probability of escape.

Looking at (1) and (2), we see that the approximate values of the pro-
babilities of escape depend only on the reproduction means and on the
mutation probabilities. Hence, it seems that such approximations should
hold for any offspring distribution; not only geometric and Poisson. In Paper
B we prove that this is true if the variance of the offspring distribution is
finite.

Particular attention is given to the so-called network mutation model
where individuals are described as binary sequences of length L; just like
the virus example given in the Introduction. If two sequences differ in at
least one site, the corresponding individuals are considered to be of different
types and therefore there exists a total of 27 different types. Only type 0,
described by sequence 0 is an escape mutant. Hence the reproductive ratios
are m; < 1,4 =1,...,2" — 1, and mg > 1. The mutation probabilitics
between the types are expressed through a parameter y € (0,1) which
is the probability of mutation per site. Assuming that each site mutates
independently of the others, then this is a particular model of the previous
one, with the mutation probabilitics being wu;; = plii (1 — p) PP where hij
is the Hamming distance between any two sequences ¢ and j. The Hamming
distance between two sequences is just the number of sites at which they
differ.

In this particular case, the probability of escape starting from a single
individual of type i is O(p"). In fact, the use of equation (2) yiclds, for
any % = 1,...,2F —1,

& =28 Y vlp) (3)
peR;
where P; is the set of all paths connecting sequence ¢ and the escape sequence
in a number of mutational steps equal to h;y and v(p) is the so-called value
of the path p

g—1 my,
h; 'Ky
v(p) =p" || (4)

whenp:i =k — ko = ks — ... = k; = 0. Observe that set P; contains
only paths formed by sequences with a strictly decrcasing number of ones.

Let us have a closer look at the case L = 2. Individuals described by
sequence (0, 0) are of the escape type and the other individuals, (0,1), (1,0)
and (1, 1), have reproductive ratios mg;, mig and mi; which are less than



one. To calculate the probability of escape, starting from an (1,1) indivi-
dual, one has to consider only paths connecting sequences (1, 1) and (0, 0)
in 2 mutational steps. There are 3 such paths:

P (171) - (170) — (070)
p2:(1,1) - oy
with the following path values,

mi mio

13 ==
(pl) 'ul—mn'ul—m]o’

. mi oy
v(p2) = p 7 ,
1—77L11 1 — Mo
9 mn
v(p3) = p FR—

Each one of these values is of order pu? so that the escape probability is
approximately

&1 = &lv(pr) + v(p2) + v(ps)].
Observe that, because p is small, the paths connecting sequence (1,1) and
the escape sequence in a number of steps larger than the Hamming distance
lead to smaller terms in the probability of non-extinction and are therefore
neglected. For instance, possible paths such us

pe:(1,1) — (1,00 — (0,1) — (0,0)
p5:(171) - (071) - (170)’)((%0)

have 4 mutational steps and values of order !

’U(p ) o T " T o 9 Mo i
/1 ==
— 1 — Mo — Mo
1 1 1
mii mo1 9 Mo
v(ps) =

H M
I—my 1—mge 1-—myg
An important conclusion to draw from here is that simultaneous muta-
tion at all sites can be as important as the successive one step mutations
since they have the same order of magnitude with respect to u. The factors
m; . 3 e , . N @ o) . \ .
T b # 0, favor the paths through the types with larger m;.
In the particular network model considered in Paper C we show that,
conditioned on the appearance of an escape mutant, the waiting time is a
sum of a random number of independent geometric random variables. The



factor above, 77—, i # 0, is actually the expectation of the time spent at
type ¢ on the path to escape. It is also worth to point out here that, when
considering a sequential mutation model, formula (3) appears as (36) in

Theorem 7.1 of Paper C.

3 Background on Galton-Watson Processes

From a theoretical point of view, branching processes have been intensively
studied during the last decades; classical references are the books of Harris
(1963), Sevastyanov (1971), Athreya and Ney (1972) and Jagers (1975).
With a special emphasis on applications, recent books are Axelrood and
Kimmel (2002) and Haccou, Jagers and Vatutin (2005). Throughout the
literature it is possible to find examples of how these processes have been
successfully used to solve important problems arising in different sciences
such as medicine, biology, ecology, physics and even computer science.

In this section we describe the single-type and multitype Galton-Watson
processes and give some background results for the appended papers. We
will give some references but most of the material presented here can be
found in the classical books referred above.

3.1 Single-Type Galton-Watson Processes

In the single type GWBP we assume that all individuals are of the same
type. Although this is not the case of the populations we are interested
in (they include different types of individuals), we can still use this model
to a certain extent as well as many of its results. Besides, it is a model
that deserves our attention in its own right and will help us understand the
multitype models and more complicated structures.

A single-type GWBP is a sequence of random variables {Z,,n € Ny}
defined by

Zyp=1
Zn
5}
Zn+1 - an,h n Z 0; ( )
=1

where &,;,n,7 € Ny are independent and identically distributed random
variables with distribution {pg, ¥ € Ny} (a sum from one to zero is assumed
to be zero). To avoid trivialities, we assume py # 1, for all integers k& > 0.
Z,, denotes the size of the population in the n** generation and condition
Zy = 1 means that the process starts with just one individual. The size



of the population in the first generation, 7, is the number of descendants
of the initial progenitor (this is a realization of one r.v. with distribution
{pr,k € Ny}). These individuals reproduce, independently of each other
and according to the same distribution, and their descendants will form the
second generation, and so on. Due to its role, {pg, k € Ny} is the so-called
offspring distribution or reproduction law.

{Zn,n € Ny} is a Markov chain with state space Ny and according to
(5), for integers j > 1, k > 0,

Pz =k|Zn=341= Y pipin---piy =P}
’i1+i2+...+i47‘:/€

where {pzj ,k € Ny} denotes the j-fold convolution of {pg, k € Ny}. Hence,
for any 5 > 0, k& > 0, the transition probabilities are

P if i>1L,E>0
PlZyir =k Zy=41=< 1 if j=04k=0
0 if j=0k>1

Since these probabilities do not depend on n, {Z,,,n € Ny} is a homogeneous
Markov chain. Plus, if pg > 0, 0 is an absorbing state and all the other states
are transient. Regarding stationary distributions, these processes only have
the trivial one: (1,0,0,...).

One of the most important properties of a GWBP is the additive pro-
perty and it is used more or less explicitly throughout the thesis.

Additive Property: Let #(Z5°) be the smallest o-algebra of subsets
of Z%° containing all finite dimensional sets and let also { ZT(LU}, { Z,(LZ)}, cey

be independent GWBP with the same reproduction law as {Z,, }. Then, for
any r € N and for any A € #(Z%)

k
P{Zyn>ry € AlZ, =kl =P [{Y Zin>1),¢cA
7=1

This property tells us that, given that Z, = k, the distribution of the
process after generation r is the same as the distribution of the sum of &
independent GWBP with the same reproduction law.

In the definition of a GWBP process we usually have Zy = 1. But this is
not very realistic because we may have an initial population with more than
one particle. If we assume that these particles reproduce independently



of each other and according to the same reproduction law, the additive
property allows us to make the appropriate adjustments to the case Zy = k,
with £ > 1.

An important tool in the analysis of these processes is the probability
generating function (p.g.f.) of the reproduction law

o0
F(s) = pis*, 0<s<1,
k=0

and its iterates

fo(s) =5, fi(s) = f(s), fuls) = (fo...0f)(s)
".
n times

From the nice propertics of the p.g.f.’s it follows that random variable Z,,
has p.g.f. given by
E[s”"] = fu(s), 0<s<1.

Therefore,

E[Z,] =m" and Var(Z,] = { , M1 if m#1

no if m=1

where 1 and o? are the mean and variance of the reproduction law

oo

oo
m = Z kpy, and o? = Z(k — ™)’ py.
k=0 k=0

Next we consider the problem which originated the study of GWBP: the
probability of extinction. This problem, posed by Francis Galton in 1873
and first studied by the Reverend Henry Watson, was in fact concerned with
the extinction of family names in the British peerage. The event “extinc-
tion” is defined as

neN

The following theorem gives not only the probability of extinction but also
the probability of the event [Z,, — oo], to be called “cscape”. In the mathe-
matical literature, [Z, — oco] is usually known as “explosion” but, in the
biological context we consider, the name “escape” is natural because it
means that the individuals (cancer cells, virus, etc...) were able develop
resistance and escape extinction. The theorem can be found, for instance,
in Jagers (1975).

10



Theorem 3.1 The equation f(s) = s has a unique solution in interval [0, 1)
ifm>1, butifm <1 and py # 1 the unique solution in [0,1] is s = 1. The
extinction probability, denoted by q, is the smallest root of equation f(s) = s
and is such that
m>1 = ¢g<l1,
p=1 = q¢=0,
m<land pr <1 = ¢g=1.

Further, if pi # 1, the probability of escape, denoted by r, is given by
r=1-—gq.

This theorem is frequently used in this thesis and, although it does not
consider the possibility that pg = 0 it is easy to see that ¢ = 0 if that is
the case. It is also easy to understand that, if p; = 1 the process remains
constant and equal to the initial population size, Zj.

As we mentioned before, the discrete time structure is artificial but it
is possible to determine the extinction probability of a continuous time
branching process using the extinction probability of the corresponding em-
bedded generation process. By embedded generation process we mean the
discrete time process we obtain when we count the successive generation
sizes in a continuous time branching process. It is casy to see that a po-
pulation dies out if and only if its embedded generation process turns to
%ETO0.

As seen in the last theorem, the reproduction mean plays a crucial role in
the study of a GWBP and therefore these processes are classified as critical,
subcritical or supercritical if m =1, . < 1 or m > 1, respectively.

In the populations we study we will often have individuals with repro-
duction mean smaller than one, and thercfore they will be related with sub-
critical processes. Theorem 3.1 ensures that these processes die out almost
surely and therefore the probability of survival until generation n decreases
to 0, i.e., P[Z, > 0] — 0 as n — oo. Next theorem establishes the rate
of convergence of this sequence to 0 and describes the limit behavior of a
subcritical GWBP conditioned on survival until generation n. See Jagers
(1975) for a slightly different version of the result.

Theorem 3.2 In a subcritical process {Z,,n € Ny} with Zy =1,

lim
n—00 m"

PlZ,>0] [ 0 if Y kpgloghk=00 or py=1
1 C if otherwise

11



where C' is a positive constant. Furthermore, if po < 1,

lim P[Z, = k|Z, > 0] = by

n—00

o0 o)
exists for k € N, with Y b, = 1, and, if g(s) = S_s* by, then g is the
unique solution of equation

gof=mg+1—m

among generating functions vanishing at zero. Plus,

o0} 1 XD
kb = — < oo iff klog(k)p,. < oo.
kgo k= i g g(k)pr

The populations considered in this thesis usually start with an indivi-
dual that has reproduction mean smaller than one and escape is possible
only if individuals with reproduction mean larger than one are produced.
The latter individuals will be related to supercritical processes. Next theo-
rem establishes the limit behavior of such processes and can be found, for
instance, in Haccou et al. (2005).

Theorem 3.3 Let {Z,,n € Ny} be a supercritical process with Zy = 1 and
such that the reproduction law satisfies py, # 1, for any k, and

Z klog(k)py < oo (6)
k=1

Then, as n — o0,

Z
W almost surely
mn

and W is such that E[lW] =1 and P[W = 0] = q. Furthermore, the Laplace
transform of W, ow, satisfies

¢w(ms) = f(dw(s)), s =0,

Observe that, no matter the value of m, sequence Z,/m™ is a martin-
gale with respect to B, = o(Zy, Z1, ..., Zy) and therefore converges almost
surely to some random variable W. But this does not mean that W is
not degenerated as it happens with the subcritical or critical case where

12



P(W = 0) = 1. Condition (6), which is slightly stronger than finite mean,
is enough to ensure that P(W = 0) < 1 and that E[W] = 1.

The last result of this section is the decomposition of a supercritical
branching process in two parts: one that dies out almost surely and another
one which is immortal; see Athreya and Ney (1972). In Paper C we obtain
a different decomposition of a similar matter.

In a supercritical process, the extinction probability ¢ is strictly less
than 1, and ¢ > 0 if and only if £(0) > 0. Assume f(0) > 0 and let f be the
following p.g.f.

fls) = S —¢)s+4q) ~9 g<s<1

1—gq

Let {Zn,n € No} and {Z,,n € Ny} be supercritical GWBP on the same
space (€2, F) with generating functions f and f, respectively, both starting
with one individual. Denote by P and P the corresponding probability
measures on (£, F). Observe that the first process has extinction probability
¢ > 0 but the second is immortal since f(0) = 0. Observe that P(AUB) =
with

A={weQ: Z,(w) =00 as n — oo}

and
B={weQ: Z,(w) =0 for some n > 0}.

By definition of B, we have P(B) = ¢ and from the assumption it follows
that 0 < P(A) < 1 (since 0 < P(B) < 1). Now define

, 0 if webB
ZW0 (w) = the number of individuals of Z,,(w) if cA
that have an infinite line of descent ;o

As a consequence of this definition Zél)(w) =1, for w € A.
Theorem 3.4 Let (A, Fa, Pa) be the probability space with
fA:{AﬂF:FGJ:}

o-algebra over A and PPy the probability measure that assigns the value
P(E)/P(A) for cmy E € F4. The stochastic processes {Z,,n € Ny} on

(Q,F,P) and {Zn ,n € Ny}t on (A, Fa, Pa) are equivalent in the sense of
finite dimensional distributions.
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3.2 Multitype Galton-Watson Processes

In the multitype GWBP we allow for the existence of distinguishable indi-
viduals with different probabilistic behavior. This will be the case for the
populations considered in the thesis since, during the reproduction process,
individuals may give birth to individuals of their own type and also of other
types.

