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Magnus Åstrand
Department of Mathematical Sciences
Division of Mathematical Statistics
Chalmers University of Technology and Göteborg University

Abstract

DNA microarray technologies have the capability of simultaneously measuring the
abundance of thousands of mRNA-sequences. Analysis of microarray data involves
many different steps such as image analysis, background correction, and normaliza-
tion, but also more classical statistical analysis such as testing for significant differ-
ences between groups of arrays.

The work presented in this thesis is focused on Affymetrix GeneChip arrays and
deals with normalization and the problem of finding differentially expressed genes.
Normalization of microarray data is essential to allow between-array comparisons.
A procedure called Contrast Normalization is proposed and compared with existing
methods together with two additional presented methods, Cyclic-Loess and Quantile
Normalization. All three presented methods improve on the performance of the
existing methods with a slight edge for Quantile Normalization.

The quality of microarray data often varies between arrays. A model called
WAME has been proposed, using a global covariance matrix to account for differing
variances and array-to-array correlations, and thus WAME defines a weighted analy-
sis for finding differentially expressed genes. This thesis presents two new methods for
estimating the covariance matrix. Both methods show superior computer run-time
over the existing method. Moreover, the second proposed method greatly reduces
the bias of the existing method when used on simulated data with regulated genes,
although to a less degree for real data with many regulated genes.

Microarray data frequently shows a dependency between variability and intensity
level which is ignored by the majority of moderated t-tests. The WAME model
is extended to incorporate this dependency, and two locally moderated t-tests are
proposed, Probe level Locally moderated Weighted median-t (PLW), and Locally
Moderated Weighted-t (LMW). When compared with 12 existing methods on 5 spike-
in data sets, the PLW method produces the most accurate ranking of regulated genes
in 4 out of the 5 data sets, whereas LMW consistently performs better than all
(globally) moderated t-tests.

Keywords: microarray; differential expression; gene expression; empirical Bayes;
locally moderated; moderated statistic; weighted statistic; PLW; LMW
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1 Introduction

Proteins are the major active elements of cells. They perform many key functions of
biological systems and they are the structural building blocks of cells and tissues. The
information for producing the proteins required in a cell under a particular condition
is contained in the deoxyribonucleic acid (DNA), and the complete DNA sequence of
a being, the genome, is organized into chromosomes and genes. The central dogma of
molecular biology (Crick, 1958, 1970) describes the information-flow in the replication
of DNA and in the making of protein from DNA.

DNA → mRNA → Protein
The production of protein from DNA is divided into two main steps. In step one,
known as transcription, single stranded messenger ribonucleic acid (mRNA) is copied
from the DNA, and in the second step, known as translation, proteins are produced
based on information from the mRNA.

Gene expression analysis is the study of mRNA levels transcribed from DNA.
In contrast to DNA which is more or less static over the life-time, and common to
all cells of a being, mRNA levels varies over time and between cell types. It also
varies within cells under different conditions. For example, the amount of mRNA
transcribed from a gene in a healthy being can differ from the amount of mRNA
transcribed from the same gene in the corresponding cell type of a sick being. If this
is the case we say that the gene is differentially expressed between the two conditions
healthy and sick.

Microarrays are technologies for measuring mRNA concentrations in tissue sam-
ples. Two of the most commonly used types of arrays are the Affymetrix GeneChip
arrays (Lockhart et al., 1996), and spotted DNA arrays (Schena et al., 1995). This
dissertation considers mainly the Affymetrix GeneChip type arrays and different
analysis procedures and data processing steps required in the analysis of data from
such arrays. Specifically, as indicated by the title, the subject of the first half is nor-
malization procedures whereas the second half is focused to the problem of finding
differentially expressed genes.

2 Background

2.1 Affymetrix technology

This section introduces the Affymetrix GeneChip technology. Following a brief de-
scription of DNA and RNA, the main characteristics of the arrays and procedures
for preparing tissue samples for analysis are described.

2.1.1 DNA and RNA

Information about the development and functioning of a being is stored in DNA,
for example the instructions needed to construct RNA and proteins. The complete
set of DNA, the genome, is organized into chromosomes, and a segment of DNA
coding for a protein is called a gene. The genome of a human being, containing a
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total of 20,000-25,000 genes (International Human Genome Sequencing Consortium,
2004), is composed of 23 pairs of chromosomes where the last pair consists of the
sex-determining X and Y chromosomes.

DNA and RNA are polymers composed of long chains of nucleotides and each
nucleotide consists of a base, a sugar and a phosphate. In DNA, there are four bases:
adenine (A), cytosine (C), guanine (G) and thymine (T). In RNA the thymine base
is replaced by uracil (U). At room temperature DNA is double stranded, consisting
of two complementary chains formed as a double helix by hydrogen bounds between
complementary bases (Watson and Crick, 1953). The complementary bases A and
T binds together while C is the complementary base of G and thus C binds together
with G. In contrast to DNA, RNA is single stranded and there are several types of
RNA including messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA
(rRNA). In the context of this thesis mRNA is the most important type, carrying
the information from DNA in the making of proteins with the help of tRNA. More
information on DNA, RNA and proteins can be found in numerous text-books about
molecular biology, for example Clote and Backofen (2000).

2.1.2 The arrays

The Affymetrix GeneChip arrays are one-color arrays and thus each array measures
mRNA-abundance for one tissue sample only. Each gene is represented by a set of
probes, the probe-set, with up to 40,000 probe-sets on a single array. A probe-set
consists of 10-16 probe-pairs of one perfect match (PM) probe and one mismatch
(MM) probe as depicted in Figure 1. The sequence of each probe is 25 bases long
and the PM and MM probes have identical sequences of bases except for the middle
probe which in the MM probe is set to the complementary base of that in the PM
probe. The MM probes are thus designed to measure the background intensity for
the corresponding PM probe.

The probes for each gene are selected from a reference sequence representing the
gene, see Figure 1. A number of procedures are used to investigate probe candidates
with respect to specificity and sensitivity, aiming for probes with a desired intensity
range and concentration-dependence, and with a minimal risk of cross-hybridization.
Also, the probe selection used for the Affymetrix arrays is biased towards the 3’ end
of the reference sequence.

Each probe corresponds to a square on the physical array, sized between 5×5
and 20×20 µm depending on array type, with all probes organized into a matrix
with equal number of rows and columns. Older arrays had all probes of a probe-set
situated together along the rows of the array with the PM probe placed directly on
the row above the corresponding MM probe. Newer arrays have the probe-pairs of
a probe-set scattered on the array, however the PM probe is still placed above the
MM probe.

2.1.3 Sample preparation

When preparing the biopsies or tissue samples for which the mRNA levels are to be
analyzed a number of laboratory steps are performed. Briefly the laboratory work
done can be described as follows,
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Reference sequence

5' 3'

Probe−set

TCGTCTGTATCACAGACACAGAGTTGACTGTCACACACTGTC

TAGTGTCTGTGTCTCAACTGACAGT

TAGTGTCTGTGTGTCAACTGACAGT

Perfect Match probe

Mismatch probe

Figure 1: Affymetrix GeneChip arrays have multiple probe-pairs for each gene with
probe-pairs consisting of one perfect match (PM) probe and one mismatch (MM)
probe. The PM and MM probes are identical except for the middle base as highlighted
in the figure.

Total RNA → ss cDNA → ds cDNA → biotin-labeled cRNA

The first step is isolating of total ribonucleic acid (RNA). To be able to analyze a
sample successfully the minimum amount required is around 1 µg. Total RNA is the
starting material for obtaining labeled complementary RNA (cRNA). First, single
stranded cDNA is synthesized by reverse transcription using poly-A primers present
in the total RNA. Next, the single stranded cDNA is converted into double stranded
cDNA. An in vitro transcription (IVT) reaction is then carried out in presence of
biotinylated Uridine- and Cytidine-Triphosphate to produce biotin-labeled cRNA.
The resulting cRNA is fragmented before hybridization onto the array.

After 16 hours of hybridization at 45 ◦C is completed non-hybridized cRNA is
removed and a series of washing and staining steps are performed. The array is
then scanned using a 16-bit scanner resulting in an image file which is the end-result
of the laboratory work and the starting point for the analysis and data processing
tools discussed in this thesis. More detailed information on all steps required before
attaining the image file can be found in the Expression Analysis Technical Manual
(Affymetrix, 2004).

2.2 Low-level analysis

Collectively, the processing of raw data from a set of Affymetrix GeneChip arrays into
measures of gene expression is called low-level analysis, and the obtained measures
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are called expression indexes. This typically involves image analysis, background
estimation/correction and normalization. The first step is grid alignment of the im-
age file so that the pixel-intensities of each probe can be identified. Control probes
generating very high intensity values are placed along the borders, and in a check-
pattern in each corner of the array, and are used when setting the grid. Each square
of the grid represents a probe and a probe-intensity is calculated by first removing
the border pixels and then computing the 75th percentile of the remaining inten-
sity values. The probe intensities are then saved in a so called CEL-file. The grid
alignment is described in detail in the United States Patent 6090555. Very little is
written in the literature about alternatives to the procedure described above and the
reminder of this thesis deals with analysis methods for raw or processed CEL-file
data. In the following sections different procedures of computing expression indexes
are described. Starting with two of the most frequently used methods, Affymetrix
MAS 5.0 and Robust Multichip Average (RMA), and followed by three model based
expression indexes.

2.2.1 Affymetrix MAS 5.0

The Affymetrix MAS 5.0 (MAS5 for brevity) expression index (Affymetrix, 2002,
2004) is the method for computing an expression index that is implemented in the
Affymetrix GeneChip Operating Software. MAS5 is a single-array method, in that
it can be computed separately for each array, and it consists of 4 steps: Global back-
ground correction, local background correction, summarization, and normalization.

In the first step a global background, defined as the 2% intensity quantile is sub-
tracted from all probe intensities, and in the second step an Ideal Mismatch intensity
(IM) is subtracted from all PM probes. For probes-pairs where the PM intensity
is greater than the MM intensity, IM is equal to the MM intensity, whereas IM
is equal to a fraction of the PM intensity otherwise. The IM -intensity was intro-
duced to avoid the problem of many negative values with AvgDiff, the predecessor
of MAS5. Special care is also taken in the global background correction to avoid
negative values.

In the summarization-step, the MAS5 expression index is computed using the
1-step Tukey biweight M -estimator (Huber, 1981) on the background corrected PM
intensities of each probe-set. Normalization is then performed by multiplying the
expression index by a scaling factor to obtain a predefined overall intensity, defined
by a trimmed mean, excluding the 2% highest and lowest values, of the expression
indexes. See Appendix A.1 for further details.

2.2.2 RMA

Together with MAS5, Robust Multichip Average (RMA) (Irizarry et al., 2003a,b) is
probably the most frequently used expression index. Although background correction
is computed separately for each array in the first step, the remaining procedures
used in RMA borrow information between arrays, and thus RMA is a multiple-array
method. Also, RMA differs from MAS5 in that only PM intensities are used, and
that normalization is done before summarization.

The background correction is based on a convolution model, assuming that the
PM-intensity is a sum of a background intensity (Y ) and real signal intensity (X).
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With Y following a truncated normal-distribution andX an exponential-distribution,
the background corrected PM intensity is defined as the conditional expectation of
the real signal intensity given the total intensity,

E
[
X

∣∣∣X + Y = PM intensity
]
.

In the second step the background corrected PM intensities are normalized using
Quantile-normalization, one of the three methods presented in Paper II. Summariza-
tion is the last step and is performed separately for each probe-set but across all
arrays. A two-way ANOVA model is fitted with array- and probe-effects,

log2(PMip) = θi + ψp + error ,

for i = 1, . . . ,number of arrays and p = 1, . . . ,number of probes. The median polish
algorithm (Tukey, 1977) is used when fitting the model and the RMA expression
indexes are then taken as the estimated array effects. See Appendix A.2 for further
details.

GCRMA, a modification of the RMA method, was proposed by Wu et al. (2004)
using a more sophisticated background correction where background is divided into
optical noise and non-specific binding. See Appendix A.3 for further details.

2.2.3 Model-based expression indexes

The expression index method suggested in Li and Wong (2001a,b) is a model based
expression index using the MM probe intensities for background correction. Here
normalization is the first step and is performed on PM- and MM-probe intensities.
A baseline array having median overall brightness (as measured by the median probe
intensity) is selected, and used when normalizing all other arrays. Normalization
is performed using a fitted curve in the scatter-plot of intensities with the baseline
array on the y-axis, and the array to be normalized on the x-axis. A piecewise
linear running median line is fitted to a subset of data-points, obtained by iteratively
excluding data-points with large absolute rank differences in the two arrays.

Following the normalization, PM-MM differences are calculated and for a probe-
set having P probe-pairs, with data from I arrays, the multiplicative model

PMip −MMip = θiψp + εip

is used. Here θi is the expression index of array i, ψp is a probe-sensitivity index
of probe p, and εip are independent normal distributed random variables with zero
mean and variance σ2. The model is fitted iteratively by holding the ψp’s (or θi’s)
fixed and assumed known, and estimating the θi’s (or ψp’s), using the constraint∑

p ψ
2
p = P . Each time an outlier-detection is done, searching for array and probe

outliers, as well as single probe outliers on a single array. When the model fitting has
converged, the expression indexes reported are the estimated values of θ1, . . . , θI .

Another model-based method for computing expression indexes is the BGX method
(Hein et al., 2005; Hein and Richardson, 2006). A fully Bayesian hierarchical model
is suggested with the aim of integrating all processing steps of the raw CEL-file data
into one framework. For a single array analysis, with PMgp and MMgp denoting the
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PM and MM intensity, respectively, of the p’th probe-pair of the g’th probe-set, the
hierarchical model used is

PMgp|Sgp,Hgp, τ
2 ∼ N(Sgp +Hgp, τ

2) ,
MMgp|Sgp,Hgp, τ

2, φ ∼ N(φSgp +Hgp, τ
2) ,

log(Sgp + 1)|µg, σ
2
g ∼ TN(µg, σ

2
g) ,

log(Hgp + 1)|λ, η2 ∼ TN(λ, η2) .

Here Sgp and Hgp are referred to as true signal and nonspecific hybridization, respec-
tively, and φ ∈ [0, 1] is the fraction of the true signal that also hybridizes to the MM
probes. TN(µ, σ2) is the normal distribution truncated at zero, corresponding to the
positive part of the un-truncated normal distribution with mean µ and variance σ2,
denoted by N(µ, σ2). Prior distributions, roughly non-informative, are specified for
the parameters τ2, φ , µg, λ, and η2, while an empirical Bayes approach is used to
set the prior for σ2

g , see Hein et al. (2005) for details. The median of the truncated
normal distribution for log(Sgp + 1),

θg = µg − σgΦ−1
( µg

2σg

)
is defined as the expression index for probe-set g, and using MCMC simulations a
complete posterior distribution for θg is obtained. The model is then generalized
to the case of multiple arrays and for each probe-set g and array i the posterior
distribution of θig is computed by means of MCMC simulations.

A similar model is the multi-mgMOS model(Liu et al., 2005), a modification of
the gMOS model suggested in Milo et al. (2003). With PMigp and MMigp denoting
the PM and MM intensity, respectively, of the p’th probe-pair of the g’th probe-set
on array i, multi-mgMOS is a hierarchical model given by

PMigp|bgp ∼ Γ(aig + αig, bgp) ,
MMigp|bgp ∼ Γ(aig + φαig, bgp) ,

bgp ∼ Γ(cg, dg) ,

where Γ(a, b) is the Γ-distribution with shape parameter a and scale parameter b. As
for the BGX-model the parameter φ ∈ [0, 1] describes how much of the true signal
that also hybridizes to the MM probes, and an empirically derived prior for φ is used.
It is also assumed that the true binding signal SSigp is Γ-distributed with parameters
αig and bgp. Here true binding signal is the PM signal that would be obtained without
any background signal present. The bgp’s are integrated out, and the model is fitted
using maximum likelihood conditional on φ and a maximum a posteriori estimate for
φ. When the parameters have been estimated Eigp = E[log(Sigp)] is computed and
the expression index is taken as the median Eigp of each array i and probe-set g.

2.3 Finding differentially expressed genes

In this section various methods for finding differentially expressed genes are described.
Generally such analyses are performed at the probe-set level. That is, a method for

6



summarizing the probe-level data into expression indexes is first used, for example
one of the methods described in Section 2.2, and an analysis is then performed on
the expression indexes obtained. We start by describing general methods which can
be applied at the probe-set level of Affymetrix type data using only the expression
indexes as input. We then continue with methods applied at the probe-level and
other alternative methods. Detailed descriptions for some of the methods are found
in Appendix B.

2.3.1 Probe-set level analysis

There exist numerous methods for finding differentially expressed genes. In the early
days of microarray analysis, the so called fold-change was frequently used to rank
genes with respect to differential expression. Fold-change is usually defined as the
ratio of two means, where each mean is calculated on a set of replicated arrays under
the same condition. However, the means are often calculated on logged values, and
the mean value is then anti logged before calculating the ratio. A list of potentially
regulated genes was typically obtained by selecting all probe-sets with a fold-change
value above 2 (or 3) together with probe-sets showing a fold-change below 1/2 (or
1/3). Thus, the variability of the replicated values was ignored with the obvious
drawback that probe-sets with high fold-change may also be highly variable, and the
high fold-change may have occurred by chance only. However, the direct application
of Student’s t-test calculated separately for each probe-set is not a better option. The
number of replicates in many studies is small. As a consequence, variance estimators
computed separately for each probe-set are highly variable and very small values can
appear just by chance. Thus when used in the denominator of the t-statistic, a very
large absolute value is obtained even if the estimated difference in the numerator is
small.

The aim of moderated t-tests is to improve on the performance of the ordinary
t-test. With empirical Bayes methods (Baldi and Long, 2001; Lönnstedt and Speed,
2002; Smyth, 2004; Kristiansson et al., 2005; Sartor et al., 2006; Sjögren et al., 2007)
and the penalized t-test suggested by Opgen-Rhein and Strimmer (2007), the variance
estimators calculated separately for all probe-sets are modified in order to produce
more stable results. Together with the probe-set specific variance estimators a global
estimator is computed. Based on the accuracy and the variability of the gene-specific
variance estimators, weights are determined and used to calculate a weighted mean
of the global and probe-set specific estimator, respectively. The weighted mean is
then used in the denominator in place of the probe-set specific estimator. Other
examples of moderated t-tests are the Significance Analysis of Microarrays (SAM)
method (Tusher et al., 2001) and the method suggested by Efron et al. (2001), where
a constant is added to the probe-set specific sample standard deviation.

The weighted moderated t-test derived in Kristiansson et al. (2005, 2006) and
further developed by Sjögren et al. (2007) differs from the other moderated t-test in
that weighted means are used in the numerator. A global covariance matrix is used to
account for differing variances between arrays as well as array-to-array correlations.
It is motivated by the fact that quality often varies between arrays and samples.
Also, sources of variations are introduced at several steps in microarray-data, and
when sources of variations are shared between arrays, the measurements are expected
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to be correlated.
Another aspect of microarray-data is that variability often varies with intensity

level. This is ignored by the majority of moderated t-test, but it is utilized in the
moderated t-test suggested by Sartor et al. (2006). They build on the moderated
t-test suggested by (Lönnstedt and Speed, 2002; Smyth, 2004) with the addition of
first fitting a loess curve in the scatter-plot of logged variance estimators against
mean intensity. The fitted curve is used when estimating the model parameters.
Another example where the variance is modeled as a function of intensity-level is the
method suggested by Eaves et al. (2002). They use a weighted average of the probe-
set specific variance estimator and a pooled estimate based on the 500 probe-sets
with most similar mean expression level. A similar approach is the local-pooled-error
method (LPE) suggested by Jain et al. (2003), using a variance function fitted to
estimated variances and mean intensities. Comander et al. (2004) pool genes with
respect to minimum intensity rather than mean intensity, and Hu and Wright (2007)
use a hierarchical model with a linear relationship between variance and intensity-
level.

Another way of attacking the problem of dependency between variability and in-
tensity level is to apply a variance stabilizing transformation. The generalized-log
family (glog) was introduced by Munson (2001); Huber et al. (2002); Durbin et al.
(2002) and is further used by Durbin and Rocke (2003); Geller et al. (2003). Other
transformations are the started logarithm transformation (Tukey, 1977) and the log-
linear hybrid transformation (Holder et al., 2001). Rocke and Durbin (2003) per-
formed a comparison of the three transformations and concluded that the generalized-
log family is “probably the best choice when it is convenient to use it”. Also, the
glog transformation implicitly defines a background correction, and can thus be used
when calculating an expression index (Huber et al., 2003; Zhou and Rocke, 2005).

2.3.2 Probe level analysis

The logit-t method suggested by Lemon et al. (2003) uses PM-probe intensities for
finding differentially expressed genes from two groups of replicated arrays. A logit-like
transformation adjusting for background intensity followed by a Z-transformation,
i.e. shifting and scaling to zero mean and unit variance, is applied to PM-probe
intensities. The transformed intensities are then analyzed using Student’s t-test to
compare the two groups, and the logit-t statistic for a probe-set is then defined as
the median t-value among all PM probes in the probe-set.

In the Probability of Positive Log-ratio method (PPLR) described by Liu et al.
(2006), a probe-level error measurement is included in the analysis together with
an associated expression index. They propose a Bayesian hierarchical model where
variances of expression indexes are modeled as a sum of the probe-level error mea-
surement and a gene specific variance component common to all arrays. The normal-
and Γ−1-distribution are used as prior distributions for condition specific mean val-
ues and variances, respectively, and three different methods for fitting the model and
to obtain the posterior distributions of condition specific mean values are described.
The method is demonstrated using the expression indexes and error measurements
from the multi-mgMOS model (Liu et al., 2005).

With the BGX method (Hein et al., 2005) a complete posterior distribution for
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each probe-set and array is obtained, and thus could also be used as input to the
PPLR method. However, the single array model for BGX can alternatively be gener-
alized to the case of replicated arrays under different conditions, instead of multiple
arrays as described in Section 2.2.3. Thus, posterior distribution of differential ex-
pression can be calculated directly from the MCMC simulations.

