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Continuum Percolation in non-Euclidean Spaces

Johan Tykesson

Department of Mathematical Sciences
Chalmers University of Technology
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Abstract

In this thesis we first consider the Poisson Boolean model of continuum
percolation in n-dimensional hyperbolic space H*. Let R be the radius of the
balls in the model, and A the intensity of the underlying Poisson process. We
show that if R is large enough, then there is an interval of intensities such that
there are infinitely many unbounded components in the covered region. For
n = 2, more refined results are obtained.

We then consider the model on some more general spaces. For a large class
of homogeneous spaces, it is established that if A is such that there is a.s. a
unique unbounded component in the covered region, then this is also the case
for any \; > X. In H2 x R it is proved that if X is critical for a.s. having a
unique unbounded component in the covered region, then there is a.s. not a
unique unbounded component.

Finally, we consider another aspect of continuum percolation in H2. We
show that in the Poisson Boolean model, there are intensities for which infinite
geodesics are contained in unbounded components of the covered region. This
is also shown for the vacant region, as well as for a larger class of continuum
percolation models. We also consider some dynamical models.

Keywords: Bernoulli percolation, continuum percolation, dependent per-
colation, double phase transition, hyperbolic space, Poisson Boolean model,
geodesic percolation
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1 Introduction

Continuum percolation is the study of the geometry of connected components
in a random subset of a space. Like for most models in statistical mechanics,
there are several real world motivations. One example of this is the spread of
a fire (or a disease) in a forest. If a tree is set afire, then the fire can spread
to all trees within some distance from it. From the trees set afire from the first
tree, the fire spreads to trees within some distance from these trees, and so on.
The burning trees form a random subset of the forest. One then wonders how
far the fire typically spreads. This of course depends on the the density of the
trees. If the density of the trees is low, then if a tree starts burning, typically
the fire will die out soon. If the density of trees is high, then one would rather
expect that the fire will spread far away from the starting point. Therefore, one
may guess that there is some critical density separating these two scenarios. A
possible mathematical model for describing this is given by the Poisson Boolean
model of continuum percolation, the properties of which is the main focus of
this thesis.

Real-world motivations such as the above tend to be most natural when the
percolation process takes place in two- or three-dimensional Euclidean space.
When, as in the present thesis, we move on to more exotic spaces such as the
hyperbolic plane, such motivations become correspondingly weaker. This, how-
ever, is in our opinion amply compensated by the richness of the mathematical
phenomena we encounter.

The rest of the introduction is organized as follows. In Section 1.1 we in-
troduce the Poisson Boolean model and give its most basic properties. Since
many of our results are for this model in the hyperbolic plane H? we give a brief
account of hyperbolic geometry in Section 1.2. In the summary of papers in
Section 2 we will mention analogs (which are discussed in detail in the papers)
of our results in the theory of percolation on graphs. Therefore, it is necessary
that we introduce this model also, and we do this in Section 1.3.

1.1 The Poisson Boolean model

Most of the results in this thesis concern the Poisson Boolean model of contin-
uum percolation on some different spaces (sometimes we will refer to this model
simply as the Boolean model). Suppose M is a Riemannian manifold with vol-
ume measure u. For concreteness, the reader may keep in mind the case where
M is d-dimensional Euclidean space, and p is Lebesgue measure, although one
of the distinguishing features of this thesis is that we go beyond this setting.
Before defining the Poisson Boolean model on M, we need to introduce the
Poisson point process.

Definition 1.1. A point process X on M distributed according to the probability
measure P such that for k € N, A > 0, and every measurable A C M one has

) Qu(A)F

P{|X (4) =K = -



Figure 1.1: A realization of the Poisson process on a portion of R2.

is called a Poisson process with intensity A on M. Here X(A) =X NA and |-|
denotes cardinality.

Arguably, the Poisson process is the most important and most studied of all
point processes. This is partly because of its intrinsic appeal, but also because
it tends to serve as a baseline model with respect to which other models are
defined. It has many nice properties which makes the analysis of it easier than
for other point processes. For example, if A and B are disjoint sets, then the
configuration of points in A4 is independent of the configuration of points in B.
Also, if X; and X, are two independent Poisson processes with intensities A;
and Az, then X; U X, is a Poisson process with intensity A; + As. For more
facts about the Poisson process and more general point processes, we refer to
[10]. Figure 1.1 shows a realization of a Poisson process on a portion of R?.