To each individual we assign a type in a set 7' = {0,1,...,k}, the set of
types, that is assumed to be finite. Each individual, say of type r € T, is
associated with a random vector &, = (£2,¢},...,&F), where & is a random
variable that represents the number of children of type j born from a type
r individual. Then, a multitype GWBDP is a sequence of random vectors
{(Zn(0), Z, (1), ..., Zp(K)),n € Ny}, where Z,(j), j € T, represents the
number of individuals of type j in generation n.

Writing m,; = E[¢]], r,j € T, we construct the first moment matrix in
the following way:

oo MMor Mg .. YK
mip M M2 ... MK
meo Mk Miy ... Mgk

If there exists n € N such that A” > 0, the multitype GWBP is said to
be positively regular. Most of the results available in the mathematical li-
terature are concerned with these processes. However, multitype processes
of interest for applications are often not positively regular and this will be
the case in some of the populations we meet in the thesis, namely in Papers
A and B. Nevertheless, in the more general setting of Paper C we allow for
a positively regular process.

In these processes, the spectral radius of the matrix A, denoted by p,
plays the same crucial role as the reproduction mean, m, in the single-type
processes. In fact, a positively regular multitype GWBP is classified as
critical, suberitical or supercritical if p=1, p <1 or p > 1, respectively.

One of the reasons for such a classification is well illustrated in the next
theorem, which is the analogue of Theorem 3.1 for multitype processes, and
it can also be found in Jagers (1975). Before we state the theorem we need
to introduce some notation. Let

s = (s1,...,5x) €[0,1]%,

2 K
f(r)(s) =F sfisgr ...s? , refl,

14



Theorem 3.5 Assume {(Z,(0), Z,(1),..., Z,(k)),n € Ny} is positively re-
gular and nonsingular and let q, denote the extinction probability when the
process starts with a single individual of type r, v € T. Then, the pro-
bability of extinction q = [q1,...,qk] is the solution of equation f(s) = s
that is closest to the origin in the unite cube [0,1)5. If p < 1 then all g, = 1
and p > 1 then all g, < 1.

The theorem excludes the singular processes which are processes such
that f(s) = As'. In this processes there is no branching; each individual
has exactly one daughter that can be of any type. Therefore, the process can
be thought of an individual wondering between the types. This is simply
a usual finite Markov chain with state space being the set of types T and
hence q = [0,...,0].

4 Summary of Papers

4.1 Paper A

Paper A addresses essentially Question IV in a population where it is
possible to distinguish between two kinds of individuals, 0 and 1, type
0 being of the escape type. Type 1 individuals have reproduction mean
0 < m < 1 and cach one of their daughters either mutates, with probability
u € (0,1), to a type 0 individual or stays in the same type with probability
1—u. Type 0 individuals have reproduction mean 1 < mg < oo and produce
only individuals of the same type. The population starts with a single indi-
vidual of type 1. Therefore, the corresponding mathematical model to this
population is a two-type decomposable GWBP, {(Z,(0), Z,(1)),n € Ny},
with Zp(1) = 1 and Zy(0) = 0. The results in this paper are exact; there is
no asymptotic analysis as u — 0.

The first results are concerned with the random variable T represen-
ting the waiting time to produce the first successful mutant. By successful
mutant we mean an individual of type 0, whose mother is of type 1, that
produces a lincage that does not get extinct. Using probability generating
functions, we derive exact expressions for the tail probabilities of 7" and for
the expectation, conditioned on 7" being finite.

The paper finishes with a result comparing the limit behavior of this
process with the limit of a single-type supercritical GWBP. The result is
an analogue of Theorem 3.3 for sequence Z,(0),n > 0, representing the
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number of type 0 individuals in generation n. We prove that, under certain
conditions, as n — oo,
Zy(0)

n—T
™my

— U,

almost surely and in L!, with E[U] = 1 and

| um
0g _— .
Ermy mo —m(l —u)

One of the conclusions to draw is that sequence Z,,(0) exhibits the same limit
behavior as a single-type GWBP, consisting only of individuals of type 0,
with a delay given by 7.

T =

4.2 Paper B

Paper B is, in a certain way, an extension of the previous paper and is
essentially concerned with Questions II and IV. Most of the results are
asymptotic and address the basic two-type model considered in Paper A
and, unless stated otherwise, in this subsection we will always be referring
to this model.

We start with a generalization of the system of equations (1) originally
obtained for two particular reproduction laws. This generalization holds
for populations with any number of types, a general mutation scheme, only
one escape type and any reproduction law with finite variance. This is an
important result since in most of the applications the offspring distribution
is not known.

From the results of Paper A it is not always easy, if possible, to obtain
simple expressions for the distribution function of T. Hence, approxima-
tions are necessary for application purposes. A part of Paper B is dedicated
to deriving such approximations, again under the assumption that the mu-
tation rate u is small. It turns out that, conditioned on escape, the waiting
time T has approximately a geometric distribution with success parameter
1 — m, where m is as in Paper A.

In Paper B we also propose an alternative version of the hazard function
of the waiting time to produce the first successful mutant. We want to
quantify the immediate risk of escape, i.e., the probability of producing a
successful mutant in the next generation given that it has not been produced
yet. The usual definition of hazard function is not really suitable in this
situation since a risk of producing a mutant exists only if there is at least one
type 1 individual is alive. Hence, to simply condition on the non-appearance
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of a successful mutant, does not give an accurate idea of the risk. It seems
that, for very old populations, this function becomes a constant reflecting
the limit behavior of a subcritical GWBP conditioned on non-extinction;
see Theorem 3.2.

In the last part of the paper we present some results concerning the
time it takes for the number of individuals of the escape type to reach a
high level, say . For application purposes it is extremely important to
obtain estimates of this time.

We start by showing that when the mutation rate is small, the waiting
time to cross level 2 can be decomposed as a sum of two independent random
variables, T' + L. The first one has already been studied. The second, Ly,
represents the time it takes for a single-type GWBP, stemming from one
type 0 individual, to cross level z. This decomposition may not hold due to
the contribution of several mutants, but we take care of this by that proving
the probability of such event can be neglected when w is small.

It remains now to study the distribution of L,. We reviewed some results
on this problem due to Nagacv (1971) and Rdésler et al. (2001). It turns
out that, conditioned on L, < oo, the asymptotic distribution of L,, as
& — 0o, depends heavily on the distribution of (W |W > 0) where W is the
limiting random variable of Theorem 3.3. Since not much is known about
this random variable, we performed simulations for processes with the most
used offspring distributions: Poisson, geometric and also binary splitting.

4.3 Paper C

The goal of Paper C is to give a detailed description of the path towards
the escape for the network model already referred in Sections 1 and 2. We
additionally assume that individuals described by sequences with the same
number of ones have equal reproduction mean and will be considered of the
same type. Hence, a sequence with 7 ones is assigned with reproduction
mean 0 < m; < 1,7 =1,... L. Sequence with all zeroes is assigned with a
reproduction mean 1 < mg < oo. The results are asymptotic, obtained by
taking the limit as ¢ — 0, and address Questions I, IIT and IV in a more
general setting than in Paper B.

The paper starts by considering the case L = 1 where a two-type GWBP
is used. Here mutation is modeled in a more general way than before in that
we allow the probability of mutation for a newborn type 1 to depend on its
family size. We show that, conditioned on escape, the limit process is a
GWBP with immigration. The immigration source corresponds to a stem
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(escape) lineage leading to the successful mutation and is turned on during
a geometric number of generations with parameter 1 —mn;, as the results in
Paper B indicated. The number of immigrants has the size-biased distribu-
tion of the reproduction law of type 1 individuals, except at the generation
where the stem lineage stops. At this time the number of immigrants may
have a different distribution due to the assumption that mutation probabi-
lity can be family size dependent.

The next step is to extend the two-type model to a sequential mutation
model where we distinguish between L + 1 types of individuals, labeled
0,..., L. This is a convenient intermediate step towards the network model.
In fact, since individuals described by sequences with the same number of
ones are considered to be of the same type, the network model can be seen
as a sequential mutation model where the mutation probabilities between
types ¢ and j are asymptotically equivalent to (;);ﬂ’j , J < 1. We show that,
conditioned on the appearance of a type 0 individual, the limit process is
now a GWBIP with a multitype immigration stopped after a sequence of
geometric times.

From the description of the latter process it is possible to obtain a de-
tailed answer to Question IV. In fact, the asymptotic waiting time to escape
is decomposed as a sum of a random number of independent geometric ran-
dom variables. It is formulated in terms of the waiting time until absorption
at state 0 of a Markov chain {Y;,,n > 0} describing the types visited by the
stem lineage on the path to escape.

Finally, a description of the limit process for the network model is given
using the result from the sequential mutation model. In terms of sequences,
the process starts with sequence 1 initiating a stem lineage. In the next
generation the stem sequence either remains in type 1, with probability
mr, or turns to an 0-1 sequence 4 = (u1,...,u;7,) with probability

Dy ;,
3
(i)
where Dy, ;, are the transition probabilities of Markov chain {Y,,,n > 0}.
During a geometric number of generations, 71, ~ Geom(1 — my,), including
the time it switches to iy, sequence 1 produces, according to the size-biased
distribution of the reproduction law of type L individuals, a number of side
lincages of mutation-free 1-viruses. The mutant stem sequence %y follows
the same pattern only with L replaced by 4, which is strictly less than L,
unless 4; = 0 in which case the system stops after hitting the escape form 0
of the virus.

P(i—)ﬂl): 11 =uy + ... +ug,
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Hence, the sequence dynamics from 1 towards 0 is described by a random
path 1 — 47 — ... = @, = 0 of a random length 1 < k < L + 1 through
intermediate sequences with a strictly decreasing numbers of ones L > i >

. > g = 0, i = |t;;|. The random path forms a Markov chain with
transition probabilities

_ Dij Ky

Plu; — i) = ——.

(aj = ) o)
The stem lineage spends at the type u; a geometric number of generations
with parameter A(i;), where A(i) = 1 — m;. During this time it gencrates
mutation-free u;-lineages. The number of such lineages per generation has
the size-biased distribution of the reproduction law of type 7; individuals.
Each mutation-free i;-lineage is a single-type GWBP process with the re-
production law of type ;.
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ON THE WAITING TIME TO ESCAPE
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Abstract

The mathematical model we consider here is a decomposable Galton—Watson process
with individuals of two types, 0 and 1. Individuals of type O are supercritical and can
only produce individuals of type 0, whereas individuals of type 1 are subcritical and
can produce individuals of both types. The aim of this paper is to study the properties
of the waiting time to escape, i.e. the time it takes to produce a type-0 individual that
escapes extinction when the process starts with a type-1 individual. With a view towards
applications, we provide examples of populations in bioclogical and medical contexts that
can be suitably modeled by such processes.

Keywords: Decomposable Galton—Watson branching process; probability generating
function
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1. Introduction

In many biological and medical contexts we find populations that, duc to the small reproduc-
tive ratio of the individuals, will become extinct after some time. However, sometimes changes
occur during the reproduction process that lead to an increase of the reproductive ratio, making
it possible for the population to escape extinction. In this work we use the theory of branching
processes to model the evolution of this kind of population.

Cancer cells subjected to chemotherapy are an example of such a population. When the cells
are subjected to chemotherapy, their capacity for division is reduced, hopefully leading to the
extinction of tumour cells. Yet mutations may lead to another kind of cell that is resistant to the
chemotherapy. Thus, the population of this new type of cell has a larger reproductive ratio and
might escape extinction.

Another example can be found in epidemics like HIV or SARS. Imagine a virus of one host
species that is transferred to another host specics where it has a small reproductive mean and,
therefore, the extinction of its lineage is certain. Mutations occurring during the reproduction
process could still lead to a virus capable of initiating an epidemic in the new host species.

The goal of this article is to use a two-type Galton—Watson branching processes (GWBP)
to study properties of populations of this sort. We assume that the process starts with a single
subcritical individual that gives birth to individuals of the same type, but whose descendents,
through mutation, can become supercritical and are therefore capable of establishing a popula-
tion that has a positive probability of escaping extinction.

In Section 2 we introduce the model, the main reproduction parameters of the process, and
give some references to theoretical and applied works. Section 3 contains the main results and
proofs. Using probability generating functions, we derive properties of the distribution of the
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waiting time to produce an individual that escapes extinction. We prove that it has a point mass
at 0o and compute the tail probabilities and its expectation (conditioned on being finite). We
also show that, in the long run, the population size of this process grows like that of a single-type
GWBP with a delay.

2. Description of the model

Consider a two-type GWBP {(Z,(,O), Z,(,l)), n € Ng}, where Z,(,O) and Z,(,l) respectively denote
the number of individuals of type 0 and of type 1 in the nth generation, and Ny is the set of
nonnegative integers. Suppose that individuals of type 1 are subcritical, i.e. have reproduction
mean m, 0 < m < 1, and that each one of their descendents can mutate, independently of the
others, to type 0 with probability u, 0 < u < 1. Individuals of type 0 are supercritical, i.e. have
reproduction mean mg, 1 < mg < 00, and there is no backward mutation. For this particular
two-type GWBP, the first moment matrix is of the form

_|mo 0
A= l:mu m(1 —u):l'

Unless stated otherwise, we assume that the process starts with just one individual, of type 1, i.e.
Z(()O) =0 and Z(()l) = 1. The probability generating function of the reproduction law of type-i
individuals will be denoted by f;, i € {0, 1}, and the joint probability generating function of
(Z§0), Z%l)) is given by

O 7O

oo k
V4 k i k—i )
F(sg, 1) :E[sol 5 ]: E p,El) E (j)séu]s1 (1 — wk

k=0 j=0
= fi(sou + (1 —u)s1), (s0, 51) € [0, 17, 2.1

where { p,El), k € Ny} represents the reproduction law of type-1 individuals.