3 Summary of papers

Paper I: Contrast normalization of oligonucleotide arrays

One crucial step in the analysis of microarray data is normalization. Since the overall
brightness of the scanned images can differ substantially between arrays, normaliza-
tion is usually required to allow direct array-to-array comparisons. A very simple
way to normalize a set of arrays is to compute a multiplication factor forcing equal
overall intensity, for example measured by the mean or median intensity. However,
quite often there exist non-linear relationships between the intensities of arrays, and
thus more flexible solutions are required.

In this paper a method called Contrast Normalization is proposed. The method
can be seen a generalization of the intensity-dependent normalization procedure pro-
posed by Yang et al. (2002), hereafter called loess normalization. The loess normal-
ization is designed for two-color arrays where a direct normalization of the ratios
of red and green signal is natural. For Affymetrix type data it is more natural to
normalize intensities rather than ratios, and in particular having smooth functions
that normalizes the intensities of each array.

A direct application of the loess normalization on a pair of Affymetrix arrays
is to fit a smooth loess-curve in the scatter-plot with X1 − X2 on the y-axis and
1
2 (X1 +X2) on the x-axis, which can be seen as a change of basis from the original
values X1 and X2. Here X1 and X2 represents the logged intensity on array 1 and
2, respectively. Thus, the mean logged intensity across arrays is used to model the
difference of logged intensities. For the case of more than 2 arrays, this principle is
generalized in the proposed method by using a set of orthogonal contrasts (of logged
intensities) which all are modeled by the mean logged intensity across arrays.

However, a direct application of the loess normalization results in a non-continuous
normalization in that intensities being equal on one array prior to normalization may
not be equal after normalization. To solve this problem the fitted curves are used to
define a mapping of data points, to a set of ideal data points that would not require
any normalization. Thus, the mapping is defined in the alternative basis of mean
logged-intensity and the set of contrasts. By viewing this mapping in the original ba-
sis of array intensities smooth functions are obtained that normalizes the intensities
of each array.

Paper II: A Comparison of Normalization Methods for High
Density Oligonucleotide Array Data Based on Bias and Vari-
ance

In this paper three methods for normalizing probe-level data are presented and evalu-
ated using two publicly available data sets, a dilution data set and a spike-in dataset.
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The presented methods, Cyclic-loess, Contrast normalization, and Quantile normal-
ization are compared to the method implemented in the Affymetrix software com-
puting a scaling factor for each array using a trimmed mean of intensities, and to
the non-linear method proposed by Li and Wong (2001a,b) using a baseline array to
which all other arrays are normalized.

Cyclic-loess is a generalization of the intensity-dependent normalization procedure
proposed by Yang et al. (2002), hereafter called loess normalization. With only two
arrays Cyclic-loess is a direct application of the loess normalization. With more than
two arrays Cyclic-loess iteratively performs loess normalization on all pairs of arrays,
until all pairs of arrays are sufficiently normalized. Contrast normalization is another
generalization of the loess normalization and is further described in Paper I.

The goal of the Quantile normalization is to produce identical empirical distribu-
tions of intensities on all arrays analyzed. Let Gi denote the empirical distribution
of intensities on the i’th array, and let F denote the empirical distribution of the
averaged sample quantiles. Identical empirical distributions of intensities are then
achieved by normalizing the intensities on the i’th array by the composite function
F−1 ◦Gi.

For each group of 5 arrays with identical dilution concentrations (or mixture
proportions) variance of probe-set summaries was computed for each probe-set and
normalization. All three of the presented methods, together with the non-linear
method, reduced the variability of probe-set summaries to a greater degree than using
a global scaling factor. Also, pairwise comparisons were performed by computing the
absolute distance from the x-axis to a smooth fitted curve in M versus A plots. When
averaging this distance across all pairwise comparisons the quantile method gave the
smallest distance between arrays and the distance was fairly constant across intensity
levels.

The methods were also compared with respect to bias using the spike-in data set.
For each of the 11 spiked probe-sets a linear regression model was fitted to RMA
expression indexes and with log2 spike-in concentration as the regressor. The ideal
result would be to have slope estimates close to 1. Although with slope estimates
consistently below 1, all three presented methods performed comparably well. The
non-linear method performed poorer while using a global scaling factor resulted in
slightly higher but also more variable slope estimates.

The concept as well as the algorithm of the Quantile normalization method is
very simple, and in terms of speed Quantile normalization is superior over the other
methods based on curve fitting. In summary, with favorably performance in terms
of speed, variance, and bias, it is recommended that Quantile normalization should
be used in preference to the other methods.

Paper III: Improved Covariance Matrix Estimators for
Weighted Analysis of Microarray Data

For microarray data, many sources of variations are introduced that may affect the
final measurements obtained. For example, variability is introduced during the lab-
oratory work and when obtaining the biological samples, e.g. taking biopsies. This
means that data quality within an experiment often varies between arrays. More-
over, when sources of variations are shared between arrays we can expect correlations

10



between the measurements. To accommodate these differences in data quality, i.e.
differences in variances and the possibility of correlations between arrays, the em-
pirical Bayes WAME model was proposed by Kristiansson et al. (2005), and further
developed in Kristiansson et al. (2006) and Sjögren et al. (2007).

WAME makes use of a global covariance matrix which is scaled between genes by
a gene-specific parameter assumed to be inverse-gamma distributed. The global co-
variance matrix is estimated under the temporary assumption of no regulated genes.
The assumption is then relaxed and the remaining model parameters are estimated.
However, due to the temporary assumption, the covariance matrix estimator is biased
when regulated genes exist. Also, the computational procedure used is very compu-
tationally intensive resulting in long computer run times. In this paper two new
methods for estimating the covariance matrix are proposed with the aim of reducing
or eliminating these two drawbacks.

The first method, hereafter called method I, is based on the same temporary
assumption of no regulated genes as used in the method proposed by Kristiansson
et al. (2005). Under this assumption the WAME model describes a multivariate
t-distribution with zero mean, and unknown covariance matrix (Σ) and degrees of
freedom (m). Method I is then obtained as a direct application of the EM algorithm
(Dempster et al., 1977). Method I is compared with the procedure proposed by
Kristiansson et al. (2005). With respect to precision and bias the methods performed
equally well, but method I was superior in terms of computer time.

In the second method, hereafter called method II, the WAME model is extended
with a prior distribution for µg, the mean intensity profile across arrays. However,
a linear transformation derived from the design and the one-row contrast matrices
is first applied to data. With xg denoting the q sized vector of transformed log-
intensities the following model is used. For g = 1, . . . , G let

xg|cg ∼ Nq(µg, cgΣ) ,

cg ∼ Γ−1( 1
2m,

1
2mν) ,

µg = (0, . . . , 0, δg)T ,

δg ∼
{
≡ 0 with prob. ψ0 ,
F (β) with prob. 1− ψ0 .

Here δg is the linear combination of the design parameters that is to be estimated
(usually logged fold change between two conditions), and F (β) is a continuous dis-
tribution, parameterized by β and with density function f(x|β). The difference from
the original WAME-model is the structure of µg and the distributional assumption
on δg.

Method II is composed of two steps. First, the last dimension of x is dropped
and estimates of the hyperparameters m and ν together with an estimate of ΣA (the
sub-matrix of the first q − 1 rows and columns of Σ) are computed using method I.
The hyperparameters m and ν are then treated as known and equal to the estimated
values. In step 2 estimates of Σ and β are computed by replacing the continuous
distribution F (β) by a discrete version F̃ (β). As for method I the EM algorithm is
used, treating the cg’s and δg’s as missing data.
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Methods I and II are then compared on simulated data with and without regulated
genes, and on real data with many regulated genes. On simulated data with regulated
genes, the bias observed for the estimator of Σ when using method I is greatly
reduced by method II. Moreover, in the case of no regulated genes the methods
showed comparable variability and no bias. However, when used on real data with
many regulated genes method II appears to be biased although to less extent than
method I, and thus the problem of bias with the procedure proposed by Kristiansson
et al. (2005) is only partly resolved. On the other hand, the proposed methods make
it possible to apply weighted analysis of microarray data using the WAME-model to
large data sets with reasonable computer run times.

Paper IV: Empirical Bayes models for multiple probe type
arrays at the probe level

The Affymetrix type arrays differ from other arrays in that each gene is represented
by multiple probes. The standard way of dealing with the multiple-probes is to derive
a summary measurement, an expression index, for each probe-set (gene) and array
(sample), for example, using one of the methods described in Section 2.2. Gener-
ally, such methods include background correction, normalization, and summarization.
Differential gene expression analysis is then performed using the expression indexes
obtained.

In this paper a procedure for finding differentially expressed genes excluding the
step of summarization is proposed, and thus performing inference at the level of
background corrected and normalized perfect match probe data. Generally, data
at this level show a clear relationship between variability and intensity level even
on log-scale. Also, such relationships often exist for data at the level of expression
indexes.

The WAME-model proposed in Kristiansson et al. (2005, 2006) is extended to
incorporate the variability to intensity-level dependency by modeling the scale pa-
rameter of the prior distribution for probe specific variances as a smooth function of
intensity-level. A cubic spline is used to parameterize the function and the model is
fitted using maximum likelihood by means of the EM-algorithm.

When applying the extended WAME-model at the probe-level, weighted mod-
erated t-tests are computed for each PM probe. The t-statistics obtained for each
probe-set are then summarized into a score by the median t-statistic. This score is
the value used for ranking probe-sets with respect to differential expression in the
proposed method Probe level Locally moderated Weighted median-t method (PLW).

The second proposed method, Locally Moderated Weighted-t (LMW), is a more
general method intended for single probe type arrays or summary measures of multi-
ple probe type arrays. LMW uses the same model and estimation-procedure as PLW
but excludes the final median summarization since only one t-statistic is obtained for
each probe-set. The proposed methods are compared with existing methods on five
publicly available spike-in data sets.

It is shown that both methods perform very well compared to existing methods.
The proposed method PLW has the most accurate ranking of regulated genes in four
out of the five examined data sets. With LMW consistently performing better than
all (globally) moderated t-tests it is also shown that introducing an intensity-level
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dependent scale parameter for the prior distribution of the gene-specific variances
improves the performance of the moderated t-test. Also, with LMW having more
accurate ranking than the locally moderated t-test IBMT on all 5 data sets, it seems
that weighted analysis is as important as local moderation. But most strikingly, with
the PLW method performing overall better than all compared methods it appears
that the probe-level inference approach is preferable over the standard approach using
gene expression indexes for inference.

4 Complementary studies

4.1 PLW and LMW combined with GCRMA and MAS5

The PLW method suggested in Paper IV uses probe-level data in the form of back-
ground corrected and normalized PM intensities. In Paper IV the default background
correction and normalization of the RMA method is used, and PLW is compared with
LMW and other general methods for finding differentially expressed genes using RMA
expression indexes as input.

This section presents results from two additional comparisons of PLW and LMW
to other methods for finding differentially expressed genes. The comparisons are done
using the same 5 spike-in data-sets as was used in Paper IV, and the comparisons are
summarized by ROC-curve-AUC up to 100 false positives. The methods compared
with PLW and LMW include

· observed fold change (FC),

· ordinary t-test,

· the SAM method (Tusher et al., 2001) in the R-package samr,

· Efron’s penalized t-test (Efron et al., 2001) in the R-package st,

· the moderated t-test LIMMA in the R-package limma (Smyth, 2004),

· the weighted moderated t-test WAME (Kristiansson et al., 2005, 2006) in the R-
package WAME.EM available at www.math.chalmers.se/~astrandm/wame_em/,

· the moderated t-test IBMT suggested by Sartor et al. (2006) using the R-code
available at http://eh3.uc.edu/r/ibmtR.R,

· the Shrink-t method (Opgen-Rhein and Strimmer, 2007) in the R-package st,

· the Local-pooled-error test (Jain et al., 2003) in the R-package LPE.

If not otherwise specified, the R-packages are available at www.bioconductor.org/
or at www.r-project.org/, and PLW and LMW are both implemented in the R-
package plw available at www.math.chalmers.se/~astrandm/plw/. The methods
listed above are further described in Appendix B.

In the first comparison the model based background correction named GCRMA
suggested in Wu et al. (2004), is used instead of the default background correction
of RMA. Functions implemented in the R-package gcrma was used with the fast

13



option set to FALSE, and thus the empirical Bayes approach of GCRMA was used
to calculate background corrected intensities, see Appendix A.3 for further details.
The probe-level method PLW is compared with 10 probe-set level methods, including
LMW, applied to expression indexes obtained using the GCRMA method. The result
is summarized in the upper part of Table 1 and overall the results are very similar to
the results presented in Paper IV. The IBMT method performs slightly better when
applied to GCRMA expression indexes whereas WAME performs slightly worse. The
ordering of the top-three methods is unchanged with PLW ranked as number one,
although the advantage of PLW over the other methods is not as pronounced as in
Paper IV.

In the second comparison logged MAS5 expression indexes are used and LMW is
compared with 10 other probe-set level methods. The result is summarized in the
lower part of Table 1. Since MAS5 expression indexes show a very clear dependency
between variability and intensity level, and since the variability decreases with in-
tensity it comes as no surprise that all three methods taking this dependency into
account consistently performs better than all other methods. The LMW method
has the most accurate ranking of genes in 4 out of the 5 data-sets, and performs
better than the IBMT method on all 5 data-sets. Since the main difference between
LMW and IBMT is that LMW performs a weighted analysis based on the WAME
model proposed by (Kristiansson et al., 2005), and since WAME overall performs
better than LIMMA, weighted analysis should be used in preference to analysis us-
ing un-weighted analysis. However, the effect of using local moderation on MAS5
expression indexes is greater than the effect of using a weighted analysis, and thus
local moderation appears to be even more important.

4.2 Using LMW on two-color array data

This section presents a case study where LMW is used on data from two-color spotted
cDNA microarrays. When using two-color microarrays, mRNA from two sources are
hybridized on each array. The mRNA of one source is labeled with Cy5 and the
mRNA of the other source is labeled with Cy3. When scanning the arrays the signal
is divided into red and green signal, corresponding to the mRNA labeled with Cy5
and Cy3, respectively. Analysis is then performed on normalized logged ratios of the
red signal over the green signal, measuring the relative mRNA abundance of the two
sources.

The data-set studied here is from an experiment comparing 8 ApoAI knockout
mice with 8 normal mice (Callow et al., 2000) using a set of n = 16 arrays, and is
available at http://bioinf.wehi.edu.au/limmaGUI/DataSets.html. Liver tissue
was obtained from each mouse and the extracted mRNA was labeled with Cy5. The
mRNA was then hybridized together with a Cy3 labeled reference mRNA mixture,
obtained by pooling mRNA from the 8 normal mice. Data was pre-processed as
described in (Callow et al., 2000) and the analysis presented here is based on the
6068 genes (out of 6226) having no missing values.

Let xig denote the logged R/G-ratio for gene g on array i. Assume that array 1-8
is the control group with mRNA from normal mice and put xg = (x1g, . . . , xng)T .
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Affymetrix Affymetrix Golden Gene Logic Gene Logic
Method U95 133A Spike Tonsil AML
PLW 97(1) 92(8) 38(2) 87(1) 87(1)

G
C

R
M

A

LMW 95(2) 93(1) 21(10) 84(2) 79(4)
LPE 95(4) 91(10) 40(1) 82(4) 86(2)
IBMT 95(3) 93(2) 27(4) 81(7) 76(6)
Efron-t 94(5) 93(4) 26(5) 82(5) 79(5)
WAME 94(8) 93(3) 26(6) 83(3) 75(8)
LIMMA 94(7) 93(5) 27(3) 80(8) 73(9)
FC 93(10) 93(7) 25(7) 81(6) 86(3)
SAM 94(6) 93(6) 24(9) 79(9) 76(7)
Shrink-t 94(9) 92(9) 25(8) 78(10) 70(10)
t-test 86(11) 84(11) 15(11) 64(11) 53(11)
LMW 89(1) 87(1) 54(1) 79(1) 70(2)

M
A

S
5

IBMT 87(2) 87(2) 52(2) 77(3) 69(3)
LPE 84(3) 84(3) 49(3) 78(2) 79(1)
WAME 71(6) 81(5) 15(6) 69(4) 54(8)
LIMMA 71(7) 81(6) 17(5) 67(6) 54(6)
SAM 74(4) 81(4) 1(8) 67(5) 54(9)
Shrink-t 71(8) 80(7) 10(7) 67(7) 54(7)
t-test 73(5) 76(8) 38(4) 60(9) 47(10)
Efron-t 65(9) 72(9) 1(9) 66(8) 57(4)
FC 56(10) 61(10) 0(10) 58(10) 55(5)
# of genes 12626 22029 11475 12626 12626
# of spikes 16 42 1331 11 11
# of groups 20 14 2 12 10

Table 1: Area under ROC curves up to 100 false positives rounded to nearest integer
value with an optimum of 100. Numbers within parenthesis are within data set
ranks for the methods compared. Methods are ordered with respect to mean rank
across data sets. The upper part of the table show result when using GCRMA
background correction (Wu et al., 2004) together with Quantile normalization and
(for all methods but PLW) the default summarization method of the RMA expression
index. The lower part of the table shows result when using MAS5 expression indexes.
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Analysis using the R-package limma is performed using a design matrix D,

DT =
[

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1

]
to specify the expected profile µg = E[xg] for gene g across arrays as µg = Dγg. Here
γg is a gene-specific parameter vector of length 2 where the second element represents
the difference between the control group and the group of ApoAI knockout mice.
Each vector xg is then modeled as

xg|cg ∼ Nn(µg, cgI) ,

cg ∼ Γ−1( 1
2m,

1
2mν) ,

(1)

where I is the n × n identity matrix, Nn(µ,Σ) denotes an n-dimensional normal
distribution with mean µ and covariance matrix Σ, and Γ−1(α, β) is the inverse-
gamma distribution with shape-parameter α and scale-parameter β. For the ApoAI
data-set the estimated value of m is 3.85 and the estimated value of ν is 0.0499.

Panel A of Figure 2 shows a histogram of logged ratios of sample error variances
for all genes (s2g) divided by the estimated value of ν, together with the marginal
distribution of log(s2g/ν) according to model (1). As seen in the Figure, the fitted
marginal distribution deviates from the empirical distribution. Panel B of Figure 2
displays a scatter-plot of log(s2g) against average of 1

2 (log(R)+log(G)), together with
a smooth fitted curve, demonstrating that genes with high intensity level are less
variable compared to low intensity genes, thus contributing to the heavy lower tail
of the empirical distribution of log(s2g/ν) in panel A.

There are two differences between model (1) and the model used in LMW, pre-
sented in Paper IV and described in Appendix B.8. A covariance matrix Σ is used in
place of the identity matrix I and ν is modeled as a smooth function of µ̄g, the aver-
age of expected intensities. Applying the LMW method to logged R/G-ratios from
a set of two-color microarrays requires a slight modification of the model presented
in Paper IV. Let yig represent the average log-signal of the red and green signal,
respectively, for gene g on array i, thus

yig =
log(R) + log(G)

2
= log(

√
R ·G) whereas xig = log(R/G) .

For notational simplicity the subscripts i and g are suppressed for R and G, denoting
the red and green intensity, respectively. With yg = (y1g, . . . , yng)T , let θg = E[yg]
and θ̄g denote the average of the vector θg. For two-color microarrays the scale-
parameter ν should be modeled as a function of θ̄g instead of µ̄g, and thus each
vector xg is modeled as

xg|cg ∼ Nn(µg, cgΣ) ,

cg ∼ Γ−1( 1
2m,

1
2mν(θ̄g)) ,

(2)

where Σ is an n × n covariance matrix and ν( · ) is a smooth function. With θ̄g

replaced by ȳg model (2) is fitted as described in Paper IV.
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Figure 2: A) Histogram of log(s2g/ν) for the ApoAI data set. s2g is the sample variance
with 14 degrees of freedom for gene g, ν is the estimated scale-parameter, and the
black curve is the fitted marginal density of log(s2g/ν), all three calculated using
model (1). B) Scatter-plot of log(s2g) versus average red and green log-intensity level.
s2g is here calculated according to model (2) as an adjusted weighted residual sum
of squares (see end of Appendix B.8). The black curve is the log of the intensity
dependent scale parameter of model (2). C) As A), but s2g calculated as in B), ν
equal to the black curve in B), and the black curve is the fitted marginal density of
log(s2g/ν(θ̄g)).

The log of the estimated function ν( · ) is displayed in panel B of Figure 2, and
panel C shows histogram of log(s2g/ν(ȳg)) together with the marginal distribution
according to model (2). Comparing panel A with panel C, shows that model (2), with
an intensity dependent scale-parameter, fits data much better than model (1) having
a global scale-parameter. The estimator of m for model (2) is equal to 6.03. Thus,
when computing the moderated t-statistic the weights of the prior and the sample
error variance are 30% and 70%, respectively. For model (1) where the estimator of
m is 3.85, the weight for the prior is 21%.

It should be mentioned that a direct modeling of green and red logged-signals
using the model suggested in Paper IV, with a design matrix specifying a paired
comparison, is equivalent to the modification of the LMW-model described above.
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Appendixes

A Expression indexes

This appendix is a detailed description of three methods for computing expression
indexes.

A.1 Affymetrix MAS 5.0

The Affymetrix MAS 5.0 (MAS5 for brevity) expression index (Affymetrix, 2002,
2004) is the method for computing an expression index that is implemented in the
Affymetrix GeneChip Operating Software. Background correction is here done in two
steps. First all probe intensities are corrected for global background intensity. The
array is divided into K squares of equal size and within each square k the 2% sample
quantile (bk) is computed. Let dk(i, j) be the distance between the coordinate (i, j)
and the center of the k’th square. The probe intensity at (i, j) is then corrected by
subtracting

B(i, j) =
∑K

k=1 wk(i, j) bk∑K
k=1 wk(i, j)

where wk(i, j) =
1

dk(i, j) + smooth

where smooth > 0 is a constant. With sk equal to the standard deviation of intensity
values of square k below bk, S(i, j) is a weighted average of s1, . . . , sK computed the
same way as B(i, j). To avoid negative and too small values when subtracting B(i, j),
the minimum corrected intensity at (i, j) is NoiseFrac ·S(i, j), for a certain constant
NoiseFrac.