Branching processes have been intensively studied during the last decades; classical ref-
erences are the books of Harris (1963), Athreya and Ney (1972), Jagers (1975), and Mode
(1971). For recent books, with emphasis on applications, see Axelrod and Kimmel (2002) and
also Haccou et al. (2005). For a nice example of how branching processes can be used to solve
important problems in biology and medicine, the reader is referred to the papers of Iwasa et al.
(2003), (2004).

3. Main results

3.1. Number of mutants and the probability of extinction

Consider the sequence of random variables {I,,, n € Np}, with I,, being the total number of
mutants produced until generation n (inclusive), and let I be the random variable that represents
the number of mutants in the whole process. By mutant we mean an individual of type 0 whose
mother is of type 1.

It is obvious that the sequence I, converges pointwise to the random variable /. In our
first theorem, we use this convergence to establish a functional equation for the probability
generating function of 7, denoted by f;.

Theorem 3.1. The probability generating function of I satisfies the functional equation
J1(8) = fi(us + (1 —u) f1(s)), 3.1
foralls € [0, 1].
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Proof. First we establish a recursive relation for the probability generating functions of the
random variables /,,, denoted by f7,. We find that, for all n > 1,
f,(s) = Els™]
=E[Els"™ | 27, z{V])
20
= EI:E[SZ§0)+Zi:11 I
o
= EB[s? B[s1 ]

= F(s, f1,.,(s))
= filsu+ QA —w) f1,_,(s)), (3.2)

0.2

where the I,’;_l are independent, identically distributed copies of the random variable 7,1, the
function F is as defined in (2.1), and f,(s) = 1.
By taking the limit in relation (3.2) we obtain the functional equation (3.1).

We now proceed to determine the probability of extinction. Using the notation

0 1

q0 =P[Z,(,°) = Z,(ll) =0forsomen > 1] Z(() ) — 1, Z(()) = 0],
1

q1 = P[Z,(,O) = Z,(,l) =0forsomen > 1 | Z(()O) =0, Z(()) = 1],

it follows, from the classical result on the extinction of branching processes, that gg is the
smallest root of
g0 = fo(qo)

in the interval {0, 1]. To determine g¢1, notice that extinction of the process occurs if and only
if all the supercritical single-type GWBPs starting from the mutants die out. Since there are /
such processes, we have

g1 = Elgg] = f1(q0).

Obtaining an explicit expression for g; is not always possible; therefore, approximations are
necessary for application purposes. Assuming there to be small mutation rate u, Iwasa et al.
(2003), (2004) provided these approximations for particular reproduction laws, namely for
Poisson and geometric distributions. Their results extend to an even more complex scheme of
mutations Jeading to branching processes with more than two types of individual.

3.2. Waiting time to produce a successful mutant

Consider the random variable T, which represents the time to escape, i.¢. the first generation
in which a successful mutant is produced. By successful mutant we mean a mutant that is
able to start a single-type GWBP that escapes extinction. This variable takes values in the set
{1,2,..., 00}, with T = oc if no successful mutant is produced.

Theorem 3.2. The distribution of T has the following properties:
() PIT > k] = fi,(qo) forallk = 0,
(i) P[T = oo} = ¢,
Qi) E[T | T < ool = 3320 (/5 (q0) —q1)/(1 — qu).
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Proof. To prove (i), observe that T > k means that all J; mutants were unsuccessful.
Therefore, /
P[T > k] = Elgy‘] = f1,(q0)-

To prove (ii), observe that (T > k)x>0 is a nonincreasing sequence of events and that

mfzwkﬂ{ﬂawwﬂ=Q&HT>H=g&mmw=ﬁ@w=w
k=0

To prove (iii), observe that T > 0 and, therefore,

0

E[T|T <o0]=)

PIT >k, T < <]
P[T < o]

P[T < oo] —P[T <k]

I
e L

k=0 T-a
_ i f1.(q0) — f1(q0)
o 1—q

with the f7, as recursively defined in (3.2).

A similar problem was considered in Bruss and Slavtchova-Bojkova (1999), where a single-
type GWBP with immigration to the state 0 was used to model the repopulation of an
environment. The idea is the following. Consider a population starting with a supercritical
individual and let it grow according to a GWBP. If extinction occurs at time ¢ then immigration
takes place immediately after, i.e. one individual of the same kind is introduced and a new
process, independent of and identically distributed to the first one, restarts. Among other
results, Bruss and Slavtchova-Bojkova derived properties of the last instant of immigration, i.e.
of the generation into which was introduced an immigrant that started a process that escaped
extinction.

In the applications we consider, the mutants appear at random times as descendents of the
subcritical individuals, and the model described above therefore does not apply.

3.3. Comparison with a single-type supercritical GWBP

In this section we prove a result that will allow us to compare the limit behavior of the
sequence Z,(,O) with the limit behavior of a single-type supercritical GWBP. First, we recall a
result on single-type GWBPs. The proof can be found in any of the classical books referred to
in Section 2.

Theorem 3.3. Let {Y,, n € Ny} be a single-type supercritical GWBP with reproduction law
{p,EO), k € Ny}, and suppose that Yo = 1. If

o0
Y klogkpy” < o0 (3.3)
k=0

then Y, /u" — W almost surely and in L}, where p. = Yo kp,EO) and E[W] = 1. Further-
more, the Laplace transform of W, ¢w, satisfies

¢wus) = folpw(s)),  s=0.
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Our result is as follows.
Theorem 3.4. If the reproduction law of type-0 individuals satisfies condition (3.3), then
©)
n

mg
withE[U] = um/(my—m(1—u)) < 1. Furthermore, the Laplace transform of U, ¢y, satisfies
the functional equation
¢y (mos) = fi(ugw(s) + (1 —u)py(s)),
where ¢w is as in Theorem 3.3.

Proof. Consider the sequence of random variables {J,, n > 1}, where J, represents the
number of mutants in generation n, i.e. J, = I,, — I,_;. Using these variables, Z,(,O), n>1,
can be decomposed in the following way:

n-1 Ji

z20=n, zO=3Yvi, nz2 (3.4)

k=1 i=1

Here, the random variable Y’ _ represents the number of individuals in generation n — k of the
single-type supercritical GWBP initiated by the ith mutant of generation k. These processes
are independent of each other and have the same reproduction law, namely { p,ﬁ , k € Ng}.

By dividing (3.4) by m{j and taking expectations, we obtain

0) n—1 Jr i
Zy 1 Yok
E = E ——-E z :_" k
[:mg :l mo l: n—kjl

k=1 i=1 "0
n—1 1
=) —ElA
=1 ™0
n—1 1
=Y —pum[m(1 —w)]*!
=10
um

—_— <] . .
mo-m(l—u)< asn — o0 3.5

The ex;()ectation of J is obtained by differentiation of the recursive relation (3.2). Since
{mo n , n >0} is a submartingale with respect to the o-algebra F, =ad{Z,’, Z,,,
0 < m < n} and, from (3.5), we have

()
V4
supE| — | < oo,
mﬂ
0

the martingale convergence theorem ensures that the sequence converges almost surely to a
random variable U with E[U] < oc.
To prove Ll-convergcnce, it remains to show that

um
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Observe that, given (Z §0) , Z {1)), the following decomposition holds:

0 ®

(0) Z i Zi x©
Zn 1 Z Yn 1 n 1]

= — o+ — Z . (3.7)
mgy mo = mg mo o

In this expression the ¥, _, are as described in decomposition (3.4) and the X, (0) . are the
random variables that represent the number of type-0 1nd1v1duals in generation n — 1 of the
jth two-type GWBP initiated in generation 1. There are Z1 such processes and they are
independent of each other. Taking the limit in (3.7) (the existence of the limits of the sequences
involved was already proved) gives

1 1
U=— W; + — U;, 3.8
Wit o= (3:8)

where W; are independent, identically distributed copies of W, as defined in Theorem 3.3, and
U are independent, identically distributed copies of U. Itis now a matter of taking expectations
in (3.8) to obtain the desired result, (3.6).
Finally, proving the functional equation for the Laplace transform of U is just a matter of
using (3.8). Indeed,
¢u(s) =Ele™Y]
=E[E[e™" | 2, z{"]]

Z%O) Z%l)

:E[E[exp(—ﬁgzwi) ‘ Z§°),Z“)i| E[exp(__ZUj) '250)’2(1)}]

oo (2) ()]
(o) 0w ()

T = |lo e
= | 1%8mo mo—m(l —u)/)|

we conclude that there exists a random variable U* such that
Z(O)

Il

With

~> U* almost surely and in L',

my "
with E[U*] = 1. This indicates that the sequence Z,(,O) exhibits the same limit behavior as a
single-type supercritical GWBP, except with a delay 7. It remains to investigate the relation
between the constant v and the random variable that represents the delay between the two
processes.

In applications, it is not only important to study the time taken to produce a successful mutant,
but also the time taken for the number of type-0 individuals to reach high levels. Theorem 3.4
provides a first step in determining this.
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Abstract

We use multi-type Galton-Watson branching processes to model the evolution of
populations that, due to a small reproductive ratio of the individuals, are doomed
to extinction. Yet, mutations occurring during the reproduction process, may lead
to the appearance of new types of individuals that are able to escape extinction.
We provide examples of such populations in medical, biological and environmental
contexts and give results on i) the probability of escape/extinction, i) the distribu-
tion of the waiting time to produce the first individual whose lineage does not get
extinct and #74) the distribution of the time it takes for the number of mutants to
reach a high level. Special attention is dedicated to the case where the probability
of mutation is very small and approximations for 4)-iii) are derived.

Key words: Multi-type Galton-Watson branching process, probability generating
function, mutation, escape and extinction probability

1 Introduction

In many medical, biological and environmental contexts we find populations
that, due to a small reproductive ratio of the individuals, will go extinct after
some time. Yet, sometimes changes can occur during the reproduction process
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that lead to an increase of the reproductive ratio, making it possible for the
population to escape extinction.

Cancer cells submitted to chemotherapy are an example of such popula-
tions(c.f. Michor et al. (2004) and Nowak et al. (2004)). During chemotherapy
the capacity of division of the cancer cells is reduced, which should lead to
the destruction of tumors. Yet, sometimes mutations in the cells provide re-
sistance to the therapy. This new type of cells has a higher reproduction and
can escape extinction.

Another example can be found in viruses. A virus adapted to one host species
that switches to another host usually has a small reproductive mean and,
therefore, the extinction of its lineage is certain. Mutations can lead to a virus
capable of initiating an epidemic in the new host species. This happened for
instance in HIV and SARS viruses.

More generally, in many evolutionary processes mutants may appear which are
initially less viable than the resident type and thus are doomed for extinction.
Additional mutations, however, may lead to a more successful type that can
outcompete the resident. In this way, an evolutionary process can cross a
fitness valley.

In agriculture we find situations where introgression may occur between ge-
netically modified or cultivated organisms with wild populations, Ellstrand et
al. (1999) and Maan (1987). Usually the first backcrosses are not very viable
and fertile, but eventually a successful type may be produced.

Finally, an important environmental problem is the spread of insecticide re-
sistance due to hybridization between resistant and susceptible insects. Some
of the biotypes of the sweet potato whitefly, for instance, have developed re-
sistance to certain insecticides, Byrue et al. (1994), De Barro et al. (2000)
and Guirao et al. (1997). Although matings between different biotypes are
rare, hybrid formation can occur. The initial hybrids have low fitness. Yet,
after several backcrosses between resistant and sensitive biotypes, a successful
resistant hybrid may be produced.

In all the examples given above it is of vital importance to have good esti-
mates of the probability of successful escape and related aspects, such as the
distribution of numbers of escape mutations, the distribution of waiting times
until escape, and the time it takes for the number of escape mutants to reach
a high level. In this paper we will derive such estimates.

We will use a discrete time branching process, known as the Galton-Watson
branching process (GWBP) as a model, and therefore we assume that each
individual of the population belongs to a unique generation, lives one unit
of time and gives birth to a random number of individuals. The descendants



will form the next generation and so on. Since we consider different kinds of
individuals, with different reproductive ratio, we will use a multi-type GWBI
to model their dynamics.

The assumption of discrete non-overlapping generations is obviously a simpli-
fication. Yet, mathematically, discrete models are much easier to handle than
their continuous time analogues, and in some problems, like extinction, we
can deduce results that also hold for the analogous continuous time process.
Furthermore, our results will serve as a first step, and may be generalized at
a later stage.

The structure of the paper is as follows. In Section 2 we describe the basic
model for two types and derive the probability generating function of the num-
bers of mutations to the escape type. We demonstrate how this function can be
used to determine moments of the distribution of the numbers of mutations. In
Section 3 we derive expressions for the probability of extinction (and escape)
of this process. Furthermore, we present approximations of these probabilities
for multi-type processes with a general reproduction and mutation scheme,
assuming that the mutation rates are small. We show that the results derived
by Iwasa et al. (2003, 2004), for the Poisson and geometric offspring distri-
butions can be applied more generally, and we provide a bound for the error
term in the approximation. In Section 4 we study the waiting time to produce
a successful mutant in a population with two types of individuals and give
approximations for its distribution. Finally, in Section 5 we consider the time
until the mutant population has grown to a high level.

2 The basic model

Consider a population with two types of individuals, type 0 and type 1, such
that each descendant of an individual of type 1 can mutate, with probability
u € (0,1), to type 0. Mutations from type 0 to type 1 are assumed not to occur.
Furthermore, we assume that individuals reproduce independently of each
other and that the occurrence of mutations is also independent. We assume
that individuals of type 1 have reproduction mean 0 < m < 1 and we call
them subecritical individuals. Individuals of type 0 will be called escape type
and we assume they have reproduction mean 1 < my < oc.

Notice that a single-type GWBD, starting with one individual of type 0, has
positive probability of escaping extinction and this justifies the choice of calling
them ”escape” individuals. The choice to call type 1 “subcritical” individuals
follows established mathematical terminology.

We will use a two-type GWBP, {(Z\9, Z(V),n € Ny}, to model the number



of individuals in this kind of population. As usual, ZT(LO) and ZT(L” denote the
number of individuals of type 0 and of type 1, respectively, in the n'* gener-
ation. Unless stated otherwise, we assume that the population starts with a
single individual of type 1, i.e., Zéo) = 0 and Zél) = 1. The joint probability
generating function (p.g.f.) of (Z§O), ZF)) is given by

F(s0,51) = f(sou+ (1 —w)s1), (s0,51) €[0,1]? (1)
where f denotes the p.g.f. of the reproduction law of type 1 individuals.

Unless mutations occur, such a process will be a single-type subcritical GWBI
and it is the appearance of mutants that makes the study of such populations
an interesting task. Therefore it is important to study, for instance, the total
number of mutations that occur in the whole process. This random quantity
will play a crucial role in determining the extinction probability of the process.
Let I be the random variable (r.v.) that counts the total number of mutations
to the escape type in the whole process. Using (1), we can deduce that the p.g.f.
of I, which will be denoted by h, satisfies the following functional equation:

h{s) = F(s,h(s)) = f(su+ (L —u)h(s)), Vse][0,1]. (2)

From this functional equation we can derive the moments of 1. We start by
computing the mean value. Differentiating (2), we get

H(s) = J'(su+ (L= wh(s))(u+ (1 — wh/(s)). (3)

and replacing s by 1 in (3), and solving for A'(1) = E[I], yields

mu

El] = 1—m(l—u)

(4)

Differentiating (3), we can obtain the variance in a similar way, which leads

to
" um(1l — u)(1 — m)? + u?c?
Var[l]| = 8"(1) + E[I](1 — E[I]) = 1= m( - )

(5)
where 02 denotes the variance of &.

From (4) it can be seen that, on average, less than mmutants are produced
before the original type is extinct. It may come as a surprise that this upper
limit holds for all w and m < 1, considering the fact that, if no mutations were
allowed, the expectation of the total progeny of the initial individual would be
m/(1—m) which is always larger than m, and larger than 1 when m > 1/2. On
the other hand, we expect to have the largest number of mutants when v =1
and this corresponds to the case where the total number of mutants equals
the number of individuals in the first generation and so E[I| = m. Further, as
can be expected, E[I] increases with the expected number of offspring of the
subcritical individuals, m, and with the mutation chance, u.



3 The probability of escape

In the model introduced in the previous section, let ¢y and ¢; denote the
probability of extinction of the process, when it starts with one individual of
type 0 or of type 1, i.e.,

g = P[Z0 = 7 =0, for somen € N| Z(()O) =1, Z(()l) = 0]

and
¢ = P[Z0 = 7Y =0, for somen € N| z0 =0,z =1).
respectively. Since individuals of the escape type cannot mutate to the subcri-

tical type, go is just the probability of extinction of a single-type supercritical
GWBP. Therefore ¢y is the unique solution in the interval [0, 1) of equation

s = fo(s)

where fy denotes the p.g.f. of the offspring distribution of the escape indivi-
duals. If we assume f,(0) > 0, we have 0 < ¢ < 1.

To determine ¢; we need only to remember that the process is extinct if and
only if the lineage of individuals that mutated from type 1 to type 0 is also
extinct. Since the number of such individuals is given by the r.v. I, we have

0 = Elgo] = h(qo), (6)
where A is given by (2).

To determine the probability of escape we just have to use the extinction/explosion
dichotomy. If we define

ro = P20 - oo | 20 =1, 2" =0
and
r=P[Z® = 00| Z§ = 0,2 = 1)

i.e., 7o and 71 denote the probability of escape of the two-type GWBP, when
it starts with one individual of type 0 or of type 1, respectively, we have

ro=1—¢q and r =1—¢ =1-—h(qg).

Observe that in the definition of 74 and 7, we mention only the infinite number
of individuals of type 0 because, due to their “subcriticality”, the number of
individuals of type 1 will tend to zero.

Obtaining an explicit expression for the escape probability is not always pos-
sible, even in such a simple model as studied above; therefore, approximations
are necessary for application purposes. Since mutations are rare events, Iwasa



et al. (2003, 2004) assumed there to be small mutation rates and developed ap-
proximations for populations with particular reproduction laws, namely Pois-
son and geometric, and with any number of types. We show that the same
approximations hold for populations with any reproduction law, as long as the
variance is finite.

From now on we consider a population with many different types of indivi-
duals with labels in the set {0,1,..., K}, K > 2. Individuals of type j have
reproduction mean 0 < m; < 1,if j € {1,... K}, but 1 < my < co. Therefore
we will say that individuals of type 0 are of the escape type and the others are
of the subcritical type. Suppose that mutations from type j to type ¢ occur
with probability 0 < wj; <1, j # 4, and let

K
ujy =1-3 i (7)

i=0

i#]
Mutations from type 0 to the other types cannot occur and so ug; = 0, for

j € {1,...,K}. Because figures are better than words, below we draw an
example of such a population with 4 different types of individuals.

Fig. 1. Mutation scheme with 4 types of individuals (K = 3)

This kind of population is suitably modeled with a multi-type GWBDP
{(z0,zW . ZE)) n € Ny}, where Z{) represents the number of indi-
viduals of type j in generation n. The probability of escape when the process
starts with a single individual of type j is defined as

rj = P[Z — oo| Z§) =1, Z{" = 0,¥i # j].
In the Appendix A.1 it is shown that, if we assume that u;; = O(u), with

v small, and neglect terms of order bigger or equal than u? , we can use the
following approximation

K
Ms
T‘j%l_inj;uj'i’f‘i. (8)
i#]



We also show that, when the reproduction law of the subcritical individuals
has finite variance, the error is O (u?).

At this point we are able to interpret quite well the approximations proposed
in (8). The escape probability, r;, is expressed through

m;

1—m; Ui 177
From (4), we see that this quantity is approximately the expectation of the
total number of mutants of type ¢ produced by the initial individual of type j.
This quantity is then multiplied by 7;, the escape probability of a process that
starts with a type ¢ individual, meaning that at least one of the mutants has
to escape extinction. Summing up over the different types gives the different
mutation paths to escape.

Next we show that the vector of the approximations of the escape probabilities,

r=|ry,...,7k]", is the solution of a linear system of equations. Let D be the

diagonal matrix with elements ™~ .. ™K [J the matrix of the
: . Luaamg UKKTUK

mutations rates hetween subcritical individuals, i.e.,

0 Uiz ... U1K

U21 0 ol Uok
U=

_uKlqu... 0 ]

and ug the vector of the mutation rates from the subcritical types to the escape
type, i.e., ug = [U1g, .- -, Uko] ' . From (8), it follows that the vector r satisfies
approximately the system of equations

r=DUr + DUOT’Q
which has the following solution

r = [I — DU] ™ Dugry. (9)

The approximations (8) and the solution (9) of the corresponding system of
equations were already obtained by Iwasa et al. (2003, 2004), for populations
with Poisson (A.14) and geometric (A.16) offspring distribution. We showed
that they can be used in a much more general situation. Since in most appli-
cations the offspring distribution is unknown, such a generalization is quite
important.

In Table 1 we compare the exact values of the escape probabilities with the ap-
proximations, when the offspring distribution is binary splitting (A.13) which,



together with the PPoisson and the geometric distribution already considered
by Iwasa et al., is often used in applications. To obtain the values in the table
we considered a population with 4 different types of subcritical individuals,
labeled 1, 2, 3, 4. The mutation scheme is the following: type ¢ individuals,
1 =1,2,3,4, can only mutate to the previous type, ¢ — 1, with type 0 being
the escape type, and mutations occur always with the same probability u.
The splitting probabilities are 0.375, 0.35, 0.325 and 0.3 for type 1, 2, 3 and
4 respectively which yields m; = 0.75, my = 0.7, mg = 0.65 and m4 = 0.6
(cf Appendix A.3). For supercritical individuals, the splitting probability is
2/3 which yields mo = 4/3 and ¢y = 0.5. The mutation rates are 107!, 102
and 1072 and these will be the typical values we will consider throughout the
paper.

Table 1
Exact values and approximations for r;, 1 =1,2,3,4

1 Result u=0.1 u = 0.01 u = 0.001
Approximation 1.5000e-01 1.5000e-02  1.5000e-03
' Exact 9.4375e-02 1.4043e-02  1.4896e-03
Approximation 3.5000e-02 3.5000e-04  3.5000e-06
? Exact 1.7265e-02  3.1996e-04 3.4676e-06
Approximation 6.5000e-03  6.5000e-06  6.5000e-09
’ Exact 2.6906e-03  5.8336e-06  6.4279¢-09
Approximation 9.7500e-04 9.7500e-08 9.7500e-12
4

Exact 3.5073e-04 8.6211e-08 9.6273e-12

4 The waiting time to produce a successful mutant

In this section we consider the time 7" until a type 0 individual arises whose
lineage escapes extinction. Such an individual is called a successful mutant. We
restrict our attention to the two-type process {(Z\9, Z{V), n € Ny} introduced
in Section 2. The r.v. T takes values in the set {1,2,...,00}, with 7' = o
if the population goes extinct before a successful mutant is produced. Serra
(2006), derived exact expressions for the tail of the distribution of 7', and for
its expectation conditioned on escape (i.e., conditioned on 7" being finite). We
will use these results to obtain approximations for the distribution function of
T, under the assumption that the mutation rate is small. The main theorem



of Serra (2006) is stated below with the notation introduced in the last two
sections.

Theorem 4.1 Let f be the p.g.f. of the offspring distribution of the subcritical
individuals. The distribution of T satisfies the following:

(i) P|T > k| = Qg, for all k >0,
(i1) P|[T = 0] = ¢,

(iii)

BT < o] =3 =@
o l—@
where the Q) are defined recursively by
Qk: = f(uq() + (1 - U)Qkfl)a k Z 17 (10)

with Qg = 1.

In Appendix A.2 we use this theorem to develop approximations for the dis-
tribution function of 7T'. There we show that, if the mutation rate u is small
and we neglect terms of order bigger than or equal than u2, the following first
order approximation holds

mu(l — qo)

PT <k|~ T

(1—mF*), forall k>1. (11)
We also show that, when the reproduction law of type 1 individuals has finite
variance, the error is O(u?).

In Figure 2 we can see how good these approximations are when the mutation
rate becomes small. In each graph we plotted 3 curves: the solid line corres-
ponds to the approximations (11); the dashed and the dotted lines correspond
to the distribution function of T, determined according to Theorem 4.1, for
Poisson (A.14) and binary splitting (A.13) offspring distribution, respectively.
To produce the graphics, we considered the same mutation rates as in Table 1.
The type 0 individuals are assumed to have extinction probability ¢, = 0.5 and
type 1 individuals have reproduction mean m = 0.75. Therefore, p = 0.375 in
the binary splitting case and A = 0.75 in the Poisson case (cf Appendix A.3).
The distribution function of 7" is a step function but, just for convenience, we
plotted it as a continuous function.

From Figure 2 we can also see that the approximation for P[T" < k] is especially
good when k is small, but, due to the accumulation of errors, it deviates from
the exact value as k increases. Note that, when the mutation rate is small,
mutants either appear quite early or they do not appear at all. Therefore, we
need good approximations particularly for small values of k. Nevertheless it is
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Fig. 2. Distribution Function of T

important to guarantee that this does not affect the order of the error when
k is large. In fact, the use of Theorem 4.1, (ii), yields

lim P[T <k]l=mn (12)

k—oo

and, taking the limit as & — oo in (11), gives

mu(l — qo)
1—m

(1—mk) ~ M’ (13)

1—m

which is the first order approximation for r; proposed in (8) with error O (u?),
as desired.

The distribution of 7", conditioned on escape, has a quite nice and intriguing
property. The use of (A.11) and (A.2) yields the following:

P[T > k|T < o] = [m(1 —u)]*, k>0, (14)

10



and
1

1—m(l—u)
This indicates that, conditioned on escape, the number of generations up to
the production of the first successful mutant has approximately a geometric
distribution (A.16) with success parameter 1 — m(l — u), for small values
of u. Apparently, the fact that the mutation rate is small gives some kind
of independence structure between the generations of the process, i.e., given
that a successful mutation occurs, at each generation and independently of
the others, a successful mutant is produced with probability 1 —m(1 —wu). The
use of (11) and (8) yields the following first order approximations

E[I|T < o0] (15)

1
P[T > k|T < <] ~m* and ﬂﬂT<mﬂ%T——. (16)
—m

In the applications it is useful to have tools to characterize the immediate risk
of escape, i.e., the probability of producing a successful mutant in the next
generation given that it has not been produced yet. In general one could use
the hazard function of variable 7', defined as P[T'=k|T > k— 1] for k > 1, to
quantify such risk, but here we propose a different version of this function. The
fact that variable T" has a defective distribution (7' = oc when no successful
mutant is produced) and that if there are no subcritical individuals alive at
generation k— 1 the probability of producing a successful mutant in generation
k is zero, requires a different definition of the hazard function. So we propose
the following;:

gk)=PT=klT>k-1,Z", >0, k> 1. (17)

With this new definition we obtain the probability that a successful mutant
will be produced in the next generation, given that a successful mutant was not
produced hefore and the subcritical population is not extinct at the current
generation.