Secondly, an Ideal Mismatch intensity (IM) acting as local background intensity
is computed. For a probe-set having P probe-pairs, let PMp and MMp denote the
PM and MM intensity, respectively, of the p’th probe-pair. Given constants δ and λ,
IMp is calculated according to,

IMp =


MMp if PMp > MMp ,
PMp · 2−SB if PMp ≤MMp and SB > δ ,
PMp · 2−δλ/(λ+δ−SB) if PMp ≤MMp and SB ≤ δ .

Here SB is a robust location estimator calculated on logged ratios of PMp over
MMp,

SB = TB
(

log2(MM1/PM1), . . . , log2(MMP /PMP )
)
,

where TB denotes the 1-step Tukey biweight M -estimator (Huber, 1981).
The same type of M -estimator is applied to logged PMp − IMp differences and

in detail the MAS5 expression index is defined as

2TB(V1, . . . , VP ) where Vp = max
(
log2(PMp − IMp),−20

)
.

Normalization is the last step and is performed by computing a scaling factor
(sf) for the array which all expression indexes are multiplied by. A trimmed mean,
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excluding the 2% highest and lowest values, of the expression indexes is calculated,
and given a target intensity (Sc) the scaling factor sf is Sc divided by the trimmed
mean value. Default values for the parameters used in the MAS5 algorithm are
K=16, smooth=100, NoiseFrac=0.5, δ=0.03, λ=10, and Sc=500.

A.2 RMA

The Robust Multichip Average method (RMA) (Irizarry et al., 2003a,b) uses a con-
volution model when correcting for background. The intensities from all PM probes
of an array are modeled as a sum of a background intensity (Y ) and real signal
intensity (X). Formally,

S = X + Y ,

X ∼ exp(α) ,
Y ∼ TN(µ, σ2) ,

where S is the PM intensity, and exp(α) is the exponential-distribution with mean
α−1. TN(µ, σ2) is the normal distribution truncated at zero, corresponding to the
positive part of the un-truncated normal distribution with mean µ and variance σ2.
A step-wise procedure is used when estimating the parameters. First, µ is estimated
by the mode of a kernel density fitted to the observed PM intensities. Then the
intensities below the estimated µ are used to estimate σ2, and the intensities above
the estimated µ are used to estimate α. The parameters are then set equal to the
estimated values and assumed known. Background corrected PM intensities are
computed according to

E[X|S = s] = s− µ− ασ2 + σ
φ

(
s−µ−ασ2

σ

)
− φ

(
µ+ασ2

σ

)
Φ

(
s−µ−ασ2

σ

)
+ Φ

(
µ+ασ2

σ

)
− 1

,

where s is the observed PM intensity, φ and Φ are the density and cumulative dis-
tribution function of the standard normal distribution, respectively.

Normalization in the RMA method is performed on background corrected PM in-
tensities using the quantile normalization method described in paper II. The method
produces identical empirical distributions of intensities on all arrays analyzed. With
Gi denoting the empirical distribution of intensities on the i’th array, and with F
denoting the empirical distribution of the averaged sample quantiles, the intensities
on the i’th array is normalized by the composite function F−1 ◦Gi.

In the final step of the RMA method expression indexes are computed. Sepa-
rately for each probe-set, the normalized PM intensities are modeled using a two-way
ANOVA. Formally, for i = 1, . . . , I, p = 1, . . . , P

log2(PMip) = θi + ψp + εip ,

where I is the number of arrays, P the number probes, θi and ψp are the array and
probe effect, respectively, and εip are iid random variables with zero mean. Using the
constraint ψ1 + · · · + ψP = 0 the model is fitted using the median polish algorithm
(Tukey, 1977). The expression indexes are then taken as the estimated array effects
θ̂1, . . . , θ̂I , and thus the RMA expression index is on log2-scale.
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A.3 GCRMA

The GCRMA method proposed by Wu et al. (2004) and the RMA method are based
on the same procedures for normalization and summarization, but use different back-
ground corrections. In GCRMA background signal is divided into optical noise and
non-specific binding. Using an affinity model, the non-specific binding (α) is modeled
as a sum of position-dependent base effects,

α =
25∑

k=1

∑
j∈{A,T,G,C}

µjkI(bk = j) , (3)

where k = 1, . . . , 25 indicates the position along the probe, j denotes the base letter,
bk represents the base at position k of the probe, I(A) is the indicator function for the
event A, and µjk represents the contribution to affinity of base j in position k. For
fixed j, µj1, . . . , µj25 is modeled using a spline with 5 degrees of freedom. A similar
model was used by Naef and Magnasco (2003) using a polynomial of degree 3 for µjk

instead of a spline. Model (3) is fitted to log intensities obtained by hybridizing yeast
control RNA on to an array measuring human genes, thus the intensities obtained
are likely to reflect optical noise as well as non-specific binding but no real signal.
The parameters µjk are then treated as known and held fixed at the estimated values
in the analysis of other data sets.

For a general data set, with PM and MM denoting the intensity of the PM and
MM probe of a probe-pair, respectively, background correction in GCRMA is based
on the assumption that

PM = O +NPM + S ,

MM = O +NMM ,

where O is an array specific constant representing optical noise, N represents non-
specific binding, and S is the true signal proportional to mRNA abundance. NPM

and NMM are assumed to follow a bivariate normal distribution with means equal to
µpm and µmm, respectively, variances equal to σ2 and correlation equal to ρ. The op-
tical noise O is estimated by 1 + the minimum intensity of each array, and the value
of ρ was estimated using the same data used for estimating the parameters µjk of
model (3) and is held fixed at the estimated value equal to 0.7. The mean values µpm

and µmm are determined by a smooth function h as h(αPM ) and h(αMM ), respec-
tively. Here αPM and αMM are calculated using model (3) and the base-sequences
of the PM and MM probe, respectively, and h is a loess curve fitted to log(MM − Ô)
with αMM as regressor. The median absolute value of negative residuals for the fitted
curve h is used to estimate σ2.

With the array-specific parameters O, h, σ2, and ρ estimated as described above,
two methods for computing a background corrected PM intensity are proposed by
Wu et al. (2004). The first method computes a maximum likelihood estimator of S
as the background adjusted PM intensity,

Ŝ = min
(
PM − Ô − exp

{
ρ log(MM − Ô) + µpm − ρµmm − (1− ρ2)σ2

}
,m

)
.

where m = 6 is the minimum allowed value for S. The second method uses an
empirical Bayes approach, treating S as a random variable and defines the logged
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background adjusted PM intensity as

s̃ = E
[
log(S)|S > 0, PM,MM

]
.

With m now defined as the smallest value of S with positive probability, the prior
distribution for log(S) is set to uniform on the interval [log(m), log(216)], and assum-
ing independence between the vector (NPM , NMM ) and S, the logged background
adjusted PM intensity s̃ is computed using numerical integration.

B Finding differentially expressed genes

This appendix is a detailed description of 11 procedures for ranking genes with re-
spect to differential expression. The described methods are evaluated in Section 4.1
together with the methods PLW and LMW proposed in Paper IV. Although some
of the methods can be applied to general linear comparisons of design-parameters,
the descriptions here are restricted to a comparison of two groups of n1 and n2 ar-
rays, respectively, with no missing values. With this restriction all but the last four
methods are based on group-mean-differences and the corresponding sample stan-
dard deviation calculated separately for each gene or probe-set. Formally, let xijg

denote the measured gene expression level (generally on log-scale) of gene g for the
i’th array of group j for a total of G genes and n1 + n2 arrays, and put

Dg = x̄1g − x̄2g and s2g =
(

1
n1

+
1
n2

)
(n1 − 1)s21g + (n2 − 1)s22g

n1 + n2 − 2
, (4)

where x̄jg is the sample mean and sjg the sample standard deviation of the measured
gene expression levels for group j and gene g. Given the two summary statistics in
(4) for each gene the statistic used when ranking genes using the so called fold change
(FC) and the ordinary t-test are obtained directly according to

FC : Dg ,

t-test :
Dg

sg
.

B.1 SAM

In the Significance Analysis of Microarrays method (SAM) suggested by Tusher et al.
(2001) genes are ranked with respect to the absolute value of

dg =
Dg

sg + s0
.

The principle used when setting the value of s0 is that the variability of dg should be
independent of the level of sg. This is achieved by computing the variability of dg as a
function of sg in windows across the data. The Median Absolute Distance (MAD) is
used the estimate the variability and 100 windows with equal number of data points
are used by default. With madk equal to the estimated variability of dg within the
k’th window, s0 is chosen so that the coefficient of variation of mad1, . . . ,mad100 is
as small as possible.
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B.2 Efron-t

The moderated t-statistic suggested by Efron et al. (2001), here denoted by Efron-t,
uses the same statistic as the SAM method described in the previous section, but
with a different procedure for setting the parameter s0. In Efron-t s0 is equal to the
90% quantile of s1, . . . , sG. A case study of a paired comparison of 8 arrays is used
to empirically motivate the choice of the 90% quantile.

B.3 LIMMA

The empirical Bayesian t-test implemented in the R-package limma (Smyth, 2004),
based on the methods presented by Lönnstedt and Speed (2002), assume prior knowl-
edge on the unknown gene-specific variances in terms of a Γ−1-distribution. For the
summary statistics in (4) this can be described as

Dg|σ2
g ∼ N(δg, σ2

g) ,

s2g|σ2
g ∼ σ2

g

df χ
2
df ,

σ2
g ∼ Γ−1( 1

2m,
1
2mν) ,

(5)

where δg represents the logged fold-change between the groups, N is the normal
distribution, χ2

df is the χ2-distribution with df = n1 +n2−2 degrees of freedom, and
Γ−1(α, β) is the inverse-gamma distribution with density function

f(x) =
βαx−(α+1)

Γ(α)
exp{−β

x
} , x > 0 .

As specified in (5), the Γ−1-prior for the unknown gene-specific variances is equivalent
to a prior estimator equal to ν with m degrees of freedom. The marginal distribution
of log(s2g) is a shifted Fisher’s z-distribution (Johnson et al. 1995, page 78) with

E
[
log(s2g)

]
= log(mν/df) + ψ( 1

2df)− ψ( 1
2m) , (6)

var
(

log(s2g)
)

= ψ
′
( 1
2m) + ψ

′
( 1
2df) , (7)

where ψ and ψ
′

are the digamma and trigamma functions, respectively. The hy-
perparameters m and ν are estimated by equating the sample mean and squared
sample standard deviation of log(s2g) with the theoretical mean and variance, respec-
tively. The parameters m and ν are then treated as known and set equal to the
estimated values, and the moderated t-test described in Smyth (2004), here denoted
by LIMMA, is defined as

t̃g =
Dg√

mν + dfs2g
m+ df

,

and under H0, gene g is unregulated, it is shown that t̃g is t-distributed with m+ df
degrees of freedom.
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B.4 IBMT

The Intensity Based Moderated T-test (IBMT) builds on the empirical Bayesian
t-test LIMMA described in the previous section. Let x̄g denote the grand mean
intensity of gene g calculated across all n1 + n2 arrays. The difference between
LIMMA and IBMT is that the global prior variance estimator ν in (5) is modeled
as a smooth function of x̄g, and thus is gene-specific. The model parameters are
estimated as follows. A loess-curve is fitted in the scatter-plot of log(s2g) versus x̄g.
With f( · ) denoting the fitted curve, the parameter m is estimated by equating the
theoretical variance of log(s2g) in (7) with the mean residual sum of squares

MSS =
1

G− 1

G∑
g=1

(
log(s2g)− f(x̄g)

)2
.

With m set equal to the estimated value in (6), the gene-specific prior variance
estimator νg is found by setting (6) equal to f(x̄g) and solving for νg,

νg = exp
{
f(x̄g)− log(m/df)− ψ( 1

2df) + ψ( 1
2m)

}
.

The IBMT statistic is defined as

t̃g =
Dg√

mνg + dfs2g
m+ df

,

and thus except for the addition of prior variance estimators νg being variance spe-
cific, the IBMT statistic is identical to the moderated t-test LIMMA (Smyth, 2004)
described in the previous section.

B.5 Shrink-t

The moderated t-statistic suggested by Opgen-Rhein and Strimmer (2007) is based
on the James-Stein ensemble shrinkage estimation rule (Gruber, 1998). Applied to
the gene-specific variance estimators s21, . . . , s

2
G the rule results in adjusted estimators

defined as
s̃2g = λ̂s20 + (1− λ̂)s2g

where λ̂ is the estimated pooling parameter

λ̂ = min

1,

∑G
g=1 v̂ar(s2g)∑G

g=1(s2g − s20)2

 .

The target estimator s20 is the median of s21, . . . , s
2
G, and v̂ar(s2g) is estimated by

(n1 + n2)3

(n1 + n2 − 1)3

2∑
j=1

nj∑
i=1

(
(xijg − x̄jg)2

n1n2
− n1 + n2 − 2

(n1 + n2)2
s2g

)2

.

The shrink-t statistic is then defined as

t̃g =
Dg√
s̃2g

.
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B.6 LPE

Jain et al. (2003) propose the Local-Pooled-Error (LPE) method for estimating vari-
ances and use group-median-differences instead of differences of group-wise mean
values. For each of the two groups the error variance is evaluated as follows. For all
possible pairs of arrays, with X1 and X2 denoting the expression indexes of the first
and second array of the pairs, respectively, the difference in gene expression M , as
X1 − X2 as well as X2 − X1, and the average A = 1

2 (X1 + X2) is calculated. The
sample variance of expression indexes as a function of intensity level is evaluated
using the variability of M in windows with equal number of data-points across the
vector A. With nw equal to the number of data-points and with variances and me-
dians computed within each window, a local regression model is fitted to the sample
variance of M times 1

2 (nw − 1
2 )/(nw − 1) with the median of A as regressor. The

group-specific error variance as a function of intensity level is then taken as the fitted
curve.

With medjg denoting the median measured gene expression level for group j =
1, 2, the LPE statistic is then defined as

zg =
med1g −med2g√

π

2

[
σ2

1(med1g)
n1

+
σ2

2(med2g)
n2

] ,

where σ2
j ( · ) is the error variance for group j = 1, 2. The estimator of the variance

of group-median-differences in the denominator of zg is based on the asymptotic
variance for the median of a normal distributed sample. With sample variance equal
to τ2, the asymptotic variance for the median is 1

2πτ
2 divided by the sample size

(Mood et al., 1998).

B.7 WAME

The empirical Bayes WAME-model (Kristiansson et al., 2005, 2006; Sjögren et al.,
2007) uses a global covariance structure to model dependencies and differing variances
between arrays. With xg equal to the vector of measured gene expression levels of
gene g across a set of n arrays, the WAME-model is defined as

xg|cg ∼ Nn(µg, cgΣ) ,

cg ∼ Γ−1( 1
2m,

1
2mν).

Here Nn(µ,Σ) denotes an n-dimensional normal distribution with mean µ and covari-
ance matrix Σ and Γ−1(α, β) is the inverse-gamma distribution with density function
f(x) = βα exp{−β

x}x
−(α+1)/Γ(α) for x > 0. The expression profile µg is defined in

terms of a global design matrix D and gene-specific parameter vector γg. A contrast
matrix C is used to specify the linear combination δg of the parameter vector that is
of interest. In summary,

µg = Dγg and δg = Cγg .

The special case considered in this appendix is a two group comparison using
one-color arrays. Let γjg denote the underlying expression level of gene g for group
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j, and δg = γ2g − γ1g represent the logged fold-change between groups 2 and 1. For
this design the 1× 2 contrast matrix C = [−1 1] can be used together with an n× 2
design matrix D. For example, with n1 = 3 and with n2 = 4 the design matrix would
be

DT =
[

1 1 1 0 0 0 0
0 0 0 1 1 1 1

]
.

With the WAME-model presented as in Paper IV, a transformation matrix M is
derived using D and C. Put

A0 = I −D(DTD)−1DT and B = D(DTD)−1CT (8)

and let A be an n × (n − 2) matrix of full rank whose column space equals that of
A0. The n× (n− 1) transformation matrix M is then defined and used to compute
vectors zg of transformed expression levels according to

M = [A;B] and zg = MTxg (9)

giving the reduced model

zg|cg ∼ Nq((0, . . . , 0, δg)T , cgΣz) ,

cg ∼ Γ−1( 1
2m,

1
2mν) ,

(10)

where q = n− 1 and Σz = M tΣM .
Given estimators of m, ν, and Σz, for example obtained using one of the meth-

ods presented in Paper III, these parameters are treated as known, and a weighted
moderated t-test is derived. The unbiased minimum variance estimator of δg is

δ̂g = (λT Σ−1
z λ)−1λT Σ−1

z zg , (11)

where λ is the vector (0, . . . , 0, 1)T of length q. The weighted moderated t-statistic
is then defined as

t̃g =

√
q +m− 1

(λT Σ−1
z λ)−1

δ̂g√
mν + RSSg

,

and for δg = 0 it is shown that t̃g follows a t-distribution with q +m− 1 degrees of
freedom. Here

RSSg = zT
g

(
Σ−1

z − Σ−1
z λ(λT Σ−1

z λ)−1λT Σ−1
z

)
zg (12)

is the weighted residual sum of squares. See Kristiansson et al. (2006) for details.

B.8 LMW

The WAME-model, suggested by Kristiansson et al. (2005), is in Paper IV extended
to incorporate the dependency between variability and intensity level that often exists
in microarray data, even for log-transformed data. Let µg denote the profile for gene
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g across the n arrays with mean intensity level µ̄g, and let xg represent the vector
of measured gene expression levels (generally log-transformed) of gene g across the
n arrays. To account for the dependency between variability and intensity-level the
scale-parameter of the Γ−1-distribution depends on the mean intensity level µ̄g for
the gene through the smooth function ν. Formally,

xg|cg ∼ Nn(µg, cgΣ) ,

cg ∼ Γ−1( 1
2m,

1
2m · ν(µ̄g)) ,

(13)

where Σ is an n × n covariance matrix, m is a real-valued parameter, and ν( · ) is a
smooth real-valued function. Nn denotes an n-dimensional normal distribution, and
Γ−1(a, b) denotes the inverse-gamma distribution with shape parameter a and scale
parameter b. A cubic spline is used to parameterize the function ν( · ). Given a set
of K interior spline-knots

ν(x) = exp{H(x)Tβ} ,

where β is a parameter vector of length 2K − 1 and H : R → R2K−1 is a set of
B-spline basis functions, see chapter 5 of Hastie et al. (2001).

A transformation matrix M , transformed vectors zg, and a reduced model are
derived as described in (8) to (10) in the previous section with ν(µ̄g) replacing ν in
the reduced model (10). Estimators of m, Σz, and β are computed using the EM-
algorithm (Dempster et al., 1977) and these parameters are then treated as known
(see Paper IV for details).

With λ = (0, . . . , 0, 1)T of length q = n − 1, the Locally Moderated Weighted-t
statistic (LMW) suggested in Paper IV is then defined as

t̃g =

√
q +m− 1

(λT Σ−1
z λ)−1

δ̂g√
mν̂g + RSSg

, (14)

with δ̂g defined as in (11), RSSg computed according to (12), and where

ν̂g = exp{H(x̄g)Tβ} .

B.9 PLW

The Probe level Locally moderated Weighted median-t (PLW) method suggested
in Paper IV, is specially designed for Affymetrix arrays, or other multiple probe
arrays. PLW uses the same model as the LMW method, also suggested in Paper IV
and described in the previous section. However, model (13) is in PLW applied to
perfect match (PM) probe intensities whereas PLW applies the model to probe-set
summaries.

In detail, let yip be the background corrected and normalized log-intensity on
array i for PM probe p and put yp = (y1p, . . . , ynp)T . The locally moderated t-
statistics in (14) is computed for all PM probes as described in the previous section
with yp replacing the vectors xg of measured gene expression levels. As described
in Section 2.1.2, the PM probes are divided into G (disjoint) probe-sets G1, . . . ,GG.
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With t̃p representing the t-statistic for probe p, the PLW statistic for the probe-set
G is then defined as

PLWG = median
{
t̃p : p ∈ G

}
.
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E. Kristiansson, A. Sjögren, M. Rudemo, and O. Nerman. Quality optimised analysis
of general paired microarray experiments. Stat. Appl. Genet. Mol. Biol., 5(1):
article 10, 2006.

29



W. Lemon, S. Liyanarachchi, and M. You. A high performance test of differential
gene expression for oligonucleotide arrays. Genome Biology, 4(10):R67, 2003.

C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: Expression
index computation and outlier detection. Proceedings of the National Academy of
Sciences, 98(1):31–36, 2001a.

C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: model
validation, design issues and standard error application. Genome Biology, 2(8):
research0032.1–research0032.11, 2001b.

X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. A tractable probabilistic model
for Affymetrix probe-level analysis across multiple chips. Bioinformatics, 21(18):
3637–3644, 2005.

X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. Probe-level measurement error
improves accuracy in detecting differential gene expression. Bioinformatics, 22
(17):2107–2113, 2006.

D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee,
M. Mittmann, C. Wang, M. Kobayashi, H. Norton, and E. L. Brown. Expres-
sion monitoring by hybridization to high-density oligonucleotide arrays. Nature
Biotechnology, 14(13):1675–1680, 1996.
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A. Sjögren, E. Kristiansson, M. Rudemo, and O. Nerman. Weighted analysis of
general microarray experiments. BMC Bioinformatics, 8(1):article 387, 2007.

G. K. Smyth. Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3(1):article
3, 2004.

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied
to the ionizing radiation response. PNAS, 98(9):5116–5121, 2001.

J. Watson and F. Crick. Molecular structure of nucleic acids; a structure for deoxyri-
bose nucleic acid. Nature, 171:737–738, April 1953.

Z. Wu, R. Irizarry, R. Gentleman, F. M. Murillo, and F. Spencer. A
model based background adjustment for oligonucleotide expression arrays.
Technical report, Johns Hopkins University, Department of Biostatistics,
http://www.bepress.com/jhubiostat/paper1/, 2004.

Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed.
Normalization for cDNA microarray data: a robust composite method addressing
single and multiple slide systematic variation. Nucl. Acids Res., 30(4):e15–, 2002.

L Zhou and D. M. Rocke. An expression index for affymetrix genechips based on the
generalized logarithm. Bioinformatics, 21(21):3983–3989, 2005.

31





Paper I





JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 10, Number 1, 2003
© Mary Ann Liebert, Inc.
Pp. 95–102

Contrast Normalization of Oligonucleotide Arrays

MAGNUS ÅSTRAND

ABSTRACT

Affymetrix high-density oligonucleotide array is a tool that has the capacity to simultane-
ously measure the abundance of thousands of mRNA sequences in biological samples. In
order to allow direct array-to-array comparisons, normalization is a necessity. When de-
ciding on an appropriate normalization procedure there are a couple questions that need
to be addressed, e.g., on which level should the normalization be performed: On the level
of feature intensities or on the level of expression indexes? Should all features/expression
indexes be used or can we choose a subset of features likely to be unregulated? Another
question is how to actually perform the normalization: normalize using the overall mean
intensity or use a smooth normalization curve? Most of the currently used normalization
methods are linear; e.g., the normalization method implemented in the Affymetrix software
GeneChip is based on the overall mean intensity. However, along with alternative methods of
summarizing feature intensities into an expression index, nonlinear methods have recently
started to appear. For many of these alternative methods, the natural choice is to normalize
on the level of feature intensities, either using all feature intensities or only perfect match in-
tensities. In this report, a nonlinear normalization procedure aimed for normalizing feature
intensities is proposed.

Key words: oligonucleotide array, normalize, curve-�tting, orthogonal, loess.

1. INTRODUCTION

The use of microarrays to measure abundance of mRNA sequences in biological samples has
emerged the last couple of years. One technology commonly used in this context is Affymetrix

oligonucleotide arrays. The starting point of this technology is a sample of cells or tissue from which the
researcher isolates RNA from which complementary DNA (cDNA) is generated. Then follows transcription
from the cDNA to complementary RNA (cRNA), which after fragmentation is put to hybridize on the array.
After the hybridization, excess cRNA is washed off, and the �nal step before scanning the array is staining.
The result, after the researchers efforts, is the scanned intensity image, which is the starting point of the
low-level analysis of microarrays such as image analysis, feature extraction, and normalization.

Image analysis and feature extraction are in themselves a great challenge. The aim is to select pixels
representing each feature and summarize them into a feature intensity. Since each feature is represented
by approximately 8£8 pixels, this a great reduction of the data. However, this issue will not be addressed
further here; instead, procedures on the level of feature intensity or higher will be discussed.
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When analyzing data from oligonucleotide arrays, normalizing is a necessity to allow direct array-to-
array comparisons. This is because the overall brightness of the scanned image can differ substantially
from one array to the next. An even better understanding of this problem is attained by scatter plots with
the feature intensities of one array on the y-axis and the feature intensities of another array on the x-axis
(Fig. 1). The main sources of this variation in feature intensity level between arrays are the different steps
prior to obtaining the intensity image together with the quality of the arrays.

The most commonly used normalization procedure is probably the one implemented in the Affymetrix
software GeneChip. This procedure is based on the Affymetrix expression index average difference (AD),
which is the average difference between the perfect match intensity (PM) and the mismatch intensity (MM).
For each array, a trimmed mean of all probe’s AD is calculated, and normalization factors for AD are
determined by ratios of such means or by a ratio to a target mean AD. Hence, this is a linear procedure
on the level of expression index where all probes are used.

Recently, alternatives to the Affymetrix expression index AD have started to appear, e.g., the model-
based expression index (MBEI) introduced by Li and Wong (2001a) and an index based on log(PM-BG),
suggested by Irizarry et al. (2002), where BG is a global estimate of the background intensity of the array.
For such alternative expression indexes, it is more natural to normalize on a lower level of the data, i.e.,
on the level of feature intensities using only PM or PM and MM together.

Such a normalization procedure is described by Li and Wong (2001b). In this procedure, a baseline array
is selected to which the other arrays are normalized by �tting a smooth curve. Prior to �tting the curve,
a subset of features with small absolute rank differences is selected. The argument for using this kind of
subset selection is that we can expect features belonging to an unregulated gene to have similar intensity
ranks on two arrays. The curve is then �tted using these features only. In contrast to the normalization
procedure in GeneChip, this is a nonlinear procedure on the level of feature intensities that uses a subset of
features. Another procedure suggested by Bolstad et al. (2002) uses the distribution of all feature intensities.
An average distribution is derived by �rst computing the quintiles of each array separately, and then the
quintiles are averaged across the arrays. In relation to the method in Li and Wong (2001b), this procedure
uses all features. It is also substantially simpler.

In this report, a method for normalizing using smooth curves is proposed. It is a method meant for
normalizing the feature intensities, i.e., the PM and MM intensities. But the method can just as well be
applied to PM-MM or an expression index derived from the feature intensities. The method proposed by
Li and Wong (2001b) uses smooth curves �tted in scatter plots with the baseline array on the y-axis and
the array to be normalized on the x-axis. Another solution is to �t a smooth curve in scatter plots with
the feature intensity differences on the y-axis and the intensity means on the x-axis (often the intensities
are logged before computing the differences and means). This is the basis of the method proposed in this
report. We will start by describing the proposed method, termed contrast normalization (CN), and then
discuss it together with the other methods mentioned. We will also have a look at how these methods
perform.

2. RESULTS

2.1. Contrast normalization

Suppose we have a set of k arrays that are to be normalized; each array is represented by n feature
intensities. Let the nxk matrix Y denote the intensities of these arrays. Hence, the element in row i and
column j of Y is the unnormalized feature intensity of feature i on array j .

2.1.1. Change of basis. In the �rst step, these intensities are logged and transformed using the ma-
trix M:

Z D [x; y1; : : : ; yk¡1] D log .Y / ¢ M 0: (1)

Here, M is an orthonormal kxk matrix; i.e., the rows of M are mutually orthogonal unit vectors. Moreover,
the �rst row of M is always the 1-vector times

p
1=k, and then it follows that the other rows are a set of

orthonormal contrast. Matrixes such as M will be called transformation matrixes hereafter. Note that with
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FIG. 1. Scatter plots of 3 arrays, A, B, and C, prior to normalizing. The red curve is the �tted normalizing curve
�tted using the alternative basis shown in Fig. 2.

FIG. 2. Contrast plots. Scatter plots of the 2 contrasts against the mean for 3 arrays, A, B, and C, prior to normalizing.
The red curve is the �tted normalizing curve, and the green line is the reference line.

FIG. 3. Normalizing prior change to original basis. This �gure illustrates how feature intensities from two arrays are
normalized using the alternative basis. The graphs show logged intensities in original basis (left graph) and alternative
basis (right graph). Red line is the �tted normalizing curve (�tted using the alternative basis in the right graph), and
green line the reference line. The graphs show a couple of features which all have intensities equal to 3.5 on array
B, and intensities ranging from 3.5 to 5.5 on array A prior to normalizing (red dots). The intensities are normalized
using the alternative basis in the right graph yielding the normalized intensities shown as green dots. Now the features
have intensities ranging from 3.25 to 3.75 on array B.
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this speci�cation M is unique for k equals 2, but this is not the case for k > 2. When k equals 2, we get
M D M2, and when k equals 4 we can use M D M4:

M2 D
μ

1 1
1 ¡1

¶ r
1
2

M4 D

2
664

1 1 1 1
1 1 ¡1 ¡1
1 ¡1 1 ¡1
1 ¡1 ¡1 1

3
775 1

2
(2)

This use of an orthonormal matrix is just a change of basis, where the rows of M form the new basis,
denoted the alternative basis from now on. When k equals 2, we see that, besides a constant, the alternative
basis corresponds to what is called a Bland and Altman plot of the log feature intensities, i.e., a plot of
the difference versus the mean. The change to logarithmic scale before performing the change of basis is
used to make the error variances more homogenous.

2.1.2. Fitting the normalizing curve. Using the alternative basis, we then �t the normalizing curve: we
use the �rst column of the transformed intensities in Z, i.e., x, as a predictor for column 2; : : : ; k of Z,
i.e., y1; : : : ; yk¡1. When doing this, it’s important to have in mind that the set of orthonormal contrasts is
not unique. Thus, the method for �tting the curve should be invariant with respect to choice of contrast.
Suppose that [x; ya1; : : : ] and [x; yb1; : : : ] are the intensities obtained when transforming according to (1)
using the transformation matrixes Ma and Mb , respectively. If Oya1; : : : and Oyb1; : : : are the corresponding
�tted curves, [x; Oya1; : : : ] ¢ Ma should equal [x; Oyb1; : : : ] ¢ Mb.

In order to achieve this, we �t a smooth curve using a local regression model (loess) to each vector
yi . For the curve to be less sensitive for outliers, we use a redescending M estimator with the bisquare
weight function as is done in the R-function loess (Chambers and Hastie, 1997), but with one important
modi�cation. If Oy1; : : : ; Oyk¡1 are the vectors of the �tted values, we take O² as the Euclidian distance
between the rows of the nx.k ¡ 1/ matrixes [y1; : : : ; yk¡1] and [ Oy1; : : : ; Oyk¡1].

O² D
vuutk¡1X

iD1

. Oyi ¡ yi/2 (3)

Thus, in each iteration, the same set of robust weights is used for each of the k ¡ 1 contrast vectors, and
these weights are invariant to the choice of orthonormal contrasts. Further, since the local regression model
is �tted using weighted least squares, the �tted curve is invariant to the choice of orthonormal contrasts.

2.1.3. Normalizing the arrays. The normalizing curve can be represented with the matrix [x; Oy1; : : : ;

Oyk¡1]. These sets of points can be viewed either using the original basis or the alternative basis, the red
curves in Figs. 1 and 2, respectively. Hence, we still could choose a baseline array and normalize the
others by the �tted normalizing curve, e.g., using the two rightmost graphs in Fig. 1 and normalizing A
and B to the baseline array C. If doing so, we have used a normalizing curve that is invariant to the choice
of baseline array. But the scale to which we normalize still depends on which baseline array we choose.

Another way of normalizing the arrays using the �tted curve is to simply subtract the �tted values using
the alternative basis, i.e., Fig. 2, and then go back to the original basis using the matrix M . In this case,
the normalized and unlogged intensities would be

exp
©
[x; y1 ¡ Oy1; : : : ; yk¡1 ¡ Oyk¡1] ¢ M

ª
: (4)

But this results in a nonsmooth normalizing procedure, in the sense that intensities being equal on one
array prior to normalizing may not be equal after. Figure 3 shows why this is the case.

However, we can still use the normalizing curve with the alternative basis. The matrix [x; Oy1; : : : ; Oyk¡1]
is a representation of the normalizing curve, and the matrix [x; 0; : : : ; 0] is a representation of what the
curve should be after normalization. Hence, the mapping

[x; Oy1; : : : ; Oyk¡1] 7¡! [x; 0; : : : ; 0] (5)
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FIG. 4. Normalizing functions. The normalizing functions de�ned through the mapping of the �tted normalizing
curve on to the reference line in Fig. 2 are shown for three arrays, A, B, and C (red line). The green line is the
reference line with slope one and zero intercept.

FIG. 5. Scatter plot of 2 arrays, A and B. The two red lines are �tted loess curves from using A (and B) as a
predictor for B (and A). The green curve is a loess curve �tted using the alternative basis.

de�nes a transformation that does the job of evening out the contrast for the alternative basis. Moreover,
the mapping

exp
©
[x; Oy1; : : : ; Oyk¡1] ¢ M

ª 7¡! exp f[x; 0; : : : ; 0] ¢ Mg (6)

de�nes the same transformation but for the original basis and anti-logged scale. This transformation forms a
function F : Rk 7! Rk that row-by-row normalizes the matrix of intensities Y . Thus, if F ..x1; : : : ; xk// D
.f1.x1/; : : : ; fk.xk//, fj is function that normalizes array j . These functions, f1, f2, and f3 for the set of
three arrays A, B, and C, are shown in Fig. 4.
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One may note that

[x; 0; : : : ; 0] ¢ M D 1p
k

¢ [x; x; : : : ; x] (7)

where x=
p

k equals log.Y /, i.e., the mean across the rows of log.Y /. Hence, this procedure normalizes to
a scale determined by expflog.Y /g, i.e., the geometric mean of the arrays.

2.1.4. Adding arrays. Suppose a set of arrays have been normalized and further analyzed, e.g., ex-
pression indexes have been computed. Now we have an additional set of arrays that we would like to add
to the original ones to use in the same analysis. We would like to do this without affecting the intensities
of the original set. This can be done by �rst normalizing the new set of arrays separately. These arrays
are then normalized to a scale determined by their geometrical mean. Thus, we have to transform these to
the same scale as the original set, i.e., the scale determined by the geometrical mean of the arrays in the
original set.

Let Y1 and Y2 be the normalized intensities of the original and new set of arrays, respectively. Also, let
x1 and x2 be the mean across the rows of log.Y1/ and log.Y2/, respectively. To �nd a transformation that
transforms the new arrays with the same scale as the original arrays, we apply the normalizing method
treating x1 and x2 as log-intensities of two “arrays.” If Oy1 is the �tted values for the contrast of these
“arrays,” we have the mappings

exp

�
x1 C x2

2
C Oy1p

2

¼
7¡! exp

�
x1 C x2

2

¼
; (8)

exp

�
x1 C x2

2
¡ Oy1p

2

¼
7¡! exp

�
x1 C x2

2

¼
(9)

that form the functions f1 and f2 that would normalize the two “arrays” to a common scale. However,
we only want to change the scale of the second one (x2). To do this, we apply f ¡1

1 ± f2 formed by the
mapping

exp

�
x1 C x2

2
¡ Oy1p

2

¼
7¡! exp

�
x1 C x2

2
C Oy1p

2

¼
(10)

on the intensities of the second “arrays.” Hence, the f ¡1
1 ± f2 is the function that transforms the intensities

of the new set of arrays to the scale of the original set.

2.1.5. Software. The contrast normalization as described above is included in the R package affy as the
“contrast” option in the “normalize” method (Irizarry et al., 2003). The affy package is available through
the open source software project Bioconductor (www.bioconductor.org/).

3. DISCUSSION

The usage of curve �tting by normalizing to a baseline array is perhaps the most intuitive way. However,
it has one obvious drawback: we have to choose the baseline array, i.e., the array to place on the y-axis.
How important this drawback is for the result of the downstream analysis of the raw intensities, i.e.,
computing expression indexes, is hard to tell. However, by normalizing and computing MBEI (Li and
Wong, 2001a) of two arrays, A and B, �rst using array A as the baseline array, and then a second time
using array B as the baseline array, we get an indication that it’s not negligible: For each choice of baseline
array, the ratios of MBEI, array A to array B, was computed. Of the 8,799 probes, the ratio differed more
then 10% (10% greater or smaller) for 1,603 probes (18%), when using array A as baseline instead of
array B. The difference was most notable among probes with small indexes. But even among the 2,500
probes with highest expression indexes, the ratio differed more than 10% for 10% of the probes. The two
sets of probes �ltered out, based on the con�dence interval and absolute difference, for each choice of
baseline array, differed. There were 469 and 298 probes in the two sets of which 265 were contained in
both sets.
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Table 1. Standard Deviation Comparisona

Comparative dataset
Baseline
dataset UN LR CN2 CN1 QN CN3

UN -(-) 89(2.44) 89(2.55) 90(2.51) 90(2.51) 90(2.53)
LR 11(1.42) -(-) 57(1.18) 57(1.21) 58(1.19) 57(1.22)
CN2 11(1.43) 43(1.14) -(-) 50(1.04) 53(1.05) 52(1.03)
CN1 10(1.41) 43(1.16) 50(1.04) -(-) 52(1.02) 53(1.03)
QN 10(1.40) 42(1.14) 47(1.05) 48(1.02) -(-) 51(1.03)
CN3 10(1.42) 43(1.17) 48(1.02) 47(1.03) 49(1.03) -(-)

aUsing two sets of replicated Mu11KsubA arrays (4 replicates in each set), the standard deviation (STD) for each feature across
the replicates was computed. The Mu11KsubA array has a total of 262,560 features, which are used for 6,584 probes. The STD for
each feature was computed using 6 different sets of intensities: Un-normalized intensities (UN), intensities normalized using linear
regression (LR), normalized using QN (QN), and using CN, using all features and a loess span equals 2/3 (CN1), using a subset
of 10,000 features and loess span equals 2/3 (CN2) and 0.2 (CN3). The values in upper triangle show the percentage of features of
which the comparative dataset had smaller STD then the baseline dataset. For those features, the median STD ratio (baseline dataset
to the comparative dataset) is shown within brackets. The values in lower triangle show the percentage of features of which the
baseline dataset had smaller STD than the comparative. For those features, the median STD ratio (comparative dataset to the baseline
dataset) is shown within brackets.

Moreover, Fig. 5 shows a scatter plot of the raw intensities of the same two arrays together with three
curves. The two red curves are the loess curves �tted using the original basis with A as the predictor
of B and vice versa. The green curve is the loess curve but �tted using the alternative basis. There is a
notable difference between the two red curves with the green curve lying in between. Again, there is a
clear indication that the choice of baseline array is not just a theoretical matter.

On the other hand, this approach is simple to apply to a set of k arrays: simply choose a baseline array
and normalize the other to that array. Also, if an analysis has been done on a set of arrays, it’s easy to add
arrays without affecting the analysis of the original set. Just use the baseline array of the original arrays
to normalize the new arrays.

When using CN, or the quintile normalization (QN) suggested by Bolstad et al. (2002), there is no
choice of baseline array; instead all arrays are treated uniformly. But it’s not as straightforward to add
extra arrays without affecting the result of the analysis of the original set. But the solution in Section 2.1.4
does the job when using CN, and a similar solution for the QN method is to simply use the average
distribution of the original set of arrays for the new arrays. Both methods normalize to a scale determined
by the geometrical mean across the arrays, in contrast to normalizing using a baseline array where the
baseline array determines the scale.

The normalizing procedure described in Li and Wong (2001b) uses a baseline array to which the other
arrays are normalized. As mentioned, a curve is �tted using a subset of features. These subsets are derived
separately for each of the arrays that are normalized and the baseline array. Hence, there is a risk of using
different features when normalizing array 1 as when normalizing array 2. Another way of �nding a subset
of features is to compare the ranks across all arrays. This could be done using the mean square error
(MSE) of the ranks or the range of the ranks. The later was used in the comparisons of Table 1.

In Table 1, the normalized feature intensity standard deviations (STD) over two sets of replicated
Mu11KsubA arrays are compared. All methods reduced the standard deviation compared to unnormalized
intensities, and CN and QN show somewhat smaller STD’s than linear normalization. The different versions
of CN (using a subset or all features and different span parameters for the loess model) and QN perform
similarly with a slight tendency toward QN and CN using a subset and a small span parameter being the
better ones.
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ABSTRACT
Motivation: When running experiments that involve multi-
ple high density oligonucleotide arrays, it is important to re-
move sources of variation between arrays of non-biological
origin. Normalization is a process for reducing this varia-
tion. It is common to see non-linear relations between ar-
rays and the standard normalization provided by Affymetrix
does not perform well in these situations.
Results: We present three methods of performing nor-
malization at the probe intensity level. These methods are
called complete data methods because they make use of
data from all arrays in an experiment to form the normaliz-
ing relation. These algorithms are compared to two meth-
ods that make use of a baseline array: a one number scal-
ing based algorithm and a method that uses a non-linear
normalizing relation by comparing the variability and bias
of an expression measure. Two publicly available datasets
are used to carry out the comparisons. The simplest and
quickest complete data method is found to perform favor-
ably.
Availabilty: Software implementing all three of the com-
plete data normalization methods is available as part of
the R package Affy, which is a part of the Bioconductor
project http://www.bioconductor.org.
Contact: bolstad@stat.berkeley.edu
Supplementary information: Additional figures may be
found at http://www.stat.berkeley.edu/∼bolstad/normalize/
index.html

INTRODUCTION
The high density oligonucleotide microarray technology,
as provided by the Affymetrix GeneChip R©, is being used
in many areas of biomedical research. As described in
Lipshutz et al. (1999) and Warrington et al. (2000),

∗To whom correspondence should be addressed.

oligonucleotides of 25 base pairs in length are used to
probe genes. There are two types of probes: reference
probes that match a target sequence exactly, called the
perfect match (PM), and partner probes which differ from
the reference probes only by a single base in the center of
the sequence. These are called the mismatch (MM) probes.
Typically 16–20 of these probe pairs, each interrogating a
different part of the sequence for a gene, make up what
is known as a probeset. Some more recent arrays, such
as the HG-U133 arrays, use as few as 11 probes in a
probeset. The intensity information from the values of
each of the probes in a probeset are combined together
to get an expression measure, for example, Average
Difference (AvgDiff), the Model Based Expression Index
(MBEI) of Li and Wong (2001), the MAS 5.0 Statistical
algorithm from Affymetrix (2001), and the Robust Multi-
chip Average proposed in Irizarry et al. (2003).

The need for normalization arises naturally when
dealing with experiments involving multiple arrays. There
are two broad characterizations that could be used for the
type of variation one might expect to see when comparing
arrays: interesting variation and obscuring variation.
We would classify biological differences, for example
large differences in the expression level of particular
genes between a diseased and a normal tissue source,
as interesting variation. However, observed expression
levels also include variation that is introduced during
the process of carrying out the experiment, which could
be classified as obscuring variation. Examples of this
obscuring variation arise due to differences in sample
preparation (for instance labeling differences), production
of the arrays and the processing of the arrays (for instance
scanner differences). The purpose of normalization is
to deal with this obscuring variation. A more complete
discussion on the sources of this variation can be found in
Hartemink et al. (2001).
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Affymetrix has approached the normalization problem
by proposing that intensities should be scaled so that each
array has the same average value. The Affymetrix nor-
malization is performed on expression summary values.
This approach does not deal particularly well with cases
where there are non-linear relationships between arrays.
Approaches using non-linear smooth curves have been
proposed in Schadt et al. (2001, 2002) and Li and Wong
(2001). Another approach is to transform the data so that
the distribution of probe intensities is the same across a
set of arrays. Sidorov et al. (2002) propose parametric
and non-parametric methods to achieve this. All these
approaches depend on the choice of a baseline array.