In this section we provide the theoretical expression of (17) and present its
form for particular offspring distributions. We have:

PT=kE

g(k‘): [ 21)
PT>k—-1,7Z", > 0]
P[T =k

_ o (18)
PT>k—-1-PT>k—-1,2" =0

The probabilities P[T = k] and P[T > k—1] are computed using Theorem 4.1.
The second term in the denominator satisfies the following recursive formula:

11



PT >k, 280 =01=Y pi(ugo + (1 —w)P[T > k —1,Z", = 0]y’
=0

=flugp+ (1 —w)P[T>k—1,2", =0), k> 1,

where p;, 1 > 0, denotes the probability that a type 1 individual gives birth
to 4 children and P[T > 0, Z§" = 0] = 0. So, the hazard function is given by

P[T = k|
PIT >k —1]— flugo+ (1 —w)P[T > k— 2,2, = q])

if k> 2,
g(k) =

1— flug+1—u) ifk=1.

In Figure 3 we plot the hazard function for the offspring distributions (7) — (éi7)
listed in Appendix A.3, with the same parameters as in Figure 2. In the linear
fractional case we chose (b,¢) = (0.1875,0.5). We observe that the hazard
function has the same general shape for the different values of the mutation
rate: there is an initial increase after which it remains more-or-less constant
for a long period. The mutation rate seems to have a strong effect on the
duration of the initial phase of increase: when v is big this phase is short,
but for small u it is quite long. We would also like to point out that the
suberitical population dies out quite early and so the probability that there
are still subcritical individuals alive after a large number of generations is very
small.

5 Attaining High Levels

Besides the time until the production of a successful mutant, the time that
it takes for the number of individuals of the escape type to reach high levels
contains important information for applications. In this section we present
some results on this statistic for the two-type process introduced in Section 2.

In the following, let {Y,,n € Ny} be a single-type supercritical GWBP process,
with the same reproduction law as the escape type individuals, starting with

just one individual, i.e., Yy = 1. For & > 2, let L, be the r.v. that represents
the first generation where this process crosses level z, i.e.,

Lw:{i%f:YHZx}.

Observe that L, may be infinite because there is a positive probability that
the process goes extinct before level x is attained. However, if we condition

12
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Fig. 3. Hazard Function

the process on non-extinction, L, will be finite for all values of z, since then
Y, & oc,asn — cc.

Consider now the two-type process, {(Z\?), Z{)), n € Ny}, introduced in Sec-
tion 2. Let T, be the r.v. that represents the time for the number of escape
type individuals to cross level z, i.e.,

T, = {inf : ZT(IO) > .L} .

Again, T, may be infinite but, if we condition on 7" < oc, it will be finite for all
values of x because, when a successful mutant is produced, it starts a process
identically distributed with {¥,,,n € Ny} conditioned on non-extinction. Our
goal here is to show that, for small values of u, the r.v. [T |T < oc] can be
approximated by the sum of two independent random variables:

[T|T <oc] and [Ly|Y, — o]

Observe that it is not possible to write it as an exact sum because the number

13



of supercritical individuals may cross level x due to the contribution of several
mutants. Below we prove that, when the mutation rate is small, we can neglect
the probability of such an event. This is formalized in the following lemma.

Lemma 5.1 The distribution of the r.v. I, defined in Section 2, satisfies

lim P[I =17 <ool=1 and Pl >2|= O(u?), u— 0.

The distribution of 7', conditioned on T < oo, was already studied in the
previous section, in particular for small values of the mutation rate u. In this
section we review some results on the distribution of L, and provide simulation
results for E[L, | L, < oc].

The problem of attaining high levels in a supercritical single-type GWBD was
already studied in Nagaev (1971) and Rosler et al. (2001). There it is shown
that, if the reproduction law has finite variance and mean mg > 1, as z — oc,

sup ‘P (Lg = la(x)] + 14+ k) —roP (méa(z)}fkfl <W* < méa(w)}fk)‘ —0
k=0,41,42,...

where

log(x Y,
ro = P[Y, — o], a,(x):Lmand W*=lim (——>|Y,>0].
log(ny) n—oe \ mf
The symbols |z| and {z} represent the integral and fractional parts of z,
respectively, i.e.,

2] = {sup:ngz} and {z} =z — |2].

ne
From this we can deduce that

L log(m)

k=0,41,£2,...|T0

1P(Lm—l—La(x)J:k)—P<k<{a(m)} <k—|—1>‘—)0

which is equivalent to
log(W*)J )
su P(L,—1— |a(x)| =k|Y, > x)—P alz)}— ——=| =k||—0.
[P )] = Y = 00) - P (| {a(a)) - 2L
This means that the difference that the distributions of the r.v.’s
log(W*
(Ly —1—|a(z)]| Y, = o0) and {a(x)} — M
log(my)

assign to any event converges to zero, as © — co. Therefore, from the distribu-
tion of log(W*) we can, in principle, obtain limiting results on the distribution
of L.
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Résler et al. (2001) give special attention to the case of high levels of the form
m§ wich is the expected value of Y,,. They show that, for any b € [1,mq)

meg —n =5 U 1o
where
. oo on the set {V =0},
m =
[_%-‘ on the set {V > 0}.
with

Ya
V=lim — and |z| = {ing i > z}
ne

n—o0 mO

Since in general not much is known about the distributions of W* and V' we
cannot draw many more conclusions from here.

We finish this section with some simulation results concerning the r.v. L. In
Figure 4 we plot the value of E[L;|L, < ool for two high values of z, 10*
and 10°, and processes with Poisson, binary splitting and geometric reproduc-
tion laws. We considered different values of the reproduction mean in interval
[1.1,2). In each case we simulated 10.000 processes. During the simulation
of a supercritical G.W.B.D. it is not always possible to observe if extinction
occurs. But we can always observe if the process crosses value z. Therefore
the results are conditioned on L, < oo and not conditioned on Y, — o0, as
above. These events do not have the same probability because extinction is
still possible after crossing value x. This happens with probability less or equal
than (1 —79)®, but since we will consider only high values of x, we can neglect
this quantity and assume that the two events have approximately the same
probability.

From the figure we can conclude that the time to cross level x increases with
x and decreases as the reproduction mean mg increase. This was expected
obviously, but it is surprising to see that such different reproduction laws, like
Poisson and binary splitting, have quite similar behavior regarding this prob-
lem. Yet, we observe that the geometric distribution exhibits lower average
times and this may be related to the fact that this is the reproduction law
with higher variance when mg takes values in the interval [1.1,2).

6 Discussion

In this paper we have presented statistics for quantification of several aspects
of the dynamics of escape mutants: the probability of ultimate success; the
distribution of the time until appearance of a successful mutant; the hazard
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Fig. 4. Simulation results for F[Ly|L, < o0]

rate for appearance of a successful mutant; the time until escape individuals
reach a certain level. Different aspects are important in different contexts.
For instance, in evolutionary processes the rate of evolution is an important
parameter. This can be calculated from the expected time until a successful
mutant appears. The hazard rate is an insightful way to quantify the risk of
introgression of introduced genes into wild populations. Another important
aspect of such risks is the expected time until the number of individuals of the
supercritical type reaches a specific level. This quantity gives an indication of
the time until the situation becomes critical, once a successful invasion has
occurred. Furthermore, this measure can be used to estimate the sensitivity
of monitoring schemes to detect escape mutants. The previous remarks also
apply to the detection of mutant tumor cells in chemotherapy patients. Before
we proceed with a detailed discussion of the results obtained in each section,
we would like to remark that results need to be derived for extensions of the
model, with more than two types, and several transition schemes.

16



6.1 On the probability of escape

We provide a mathematically robust derivation and generalization of the re-
sults of Iwasa et al. (2003, 2004), to approximate the establishment success
probability. We showed that the approximation is valid for any offspring dis-
tribution with finite variance.

Numerical results indicate that the approximation works quite well for small
values of the mutation probability u. It is, however, not so good for larger u ,
especially in models with more than two types (see Table 1).

6.2 On the waiting time to produce a sucessful mutant

We derived an approximation for the distribution function of the time 7" until
a successful escape mutant appears, P[T" < k]. That approximation works very
well for small k£ and u (Figure 2). It is especially important to have a good
estimate of this distribution function for small values of %, since successful
mutants appear early. We also derived an approximation for the distribution
of T, conditioned on escape.

Once the subcritical population has gone extinct, the chance that successful
mutants are produced is zero. Therefore, the hazard rate g(k), derived in
Section 4, is the probability per time unit that a successful mutant will be
produced in generation &, given that there are still subcritical individuals
alive at k. The probability that the subcritical population still exists at k will,
however, go to zero in the long rumn.

Figure 3 shows the behavior of the hazard function for small values of &£. It is
natural to ask what happens to this function after a long period of time. Does
it remain constant in time or does the risk of producing an escape mutant drop
to zero in the long run? It is easy to see that, as k increases, both numerator
and denominator in (18) decrease to 0. This leads to fluctuations of the hazard
function that drop to 0 when we try to compute its value for large values of
k. Nevertheless, we believe that the limit of g(k), when k& — oc, is not zero
but equals the value that the function shows before the fluctuations start and
that we can see in Figure 3. If this is the case, we can also conclude that the
limit should depend on more parameters than just «, m and ¢, since in each
graphic these values are common. The variance of the reproduction law of
the subcritical individuals may also play a role here. For instance, the linear
fractional case exhibits the larger values of the hazard function and it also has
the largest reproduction variance. This question remains to be investigated.

There are also situations with a constant source of subcritical individuals. For
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instance, when there is a constant formation of hybrids, through gene flow
from a crop. In that case we need a different model, with immigration in the
subcritical population, and the resultant hazard rate will look different. This
is an important generalization, which is the subject of future research.

6.3 On the attaining of high levels

We showed that the waiting time until the population of escape individuals has
attained a certain level x can be approximated by the time 7" until a successful
mutant is produced, plus the time L, it takes the supercritical process, starting
with one escape mutant, to attain x (where all distributions are conditioned on
escape success). We reviewed some results on the distribution of L, obtained
in Nagaev (1971). These results did not allow us to draw many conclusions
and so we simulated supercritical processes GWBP with particular offspring
distributions. The simulations suggested that the variance of the reproduction
law may play a role here and this is also subject of further research.

For practical applications, it would be worth while to have limiting results for
this distribution, especially for the case where the expected numbers of off-
spring of supercritical individuals are close to 1. Such approximations remain
to be developed.

Acknowledgments: We thank Peter Jagers and Serik Sagitov for many help-
ful discussions and comments on previous versions of this manuscript. M. C.
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A Appendix

A1 Approzimations for the escape probabilities

We start by deriving a formula for the quantities g; =1 —r;, 7 # 0.
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oC
q; = Z ]ﬂm(’ljjoqo + ...+ U4 +...+ UquK)m
:fj(Ujqu + ..ot U+ + UquK) (A.1)

where {p? ,m € Ny} is the offspring distribution of type j individuals and f;
is the corresponding p.g.f.. Observe that ¢y is known since it is the unique
solution of equation ¢y = fo(go) in interval [0,1). Replacing ¢; = 1 — r; in
(A.1) and using (7), we obtain

K
T'j =1- fj (1 — Zuﬁrl) .
=0

A first order Taylor expansion of f; around point 1 gives that, for some 0 <
<1,

@,r1,...,7
T = Zu;m—l’—’K)

1 — uym; uﬂm] i L —ujym;
i£]

(A.2)

where
2

1 K K
’I](@, Tiyeevy ’I‘K) = if” <1 - quﬂﬂ> (Zuﬂrz>
=0

i=0
Observe that

n(,r1, ..., rk) f;’(l—éy)yQ < 4 f;(l) < o3
1

L—ugm; 2

— ;) L —uj5m; L—m;

K .
where y = > u;r; and O'JZ' denotes the variance of {p/,,m € Ny}. In the first
i=0

inequality we used the fact that f]" is a nondecreasing function and second
inequality is a consequence of m; < 1 for j # 0. Observe that y* is of order u*
and, if we assume that o7 is finite, the quantity above is also of order ”.

Using (7), another first order Taylor expansion around point 1 gives that, for
some 0 < 8 < 1,

m; m;
1—uzm; 1—m; (1 — m] oy i+ (B (A-3)

where

3

7(}9) = ( [1 — BZU]z] TIL]) (; sz) < (1 — m] (; Um) (A4)

Assuming that u;; = O(u) and neglecting terms of order bigger or equal than
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u?, (A.2) and (A.3) yields the following approximation:

m; K
’f‘j% 1—mj§ujiri (A5)
i

where a(u) ~ §(u) means that «(u) = 6(u) + O(u?). From (A4.4), we observe
that v(8) = O(u?) and therefore the error of the approximation will also be
of order u?.

A.2  Approzimations for the distribution function of T

We will derive approximations for the distribution function of T, under the
assumption that the mutation rate u is small. Let 2, & > 1, be the probability
that a successful mutant is produced before or at generation k. According to
(1) of Theorem 4.1

Using (10) we can write x; in the following way:
Tp=1—f(1 =241 —u[Qr1— ) (A7)

Observe that, if u is small, the quantity

Yk = Tp—1 + u[Qr_1 — Qo)

is also small because xx 1 = O(u). In fact, the definition of x;_; and of 7
together with (A.5) gives that, for all £ > 1, there exists a constant C' > 0 s.t.

Ty T mr O(u?
- 0 4 ()<C.

Tp1 <11 =
U U 1—-m U

Continuing with (A.7), a first order Taylor expansion of f around point 1 gives
that, for some 0 < 6; < 1,

wp = f'(Dye — m(01, vk) (A.8)

with n,(61, yx) = O (v?). In fact

1., . 2 2o
M0, g = 510 — by i < 1) < (.9)

where 02 denotes the variance of the offspring distribution of the subcritical
individuals, which is assumed to be finite. Continuing with (A.8) we obtain
the following approximation
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zp 2 f1(1) (zr1 + ull — 21 — qo])
=mag 1+mu(l —xr 1 —q)
=mu(l —qo) + m(1 — u)xg_1 (A.10)
and repeating the recursion (A.10) above we obtain:

7y & mu(l — go) +mu(l — go) m(l —u) + ... +mu(l — go)[m(l —u)* .