We propose three different methods of normalizing
probe intensity level oligonucleotide data, none of which
is dependent on the choice of a baseline array. Normaliza-
tion is carried out at probe level for all the probes on an
array. Typically we do not treat PM and MM separately,
but instead consider them all as intensities that need to be
normalized. The normalization methods do not account
for saturation. We consider this a separate problem to be
dealt with in a different manner.

In this paper, we compare the performance of our three
proposed complete data methods. These methods are then
compared with two methods making use of a baseline
array. The first method, which we shall refer to as the
scaling method, mimics the Affymetrix approach. The
second method, which we call the non-linear method,
mimics the approaches of Schadt et al. Our assessment
of the normalization procedures is based on empirical
results demonstrating ability to reduce variance without
increasing bias.

NORMALIZATION ALGORITHMS
Complete data methods
The complete data methods combine information from all
arrays to form the normalization relation. The first two
methods, cyclic loess and contrast, are extensions of ac-
cepted normalization methods that have been used suc-
cessfully with cDNA microarray data. The third method,
based on quantiles, is both quicker and simpler than those
methods.

Cyclic loess This approach is based upon the idea of
the M versus A plot, where M is the difference in
log expression values and A is the average of the log
expression values, presented in Dudoit et al. (2002).
However, rather than being applied to two color channels
on the same array, as is done in the cDNA case, it is
applied to probe intensities from two arrays at a time. An
M versus A plot for normalized data should show a point
cloud scattered about the M = 0 axis.

For any two arrays i , j with probe intensities xki and xk j
where k = 1, . . . , p represents the probe, we calculate

Mk = log2
(
xki/xk j

)
and Ak = 1

2 log2
(
xki xk j

)
. A

normalization curve is fitted to this M versus A plot
using loess. Loess is a method of local regression (see
Cleveland and Devlin 1988 for details). The fits based on
the normalization curve are M̂k and thus the normalization
adjustment is M ′

k = Mk − M̂k . Adjusted probe intensites

are given by x ′
ki = 2Ak+ M ′

K
2 and x ′

k j = 2AK − M ′
k

2 .
The preferred method is to compute the normalization
curves using rank invariant sets of probes. This paper uses
invariants sets since it increases the implementation speed.

To deal with more than two arrays, the method is
extended to look at all distinct pairwise combinations. The
normalizations are carried out in a pairwise manner as
above. We record an adjustment for each of the two arrays
in each pair. So after looking at all pairs of arrays for any
array k where 1 ≤ k ≤ n, we have adjustments for chip k
relative to arrays 1, . . . , k −1, k +1, . . . , n. We weight the
adjustments equally and apply to the set of arrays. We have
found that after only 1 or 2 complete iterations through all
pairwise combinations the changes to be applied become
small. However, because this method works in a pairwise
manner, it is somewhat time consuming.

Contrast based method The contrast based method is
another extension of the M versus A method. Full details
can be found in Åstrand (2001). The normalization is
carried out by placing the data on a log-scale and
transforming the basis. In the transformed basis, a series
of n − 1 normalizing curves are fit in a similar manner to
the M versus A approach of the cyclic loess method. The
data is then adjusted by using a smooth transformation
which adjusts the normalization curve so that it lies
along the horizontal. Data in the normalized state is
obtained by transforming back to the original basis and
exponentiating. The contrast based method is faster than
the cyclic method. However, the computation of the loess
smoothers is still somewhat time consuming.

Quantile normalization The goal of the quantile method
is to make the distribution of probe intensities for each
array in a set of arrays the same. The method is motivated
by the idea that a quantile–quantile plot shows that the
distribution of two data vectors is the same if the plot is
a straight diagonal line and not the same if it is other than
a diagonal line. This concept is extended to n dimensions
so that if all n data vectors have the same distribution,
then plotting the quantiles in n dimensions gives a straight
line along the line given by the unit vector

( 1√
n
, . . . , 1√

n

)
.

This suggests we could make a set of data have the same
distribution if we project the points of our n dimensional
quantile plot onto the diagonal.

Let qk = (qk1, . . . , qkn) for k = 1, . . . , p be the vector
of the kth quantiles for all n arrays qk = (qk1, . . . , qkn)
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and d =
(

1√
n
, . . . , 1√

n

)
be the unit diagonal. To transform

from the quantiles so that they all lie along the diagonal,
consider the projection of q onto d

projdqk =
(

1

n

n∑
j=1

qkj , . . . ,
1

n

n∑
j=1

qkj

)

This implies that we can give each array the same
distribution by taking the mean quantile and substituting
it as the value of the data item in the original dataset. This
motivates the following algorithm for normalizing a set of
data vectors by giving them the same distribution:

1. given n arrays of length p, form X of dimension
p × n where each array is a column;

2. sort each column of X to give Xsort;

3. take the means across rows of Xsort and assign this
mean to each element in the row to get X ′

sort;

4. get Xnormalized by rearranging each column of
X ′

sort to have the same ordering as original X

The quantile normalization method is a specific case of
the transformation x ′

i = F−1 (G (xi )), where we estimate
G by the empirical distribution of each array and F
using the empirical distribution of the averaged sample
quantiles. Extensions of the method could be implemented
where F−1 and G are more smoothly estimated.

One possible problem with this method is that it forces
the values of quantiles to be equal. This would be
most problematic in the tails where it is possible that a
probe could have the same value across all the arrays.
However, in practice, since probeset expression measures
are typically computed using the value of multiple probes,
we have not found this to be a problem.

Methods using a baseline array
Scaling methods The standard Affymetrix normalization
is a scaling method that is carried out on probeset
expression measures. To allow consistent comparison
with our other methods, we have carried out a similar
normalization at the probe level. Our version of this
method is to choose a baseline array, in particular, the
array having the median of the median intensities. All
arrays are then normalized to this ‘baseline’ via the
following method. If xbase are the intensities of the
baseline array and xi is any array, then let

βi = x̃base

x̃i

where x̃i is the trimmed mean intensity (in our analysis
we have excluded the highest and lowest 2% of probe

intensities). Then the intensities for the normalized array
would be

x ′
i = βi xi

One can also easily implement the scaling algorithm by
using probes from a subset of probesets chosen by using
some stability criteria. The HG-U133 arrays provide a set
of probesets that have been selected for stability across
tissue types, and these could be used for establishing a
normalization.

Non-linear method The scaling method is equivalent to
fitting a linear relationship with zero intercept between the
baseline array and each of the arrays to be normalized.
This normalizing relation is then used to map from each
array to the baseline array. This idea can be extended to use
a non-linear relationship to map between each array and
the baseline array. Such an approach is detailed in Schadt
et al. (2002). This method is used in Li and Wong (2001)
and implemented in the dChip software http://www.dchip.
org. The general approach of these papers is to select a
set of approximately rank invariant probes (between the
baseline and arrays to be normalized) and fit a non-linear
relation, like smoothing splines as in Schadt et al. (2002),
or a piecewise running median line as in Li and Wong
(2001).

The non-linear method used in this paper is as follows.
First we select a set of probes for which the ranks are
invariant across all the arrays to be normalized. Then we
fit loess smoothers to relate the baseline to each of the
arrays to be normalized. These loess normalization curves
are then used to map probe intensities from the arrays to
be normalized to the baseline. This approach is intended
to mimic the approach used in dChip. We expect loess
smoothers to perform in the same manner as splines or
a running median line.

Suppose that f̂i (x) is the loess smoother mapping from
array i to the baseline. Then, in the same notation as above,
the normalized array probe intensities are

x ′
i = f̂i (xi )

Note that as with the scaling method, the baseline is the
array having the median of the median probe intensities.

DATA
We make use of data from two sets of experiments:
A dilution/mixture experiment and an experiment using
spike-ins. We use these datasets because they allow us to
assess bias and variance. The dilution/mixture and spike-
in datasets are available directly from GeneLogic (2002)
and have been made available for public comparison of
analysis methods. This data has been previously described
in Irizarry et al. (2003).
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Fig. 1. A plot of the densities for PM for each of the 27
spike-in datasets, with distribution after quantile normalization
superimposed.

Dilution/mixture data
The dilution/mixture data series consists of 75 HG-U95A
(version 2) arrays, where two sources of RNA, liver
(source A), and a central nervous system cell line (source
B) are investigated. There are 30 arrays for each source,
broken into 6 groups at 5 dilution levels. The remaining 15
arrays, broken into 3 groups of 5 chips, involve mixtures of
the two tissue lines in the following proportions: 75 : 25,
50 : 50, and 25 : 75.

Spike-in data
The spike-in data series consists of 98 HG-U95A (version
1) arrays where 11 different cRNA fragments have been
spiked in at various concentrations. There is a dilution
series consisting of 27 arrays which we will examine in
this paper. The remaining arrays are two sets of latin
square experiments, where in most cases three replicate
arrays have been used for each combination of spike-
in concentrations. We make use of 6 arrays (two sets of
triplicates) from one of the latin squares.

RESULTS
Probe level analysis
Figure 1 plots the densities for the log(P M) for each of
the 27 arrays from the spike-in dataset, along with the
distribution obtained after quantile normalization.

An M versus A plot allows us to discern intensity de-
pendent differences between two arrays. Figure 2 shows
M versus A plots for unadjusted PM for all 10 possible
pairs of 5 arrays in the liver 10 group before normaliza-
tion. Clear differences between the arrays can be seen by
looking at the loess lines. The point clouds are not cen-
tered around M = 0 and we see non-linear relationships

Fig. 2. 10 pairwise M versus A plots using liver (at concentration
10) dilution series data for unadjusted data.

Fig. 3. 10 pairwise M versus A plots using liver (at concentration
10) dilution series data after quantile normalization.

between arrays. The same 10 pairwise comparisons can
be seen after quantile normalization in Figure 3. The point
clouds are all centered around M = 0. Plots produced us-
ing the contrast and cyclic loess normalizations are similar.

Expression measures
Comparing normalization methods at the probeset level
requires that one must decide on an expression measure.
Although in this paper we focus only on one expression
measure, the results obtained are similar when using other
measures.

The expression summary used in this paper is a robust
combination of background adjusted PM intensities and
is outlined in Irizarry et al. (2003). We call this method
the Robust Multichip Average (RMA). RMA estimates
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are based upon a robust average of log2 (B (P M)), where
B (P M) are background corrected PM intensities. The
expression measure may be used on either the natural or
log scales.

Irizarry et al. (2003) contains a more complete discus-
sion of the RMA measure, and further papers exploring its
properties are under preparation.

Probeset measure comparisons
Variance comparisons In the context of the dilution
study, consider the five arrays from a single RNA source
within a particular dilution level. We calculate expression
measures for every probeset on each array and then
compute the variance and mean of the probeset expression
summary across the five arrays. This is repeated for each
group of 5 arrays for the entire dilution/mixture study. We
do this after normalization by each of our three complete
data methods.

Plotting the log of the ratio of variances versus the av-
erage of the log of the mean (expression measure across
arrays) allows us to see differences in the between array
variations and intensity dependent trends when comparing
normalization methods. In this case, the expression mea-
sures have all been calculated on the natural scale. Fig-
ure 4 shows such plots for the liver at the dilution level
10. Specifically, the four plots compare the variance ratios
for quantile : unnormalized, loess : quantile, contrast :
quantile and contrast : loess. The horizontal line indicates
the x-axis. The other line is a loess smoother. Where the
loess smoother is below the x-axis, the first method in the
ratio has the smaller ratio and vice versa when the loess
smoother is above the line. All three methods reduce the
variance at all intensity levels in comparison to data that
has not been normalized. The three normalization methods
perform in a relatively comparable manner, but the quan-
tile method performs slightly better for this dataset, as can
be seen in the loess : quantile and contrast : quantile plots.
Similar results are seen in comparable plots (not shown)
for the other dilution/mixture groups.

We repeat this analysis with the 27 spike-in arrays, but
this time we include the two baseline methods in our
comparison. The complete data methods generally leave
the mean level of a particular probeset at a level similar
to that achieved when using unnormalized data. However,
when one of the two baseline methods is used, the mean
of a particular probeset is more reminiscent of the value of
that probeset in the baseline array. In the natural scale, it is
easy to see a mean-variance relationship, where a higher
mean implies high variability. Thus, when a comparison is
made between the baseline methods and the complete data
methods, we find that if a baseline array which shifts the
intensities higher (or lower) than the level of those of the
unnormalized means is selected, then the corresponding
variance of the probeset measures across arrays is higher
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Fig. 4. log2 variance ratio versus average log2 mean for liver
dilution data at concentration 10.
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Fig. 5. log2 variance ratio versus average log2 mean using the spike-
in data. Comparing the baseline methods with the quantile method.

(or lower) due to the shifting and not because of the
normalization. To minimize this problem and make a fairer
comparison, we work with the expression measure on the
log scale when comparing the baseline methods to the
complete data methods. Figure 5 compares the baseline
methods to the quantile methods. We see that the quantile
method reduces the between array variances more than the
scaling method. The non-linear normalization performs
a great deal closer to the quantile method. Similar plots
(not shown) comparing the complete data methods with
each other for the spike-in data demonstrate that quantile
normalization has a slight edge over all the other methods.
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Fig. 6. Comparing the ability of methods to reduce pairwise
differences between arrays by using average absolute distance from
loess smoother to x-axis in pairwise M versus A plots using spike-in
dataset. Smaller distances are favorable.

A similar plot (not shown) comparing the two baseline
methods shows as expected that the non-linear method
reduces variance when compared to the scaling method.

Pairwise comparison The ability to minimize dif-
ferences in pairwise comparisons between arrays is a
desirable feature of a normalization procedure. An M
versus A plot comparing expression measures on two
arrays should be centered around M = 0 if there is no
clear trend towards one of the arrays. Looking at the
absolute distance between a loess for the M versus A
plot and the x-axis allows us to assess the difference in
array to array comparisons. We can compare methods by
looking at this distance across a range of intensities and
averaging the distance across all pairwise comparisions.

Figure 6 shows such a plot for the spike-in data, we
see that the scaling method performs quite poorly when
compared to the three complete data methods. The non-
linear method performs at a similar level to the complete
data methods. For this dataset the quantile method is
slightly better. An important property of the quantile
method is that these differences remain relatively constant
across intensities.

Bias comparisons One way to look at bias is in the
context of the spike-in dilution series. We use data for the
27 arrays from the spike-in experiment with 11 control
fragments spiked in at 13 different concentrations (0.00,
0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 5.00, 12.50, 25.00,
50.00, 75.00, 100.00, 150.00 pM). We normalize each
of the 27 arrays as a group using each of the quantile,
contrast, cyclic loess and scaling normalizations. To the

spike-in probesets, we fit the following linear model

log2 E = β0 + β1 log2 c + ε

where E is the value of the expression measure and c are
the concentrations. Note that the array with spike-in con-
centration 0 is excluded from the model fit, although it is
used in the normalization. The ideal results would be to
have slopes that are near 1. Table 1 shows the slope esti-
mates for each of the spike-in probesets after normaliza-
tion by each of the three complete data methods, the two
methods using a baseline and when no normalization has
taken place. For the three complete data methods for 10
out of the 11 spike-in probesets, the quantile method gives
a slope closer to 1 and the non-linear method has slopes
lower than the complete data methods. However, both the
scaling and not normalizing have slopes closer to 1. For
the non-spike-in probesets on these arrays we should see
no linear relation if we fit the same model, since there
should be no relation between the spike-in concentrations
and the probeset measures. Fitting the linear model above,
we find that there is a median slope of 0.042 for these
probesets using the unnormalized data. For the quantile
method the value of the median slope is −0.005. All the
other normalization methods have median slope near 0.
This is about the same difference in slopes as we observed
for the spike-ins when comparing the unnormalized data
and the best of the normalization methods. In other words,
there is a systematic trend due to the manner in which the
arrays were produced that has resulted in the intensities of
all the probesets being related to the concentration of the
spike-ins. We should adjust the spike-in slopes by these
amounts. For example, we could adjust the slope of BioB-
5 for the quantile method to 0.845 + 0.005 = 0.850 and
the unnormalized slope to 0.893 − 0.042 = 0.851.

The average R2 for the spike-in probesets, excluding
CreX-3, are 0.87 for the quantile method, and 0.855,
0.849, 0.857 and 0.859 for the contrast, loess, non-linear
and scaling methods, respectively. It was 0.831 for the
unnormalized data. The median standard error for the
slopes was 0.063 for the quantile method. For the other
methods these standard errors were 0.065 (contrast), 0.068
(cyclic loess), 0.063 (non-linear), 0.065 (scaling) and
0.076 (unnormalized). Thus of all the algorithms, the
quantile method has high slopes, a better fitting model and
more precise slope estimates.

The slopes may not reach 1 for several reasons. It is
possible that there is a ‘pipette’ effect. In other words we
can not be completely sure of the concentrations. It is more
likely that we observe concentration plus an error which
leads to a downward bias in the slope estimates. Other
possible reasons include the saturation of signal at the high
end (this is not a concern with this data) and having a
higher background effect at the lower end.
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Table 1. Regression slope estimates for spike-in probesets. A slope closer to one is better

Name Quantile Contrast Loess Non-linear Scaling None

AFFX-BioB-5 at 0.845 0.837 0.834 0.803 0.850 0.893
AFFX-DapX-M at 0.778 0.771 0.770 0.746 0.783 0.826
AFFX-DapX-5 at 0.754 0.747 0.728 0.731 0.764 0.807
AFFX-CreX-5 at 0.903 0.897 0.889 0.875 0.912 0.955
AFFX-BioB-3 at 0.836 0.834 0.825 0.807 0.848 0.890
AFFX-BioB-M at 0.789 0.782 0.781 0.762 0.797 0.838
AFFX-BioDn-3 at 0.547 0.543 0.550 0.514 0.553 0.595
AFFX-BioC-5 at 0.801 0.794 0.793 0.763 0.808 0.851
AFFX-BioC-3 at 0.796 0.790 0.785 0.769 0.805 0.847
AFFX-DapX-3 at 0.812 0.804 0.793 0.776 0.815 0.859
AFFX-CreX-3 at −0.007 −0.006 0.002 −0.007 0.005 0.046
Non-spike-in (median) −0.005 −0.005 −0.005 −0.007 −0.001 0.042

The problems with choosing a baseline The non-linear
(and scaling) method requires the choice of a baseline.
In this paper we have chosen the array having the
median median, but other options are certainly possible.
To address these concerns we examine a set of six arrays
chosen from the spike-in datasets. In particular, we choose
two sets of triplicates, where the fold change of each of
the spike-in probesets between the two triplicates is large.
The two triplicates are chosen so that about half of the
probesets are high in one triplicate and low in the other
and vice versa.

We normalize this dataset using both the quantile and
non-linear methods. However, for the non-linear method
we experiment with the use of each of the six arrays as the
baseline array. We also try using two synthetic baseline
arrays: one constructed by taking probewise means
and one taking probewise medians. Figure 7 shows the
distribution of the mean of the probeset measure across
arrays. We see that the quantile normalization produces
a set of means that is very similar in distribution to the
means of the unnormalized data. The means from the
non-linear normalizations using each of the six different
baseline arrays are quite different from each other and the
unnormalized data. This is somewhat of a drawback to
the baseline methods. It seems more representative of the
complete data to consider all arrays in the normalization
rather than to use only a single baseline and give the
normalized data characteristics closer to those of one par-
ticular array. Only the mean based synthetic baseline array
comes close to the unnormalized and quantile methods.

Table 2 summarizes some results from this analysis.
We see that all the methods reduce the variability of
the probeset measure between arrays compared to that
of the unnormalized data. In each case, around 95% of
the probesets have reduced variance. When compared to
the quantile method, it comes out more even with a little
over 50% of probesets having reduced variance for four of

None Quantile means median 1 2 3 4 5 6
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12

14

Method

Mean of probeset expression based on 6 chips

Fig. 7. Distribution of average (over 6 chips) of a probeset
expression measure using different baseline normalizations.

the baselines. However, two baseline arrays perform quite
poorly. As noted before, this is a reflection of the baseline
methods shifting the intensities higher or lower depending
on the baseline. The mean based synthetic baseline does
not reduce the variabilty of the probeset measure to the
same degree as the quantile method.

Looking at the 11 spike-in probesets, we calculate bias
by taking the difference between the log of the ratio
between spike-in concentrations and the log of the ratio
of intensities in the two groups. One spike-in, Crex-3, did
not seem to perform quite as well as the other spike-ins
and was excluded from the analysis. Looking at the total
absolute bias across the 10 spike-in probesets, we see that
the non-linear method has lower total bias (compared to
the quantile method) for four of the methods, but two
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Table 2. Comparing variance and bias with the non-linear normalization when using different baselines

Method % with lower var % lower var Abs # abs # abs
reduced cf. U reduced cf. Q Bias Bias cf U Bias cf Q

Probewise mean 83 40 9.2 5 5
Probewise median 96 58 7.9 6 6
Non-linear 1 96 53 7.5 7 5
Non-linear 2 93 31 11.8 2 4
Non-linear 3 94 37 10.5 4 4
Non-linear 4 95 47 7.4 6 5
Non-linear 5 96 55 7.4 7 5
Non-linear 6 96 55 7.5 7 5
Quantile (Q) 95 NA 8.5 6 NA
Unnormalized (U) NA NA 9.7 NA NA

are even bigger than for unnormalized data. Again, this
is related to the mean–variance relationship. The four
baselines shifted slightly lower in the intensity scale give
the most precise estimates. Using this logic, one could
argue that choosing the array with the smallest spread and
centered at the lowest level would be the best, but this does
not seem to treat the data on all arrays fairly. Compared to
the unnormalized data, 6 of the spike-in probesets from the
quantile normalized data have a smaller bias. For the non-
linear normalization using array 1 as the baseline (this is
the array chosen using our heuristic), 7 had smaller bias.
However, looking at the other baselines, anywhere from
2 to 7 probesets had lower bias. When compared to the
quantile method, the results are more even, with about
an equal number of the spike-in probesets having a lower
bias when using the non-linear method as when using the
quantile normalization. An M versus A plot between the
two groups shows all the spike-in points clearly outside the
point cloud, no matter which normalization is used. This
plot for quantile normalized data is shown in Figure 8.

CONCLUSIONS
We have presented three complete data methods of nor-
malization and compared these to two different methods
that make use of a baseline array. Using two different
datasets, we established that all three of the complete
data methods reduced the variation of a probeset measure
across a set of arrays to a greater degree than the scaling
method and unnormalized data. The non-linear method
seemed to perform at a level similar to the complete
data methods. Our three complete data methods, while
different, performed comparably at reducing variability
across arrays.

When making pairwise comparisons the quantile
method gave the smallest distance between arrays. These
distances also remained fairly constant across intensities.

In relation to bias, all three complete data methods

2 4 6 8 10 12
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–2
0

2
4

6
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M

M vs A plot for spikein triplicates

Fig. 8. M versus A plot for spike-in triplicate data normalized using
quantile normalization. Spike-ins are clearly identified.

performed comparably, with perhaps a slight advantage
to the quantile normalization. The non-linear method did
poorer for the spike-in regressions. The scaling method
had slightly higher slopes. Even so, they were more
variable.

We saw that the choice of a baseline does have
ramifications on down-stream analysis. Choosing a poor
baseline would conceivably give poorer results. We also
saw that the complete data methods perform well at both
variance reduction and on the matter of bias, and in
addition more fully reflect the complete set of data. For
this reason we favor a complete data method.

In terms of speed, for the three complete data methods,
the quantile method is the fastest. The contrast method
is slower and the cyclic loess method is the most time
consuming. The contrast and cyclic loess algorithms are
modifications of an accepted method of normalization.
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The quantile method has performed favorably, both in
terms of speed and when using our variance and bias
criteria, and therefore should be used in preference to the
other methods.

While there might be some advantages to using a
common, non-data driven, distribution with the quantile
method, it seems unlikely an agreed standard could be
reached. Different choices of a standard distribution might
be reflected in different estimated fold changes. For this
reason we prefer the minimalist approach of a data based
normalization.
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ABSTRACT

Empirical Bayes models have been shown to be powerful tools for identifying differentially
expressed genes from gene expression microarray data. An example is the WAME model,
where a global covariance matrix accounts for array-to-array correlations as well as differ-
ing variances between arrays. However, the existing method for estimating the covariance
matrix is very computationally intensive and the estimator is biased when data contains
many regulated genes. In this paper, two new methods for estimating the covariance matrix
are proposed. The first method is a direct application of the EM algorithm for fitting the
multivariate t-distribution of the WAME model. In the second method, a prior distribution
for the log fold-change is added to the WAME model, and a discrete approximation is used
for this prior. Both methods are evaluated using simulated and real data. The first method
shows equal performance compared to the existing method in terms of bias and variability,
but is superior in terms of computer time. For large data sets (>15 arrays), the second
method also shows superior computer run time. Moreover, for simulated data with regu-
lated genes the second method greatly reduces the bias. With the proposed methods it is
possible to apply the WAME model to large data sets with reasonable computer run times.
The second method shows a small bias for simulated data, but appears to have a larger bias
for real data with many regulated genes.

Key words: microarray data, gene expression, moderated analysis, weighted analysis.

1. INTRODUCTION

GENE EXPRESSION MICROARRAY TECHNOLOGIES measure the abundance of mRNA sequences in
biological samples. Simultaneously, measurements for thousands of genes are obtained for each

sample. Before acquiring the actual measurements, the samples are subject to several laboratory steps
such as isolation of total RNA, transcription to complementary RNA, and fragmentation. After the wet
laboratory procedures, the raw image intensity files are pre-processed, which typically involves background
correction and normalization.

Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University, Göteborg,
Sweden.
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When obtaining the biological samples (e.g., taking biopsies) and during the laboratory work, many
sources of variations are introduced that may affect the final measurements. The pre-processing can reduce
variability, but it can also introduce new sources of variation when the assumptions made do not hold. For
instance, practically all normalization methods rely on an assumption of a rough balance between up- and
down-regulation. The quality of the manufactured arrays is also known to vary. Altogether this means that
data quality within an experiment often varies across the arrays.

Moreover, when sources of variations are shared between arrays, we can expect correlations between
the measurements. For example, as mentioned by Kristiansson et al. (2006), mRNA may be more or less
degraded, and when biopsies contain several cell types, the mixture proportions can differ. When this is the
case, we can expect arrays with equal mRNA degradation or with similar mixture proportions to show more
similar gene profiles compared to arrays with different mRNA degradation and cell mixture proportions.

To accommodate these differences in data quality (i.e., differences in variances and the possibility of
correlations between arrays), the empirical Bayes WAME model was introduced in Kristiansson et al.
(2005), and further developed in Kristiansson et al. (2006) and Sjögren et al. (2007). WAME makes use of
a global covariance matrix common to all genes. The covariance matrix is scaled between genes by a gene-
specific parameter assumed to be inverse-gamma distributed. Another empirical Bayes approach taking the
quality issue into account is weighted LIMMA (Ritchie et al., 2006). However, here only differences in
variances across arrays are considered; correlations between arrays are assumed to be zero.

Several other empirical Bayes and fully Bayesian procedures are found in the literature. Baldi and Long
(2001) derive a posterior probability of regulation for each gene based on two posterior models, whereas
Lönnstedt and Speed (2002) compute the posterior odds for differential expression. In Smyth (2004), a
moderated t-statistic is used and shown to be a monotonic function of the posterior odds. Closely related
to the moderated t-statistic are penalized t-tests such as the SAM method in Tusher et al. (2001).

In Broët et al. (2002), a fully Bayesian model is applied directly to the observed mean differences
between two conditions. For each gene, a posterior distribution across an unknown number of regulation
levels is derived. Lönnstedt and Britton (2005) explore several fully Bayesian models, of which one shows
good fit to the data sets examined. However, in terms of accurate ranking of genes, the empirical Bayes
models perform at least as good the fully Bayesian model.

A Bayesian model incorporating array effects (i.e., normalization) is suggested by Lewin et al. (2006).
Based on the joint posterior distribution a gene-selection procedure using multiple criteria is proposed.
A fully Bayesian model, specifically designed for Affymetrix types of arrays, which does not require
replicates is used by Hein and Richardson (2006).

The current version of WAME estimates the global covariance matrix under the temporary assumption
of no regulated genes. Once the covariance matrix estimator is obtained the assumption is relaxed and
the remaining model parameters are estimated. However, due to the temporary assumption, the covariance
matrix estimator is biased when regulated genes exists. Also, the computational procedure used is very
computational intensive resulting in long computer run times. The aim of this paper is to eliminate or
reduce these two drawbacks. We recapitulate the results of Kristiansson et al. (2006) and Sjögren et al.
(2007) describing the WAME model for analyzing designed microarray experiments. Then an alternative
computational procedure (method I) is introduced which considerably reduces the computational time
required for estimating the global covariance matrix. Secondly, the WAME model is expanded with a prior
distribution for the log fold-change and an estimation procedure (method II) relaxing the assumption of no
regulation is described. These two methods are compared with the current WAME procedure on simulated
and real data.

2. DESIGNED MICROARRAY EXPERIMENTS

Let yig be the log-scale gene expression measurement for gene g on array i , for a total of G genes and
p arrays, and put yg D .y1g; : : : ; ypg/

T . For a designed microarray experiment the vector �g D EŒyg�,
the log-intensity profile for gene g across the arrays, is determined by a full rank p � k design matrix D
through �g D D�g where �g is a gene-specific parameter vector of length k. The aim is to estimate C�g

and thus the matrix C specifies the linear combinations of �g that are of interest.
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As an example, consider a one-channel experiment comparing two conditions with two replicates for
each condition. With condition one on array 1 and 3, and condition two on array 2 and 4, the design matrix
D1 below can be used (the design matrix is generally not uniquely determined). Put �g D .�g1; �g2/

T ,
where �g1 denotes the mean intensity for gene g, and �g2 is half the intensity difference between the
two conditions. For a two-color dye-swapped spotted array experiment with four arrays and condition one
colored green on array 1 and 3 the design matrix D2 below would be a natural choice when analyzing the
logged R/G ratio. The parameter vector consists of one element with the same interpretation as �g2 in the
first example.

D1 D

2664
1 �1

1 1

1 �1

1 1

3775 D2 D

2664
1

�1

1

�1

3775
For estimating the logged fold-change, we use C D Œ0; 2� and C D Œ2� in the first and second example,
respectively.

3. WEIGHTED ANALYSIS

The model suggested by Kristiansson et al. (2005) uses a global covariance structure and a gene-specific
scaling factor to model dependency between arrays. Formally, for g D 1; : : : ; G let

ygjcg � Np.�g; cg†/

cg � ��1.m=2;m�=2/:
(1)

Here Np.�;†/ denotes a p-dimensional normal distribution with mean � and covariance matrix † and
��1.˛; ˇ/ is the inverse-gamma distribution with density function f .x/ D ˇ˛ expf� ˇ

x
gx�.˛C1/=�.˛/

for x > 0. As described the model is not identifiable. The likelihood evaluated at .†; �; m/ equals the
likelihood evaluated at .ı�1†; ı�; m) for any ı > 0. To get an identifiable model, we can use a restriction
on †, e.g., trace.†/ D p, or a restriction on �, say � D 1. Note that Kristiansson et al. (2005) uses another
parameterization (m D 2˛, � D 1=˛) with no restriction on †.

The method for estimating the covariance matrix † of model (1) suggested by Kristiansson et al. (2005)
only works for designs where no regulation implies �g D 0. This typically holds for the dye-swap example
above. But not for the first example with design matrix D1 since the first parameter �g1 is the mean log-
intensity which is strictly positive for most genes. However, as shown by Sjögren et al. (2007), such data
can be transformed by subtracting the vector D O�0

g from yg , where O�0
g is a suitable estimator for �g under

the assumption of no regulation. For unpaired designs comparing two conditions, such as our first example,
this means subtracting the mean intensity across the arrays for each gene, that is

yig ! yig � Ny�g ; i D 1; : : : ; p; where Ny�g D
1

p

pX
j D1

yjg :

The design matrix is transformed accordingly by subtracting the column mean from each column. This
means that the first column is a vector of zeros and can be omitted, while the second column is unchanged.
Hence, for the transformed data we can use the design matrix D2 of the second example.

Given an estimator of † together with estimates of m and � these are treated as known, and weighted
moderated F - and t-tests are derived. When C consists of one row only, the weighted moderated t-tests
for the linear combination in C is based on the unbiased minimum variance estimator of C�g :

dC�g D C.DT†�1D/�1DT†�1yg : (2)
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Under H0: C�g D 0, the weighted moderated t-statistic

Qt D

s
p � k Cm

C.DT†�1D/�1C T

dC�gp
m� C RSSg

(3)

is t-distributed with p � k Cm degrees of freedom. Here

RSSg D yT
g

�
†�1 �†�1D.DT†�1D/�1DT†�1

�
yg (4)

is the weighted residual sum of squares. See Kristiansson et al. (2006) for details.

4. ESTIMATING †, m, AND �: METHOD I

In this section, an alternative method, referred to as method I, for estimation of †, m and � is described.
As for the method used by Kristiansson et al. (2005), it is based on the temporary assumption of no
regulated genes. When �g is set to zero for all genes model (1) describes a multivariate t-distribution
with zero mean and m degrees of freedom. For the purpose of fitting a multivariate t-distribution, the EM
algorithm (Dempster et al., 1977) and extensions of it have been shown to be powerful tools. Many of the
applications deal with missing data, and the situation with unknown degrees of freedom was considered by
Lange et al. (1989). In comparison, our situation is very simple. The degrees of freedom is still unknown,
but the mean vector is zero and there are no missing data.

4.1. Estimation using the EM-algorithm

With the EM algorithm a current approximation, the Q function, of the real log-likelihood function,
is found in the E-step and maximized in the M-step. The observed data is augmented with missing or
unobserved data into a complete data set. The Q function is then defined as the expectation of the log-
likelihood function of the complete data set. The expectation is with respect to the conditional distribution
of the missing or unobserved data, given the observed data and the current parameter estimate. The M step
results in an updated parameter which is again feed into the E and M step, resulting in another estimate,
and so on. When the change in the parameter estimate is small enough the iterations are stopped.

In our situation the gene-specific scaling factors, the cgs, are the missing data. We use the restriction
� D 1, and we assume independence between genes. Under model (1), with �g equal to zero and � equal
to 1, the joint density function of .yg ; cg/ is

p.yg; cgj†;m/ D pNp .yg j0; cg†/p��1 .cg jm=2;m=2/

where pNp and p��1 are the density function of the multivariate normal and inverse gamma distributions
respectively. Hence, with Tg D .yg ; cg/ and � D .†;m/, the contribution from Tg to the complete
log-likelihood of T1; : : : ; TG is (up to a constant)

Lg.�; Tg/ D �
1

2
log.j†j/ �

yT
g †

�1yg

2cg

�
mC p C 2

2
log.cg/

�
m

2cg

C
m

2
log

�m
2

�
� log.�.m=2//: (5)

The E-step consists of evaluating the conditional expectation of the complete log-likelihood. Under the
assumption of independence between genes, we can treat each gene individually. Hence, we need to
evaluate the conditional expectation of Lg.�; Tg/ with respect to the distribution of Tg jyg governed by the
parameter �0. That is, the distribution of cgjyg; �0 which is ��1.m�=2;m���=2/ where

m� D m0 C p and �� D
yT

g †
�1
0 yg Cm0

m0 C p
:



IMPROVED COVARIANCE MATRIX ESTIMATORS 1357

For a random variable x � ��1.˛; ˇ/ we have EŒlog.x/� D log.ˇ/ �  .˛/ and EŒx�1� D ˛=ˇ from the
properties of the log-gamma and gamma distribution, respectively (Johnson et al., 1995), where  is the
digamma function. So the E-step (up to a constant) results in a sum across all genes where the contribution
from gene g is

Qg.�; �0/ D EŒLg.�; Tg/jyg; �0�

D �
1

2
log.j†j/ �

yT
g †

�1yg

2
�

m0 C p

yT
g †

�1
0 yg Cm0

C
m

2
log

�m
2

�
� log.�.m=2// �

m

2
�

m0 C p

yT
g †

�1
0 yg Cm0

�
mC 2

2

 
log

 
yT

g †
�1
0 yg Cm0

2

!
�  

�
m0 C p

2

�!
: (6)

In the M step, the Q function, Q.�; �0/, equal to the sum of Qg.�; �0/ across all genes g, is to be
maximized with respect to � D .†;m/. The part of (6) depending on † can be written as

�
1

2
log.j†j/ �

zT
g †

�1zg

2
where zg D yg �

s
m0 C p

yT
g †

�1
0 yg Cm0

:

Hence, the value of † maximizing the Q-function is equal to the ordinary maximum likelihood estimator
for the multivariate normal distribution with known zero mean, given data z1; : : : ; zG:

O† D
1

G

GX
gD1

zgz
T
g :

The value of m maximizing Q is found using numerical optimization of the function f :

f .m/ D
m

2

�
log.m/ � log.2/ � S1

�
� log .�.m=2//

where

S1 D
1

G

GX
gD1

"
log

 
yT

g †
�1
0 yg Cm0

2

!
�  

�
m0 C p

2

�
C

m0 C p

yT
g †

�1
0 yg Cm0

#
:

This finalizes the updating of m and †. It remains to set start values. We do this assuming independence
and equal variances: † D ˛Ip for ˛ > 0 and Ip equals the identity matrix. With MSSg D yT

g yg=p we get

EŒlog.MSSg/� D log.m˛=p/C  .p=2/�  .m=2/ and

var.log.MSSg// D  0.m=2/C  0.p=2/:

Here  and  0 are the digamma and trigamma functions, respectively. Start values m and † D ˛Ip are
found by setting the sample mean and squared sample standard deviation of MSSg across all genes equal
to the theoretical ones above.

The method just described uses the restriction � D 1. However, later on we will use the restriction
trace.†/ D p. That is, the obtained estimates (under � D 1) are transformed according to

O� ! trace. O†/=p and O† ! p O†=trace. O†/:
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5. ESIMATING †, m, AND �: METHOD II

In this section, model (1) is extended with a prior distribution for �g. Before specifying the model we
define a linear transformation of the vector yg . Assume D, C , and �g are as described in Section 2 and
suppose the matrix C has one row only. Thus, with �g D D�g we wish to estimate ıg D C�g or test the
hypothesis H0: ıg D 0. For doing this we find full rank matrices A and B whose columns define linear
combinations of yg having expectation zero and ıg, respectively. From D and C form the p�p and p� 1

matrices

A0 D I �D.DTD/�1DT and B D D.DTD/�1C T :

Since A0 is of rank p�k only, we let A be a p�.p�k/ matrix whose columns span the same subset of R
p

as the columns of A0, for example derived by iteratively removing linearly dependent columns from A0.
With EŒyg � D �g D D�g some algebra gives

EŒAT yg � D 0 and EŒBT yg� D C�g D ıg :

All other linear combinations of yg , that are linearly independent of the ones in A and B , measure other
aspects of �g. Hence, for the purpose of estimating ıg, or testing the hypothesis H0 it is natural to only use
the linear combinations of yg determined by the columns of A and B . The legitimacy of this statement
can also be shown using the principle of invariance under a group of linear transformations. Given the
group of transformations it follows that only test-statistics depending on a maximal invariant needs to be
considered. In our case, the linear combinations determined by A and B form such a maximal invariant.
For details, see chapter 6 of Lehmann (1986).

Now, let xg be the q D p � k C 1 sized vector of transformed log-intensities defined in terms of the
p � q transformation matrix P :

xg D P T yg where P D ŒAIB�: (7)

Then EŒxg� D .0; : : : ; 0; ıg/
T and for vectors with such a mean structure, we specify the following model.

For g D 1; : : : ; G let

xgjcg � Nq.�g ; cg†/

cg � ��1.m=2;m�=2/

�g D .0; : : : ; 0; ıg/
T

ıg �

(
� 0 with prob.  0

F.ˇ/ with prob. 1 �  0:

(8)

The difference from model (1) is the structure of �g and the distributional assumption on ıg. The continuous
distribution F.ˇ/ depends on a parameter vector ˇ with density function f .xjˇ/. As for model (1) a
restriction on � or † is needed for identifiability. The covariance matrix † can be divided according to

† D

"
†A †AB

†T
AB †B

#

where †A is the covariance matrix for all dimensions but the last, †B is just the variance of the last
dimension and †AB consists of the covariances between the last dimension and all other dimensions of xg.

Model (8) is fitted in two steps. First, the last dimension of x is dropped. That is, we only use the linear
combinations of yg for which the design implies zero mean. Hence, the assumption of zero mean used in
method I is fulfilled and the method can be applied without risk of introducing bias into the estimates of
m, � and †A. The hyperparameters m and � are then treated as known and equal to the estimated values.
In step 2 estimates of † and ˇ are computed under the restriction trace .†A/ D q�1 which was also used
in step 1. Thus the only information carried over from step 1 about †A is the scale. It is also possible to
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derive estimates of the submatrices †AB and †B by holding †A fixed but we find it easier to re-estimate
the complete covariance matrix †. The model is fitted by replacing the continuous distribution F.ˇ/ by
a discrete version QF .ˇ/ with equally spaced support points ˛1; : : : ; ˛r . Thus, the prior distribution of ı
is discrete on f0; ˛1; ˛2; : : : ; ˛rg. Throughout this article we have used r D 100, which generally appears
to be large enough. The support points are set so that the range covers 99.9% of the observed data. As
for method I, we will use the EM algorithm, treating the cg’s and ıg’s as missing data. The procedure is
described below.

5.1. Estimating † using a discrete prior for ı

With ˛0 D 0 we have P.ı D ˛j / D  j for j D 0; : : : ; r . Thus the joint density function of .xg ; cg; ıg/

is

p.xg; cg; ıg D ˛j j†;m; �;  0; : : : ;  r/ D pNq .xg j�˛j ; cg†/ � p��1.cg jm=2;m�=2/�  j

where � is a vector of length q equal to .0; : : : ; 0; 1/T . Following the recipe of method I, with Tg D
.xg; cg; ıg/ and � D .†;  0; : : : ;  r/, the contribution to the complete log-likelihood from Tg is (up to a
constant)

Lg.�; Tg/ D

rX
j D0

I.ıgD˛j /

�
log. j / �

1

2
log.j†j/ �

.xg � �˛j /
T†�1.xg � �˛j /

2cg

�
where IA is the indicator function for the event A. For the E-step, we need to find the conditional expectation
of

I.ıgD˛j / and
I.ıgD˛j /

cg

:

The distribution of cgjıg D ˛j ; xg; �0 is ��1.m�=2;m���
gj =2/ with

m� D mC q and ��
gj D

.xg � �˛j /
T†�1

0 .xg � �˛j /Cm�

mC q
:

Further, integrating out cg yields the density of xgjıg D ˛j ; �0

p.xgjıg D ˛j ; �0/ /
�
.xg � �˛j /

T†�1
0 .xg � �˛j /Cm�

��.mCq/=2
D
h
m���

gj

i�.mCq/=2

and we get

p.ıg D ˛j jxg; �0/ / p.xg; ıg D ˛j j�0/ D p.xgjıg D ˛j ; �0/ p.ıg D ˛j j�0/

/
h
m���

gj

i�.mCq/=2

�  0j :

Hence, with C�1
g D

Pr
j D0

h
m���

gj

i�.mCq/=2

�  0j we have

p�
gj D E

�
I.ıgD˛j /jxg; �0

�
D p.ıg D ˛j jxg; �0/ D Cg

h
m���

gj

i�.mCq/=2

�  0j

and

E
�
I.ıgD˛j /

cg

ˇ̌̌̌
xg; �0

	
D p.ıg D ˛j jxg; �0/ � E

�
1=cgjıg D ˛j ; xg; �0

�
D p�

gj =�
�
gj :

Thus, E
�
Lg.�; Tg/jxg; �0

�
is equal to

rX
j D0

p�
gj

 
log. j / �

1

2
log.j†j/ �

.xg � �˛j /
T†�1.xg � �˛j /

2v�
gj

!
: (9)
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Turning to the M-step we start with the part of (9) that depends on the  j ’s. Summing up the contributions
from T1; : : : ; TG we need to maximize

GX
gD1

rX
j D0

log. j / p
�
gj D

rX
j D0

log. j / Onj where Onj D

GX
gD1

p�
gj : (10)

This means that the maximization with respect to the  j ’s can be done using the sufficient statistics
On0; : : : ; Onr . The parameters  0; : : : ;  r must form a proper density and for j > 0,  j D Cf .˛j jˇ/ for
a constant C > 0 where f is the density function of the continuous distribution F in (8). With these
restrictions, (10) reduces to

On0 log
�
1 � C

rX
j D1

f .˛j jˇ/
�

C

rX
j D1

Onj log
�
Cf .˛j jˇ/

�
which should be maximized with respect to ˇ and the constant C . The optimal C is

OC D
�
1 � On0= On�

�. rX
j D1

f .˛j jˇ/ where On� D On0 C � � � C Onr

which means that O 0 D On0= On�. The optimal ˇ is found by maximizing

rX
j D1

Onj log
�
f .˛j jˇ/

�
� . On� � On0/ log

� rX
j D1

f .˛j jˇ/
�
:

To find the optimal †, we introduce scaled and shifted versions of each observed vector xg:

zgj D .xg � �˛j / �
q
p�

gj=�
�
gj :

Then the part of (9), which should be maximized with respect to †, is

�

GX
gD1

rX
j D0

 
p�

gj

1

2
log.j†j/C

zT
gj†

�1zgj

2

!
D �

G

2
log.j†j/ �

GX
gD1

rX
j D0

zT
gj†

�1zgj

2

since p�
g0 C � � � C p�

gr D 1 for all g. This means that the optimal † is

O† D
1

G

GX
gD1

rX
j D0

zgj z
T
gj :

The updating of † and ˇ is completed by scaling O† to comply with the restriction trace.†A/ D q � 1.