Recalling the definition of zy, we get

P[T < k] ~ mu(1 — g) E:O[m(l —u)]" = mu(l — qo)m (A.11)

and, the use of (A4.3), yields the following first order approximation

mu(l — q)

P[T < k]~ (1 —mk) (A.12)

1—m
A.8 Most used offspring distributions

(1) Binary splitting with parameter p:
f(s)=1—p+ps*, m=2p, o’=4p(l-p) (A.13)
(2) Poisson with parameter A:
f(s)=e?790 m=1x o>=) (A.14)
(3) Linear Fractional with parameters (b, ¢):

b bs b ,  b(1—¢) =¥
- "Ta-er 7T a-o
(A.15)
The case (b,¢) = (p(1 —p), 1 —p) corresponds to the Geometric distribu-
tion with success parameter p:

fs) =1~

1l—¢ 1—c¢s’

P 1—p o 1—p
S =, m:—’ g = A16
/(s) 1-(1-p)s P p (4.16)

A.4  Proof of Lemma 5.1

From the mean value theorem, it follows that
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P[T < oo|I = 1)P[I = 1]
P[T < 0]
. T’Qh/(O) _ To h,(O)
C1—Elg] 1 h{g)
To h,(O)
(1— o) #'(a)
h'(0)
h(a)

P[I=1T < x|=

for some a € (go, 1). From (3), we get

g = s (=) )
T—(1—w) fflus+ (1 —u)h(s))’

s €10,1]

and the first assertion is proved in the following way:

ey LU= whO) — (1= )+ (1~ wh(a))
PU=1T < ool = v i w)h@) = (L~ o) 70— wh(0)]
FOR- )]
8 O~ ()]

In the calculations above we used the fact that h(s) — 1 as u — 0 and
this can be proved in the following way. Let I, be the r.v. that represents
the total number of mutations in a process with mutation rate u and denote
by h, its p.g.f., which, obviously, satisfies the functional equation (2), i.e.,
hu(s) = flus+ (1 — u)hy(s)). First we show that

I, %50 when u— 0.

Observe that P[l, = 0] = h,(0), is bounded and increases as u decreases to 0.
Therefore it is convergent and the limit is the solution in [0, 1] of equation

lim h,,(0) = f(lim £,,(0)).

Since f'(1) < 1, we conclude that lim, ,05,(0) = 1 and the convergence in
distribution is proved. Finally, from the continuity theorem we conclude that

D — Ju 01 —
hy(s) = E[s™] — Els’]=1
which finishes the proof.

Let’s proceed with the proof of the second assertion.

P> 2] =1~ h(0) — K (0) = W(c) — W(q) = ch"(a) < ch"(1)

22



for some constants ¢ and ¢ satisfying 0 < @ < ¢ < 1. The use of (5) and a few
calculations gives the following

p"(1) o —m(1l—m) o?

w 1 —m(l—u)p < (1 —m)?

and this finishes the proof of the lemma.
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Figure 1: The network of 0-1 sequences of length L = 4. Here the edges
represent single point mutations of probability ;(1 — p)*~1. More generally,
mutation between two sequences which differ in i sites has probability u’(1 —

p)n

1 Introduction

This work is motivated by a series of papers by Iwasa et al [4], [5] studying the
probability that a virus placed in a hostile environment escapes extinction
via a chain of mutations. In their basic population model the virus is coded
by a vector of zeros and ones of length L, so that the set of the sequences can
be viewed as a graph, illustrated by Figure 1, with 2L vertices representing
different forms of the virus.

Let all the sequences with exactly ¢ ones have the same fitness m; de-
fined as the mean offspring number. If we further assume that 0 < m; < 1
fori =1,...,L and my > 1, then a reproduction process stemming from
the subcritical form (1,...,1) is doomed to get extinct unless a sequence of
mutations results in the supercritical form (0, ...,0). Suppose that all point
mutations have the same probability i per site per generation. Then accord-
ing to [5] the escape probability is a small number of order p” as p — 0.
This means that asymptotically we can disregard the possibility of backward
mutations on the path from the initial sequence (1, ..., 1) towards the escape
sequence (0,...,0).

A relevant Markov chain describing such a virus population is a multi-
type Galton-Watson (GW) process (see [3], [8]) with 2" types of particles.
Here time is measured in generations and particles are assumed to reproduce
asexually. The offspring numbers are assumed to be independent random
variables whose distributions are common for all particles of the same type.
The aim of this paper is to give the asymptotic GW process describing the
number and the types of viruses in a population escaping extinction.

We start our study with the case L = 1, when the GW process has just two
types of particles 0 and 1. In Section 2 we consider a general two-type GW



process which starts with a type 1 particle and where all the type 0 particles
are killed. Such a one type population can be viewed as a decomposable
two-type GW process or, as shown in Section 3, as a decomposable three-
type GW process. These decompositions are our hasis for obtaining the limit
structures of the GW processes escaping extinction like that in Section 4.

In the two-type case mutation is modelled in a more general way than
discussed so far. Namely, in the limit theorem of Section 4 we will allow the
mutation probability for a newborn type 1 particle to depend on its family
size. We show that in the case when the initial type 1 is subcritical and the
other type 0 is supercritical, the conditional limit process is a GW process
with immigration. The immigration source is turned on during a geometric
time 7\ with mean E(T)) = 1_1m1. The immigration source corresponds to a
stem lineage leading to the successful mutation. The numbers of immigrants
have the size-biased distribution.

Careful asymptotic analysis of the two type case demonstrates that the
backward mutations on the path to escape are negligible. Therefore when an-
alyzing the case with the number of types larger than two we simply disregard
the possibility of backward mutations. In Section 6 we study a sequential
mutation model, where mutations may occur along an interval of types start-
ing from type L and ending at type 0. This is a natural intermediate step
between the two-type case towards the network model. Indeed, if we treat
each subset of sequences with exactly 7 ones as a single type ¢, then we arrive
at a sequential model with the mutation probability between types ¢ and j
being asymptotically equivalent to (]’) I, given j < i.

The asymptotic results in Section 7 address a wide class of sequential
mutation models. Section 8 discusses the asymptotic distribution of the
total time to escape and its expected value. Finally, in Section 9 we apply
the results of Section 7 to the network mutation model.

2 A two-type GW process focussed on one
type

Consider a GW process with two types of particles labelled by 0 and 1.
If Z;(n) is the number of type i particles in generation n, then the vec-
tor {Zy(n), Z\(n)}n>o forms a Markov chain describing the population size
and type structure evolving generationwise. Proposition 2.1 below describes
the fate of type 1 particles as a decomposable GW process recognizing two
subtypes of type 1 particles. This construction reminds the well-known de-
composition of the supercritical GW process into particles with infinite and



finite lines of descent (see [1], p. 47).

We are going to distinguish between two kinds of type 1 particles: sub-
type 10 - those who have type 0 particles among their descendants, and
subtype 11 - those whose total progeny consists only of type 1 particles.
Given the process starts from a single particle, called a progenitor, there are
two possibilities to choose the type of the progenitor

BO — {ZO(O) — 1, Zl(O) — 0},

The event By, in turn, is the union of two disjoint events

By = {Zs(0) =1, 7,,(0) =0},
By, = {Zp(0)=0,7,,(0) =1},

revealing the subtype of the progenitor. We shall denote by %, I, Pig, I
the conditional probabilities specifying the type or subtype of the progenitor
and by Ey, E\, Eg, 1| the respective expectation operators. Put

Qlo = Pl(BIO)y Qll = Pl(Bll) =1- QlOy

and define the two-type reproduction law in terms of the generating functions
fi(50,81) = E; (5020(1)51Z1(1)> , =01

Consider k = kg + k| daughters of the progenitor assuming that Zy(1) =
ko among them have type 0 and Z;(1) = k; have type 1. We label the
type 1 daughters by the numbers 1,...,k; and the type 0 daughters by
ki +1,..., k. Within the types the labeling is done uniformly at random.
For an event A concerning the original GW process we will denote by A® its
analog associated with the GW process stemming from the ¢-th daughter of
the progenitor. Let R denote the smallest label among the type 1 children
having the subtype 10,

Rw)=min{l <i< Z,(1):w e B},

with the usual convention that the minimum of the empty set is infinity. The
next lemma is analogous to Lemma 2.1 in [2].

Lemma 2.1 The conditional distribution of R is given by

. 1< i<k
H(Rzﬂzo(l)=ko,zl(1>=k1>={Q}JBQ“’ PISDOSR ¢
11> - p
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implying

Blsf = 90 a0
[s7] = 1—<SQ11( Si(1,5Qu)).
and
Qi = f1(0, Q). (2)
PRrOOF Let {4, ..., Ax} be some random events concerning the GW process

generated by a single progenitor particle. For k = kg+k; due to independence

of particle lives we have

Pl(ZO(l):k'o,Zl( )—k‘l,A 1<L<k’)

= Pi(Zy(1) = ko, Z1(1) = ky) le A) I Poa

i—k1+1
With a specific choice of A; = C;, where
By, 1<i<j—1,
B107 i= j7
By, j+1<i<k,
By, ki+1<i<k,

C; =

and j € [1, k], we get

(R=3,2(1) = ko, Z1(1) = k1 } = {Zo(1) = ko, Z,(1) = ky, C¥

Thus according to (3)
PR = j1Z0(1) = ko, Z:(1) = 1) = Q{1 ' Quo.
Now it remains only to note that
Pi(R=0c|Z5(1) = ko, Z1(1) = k1) = 11,
and that equation (2) follows from

B11 = {Zo(l) = 07 R = OC}

(3)

,1<i <k},

(5)

(6)
O

Lemma 2.2 Let {A;,i = 1,2,3,...} be random events concerning the GW
process generated by a single progenitor particle. The daughter versions of



theses events {Agi),i =1,...,k}, k = ko + ki are conditionally independent
given R =3, Z(1) = ko, Z,(1) = k1 with

Pii(4), 1<i<j—1Ak,
W p_ _ o Plo(Az), i=J,
Pl(AZ |R—j,Z0(1)—k0,Z1(1)—k1)— (14Z)7 ‘7+1§Z§k1’
Po(4;), ki+1<i<k.

PROOF Let j € [1, k1]. In terms of the system of events (4)

{R =3, Zo(1) = ko, Z)(1) = k1, AD 1<z<k}
:{Zo(l):ko,zl(l):kl,Al ﬁCZ ,1S2Sk}

The stated conditional independence follows now from (3) and (5)

P(AY 1 <i<k R=j|Zy(1) = ko, Z:(1) = ky)

:ﬁPl(AiﬂBn)Pl(AjﬂBm) 1_1[ Pi(A) [ Po(4Ad)

i=1 i=j+1 i=k1+1

= Pl( = Jj12o(1) = ko, Z:(1) = k1)

XHPH DPo(4) [ 2a) T o4

1=j+1 i=k1+1
U

Proposition 2.1 Let the two-type GW process start from a 1-particle and
kill every O-particle appearing in the population. The resulting process can be
treated as a decomposable GW process {Zo(n), Z11(n) }n>o with two types of
particles: 10 and 11. The progenitor’s type has distribution (Qi, Q11), and
the new two-type reproduction law is defined by

Ey ( zlo<1)slzn<1)) - fl(o&)?jlsl)’ (7)
Fio (5510(1)51211(1)> _ J1(1, Qo0 + Qg?;) - f1(0, Q11S1). (8)

PRrROOF Since
En (Sozw(l) it ) Q11+ Eio (éo o 1Z11 ) Qi = Ex ( ZIO(I)Sle(l))

and due to the basic branching property
Ey ( 210(1)61211 ) = fi(1, Qio80 + Qu151),
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to prove (7) and (8) it suffices to verify that
Ey (SoZlO(l)an(l)QBu) = f1(0,Qu151).
But this follows from (6) and (1):
E (5510(1)81211(1); Zy(1)=0,R = oc) = B (8121(1); Zy(1) =0,R = oo)
= f1(0,Quis1).

Finally, the claimed independence of particle lives in the framework of the
new two-type system follows from Lemma 2.2.
O

3 A refined structure of the two-type GW
process focussed on one type

With the same two-type GW process let us now distinguish between two
kinds of type 0 particles which will be labelled as 00 and 01 depending on
the explosion (00) or extinction (01) of the GW process stemming from a
O-particle in question. This allows us to refine our earlier classification of the
type 1 particles after the subtype 10 is further divided into subtypes 100 and
101. A subtype 100 particle is a 10-particle with at least one 00-descendant.
It means that the other subtype 101 must have 0l-descendants but never
00-descendants. Let Zo(n) and Zj¢i(n) stand for the number of particles of
subtypes 100 and 101 in generation n. Put

Qo0 = P1 (Z100(0) = 1, Z10:(0) = 0, Z11(0) = 0),
Qior = P (Z100(0) =0, Z101(0) = 1, Z1,(0) = 0),
so that Qg0 + @101 = Q0.
It is well-known that the extinction probabilities
g = P ( lim (Zy(n) + Z1(n)) = 0)
—>00
satisfy the following pair of equations (see [1], p.186)
9 = folqo, q1),
a1 = fi(q, @)

Clearly, QQ1p0 = 1 — ¢4, since for the progenitor of type 1 to be classified
as a subtype 100 particle the corresponding branching process must survive
forever. This yields the following equation

1 — Qoo = f1(q,1 - Q100)- (9)



Proposition 3.1 Let the two-type GW process start from a 1-particle and
kill each O-particle appearing in the population. The resulting process can
be treated as a decomposable GW process {Zioo(n), Zio1(n), Z11(n) fnso with
three types of particles 100, 101, and 11.

The progenitor’s type has distribution (Qoo, Gro1, @11) and the new three-
type reproduction law is defined by

B (QOZSOO(l)SOZfOI(l)Slzu(l)) — fl(OzQQllsl)’ (10)
1
B (500 (1)5021101(1)81211(1)) _ f1(g0, Qro1501 + Qu181) — f1(07Q1181)’ (11)
Q101
Fioo (‘500 (1)5021101(1)81211(1)> (12)
i1, Quoosoo + Quorsor + Quist) — filgo, Qiorsor + Qisi)
B Q100 .

PROOF 1t is easy to adjust Lemma 2.1 and Lemma 2.2 to verify the branching
property of the three-type process, and it directly follows from Proposition
2.1 that (10) holds. Now, in view of the branching property of the three-type
process

By (5020100(1)3021101(1)31211(1)) = fl(la 500Q100 + $01GQ101 + S1Q11)

and because of
E, (95500(1)5021101(1)5{11 ) Qo0 E 00 (900 (1)50Z1101<1)912“(1))
+ Qo1 Evor (900 O(I)SOlem(l)slzn(n)
+ QuBn (sG0sin s 0)
to prove (11) and (12) it suffices to show that the sum of the last two terms

equals f1(go, Q1151 + Q101501), or equivalently

Z100(1) Z101(1) Z11(1), .
E, (500 Sor 8] ,the process dies out

=F (6021101(1)51211 ; the process dies out)

= fi(g0, Q101501 + Q1181).

But the last equality follows from the branching property saying that for the
process to die out all the daughter processes should die out independently,
and when it comes to type one daughters there are two possible ways toward

extinction: either with or without type 0 descendants.
O



4 Limit theorem in the two-type case

In the previous two sections we considered a two-type GW process with a
general reproduction law described by a pair of generating functions fo(sg, $1)
and fi(sg,s1). In this section we deal with a family of the two-type GW
processes labelled by a parameter 0 < u < 1 regulating communication rates
between types 0 and 1. We will assume a particular kind of the reproduction
law for the type 1 particles:

F0scs1) = > pil) (5100 = palf) (0) + sopalf) ()
k=0

k

= Yo pul) (14 (50— s)ualf (0) (13)

Here {p:(k)}$2, is the distribution of the total offspring number for a type 1
particle. Notice that the offspring number is independent of the parameter
i which controls mutation or change of type.

According to (13) each out of k offspring independently chooses its type:

type 1 with probability (1 — ,ua,(lﬁ)(k)) or type 0 (mutation event) with prob-

(

ability ualﬁ)(k). In our asymptotic analysis u goes to zero making mutations
rare events. We will assume the uniform convergence

sup aff) (k) — ai(k)| = 0, 1 =0, (14)

where the limit sequence is uniformly bounded

sup ago(k) < oco. (15)
k>0

Obviously, fl(“)(so, s1) = ¢1(s1), where

¢1(8) = Zpl(k')b’k.

We assume a similar convergence for the offspring numbers of the type 0
particles

fé”)(b’o, 1) — ¢o(s0), (16)

where the limit generating function ¢y(s) describes the limit reproduction
regime of type 0 with no mutation to type 1.



The limiting mean offspring numbers m; = @}(1), i = 0,1 are always

supposed to be positive and finite. Condition (16) implies q(()” ) q, where

g=1ifmy <1, and ¢ € [0,1), ¢ = &¢(q) if g > 1. In terms of the
generating function

1/10 kal 010 -

condition (15) ensures t0(1) < oco.

Theorem 4.1 Consider the p-labelled two-type GW process stemming from
a type 1 particle which satisfies conditions (13)-(16). If m) < 1 and ¢10(1) >
0, then the probability of the mutation event has asymptotics

QY . Pi0(1)
I 1—my

s =0, (17)

and conditioned on the mutation event, the process {Z19(n), Z11(n)}tn>o con-
verges in distribution to o limit process {Xi0(n), X11(n) }n>o, which is a de-
composable two-type GW process described below.

If furthermore, mg > 1, then the probability of the escape event has asymp-
totics
Yi0(1)
1-— mi

—(1—q)

(1)
Q;OO , p— 0, (18)

and conditioned on the escape event, the process { Z1oo(n), Z101(n), Z11(n) bu>o
converges in distribution to {X10(n), 0, X11(n) }n>o.

In view of Propositions 2.1 and 3.1 this theorem is a consequence of three
convergences as i — 0 proven in the next section

El(lf) [6510(1)51&1(1)_ — ¢1(51)7 (19)
- ! /.
) [5210(1)5211(1) A C)) t—m %0(51)’ 90
10 0 1 | 120 (/)/1(1) ( 1) ¢10(1) ( )
- !
) [star D s O] s s By 1y G0 (o)
: (1) i0(1)

The limit generating functions in (19)-(21) imply the following reproduction
rules in the limit process.

The limit {X19(n), X11(n) }n>0 is @ GW process with two types 10* and
11* corresponding to the escape (stem) lineage and extinct (side) lineages
respectively. It starts with a single 10*-particle, whose reproduction law is

10



described by the limit generation function in (20)-(21). At the time of death
this particle either produces one 10*-particle with probability mq, or zero 10*-
particles with probability (1 —m,). In both cases it also produces a random
number of 11*-particles: in the former case the generating function for the
number of 11*-offspring is ¢ (s)/m,, and in the latter case it is ¥10(s)/%10(1).
It follows that asymptotically the stem lineage stays alive for a geometric time
Ty with mean E(Ty) = 1_1ml (cf. [7]).

Relation (19) says that the 11*-particles reproduce themselves accord-
ing to the generating function ¢,(s). Therefore, the process X;(n) can
be viewed as the number of particles in a GW process with a stopped im-
migration. Think of the stem lineage described above as the immigration
source, with every immigrant initiating an independent GW process with
the offspring generating function ¢,(s). At times 1,...,7, — 1, the indepen-
dent numbers of immigrants have a common distribution with the generating
function ¢} (s)/m,. At the time 7', when the stem lineage stops, the num-
ber of immigrants has a possibly different distribution with the generating
function ¥10(s)/110(1).

Notice that if mutation probability is independent of the family size
ap(k) = ¢, then ¥1(s) = cd|(s) and ¥19(1) = emy, so that even the
last number of immigrants has the generating function ¢/ (s)/m;. Observe
that this generating function corresponds to the so-called size-biased ver-
sion of the offspring distribution ¢;(s), see for example [6]. In this case
{X10(n), X11(n)}n>o0 becomes a size-biased version of the single type GW
process with the offspring generating function ¢;(s), whose distinguished
line is stopped at the geometric time 77.

5 Proof of Theorem 4.1

Throughout this section we assume (13)-(16) and m; < 1. We prove (17)-
(21) (where relations (18) and (21) additionally require that mg > 1) using
the following lemina.

Lemma 5.1 As p — 0 uniformly over (sq,s1) € [0,1]2

fl(u)(soa 81) = (/)1(81) + u (50 — 51)1/}10(51)
+ olutsa =)+ 0 (40— 1),

where n(s) = my — ¢ (s) is such that n(s) (0 as s — 1.

11



ProoFIf0<a<a+b<1, then

k-1 E—1

. 1—a
< (a+b)*—aF —ka* b <p? E—Da ' < kb 22
0<(a+b"—a a < ;( i)a'" < 1 —a (22)
and therefore
D pi(B)s1 + plso — s1)aw(k)]F = ¢1(s1) — 1 (s0 = s1)v10(s1)
k=1

< Zpl |[s1 + p(s0 — s1)awo(k))* — st — kpaio(k)(so — s1)st |

k-1
< Zm(k) {MQ(SO — s1)ato(k) D (k ~ i)S’fl}
i=1
k1
< O Yo mk
— 8
= C%(so— 81) m - ¢’1(51)_
1-— S1

On the other hand, (13) implies

90, 51) Zpl [s1 + p(s0 — 91)010(k)]k‘

< plso — 91|ZP1 k‘alo — ao(k)|

which gives the o(u(sg— s1)) term due to the uniform convergence condition.
O

PRrOOF OF (17)-(18)

The probability Q%) that a 1-particle will have at least one 0 type descendant

is estimated from below by

Y4l (k)k,ua(l’é) (k) [1 — ua(llé) (k‘)]kil

whatever is k = 1,2,3,.... Since 915(1) > 0, there exists such a k that
pi(k)aio(k) > 0. Thus in view of the condition (15) we can conclude that

lim sup ,u/Q10 0. (23)

u—0

12



By Lemma 5.1

(1)
.WWQQW)—¢@ﬁﬁ+ﬂQW%dQW)de+47Qfﬂ@l0

QY
which combined with (2) and (23) yields
QY = 1@ + 4R 610(QY) = o) + O (un(@H))

It follows immediately that Qg’f) — 1 and therefore

This implies (17), since ¢1(s) —s ~ (L —my)(1 —s) as s — 1.
Applying Lemma 5.1 once again we obtain
S a1 - Qi) — i1 - Q)
2 (1)
pn(l—Q
:u@@—l+@%ﬂmﬂ—@%rwmn+0<(¢m““>,
100

where q(()”) — ¢q with ¢ € [0,1) given mg > 1. Using (9) we can derive
1- Qi) — 6:1(1- Q%))
— -1 (1) 1— (w) O 1— (1)
(g + Qo) ¥10(1 — Qige) +o(p) + O [ (1 — Qigp) )

since Qg’éé /i is bounded away from zero. Now it is obvious how to finish the
proof of (18).

O
Proor oF (19)-(21)
In view of Proposition 2.1 relation (19) is obvious. The other two relations
have similar proofs - here we give a proof of (21) based on the next observa-
tion. If 0 < s; < s;+6; <1 for 4 = 0,1, then according to (22)

0 < fl(”)(b’o + 09, 51+ 01) — fl(”)(é‘o, s1) — R(”)(SO, s1,0g, 01) (24)

k—1

2 1= (s1+ p(so — s0)ay) ()

1T— 81— p(so— 51)“%)(15)

< S kpi(k) (51 + (0 — 51)0,93)(@)
k=1

13



where

R(N) (507 S, (507 61)
i k—1
= ki (k) (s + palso — s)alf) (6) (01 + 0 — )l (8))
k=1
Relations (24) and (12) yield

0

IA

QULBIE [sam Vs — RO, 50,1 — 4, Qlfhsoo)

2

< Yk (k) (Qhson + (1 — gt — Qhsoo)al) (k)
k=1

1= (0 + (gl - S(”))a%)(k‘))
1= s — (g = 50)alf) (k)

with s = Q%’f) 81+ Q%)lsm — 51. It remains to observe that the right hand
side is O(u?) and

R(ﬂ) (Q(()ﬂ)a S(u)y 1-— Q(()ﬂ)a Q(ll(;z)SOO)
Q%

= Z kpi (k)
k=1

6 The sequential mutation model

Suppose we can distinguish between L41 types of particles, labelled 0,. . ., L.
Type i particles can only produce particles of the types O, ..., 4, whatever is
i € [0, L]. Notice that this sequential mutation model only partially extends
the previous two-type model. We prohibit the reverse mutations for the sake
of simplicity. As the asymptotic analysis of the two type case shows, the
more general sequential model with reversed mutations should lead to the
same asymptotic behavior.



Let Z;(n) be the number of type j particles existing at time n given that
the branching process stems from a single particle whose type is specified
by the index of the probability measure I%. Adjusting the notation of the
two-type case put

Zo(1) Zi(1 z,(1
fi(s0,81,- .., 8) = E; (500( )511( U )>

I3

and

Qil = R[Zo(n) = O, for all n 2 O], QiO =1- Qil-
Then
Qi = £i(0,Q11,Qa21, ..., Qn) (25)

since to avoid descendants of type 0 nor the progenitor itself can have daugh-
ters of type 0, neither the progenitor’s daughters can have descendants of type
0. We split each type in two subtypes in a way similar to our decomposition of
Section 2. Consider the future of a particle of type i: with probability Qg it
will eventually manage to produce a particle of type 0, in which case the parti-
cle is labelled {0, and otherwise with probability @;; it is labelled i1. Arguing
as in Lemma 2.1 we see that the process {Zr9(n), Zr1(n), ..., Z1o(n), Z11(n)}
is a decomposable 2L-type GW process.

To describe the reproduction law in the 2 L-type GW process observe that

E; (SiZOio(l) Sizln(l) o Slzéo(l) 51Z111(1))
= QioEio (Sizoio(l) sl.Zl“(l) o 51Z80(1) 512111(1))

b QuB (500 00 L S 709
where the left hand side is
i1, Quosio + Quisii, .., Qiosio + Qirsit)
and
Qi1 E; (5%0(1) siZl“(l) slzéo(l) slzln(l)) = fi(0, s1Q11, $21Q21, -, Q).
It follows
E, ( Zio(1) (Zia(1) Z1o(1) Z11(1)) fi(0, s11Q11, 521Q21, ..., 50 Qi1)

Sio " 8 ... 810 sh

Qi ’
(26)
E; (si)io(l) Sizln(l) 51250(1) 812111(1)) (27)
_ [i(1, Quos10 + Quisii, - .., Qiosio + Qirsin) — fi(0, s11Qu1, .., 5:1Qi)

Qio

15



Our forthcoming asymptotic analysis turns to an extension of the two-
type case (13)

P (0,81, 8) = E™ (SOZomslzlm___ S_zm))

K3 K3

oG i—1 k
S VICIENS S ORI
k=0 j=0

which says that each out of the & offspring of an i-particle independently

chooses its type: it mutates to a type j € [0,7—1] with probability /Li’ja,l(-?) (k)
. . . .. i—1 4 (U

or retains the maternal type type ¢ with probability 1 — Z;’:o 7 Ja,gj)(k).