6. SIMULATION WITH SPECIFIED COVARIANCE MATRIX

Using the same setup as Kristiansson et al. (2005), five different cases where studied as listed in Table 1.
Each simulated dataset consists of 10,000 genes and four arrays. Data for each gene was generated as
follows: y1; : : : ; y4 were generated as iid from either a standard normal distribution or a scaled (to unit
variance) t-distribution (df D 5). For a fixed covariance matrix † and a scaling factor c generated from
the ��1.2; 2/–distribution, the vector y D .y1; : : : ; y4/

T was multiplied by the square rot matrix of c†:
y ! .c†/1=2y. The covariance matrix was either the diagonal matrix † D diag.0:4; 0:8; 1:2; 1:6/ or the
† described in Table 2. If a gene was selected to be up (or down) regulated, a scalar 	 was added to (or
subtracted from) the vector y: y ! y˙ 1	. The 	’s were generated from a uniform distribution between
0 and 2 (or 0 and 4).
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TABLE 1. DESCRIPTION SUMMARY OF THE FIVE CASES SIMULATED WITH SPECIFIED COVARIANCE MATRIX

Method I Method II

Case Correlation
Heavy
tails

Regulated
genes Om O� Om O� 1 � O 0

1 No No No 4.00 1.00 4.02 1.00 0.31%
2 Yes No No 4.00 1.00 4.02 1.00 0.28%
3 Yes Yes No 3.05 0.77 3.11 0.78 0.02%
4 Yes No Medium 4.03 1.09 4.02 1.01 5.67%
5 Yes No Large 3.54 1.16 4.00 1.02 6.24%

“Heavy tails” denotes replacing normal distribution of the y’s with the t -distribution with 5 degrees of freedom. When regulation
is present, 5% of the genes were selected to be regulated in each direction. For correlation “No,” the true covariance matrix † is
diagonal with diagonal elements 0.4, 0.8, 1.2, and 1.6. For correlation “Yes,” † is as listed in Table 2. The size of the regulation is
uniform between 0 and 2 (Medium), or between 0 and 4 (Large). The means of Om, O�, and O 0 are calculated across 1000 simulated
data sets. The corresponding STDs for Om and O� ranged between 1.2% and 2.6% of the listed means. True values of m and � are 4
and 1, respectively. For 1�  0 , the true value is 0% in cases 1, 2, and 3, and 10% in cases 4 and 5.

For method II, the distribution F is the symmetric mixture of two �-distributions in Table 3. Further,
since method II estimates the covariance of transformed log-intensities (x D P T y) the obtained estimates
were transformed into estimates of the covariance matrix of y using

O† ! P O†P T where P D
1

2

2664
1 1 1 1

1 �1 �1 1

�1 1 �1 1

�1 �1 1 1

3775 :
The result is found in Tables 1 and 2. In cases 1 and 2, when all assumptions of the models are true,

including that of no regulated genes of method I, the estimates of m, � and † are all unbiased. When the
assumption on conditional normal distribution of the y’s is violated in case 3, the estimate of † appears
to be as good as in cases 1 and 2. However, the shape and scale parameters are systematically too small.

In cases 4 and 5, where the assumption of method I on all genes being unregulated is violated, the
method I estimate of † becomes biased. A bias is also observed for method II but compared to method I
the bias is small. The WAME method for estimating † showed identical results with method I in terms of
bias and variability for all five cases (results not shown).

In Figure 1, a subset of 100 of the fitted �-densities are shown for cases 4 and 5. Compared with the
true scaled density, the scaled fitted densities have generally too little mass especially for ı close to zero.
This is in line with the underestimated proportion of regulated genes in Table 1.

TABLE 2. PERFORMANCE SUMMARY OF METHODS I AND II WITH RESPECT TO BIAS

OF THE ESTIMATOR O† OF †

Bias: Mean . O†/� †

† Method I Method II

4

2664
0:4 0:2 0:1 0:0

0:2 0:8 0:4 0:2

0:1 0:4 1:2 0:6

0:0 0:2 0:6 1:6

3775
2664
0:04 0:05 0:06 0:07

0:05 0:01 0:04 0:05

0:06 0:04 �0:01 0:03

0:07 0:05 0:03 �0:04

3775
2664
0:00 0:00 0:00 0:00

0:00 �0:00 0:00 0:00

0:00 0:00 0:00 0:00

0:00 0:00 0:00 �0:00

3775

5

2664
0:4 0:2 0:1 0:0

0:2 0:8 0:4 0:2

0:1 0:4 1:2 0:6

0:0 0:2 0:6 1:6

3775
2664
0:09 0:12 0:13 0:15

0:12 0:03 0:09 0:12

0:13 0:09 �0:03 0:07

0:15 0:12 0:07 �0:09

3775
2664
0:01 0:01 0:02 0:02

0:01 0:00 0:01 0:01

0:02 0:01 �0:00 0:01

0:02 0:01 0:01 �0:01

3775
The means are based on 1000 simulated data sets. The different cases are further described in Table 1. The table shows results for

cases 4 and 5 only; for cases 1, 2, and 3, neither method I or II showed any bias.
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TABLE 3. DESCRIPTION OF PRIORS

�-mixture: ı �

8<:� 0 with probability  0

˙�.˛; ˇ/ each side with probability .1 �  0/=2

Asymmetrical �-mixture: ı �

8̂̂̂<̂
ˆ̂:

� 0 with probability  0

C�.˛1 ; ˇ1/ with probability  1

��.˛2 ; ˇ2/ with probability 1 �  0 �  1

Gaussian kernel: ı �

8<:� 0 with probability  0

FN;0:2 with probability 1 �  0

FN;˛ denotes a kernel density using a Gaussian kernel with bandwidth adjusted by the factor
˛—that is, the default bandwidth (as defined in Silverman [1986], page 48, equation 3.11)
multiplied with ˛.

A second simulation with m set to 1 was also performed (method I only, data not shown). The perfor-
mance of the estimators follows the same pattern as with m equal to 4. Further, using a subset of 100 data
sets from cases 4 and 5, a third analysis was done (data not shown). In this analysis, the distribution F
of ı was specified by a Gaussian kernel density (Table 3). With this choice of prior the mean estimated
proportion of regulated genes was 9.6 and 9.1 for cases 4 and 5, respectively, and the estimate of † showed
no bias.

7. SIMULATION BASED ON REAL DATA

A second simulation was done based on the 18 arrays of the severe group of the chronic obstructive
pulmonary disorder (COPD) data set (Spira et al., 2004), publicly available at the Gene Expression Om-
nibus repository (www.ncbi.nlm.nih.gov/geo/, series reference number GSE1650) consisting of data from
Affymetrix arrays of type HG U133A. Using RMA expression indexes (Irizarry et al., 2003), 1000 data
sets were generated and analyzed as follows: A random subset sized 8 was drawn from the 18 arrays and

FIG. 1. (A) Computational time for estimating † as a function of the number of arrays. Point-wise mean with each
mean based on 20 different data sets. (B) Fitted priors for 100 of the simulated datasets for case 4 of the simulation
with specified covariance matrix. Gray curves are fitted densities, times the probability for a gene being regulated:
Of � .1 � O 0/. Black heavy line shows the true prior. Only the positive parts of the priors are shown. (C) As B, but

for case 5.
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divided into two equally sized groups. At this point, method I was used on the transformed log-intensities
to estimate †, �, and m. A random subset of 10% from the 22,283 probe sets was selected. For each
selected probe set, a true regulation generated from the �-distribution (shape D 2, scale D 4) was added
(or subtracted) to one of the two groups of four arrays. The scaled density is shown in Figure 2. After
adding regulated genes method I and II were used on the transformed log-intensities. This is the same
setup as used by Sjögren et al. (2007). Note that method I as well as method II was applied on transformed
log-intensities. If y is the vector of eight log-intensities, analysis was done on the vector x of seven
transformed log-intensities obtained as in (7) with

DT D

�
1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1

	
and C D

�
0 2

�
specifying the transformation, as described in Section 5. For this simulation we do not know the true values
of †, �, and m. But we can compare the estimators obtained using method I on data without any regulated
genes, with the ones obtained from the corresponding data with regulated genes. Ideally, the estimators of
†, �, and m should not be affected by the added regulation. The symmetric mixture of two �-densities in
Table 3 was used as prior for the regulated genes for method II. Hence, the same density as the one used
to generate the regulation. The result is summarized in Table 4 and Figure 2.

As seen in Table 4, all covariances as well as variances of the †A part of † are fairly unaffected by
the regulation for both methods. However, for method I the estimators of �, m, and the variance †B are
clearly affected when regulation is added. The most obvious bias is seen when looking at the variance †B ,
which is overestimated by a factor of 1.6. The result for method II is closer to the ideal with a slight bias
for †B of 3%. Moreover, the mean estimated proportion of regulated genes is close to the true proportion.
In graph A of Figure 2, a subset of the fitted �-densities are plotted. The fitted densities are close to the
true scaled density for ı above 0.75, whereas the fitted densities differ more from the true density for ı
closer to zero. Graph B show the empirical distribution of the p-values obtained using method I and II.
Due to the overestimated variance †B , the p-values of method I are conservative, while method II shows
no sign of producing conservative p-values.

FIG. 2. Summary for simulation based on real data. (A) Fitted prior for ı for 100 of the simulated data sets. Gray
curves are densities, times the probability for a gene being regulated: Of � .1� O 0/. Black line is the true scaled density.
Only the positive part is shown. (B) Pointwise median of the empirical distribution of observed p-values. Dashed line
indicates optimal result under maximal power for detecting all regulated genes. The close-up also displays pointwise
5% and 95% quantiles, together with the pointwise median.
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TABLE 4. SUMMARY FOR SIMULATION BASED ON REAL DATA

Method I Method II

Mean STD Mean STD

Differences of covariances 0.000 0.003 0.000 0.002
Ratios of variances †A 1.000 0.002 1.000 0.001
Ratios of variance †B 1.660 0.098 1.026 0.017
Ratios of � 1.078 0.014 1.001 0.007
Ratios of m 0.881 0.028 0.991 0.024
1 �  0 (%) — — 9.1 0.8

For each simulated dataset, three different estimators of †, �, and m were com-
puted: (1) using method I without added regulation, (2) using method I with added
regulation, and (3) method II with added regulation. Differences and ratios of 2 and
1 (method I) and 3 and 1 (method II) are summarized by mean and STD across all
simulated data sets. Proportion of regulated genes was obtained using method II only.
Differences and ratios should ideally be zero and 1, respectively. The true proportion
of regulated genes was 10%.

8. COMPUTER RUN TIME

Using increased sized subsets of the complete COPD data set of 30 arrays, methods I and II together
with the WAME method was used and the computer run time was recorded. A true regulation was added
as done in Section 7, and 20 subsets were selected for each subset size. The mean computer run time is
shown in Figure 1. Note the log-scale on the y-axis. Both methods I and II have computer run times less
than one minute, whereas the WAME method requires nearly 50 minutes for 25 arrays.

9. REAL DATA

Using a dataset with very clear differences between some of the designed groups, the methods were
compared in the situation where regulated genes exist. RNA from two strains of mice, each strain exposed
to three treatments was hybridized to Affymetrix arrays. The obtained CEL-file data was pre-processed
using the RMA (Irizarry et al., 2003) method. A PCA plot of the 34 arrays is shown in graph A of
Figure 3. The plot shows very clear separation between the two strains for all three treatments. Moreover,
for strain A the three treatments are also well separated. Hence, using within treatment comparisons of the
two strains and within strain A comparisons of the three treatments 6 comparisons can be studied which
undoubtedly are under H1: Regulated genes exists. The result is summarized in Table 5 and graph B of
Figure 3.

TABLE 5. MOUSE DATA SET

Prior A0/B0 A1/B1 A2/B2 A0/A1 A0/A2 A1/A2

1 � O 0 �-mixture 6.67% 3.63% 4.75% 3.44% 1.43% 1.09%
Asymmetrical �-mixture 6.50% 3.45% 7.19% 7.10% 7.21% 1.77%
Gaussian kernel 5.22% 3.18% 4.36% 3.72% 1.80% 1.69%

O†B 0 3.46 4.99 4.03 12.53 4.73 5.08
�-mixture 2.58 4.38 3.23 10.37 4.36 4.89
Asymmetrical �-mixture 2.58 4.37 3.07 9.97 4.07 4.80
Gaussian kernel 2.62 4.37 3.20 10.30 4.27 4.85

Estimated proportion of regulated genes (1 � O 0) in upper part of the table, and variance of last the dimension ( O†B ) in lower
part of the table for the six pair-wise group comparisons. Prior 0 denotes results obtained when using method I for estimating the
covariance matrix; A0/B0 denotes the comparison between strain A and B, both under treatment 0.
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FIG. 3. Mouse data set. (A) PCA plot for the 34 arrays. (B) Empirical distribution of observed p-values for the six
pairwise comparisons. The p-values of method II are the ones obtained using the asymmetric �-mixture as prior for
ıg. A0/B0 denotes the comparison between strain A and B, both under treatment 0.

Methods I and II were applied to transformed log-intensities for each of the six comparisons. For
method II, all three priors in Table 3 were used as the prior distribution F for ı. The †-estimators were all
scaled so that the mean of the variances of the †A part of † equals 1. Also the columns of the P -matrix
determining the transformation were scaled to unit length. Thus we would expect the variance †B to be
fairly close to one. But as seen in Table 5 all estimators of †B are above 2.5 and for the A0 versus
A1 comparison estimators as high as 10 were obtained. Moreover, in graph B of Figure 3, the empirical
p-value distributions show the same S-shape as seen for method I in Figure 2. This indicates that method I
as well as II produces biased estimators of †B .

10. CONCLUSION

We have presented two new methods, I and II, for estimating the global covariance matrix † of the
WAME model suggested by Kristiansson et al. (2005). Method I is a direct application of the EM algorithm
for fitting the multivariate t-distribution. Compared with the method used by Kristiansson et al. (2005)
method I shows identical bias and variability on simulated data with specified covariance matrix, but
has superior computer run times. From the simulation based on real data we found that for the vector of
transformed data it was only the estimator of †B that was affected when regulation was added. Analytically,
it can be shown that neither the minimum variance estimator (2) nor the weighted residual sum of squares
(4) is affected when † is altered by changing †B only. It is only the global constant C.DT†�1D/�1C T

in the denominator of the weighted moderated t-statistic (3) that is affected by such a change of †. Hence,
just as long as † is positive definite, the ranking of the genes using (3) is invariant with respect to the
estimated value of †B . This means that the bias of O† is merely a problem when setting the scale for the
t-statistic (3) so that reliable p-values or an appropriate cut-off can be obtained. Indeed, this is a problem
shared with quite a few methods and general techniques for setting the threshold given a z-score exists,
e.g., local FDR (Efron, 2005) and mixture models such as Dean and Raftery (2005) and Broët et al. (2002).

With method II, we try to reduce the bias by modeling the unknown log fold-change using the prior dis-
tribution F . A discrete approximation, QF , is used giving a finite set of regulation levels. Hence, method II
is also a mixture model where restrictions are imposed onto the mixture proportions through the distri-
bution F . For simulated data, method II greatly reduces the bias but for real data the estimated † still
appears biased, most likely due to false model assumptions. The question is in what way.
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According to the model used by method II, the prior distribution is the same for all genes. The model
used by Lönnstedt and Britton (2005) shares this property, but for other models the unknown gene-specific
variance also determines the variance for the distribution of the log fold-change—for example, the models
used by Lönnstedt and Speed (2002) and Smyth (2004), where the conditional distribution of the log
fold-change is normal with zero mean and variance proportional to cg. Thus, alternatively the distribution
of ıg could be specified conditionally on cg.

Method II worked well for simulated data with different variances across genes. But for data where all
genes have the same variance, method II can produce strange estimators. For example, with F equal to
the normal distribution, the same likelihood would be obtained with the proportion of regulated genes set
to one as when set to zero. Similar results would also be obtained with F equal to the mixture of two
gamma distributions. This means that method II can produce strange estimators when the variances do not
differ enough and/or the arrays are too few so that gene variances can not be sufficiently separated.

In summary, method I is a substantial improvement for weighted analysis of microarray data, making
it possible to analyze large datasets with acceptable computer run times. Also, the case with missing data
is within range using existing applications of the EM algorithm (Lange et al., 1989). With the discrete
approximation QF , method II is a useful extension of the WAME model managing with any choice of
distribution F . Although being flexible for the choice of F , method II still suffers from lack of fit to
data resulting in biased estimators of †. Both methods are implemented using a mixture of R and C code
available at www.math.chalmers.se/�astrandm.
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Abstract

Background: When analyzing microarray data a primary objective is often to find differ-
entially expressed genes. With empirical Bayes and penalized t-tests the sample variances
are adjusted towards a global estimate, producing more stable results compared to ordi-
nary t-tests. However, for Affymetrix type data a clear dependency between variability
and intensity-level generally exists, even for logged intensities, most clearly for data at the
probe level but also for probe-set summarizes such as the MAS5 expression index. As a
consequence, adjustment towards a global estimate results in an intensity-level dependent
false discovery rate.

Results: We propose two new methods for finding differentially expressed genes, Probe
level Locally moderated Weighted median-t (PLW) and Locally Moderated Weighted-t
(LMW). Both methods use an empirical Bayes model taking the dependency between
variability and intensity-level into account. A global covariance matrix is also used al-
lowing for differing variances between arrays as well as array-to-array correlations. PLW
is specially designed for Affymetrix type arrays (or other multiple-probe arrays). Instead
of making inference on probe-set summaries, comparisons are made separately for each
perfect-match probe and are then summarized into one score for the probe-set.

Conclusions: The proposed methods are compared to 12 existing methods using five
spike-in data sets. PLW has the most accurate ranking of regulated genes in four out of
the five data sets, and LMW consistently performs better than all examined moderated
t-tests when used on RMA expression indexes.
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Background
Microarrays are widely used for measuring gene expression in biomedical research.
For the purpose of finding differentially expressed genes there exist numerous meth-
ods. In early studies genes where often ranked with respect to fold-change. Genes
showing fold-change above 2 (or 3) were regarded as potentially regulated and were
selected for further investigation. The obvious drawback with such an approach, as
pointed out by many authors, is that genes with high fold-change may also be highly
variable and thus with low significance of the regulation. On the other hand, since the
number of replicates in many studies is small, variance estimators computed solely
within genes are not reliable in that very small values can occur just by chance. As
a consequence the ordinary t-test suffers from low power and is not a better option
for filtering out regulated genes.

Many methods have been proposed to improve on the variance estimator in order
to find more powerful statistical tests for differential expression. In empirical Bayes
methods [1–8] and the penalized t-test suggested in [9], the gene-specific variance
estimator is modified in order to produce more stable results. With proportions
determined by the accuracy of the gene-specific variance estimators, a mixture of the
gene-specific variance estimator and a global variance estimate is used in place of the
gene-specific variance estimator in the denominator of the t-test. Similarly, in the
Significance Analysis of Microarrays (SAM) method [10] and the method suggested
in [11], a constant is added to the gene-specific sample standard deviation.

Another approach is to pool variance estimators for genes having similar expres-
sion level, thus modeling the variance as a function of intensity-level. For example
Eaves et al. [12] use a weighted average of the gene-specific variance estimator and
a pooled estimate based on the 500 genes with most similar mean expression level,
and Jain et al. [13] suggest the local-pooled-error method (LPE) where a variance
function fitted to estimated variances and mean intensities is used. Comander et
al. [14] pool genes with respect to minimum intensity rather than mean intensity,
and Hu et al. [15] use a hierarchical model with a linear relationship between vari-
ance and intensity-level. Of these four methods, only the one suggested in [15] takes
the accuracy of the gene-specific variance estimators into account when setting the
weights for the gene-specific estimator and the pooled estimator, respectively. On the
other hand Hu et al. [15] only deal with a linear relationship between variance and
intensity-level. A variance to intensity-level dependency is also utilized in the mod-
erated t-test suggested in [6]. The method proposed builds on the moderated t-test
suggested in [2,3] with the addition of fitting a loess curve in the scatter plot of logged
variance estimators against mean intensity when estimating the model parameters.

The type of arrays considered in this paper is the Affymetrix GeneChip arrays.
These arrays are one color arrays and each gene is represented by a set of probes, the
probe-set, consisting of 10-16 probe-pairs. Each probe-pair consists of one perfect
match (PM) probe and one mismatch (MM) probe. The probes are 25 bases long
and the PM and MM probes have identical sequences of bases except for the middle
probe which in the MM probe is set to the complementary base of that in the PM
probe. The MM probes are thus designed to measure the background intensity for
the corresponding PM probe. The standard way of dealing with the multiple-probes
is to derive a summary measurement, an expression index, for each probe-set (gene)
and array (sample), for example using the RMA method [16] or the Affymetrix
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MAS5 algorithm. The expression indexes are then used in downstream analysis by
only considering the expression index itself, the precision of the expression index is
ignored. However, in the fully Bayesian probe-level BGX model [17] information
about the accuracy of the expression index is obtained as a complete distribution
which is subsequently used when computing the posterior distribution of differential
expression. Also, the probe-level measurement error from the probabilistic probe-
level model multi-mgMOS [18] is used when computing the probability of positive
log-ratio in the PPLR method [19].