Here again parameter p4 controls mutation rates so that as g — 0 mutations

become rare

.fi(u)(soa S1ye o0 8i) = @i(si), ¢ils) = Zpi(k)sk~ (29)
Put m; = >, | kpi(k). We will assume that all types, possibly except 0, are
asymptotically subecritical, i.e.,
O<my<l, i=1,...,L, 0<mgy < cc. (30)
As in Section 2 we will assume the uniform convergence

sup sup | al(f)(k) —a;j(k) >0, u—0, (31)
0<j<i<L k>0

where the limit sequences are uniformly bounded

sup supa;;(k) < oo. (32)
0<j<i<l k>0
Put -
— k—1 . .
Gig(s) =Y kpi(k)ay(k)s*™', 0<j<i<L (33)
k=1
and define a matrix A = [A;;],_o by
I, i=7=0,
Ay=3 Bl o<j<i-1,

0, otherwise.

16

(28)

oo i1 i1 k
> (k) [ (1 - Zu”a%)(k)) + Zu”aﬁi)(k)sj]
k=0 j=0 j=0



Define a vector (xg,- .-, xz) recursively

i1
Xi = ZAz'ij7 Xo=1. (34)

Jj=0
If all 4;;(1) > 0, then all components of this vector are strictly positive.

]L

In terms of the matrix powers A" = [A(”) ij—o We can write

]

i—1
Xi = Ai0+ZAinj
j=1

i1 j-1
= Ajp+ Z Ajj <Aj0 + Z Aijk)
j=1

k=1
i—2
2 2
AP AP -
j=1
y

i—1
= Z Z Aijk . .Ajlg.

k=0 O0=jo<j1<jga2<...<Jp<t

It follows from (34) that the i-th row of the matrix B = [Bj;],_, with

i
By ==LA; (35)

%

defines a probability distribution on the set {0,...,7 — 1}. Notice that the

(n) _ ﬁA(”)

matrix powers A" and B" are connected by Bj; TAG
2

7 Limit theorem for the sequential model

The following result partially extends the two-type Theorem 4.1. It is clear
how a full extension would look like.

Theorem 7.1 Consider the p-labelled 2L-type process GW process described
in Section 6 that starts from a type L particle and satisfies conditions (29)-
(32). Let all (1) > 0. The probability that the process produces at least
one particle of type 0 has asymptotics

Q
Tﬁo — X, #4#— 0. (36)

17



Conditioned on the event that a O-particle is produced, the process
{Zro(n), Zra(n), ..., Zio(n), Z11(n) bn>o converges in distribution to a limit
process {Xro(n), Xr1(n),..., Xio(n), X11(n) }n>o which is a decomposable 2L-
type GW process described below.

The limit process {Xyo(n), Xr.1(n),..., X10(n), X11(n)}n>o starts with a
single particle of type L0*. This particle lives a geometric number 77, of
generations with P(T;, = n) = m? (1 — myg). At times 1,2,...,7, — 1
the stem LO0*-particle gives birth to particles of type L1* according to a
size-biased distribution with generating function ¢/ (s)/myg. Each particle of
type L1* initiates an independent single-type subcritical GW process with
the offspring generating function ¢r(s). At time 77, the stem particle is
replaced by a stem particle of type ¢0*, where index ¢ chosen from the set
{0,1,...,L — 1} according to the distribution {Byg,..., B 1}, see (35).
The number of L1* particles born at time 77, has a different distribution: the
p.g.f. is given by ¢¥r,(s)/vr:(1).

After time 77, the scheme above is repeated with L being replaced by 1.
The particle of type i0* lives a geometric time 7; with mean in that

l—m;?

_ 1; TLE{TL;""TL—}_E_:[}
Xio(n) = { 0, otherwise '

At times T, +1,...,77,+T;—1 particles of type ¢1* appear from the stem par-
ticle according to the size-biased distribution ¢(s)/m; and each one of them
initiates an independent single-type subcritical GW processes with offspring
generating function ¢;(s). At time 77, +7T; the stem particle changes its type
to j0*, where 7 is chosen from {0,1,...,7 — 1} according to the probability
measure {Bj, ..., B;;—1}. The distribution of the number of type i1* par-
ticles produced at time 77, + T; has generating function v;(s)/v4;(1). And
the whole process restarts from this type 7 particle until the type 0 particle
is produced.

Proor The proof of Theorem 7.1 is similar to the proof of Theorem 4.1
therefore here we only outline the major changes. Lemma 5.1 can be extended
to

i—1
F 50,81, 8) — duls) = Y i (s; — si)us(s:) | = (37)
7=0
(= o[ ,2im0) o 8 — il ’
=0 ]Z:;u, 55— 8| | + 7 T ].ZOT

18



where the 1);; are the functions defined in (33) and 7;(s) = m; — ¢(s).
Convergence (36) is proven by induction over L. The case L = 1 is
covered by Theorem 4.1. Now assume that, for any j € {1,...,i — 1} it is
known that % — X;. We prove that % — x; using (25). First observe
that % is bounded away from 0, since ¢;;_1(1) > 0, there exists a k > 1

such that p;(k)a;;—1(k) > 0 and the inequality

Qio > pi (k)k,ua” J(B)Qizi (1 — /W'z('ﬁ)—l(k))k_l

implies lim sup */Q;o < oc due to the induction assumption. Therefore, (37)
gives

fi(“)(O’Qlly"'yQ’ll ¢1 Q’I] Zrul j QJI Qil)w":j(Q“) -

_()(ZII JQ]l—Qz1|)+O :“77 Q“ {ZK)JI/ Qzl|]

=0 j=0

which combined with (25) yields that Q; — 1 and

i—1

1—Qio — ¢i(l — Qo) — Z B (Qio — Qo) i (1) =

j=0
0 (ZuijQio—de) +o|u [Z QZOMJQ]()']
J=0 j=0

It follows

i—1

d’ (1 - QZO) -1 + QzO - /1 Z ijU + O(:“'QZO)

7=0

and (36) for L =i is derived from (34).
In order to obtain the generating functions of the reproduction law of the
limit process we need an extension of (24): if 0 <s; <s;+6; <1, then

O<f-(u)(90+(50,.. 9Z+(S) f()(90,...,5i)—RZ(-N)(SQ,...,51'7(50,...,(51')

1—d(so,...,8)
< kpi(k)dE (%, .., 0; R AT
Z p 0 ’ ) 1— dk,ﬂ(SQ, ceey 51;)

(38)
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where d (S0, ..., 8) = 8 + Z] ST (s — 8 )ag‘)(k) and
RZ(-“) (S0« -5 8is 00y ...y 0 Z kpi(k dk "(S0y- -+ 80)dr,u (B0 - -5 65).

From (27) and (38) it follows that

Quo B |0 57t [ gl 8?111(1)}
) (0, Q115115 - - -, Qi18i1, 1, Q10810 - - -, QioSio) + O(,u%)
and it remains to check that

QZOIRZ('”)(O Q115115 - - an’n,l Q105105 - - -, QioSio)
— 910(/J> Si1 +29]O w’l] 9zl)

7=0
i—1
¢i(si) WZJ(%I)
= m;Sip— +(1-m B;isio L
m; ]z; 7 ¢1J(1)

8 The total time to escape

For application purposes, it is important to study the waiting time Wp to
produce the escape type along an asymptotically viable path of mutations.
For the sequential mutation model studied in Sections 6 and 7, Wy, is a sum
of a random number of independent geometric random variables. In terms
of a Markov chain {Y'(n)},>o with the transition matrix

D= [Dij]éj:m Dij = (1 - TTLZ')BZ']' + TTLZ'].{,':]'}

this is the waiting time until absorption at state 0
P(Wy, <n)=P(Y(n)=0]Y(0) = L).

The last probability is the element D(L%) of the nth step transition matrix
D™ which can be computed from the Chapman-Kolmogorov equation

DYy = DD " +...+ DD
= (1-m) (Bm + B D+ Bry o DS+ ma Dl
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Subtracting a similar formula for D%ﬁl) we get a recursion for the probability

P[,(n) = P(WL = n)

l

—1
Py(n) = mpPr(n—1)+ (1 —myg) Y BrPj(n—1).
1

=,
Il

Turning to the expected waiting time

M, =EW)=> nP.(n)

n=1

we derive

L—1
1

M, = B M;

I 1— my, + ]z:; Ljivig

L—1

1 B L-2

— Lj (2)

= By M,
l—mrl+jz::11—mj+j§::1 Ly =1

o +§B,,j+B§?j) +o B
- 1-— mry, 5 1-— mj

J=1

L—1

- 1—my = xr(l —m;)

Observe that the last formula is a weighted sum of the individual waiting
times E(T;) = 1% The corresponding weight
mj
@) (T.—5) A(3)
Xifa,. ALy A AR + ..+ AL AR
( L]+---+ Lj ) — (L)
Xr ALg
= P(Y(n) = j for some n) (39)

gives the probability that the chain Y (n) visits the state j before it is ab-
sorbed at 0. Notice that in the case of "neutral mutation” with m; =m, j =
1,..., L we get

T—1 (L—4)
1 1 (Ar: +...+ A}
M, = i ZXJ( Lj T.j )
l—m 1-m P XL
_ 1 1+XII—AI,0+-..+XL—A(LL071)
1—m Xr
_ 1 L_AL0+...+A%*1) ‘
1—m XL
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Finally, we describe a case where there is a simple formula for the coef-
ficients x;. Suppose that a;;(k) = a;(k) is the same for all daughter types j
given the mother type . Then with simplified notation ;;(1) = ¢; we obtain

i1
Ci Cjy, Cjy
= 1 e
XM= I, ( + Z Z 1—my, 1— 7nd>

k=1 0<g1<j2<..<jp<t

G 14 Ci-1 1+ C1
Cl—my 1—mi_ /) 1—m, /)"

In this case we can also compute the asymptotic probability (39) that the
random path from type L towards type 0 visits type j

P(Y(n) = j for some n)

L—j
X5 €L Cin Ch
= & = |1+

k=1 j<ji1<jo<...<jp<L

-1 -1
- 9 (14 G N
1—m; 1—mp 1—m;
X 1 + L . 1 + 6374’1
1—my_4 1—rmjn

Cj

1+c¢j—m;
Thus the expected total time to escape becomes

L—1

1 c
My = J .
Pl —my +Z (1+c¢; —my)(1 —m;)

7j=1
In particular, if a;;(k) = 1, then ¢; = m; and

1 Lo,
M, = i
ML l—m[,+zl—mj

j=1

If furthermore m; = m, then x; = m(1—m) ™7 and P(Y(n) = j for some n) =
m. In this special case the number of intermediate types has a binomial dis-
tribution Bin(L — 1,m) and

1+ (L-1)m

M
L 1—m
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9 The network mutation model

We now return to the network model described in the introduction. This
model was introduced in the papers by Iwasa et al [4] and [5]. Here particles
are coded with binary sequences 4 = (u1,...,uz) of length L. A mutation
occurs if one of the L sites changes from 1 to 0 or 0 to 1. Therefore there are
2L possible sequences which we will group into L + 1 types each containing
sequences 4 with the same number of ones |4| = u; + ...+ ur. Assuming
that all sequences within a type 7 have the same offspring number distribution
described by generating function ¢;(s), we arrive at an important example
of the sequential mutation model allowing for backward mutations.

Let m; = ¢%(1) € (0, 1) be the mean offspring number for the virus of type
i whose sequence contains 7 € [1, L] ones and (L — 4) zeros. The sequence
with all zeros 0 = (0,...,0) will be assigned a supercritical reproduction
number my € (1,00). Given mutation rate y per site per generation the
mutation probability between two sequences which differ in j sites becomes
W (1 —p)E=7. Clearly, for j < i the mutation probability between types i and
j is asymptotically equivalent to (;) 1" 7 and does not depend on the family
size. Thus

i i
Vij(s) = () oi(s), (1) = <,-)mi7
J J
implying
Iy 1
Ai' = ¢ ]. i<i— ]_ i=i=01},
? 1 —m; <J) {o<i<i-1} + Li=y=0)
i
By = X—ZAU,

where (xo,...,xz) is defined recursively by (34).

A proper extension of Theorem 7.1 allowing for backward mutations pro-
vides an asymptotic picture of the network mutation model conditional on
escape. On the sequence level the limit process starts with the sequence
1=(1,...,1) initiating a ”stem lineage”. Each next generation the stem se-
quence either remains to be 1 with probability my, or turns to a 0-1 sequence
17,1 = (Un, ce ey UlL) with probability

- 1— Br;
N (SR
@

For a geometric number of generations Ty, ~ Geom(l — my,) including the
time it switches to 4y, the stem sequence 1 produces random numbers of
side lineages of mutation-free 1-viruses. The number of such lineages per

3 7:1 = ‘U1|
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generation has generating function ¢ (s)/my. Each mutation-free 1-lineage
is a single type GW process with the offspring generating function ¢ (s).

The mutant stem sequence u; follows the same pattern only with L re-
placed by ¢; which is strictly less than L, unless ¢; = 0 in which case the
system stops after hitting the escape form 0 of the virus. Thus the sequence
dynamics from 1 towards 0 is described by a random path 1 — @ — ... —
ux = 0 of a random length & € [1, L + 1] through intermediate sequences
with strictly decreasing numbers of ones L > i) > ... > iy = 0, i; = |u;,].
The random path forms a Markov chain with transition probabilities

(1- m.,-j )Bi]. i
()

The stem lineage spends at the type u; a geometric number of generations
with mean A(i;), where A(¢) = —.—. During this time it generates mutation-

free u;-lineages. The number of such lineages per generation has generating
function q5§j (8)/mi;. Each mutation-free u;-lineage is a single type GW pro-
cess with the offspring generating function ¢;, (s).

P(ﬂj —>ﬂl) =
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