For Affymetrix type arrays a dependency between variability and intensity-level
generally exists, even for log-transformed data. Figure 1 shows scatter plots of sample
variance versus sample mean calculated on logged PM intensities (background cor-
rected and normalized) and three different expression indexes: RMA, GCRMA and
MAS5. Except for the RMA expression index a clear dependency between variability
and intensity-level exists, with a unique signature for each type of pre-processing of
the raw CEL-file data. The GCRMA expression index shows increasing variability
with intensity-level while MAS5 shows the opposite relationship. As a consequence,
methods assuming constant variance as well as methods adjusting the gene-specific
variance (or standard deviation) estimators towards a global estimate suffer from
intensity-level dependent false discovery rates. Figure 2 shows an example where
the moderated t-test in the R-package LIMMA [3] was used on MAS5 expression
indexes computed on a set of replicated arrays. The false discovery rate obtained
with LIMMA follows the same pattern as in the right lower panel in Figure 1 where
the same data set is used.

The aim of variance stabilizing transformations is to reduce or eliminate the
problem of dependency between variability and intensity-level. A family of trans-
formations, the generalized-log family (glog), was introduced in [20–22] and further
used in [23, 24]. A comparison of the glog family with the started logarithm trans-
formation [25] and the log-linear hybrid transformation [26] is presented in [27]. It
is concluded that the glog family is “probably the best choice when it is convenient
to use it”, but it is also noted that the direct interpretation of differences as logged
ratios for microarray data when using the ordinary log-transformation, does not hold
when using such variance stabilizing transformations. Generally, the glog family ef-
fectively stabilizes the variance when applied to raw Affymetrix probe-level data,
for example using the parameter estimation procedure described in [21]. However,
the transformations implicitly defines a background correction, and when applied to
data already having been subject to another background correction (or further pro-
cessed data), the glog transformations may not be able to capture the structure of
the dependency between variability and intensity-level. This applies, for example, to
probe-level data background corrected using the RMA default background method,
and MAS5 expression indexes, see Figure 2. Thus, there is a need for more flexible
solutions, and in short, Figures 1 and 2 may be seen as a motivation for the methods
proposed in this paper.

The hierarchical Bayesian model WAME proposed and developed in [4, 5, 7, 8] is
in the present paper extended to incorporate the variability to intensity-level depen-
dency. The Probe level Locally moderated Weighted median-t method (PLW) applies
the extended model to logged PM intensities resulting in moderated and weighted
t-statistics for all PM probes. In the final step of PLW the median t-statistic of all
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Figure 1: Scatter plots of sample variance (logged with base 2) against mean intensity
for logged PM intensities and three expression indexes. Left and right panels show
data set A and B, respectively (see Section Data sets on page 8).

PM probes building up each probe-set is computed, and this median is the value used
for ranking the probe-sets with respect to differential expression.

The Locally Moderated Weighted-t method (LMW) is a more general method
intended for single probe type of arrays or summary measures of multiple probe type
arrays, such as RMA and MAS5. LMW use the same model as PLW but since only
one t-statistic is obtained for each probe-set no median is calculated. The proposed
methods are compared with existing methods on five publicly available spike-in data
sets.
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Figure 2: False discovery rate (α) calculated on re-sampled data and plotted against
mean intensity. Data sets of size 6 were sampled from the complete data set B (see
Section Data sets) of 18 replicated arrays and then analyzed using the Affymetrix
MAS5 algorithm followed by a two group analysis of 3+3 arrays using the moderated
t-test in the R-package LIMMA [3], on logged MAS5 indexes and indexes trans-
formed using the variance stabilizing transformation in the R-package vsn [21], and
the proposed method LMW using logged MAS5 indexes. False discovery rate were
obtained by averaging over the sampled data sets using loess-curves fitted to mean
intensity and indicator of significance (1 if the probe-set is among the 5% probe-sets
with highest absolute statistic, 0 otherwise). The mean intensities of each data set
are shifted to the range [0,15].

Results and Discussion
Model and methodology
Given a set of n arrays let yip be the background corrected and normalized log-
intensity on array i for PM probe p and put yp = (y1p, . . . , ynp)T . The PM probes
are divided into G (disjoint) probe-sets G1, . . . ,GG and thus there are a total of
P = |G1|+ · · ·+ |GG| probes. For p = 1, . . . , P assume

yp|cp ∼ Nn(µp, cpΣ)

cp ∼ Γ−1( 1
2m,

1
2m · ν(µ̄p))

(1)

where µp is the log-intensity profile for probe p across the n arrays with mean log-
intensity level µ̄p, Σ is an n×n covariance matrix, m is a real-valued parameter, and
ν(·) is a smooth real-valued function. Nn denotes an n-dimensional normal distri-
bution, and Γ−1(a, b) denotes the inverse-gamma distribution with shape parameter
a and scale parameter b. A cubic spline is used to parameterize the function ν(·).
Given set of K interior spline-knots

ν(x) = exp{H(x)Tβ}

where β is a parameter vector of length 2K − 1 and H : R → R2K−1 is a set of
B-spline basis functions, see chapter 5 of [28].
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As in the model suggested in [4] the model in Equ. 1 makes use of a global
covariance matrix, thus allowing differing variances as well as correlations between
arrays. To account for the dependency between variability and intensity-level the
scale-parameter of the Γ−1-distribution depends on the mean log-intensity level µ̄p

for the probe through the smooth function ν.
We assume that the vector µp is determined by a full rank n×k design matrix D

and a parameter vector γp of length k. The aim is to estimate and test hypothesis
for δp, a linear combination of γp specified by a 1× k matrix C. In summary,

µp = Dγp and δp = Cγp .

For the special case of comparing two conditions, with n1 and n2 arrays from con-
ditions 1 and 2, respectively, the design matrix D is an (n1 + n2) × 2 matrix. For
example, with n1 = 3 and n2 = 4 we can use

DT =
[

1 1 1 0 0 0 0
0 0 0 1 1 1 1

]
and γp =

[
γp1

γp2

]
and thus µp = (γp1, γp1, γp1, γp2, γp2, γp2, γp2)T . With C = [−1 1] we have δp =
γp2 − γp1, thus δp is the logged fold change between conditions 2 and 1.

However, instead of estimating the parameters of the model in Equ. 1 we use a
reduced model derived from Equ. 1 through a linear transformation of the vector yp.
Define the n× n and n× 1 matrices

A0 = I −D(DTD)−1DT and B = D(DTD)−1CT .

Since A0 is of rank n− k only we let A be an n× (n− k) matrix whose column space
equals that of A0. With q = n− k + 1 form the n× q transformation matrix M and
the vector zp of length q

M = [A;B] and zp = MT yp (2)

giving the reduced model

zp|cp ∼ Nq

(
(0, . . . , 0, δp)T , cpΣz

)
cp ∼ Γ−1( 1

2m,
1
2m · ν(µ̄p))

(3)

where Σz = MT ΣM .
The reduced model is fitted using the EM algorithm [29] as described in Section

Parameter estimation. The cp’s are treated as missing data and we replace the
unknown intensity-level for probe p, µ̄p, with the observed mean intensity across
arrays, ȳp. Given estimators of the parameters Σz, m, and β we proceed as if these
parameters are known, and weighted moderated t-tests are computed for each probe
p. The unbiased minimum variance estimator of δp is

δ̂p = (λT Σ−1
z λ)−1λT Σ−1

z zp (4)
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where λ is the vector (0, . . . , 0, 1)T of length q. The weighted moderated t-statistic
is defined as

t̃p =

√
q +m− 1

(λT Σ−1
z λ)−1

δ̂p√
m exp{H(ȳp)Tβ}+ RSSp

(5)

and under H0: δp = 0 it can be shown that t̃p is t-distributed with q+m− 1 degrees
of freedom. Here

RSSp = zT
p

(
Σ−1 − Σ−1λ(λT Σ−1λ)−1λT Σ−1

)
zp (6)

is the weighted residual sum of squares. See [5] for details. The PLW statistic for
the probe-set G is then defined as

PLWG = median
{
t̃p : p ∈ G

}
. (7)

The LMW and PLW methods are implemented in the R package plw [30].

Parameter estimation
The q × q covariance matrix Σz of the reduced model in Equ. 3 is divided according
to

Σz =
[

ΣA ΣAB

ΣT
AB σ2

B

]
where ΣA is the covariance matrix for all but the last dimension of zp and σ2

B is
the variance of the last dimension (indexes A and B refer to the corresponding
sub-matrices of the transformation matrix M in Equ. 2). The reduced model is
fitted in two steps. First the parameters m, β and the sub-matrix ΣA are estimated
by dropping the last dimension of the vectors zp. Since the reduced model is not
identifiable without a restriction on the function ν or the covariance matrices Σz we
use the restriction trace(ΣA) = q − 1. Secondly, the parameters m and β are held
fixed and Σz is estimated using the complete zp vectors. Temporarily the assumption
of no regulated genes is used (δp = 0 for all probes) and Σz is estimated under the
restriction that the trace of the ΣA part should be equal to q − 1.

In step 1, we let xp denote the sub-vector of zp obtained by dropping the last
element. Under the reduced model xp is distributed according to the model in Equ. 1
with Σ = ΣA, µp = 0, n = q− 1, and using the EM-algorithm an iterative procedure
for estimating m, β and ΣA is obtained. Given estimates of the previous iteration,
m0, β0 and ΣA0, updated estimates are found as follows. Let

wp =
m0 + q − 1

xT
p Σ−1

A0xp +m0 exp{H(ȳp)Tβ0}
.

The updated estimate of ΣA is

Σ̂A =
1
P

P∑
p=1

wpxpx
T
p (8)
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and the updated estimate of β is found by numerical maximization of the function

h(β) =
1
P

P∑
p=1

(
H(ȳp)Tβ − wp exp{H(ȳp)Tβ}

)
. (9)

With β̂ equal to the updated estimate of β let

S = h(β̂)− log(m0 + q − 1)

+ ψ

(
m0 + q − 1

2

)
+

1
P

P∑
p=1

log(wp)

where ψ(x) = d
dx log Γ(x) is the digamma function. The updated estimate of m is

then found using numerical maximization of the function

f(m) = m
(

log(m) + S
)
− 2 log

(
Γ(m/2)

)
. (10)

In step 2 a similar iterative procedure is used to estimate Σz. With Σz0 denoting the
estimate of Σz from the previous iteration and with wp re-defined as

wp =
m̂+ q

zT
p Σ−1

z0 zp + m̂ exp{H(ȳp)T β̂}

where m̂ and β̂ are the estimates obtained in step 1, an updated estimate of Σz

is computed according to Equ. 8 with zp replacing xp. In order for the estimators
of ΣA and Σz, in step 1 and 2, respectively, to comply with the trace restriction
the updated estimates are scaled at the end of each iteration. See additional file 1:
Supplement1.pdf for more details.

Data sets
The two data sets used in Figures 1 and 2 are publicly available at the Gene Ex-
pression Omnibus repository [31] with series or sample reference number indicated
below. Data set A consists of the 18 arrays from the severe group of the COPD
data set [32] (series reference number GSE1650), where Affymetrix arrays of type
HG U133A were used. In data set B the 18 arrays with normal tissue where selected
from a lung tumor data set [33] (sample reference numbers GSM47958-GSM47976,
excluding GSM47967). Here the HG-U95A arrays were used.

Five spike-in data sets were used to evaluate the proposed methods. In the
Affymetrix U95 and 133A Latin Square data sets [34] arrays of type HG-U95A and
HG-U133A, respectively, were used. The Affymetrix U95 data set consists of data
from 59 arrays divided into 19 groups of size 3, and one group of size 2. From the 20
groups there are 178 possible pair-wise group comparisons each with 16 [35] known
differentially expressed genes among the 12626 genes present on the arrays. The
Affymetrix 133A data set comprise data from 42 arrays with a total of 22300 probe-
sets of which 42 were spiked in at known concentration. The 42 arrays are divided into
14 groups of size 3 and thus there are 91 possible pair-wise group comparisons. As
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done in the Affycomp II assessments [35] we exclude 271 probe-sets which are likely
to cross-hybridize to spike-in probe-sets. The sequence of each spike-in clone was
blasted against all HG-U133A target sequences (∼600bp regions from which probes
are selected). A threshold of 100bp identified 271 probe-sets which are available in
the affycomp R-package.

From the Gene Logic Tonsil and AML data sets [36] all groups with 3 replicated
arrays were used, giving a total of 12 and 10 groups, respectively. For these data
there are 11 genes spiked in at known concentration, which can be studied in 66 and
45 pair-wise group comparisons, respectively. Both data sets were obtained using the
Affymetrix HG-U95A arrays having 12626 genes.

The Golden Spike data set [37] consists of 6 arrays of type Drosgenome1 divided
into 2 groups of equal size. The samples used in this experiment consist of mRNA
from 3866 genes, of which 1331 are differentially expressed between the groups. The
Drosgenome1 array has a total of 14010 genes, thus 10144 of these should not be
expressed, 2535 should be expressed but not regulated, and 1331 should be expressed
and regulated. It has been observed that the 2535 genes make these data atypical
[38]. We have chosen to exclude the 2535 genes from the analysis, thus only using
11475 genes of which 1331 are known to be regulated. Also, since all 1331 genes are
up-regulated it is necessary to take special care in the normalization. In place of
the quantile normalization method, the default for the RMA method, we used the
contrast normalization [39] and fitted the normalization curve using PM probes from
the 11475 unregulated genes only. To present comparable result only, methods relying
on a normalization procedure at the probe-set level (PPLR and BGX) and methods
for which the default normalization method is not the quantile method (logit-t) were
excluded when analyzing this data set.

Comparison with existing methods
Using the spike-in data sets listed above the proposed methods, PLW and LMW
were compared with 12 existing methods for ranking genes. The 12 methods include
ranking with respect to: observed fold change (FC), ordinary t-test, the moderated
t-test in the R-package LIMMA [3], the weighted moderated t-test in the R-package
WAME.EM [8], Efron’s penalized t-test [11] and the Shrink-t method [9] in the R-
package st, the SAM method [10] in the R-package samr, the Local-pooled-error test
[13] in the R-package LPE, and the Intensity-Based Moderated T-statistic (IMBT) [6]
using the R-code available at http://eh3.uc.edu/r/ibmtR.R. All these methods
(including LMW) were applied to RMA expression indexes obtained using the R-
package affy, while PLW was applied to logged PM intensities, background corrected
and normalized using the default methods of RMA. With LMW 4-6 spline-knots
(depending on the number of probe-sets) were used for the function ν, whereas 12
knots were used in PLW (the spline-knots are set using an internal function in the
R-package plw). Note that the RMA method was applied only to the arrays involved
in each group comparison, as opposed to running the RMA method using all arrays
of each data set.

We also compared with the PPLR method [19] applied to the expression index
and probe-level measurement error of the multi-mgMOS model [18] available in the
R-package puma, the logit-t procedure implemented in the R-package plw according
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Table 1: Area under ROC curves up to 100 false positives rounded to nearest integer
value with an optimum of 100. Numbers within parenthesis are within data set ranks
for the methods compared. Methods are ordered with respect to mean rank across
the five data sets.

Affymetrix Golden Gene Logic
Method U95 133A Spike Tonsil AML
PLW 96(1) 93(6) 40(1) 87(1) 86(1)
LMW 96(2) 94(1) 32(3) 84(3) 80(4)
LPE 94(5) 93(10) 38(2) 84(2) 85(2)
WAME 95(3) 94(2) 32(7) 81(5) 78(7)
Efron-t 94(6) 93(4) 32(5) 79(7) 79(5)
IBMT 95(4) 94(3) 32(8) 78(8) 76(8)
FC 92(11) 93(5) 31(10) 83(4) 85(3)
logit-T 94(9) 92(11) -(-) 80(6) 79(6)
LIMMA 94(7) 93(7) 32(9) 76(9) 75(9)
SAM 94(8) 93(8) 32(5) 74(11) 74(10)
Shrink-t 94(10) 93(9) 32(4) 75(10) 73(11)
PPLR 88(12) 90(12) -(-) 71(12) 69(12)
t-test 85(13) 86(13) 25(11) 57(13) 52(13)
# of genes 12626 22029 11475 12626 12626
# of spikes 16 42 1331 11 11
# of groups 20 14 2 12 10

to the description in [40], and the BGX method [17] as implemented in the R-package
bgx.

Due to long computer run times the comparison with the BGX method is re-
stricted to the Gene Logic AML data set using a subset of probe-sets only (the run
time for one single analysis of 6 arrays with all 12626 probe-sets is more than 24
hours). The subset of size 1011 consists of probe-sets number 6000-7002 (excluding
6030, 6367, and 6463) together with the 11 spiked probe-sets and the same subset
was used in [17]. The probe-set numbering is as obtained when loading data into R
using the R-package affy.

For each spike-in data set and method ROC-curves were calculated. Also, for the
analysis using a complete set of probe-sets, the area (AUC) under the ROC curve
up to 25, 50, 100 and 200 false positives was computed. In the comparison with
BGX using only 1011 probe-sets, AUC was computed up to 2, 4, 8 and 16 false
positives in order to cover the same false positive range as for the complete probe-set
comparisons.

ROC curves for a subset of the compared methods are found in Figure 3 and
AUC values up to 100 false positives from the complete probe-set analysis are found
in Table 1 (ROC curves for all methods and AUC up to 25, 50, 200 false positives
are available as supplementary material. See additional file 2: Supplement2.pdf
and file 3: Supplement2.pdf, respectively) Overall, three of the four methods taking
the variability-to-intensity-level dependency into account (PLW, LMW and LPE)
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Figure 3: ROC curves for a subset of the compared methods. The horizontal axis
shows the number of false positives (FP) and the vertical axis the proportion of true
positives found (TP).

performed better than the other methods, with the proposed method PLW having the
highest AUC on four of the five data sets. The fourth method taking the variability-
to-intensity-level dependency into account (IMBT) performed comparably well on
the Affymetrix and Golden Spike data sets but less so on the two Gene Logic data
sets. Ranking genes with respect to FC performs quite well on the Affymetrix U133A
and the two Gene Logic data sets but not on the other two data sets. Among the
penalized and moderated t-test methods, WAME and Efron-t consistently perform
better than the other ones. However, the difference between these methods for the
two Affymetrix Latin Square and the Golden Spike data sets are small, compared
to the difference in AUC obtained using the two Gene Logic data sets. Thus, the
two Gene Logic data sets appear slightly different from the other three. The PPLR
method based on the multi-mgMOS model [18] was ranked as number eleven with
only the ordinary t-test having lower AUC values.

The ROC curves obtained using the subset of 1011 probe-sets from the Gene Logic
AML data set are found in the lower right panel of Figure 3. The PLW method shows
consistently higher true positive rate compared with BGX and the AUC up to 8 false
positives (scaled so that optimum is 100) is 84 and 75 for PLW and BGX, respectively.

The second proposed method LMW differs from existing moderated and penal-
ized t-test in that the global variance estimator (which gene-specific estimators are
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adjusted towards) varies with intensity-level. Actually this is the only difference be-
tween LMW and the WAME method. The LPE method also uses a global variance
estimator that varies with intensity-level. But opposed to using a weighted mean
of the global and gene-specific estimator, only the global estimator is used in the
denominator of the LPE statistic. Thus for genes with similar intensity-level, LPE
is basically identical to ranking using fold change. Hence, since LMW consistently
performs better than WAME, and LPE has higher AUC than fold change in four of
the five data test, modeling the global variance estimator as a function of intensity is
worthwhile doing. Further, having in mind that the GCRMA and MAS5 expression
indexes showed a clear dependency between variability and intensity-level in Fig-
ure 1, whereas the RMA expression index only showed a weak dependency, this kind
of variance modeling might be even more important in analysis based on GCRMA
or MAS5 expression indexes.

Also, Figure 2 shows that the false discovery rate obtained by adjusting towards
a global estimate that varies with intensity-level results in a much more stable false
discovery rates compared to using a (truly) global estimate.

Both logit-t and PLW do inference on background corrected and normalized
logged PM intensities resulting in multiple statistics which are then summarized
into one by the median statistic for each probe-set, in contrast to first summarizing
PM intensities and then doing inference. With this being the only difference between
PLW and LMW, and one of the differences between logit-t and the ordinary t-test
using RMA expression indexes (they also use different background correction and
normalization methods), we find that computing statistics for each PM probe and
then summarizing shows better performance compared to the other option.

More complicated models often come with the prize of longer computer run times.
Of the methods evaluated the BGX model and the PPLR method together with the
multi-mgMOS model are the most computer intense ones. The computer run time
for one single two group analysis of 3+3 HG-U95A arrays with data from 12626 genes
is more than 24 hours with BGX and 1.5 hours for PPLR+multi-mgMOS (using the
recommended EM method of PPLR) on a 2.2 GHz AMD Opteron machine. The
corresponding time (including pre-processing of PM and MM data) is 2-3 minutes
for PLW and 9 seconds for the moderated t-test in LIMMA.

Conclusions
We have presented two new methods for ranking genes with respect to differential
expression: Probe level Locally moderated Weighted median-t (PLW) and Locally
Moderated Weighted-t (LMW). Both methods perform very well compared to ex-
isting methods with PLW having the most accurate ranking of regulated genes in
four out of five examined spike-in data sets. With LMW we show that introducing
an intensity-level dependent scale parameter for the prior distribution of the gene-
specific variances improves the performance of the moderated t-test. Also, compared
to the moderated t-statistic, LMW shows a much more stable false discovery rate
across intensity-levels when used on MAS5 expression indexes. In the PLW method
inference is performed directly on logged PM intensities and the median of the result-
ing moderated t-statistics for each probe-set is used to find differentially expressed
genes. Overall the PLW method performs better than all compared methods and
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thus probe-level inference appears to be preferable over the standard approach using
gene expression indexes for inference.
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