In the Poisson Boolean model of continuum percolation, we place, at each
point in a Poisson process with intensity A on the space, a ball of some fixed ra-
dius R. The radius may also be a random variable (independent for all points),
but in this thesis we consider only the fixed radius version of the model. (How-
ever, there are phenomena that only occur if the radius is random, for details
see [18].) See figure 1.2 for a realization of the model on a portion of R?. Let
C be the subset of the space which is covered by balls, and let V' be its comple-
ment. Then C is called the covered region and V' the vacant region. Sometimes,
instead of studying V/, it is for technical reasons preferable to study the closure
of V.

The Poisson Boolean model was first introduced in the plane R? by Gilbert
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Figure 1.2: A realization of the Poisson Boolean model on a portion of R?, using
the Poisson points in figure 1.1 and balls of radius 1.

[11]. One of his motivations for this was that is could be a simple model for a
network of shortrange radio stations spread over a wide area.

One now asks different questions about the geometry of C' and V. In partic-
ular one is interested in the existence or non-existence of unbounded connected
components in C' and V, and in case there are such components, how many
they are. Obviously, the answer depends on the intensity A in the underlying
Poisson process, the radius R of the balls, and which space we consider. Let us
now concentrate on C. Let N¢ be the number of unbounded components in C'.
Then it is known that for the model in any unbounded connected homogeneous!
Riemannian manifold , N¢ is an almost sure constant which is either 0, 1 or
oo depending on A. This motivates the introduction of two critical intensities.
Define A, = A.(M, R) to be the infimum of the set of intensities that produce
an unbounded component a.s. and similarly let A,, be the infimum of the set of
intensities that produce a unique unbounded component a.s. Note that A, < A,,.
For Euclidean space we have

Theorem 1.2. Consider the Poisson Boolean model on R*. Then A. € (0, 00)

and
N — 0as. if A<
T 1as ifA> A

1A Riemannian manifold M is said to be homogeneous if for any two points z,y € M,
there is an isometry mapping z to y.



Moreover it is known that at A\, we have No = 0 a.s. or N¢ = 1 a.s. (On R2,
N¢ =0 a.s. at A, and it is conjectured that this is the case for any dimension.)
Theorem 1.2 is an example of a phase transition. At A., the macroscopic behav-
ior of the model changes drastically. In the setting of the forest fire example the
trees are represented by the Poisson points, and for the fire to spread directly
from one tree to another, they must be within distance 2R from each other. If
the density of trees is below A, the fire will typically die out quite soon, while
if the density is above A. there risk of having a major forest fire is considerably
larger.

So on R" we do not have any intensities for which No = co. However, this
is not always the case. In [27], which is Paper I in this thesis, we show that
for the model in H? we have A, < Ay, so that there is an interval of intensities
that produce infinitely many unbounded components. Then there is also the
question what happens above A,. In [28], which is Paper II in this thesis, we
show that in the Poisson Boolean model on homogeneous spaces, there are at
most three nonempty phases regarding the number of unbounded components in
the covered region: for A € [0, A.), there are no unbounded components a.s. for
A € (A¢y Ay) there are infinitely many unbounded components a.s. and finally
for A € (Ay,00), there is a unique unbounded component a.s. What happens at
Ac and A, turns out to depend on the space. For example, in [27] we will see
that at A, on H? there is a unique unbounded component at \,, while in [28]
we show that this is not the case for the model in H? x R.

There are also questions about the nature of the unbounded components.
One such question we study is the existence of infinite geodesics completely
covered by C or V. In [2], which is Paper III in this thesis, we show that there
in fact are intensities for which this happens on HZ.

1.2 Hyperbolic Geometry

The aim of this sections is to give a very short introduction to hyperbolic ge-
ometry in two dimensions, which is the geometry on which most of the action
takes place in this thesis. There are several models of hyperbolic geometry. All
of them are equivalent, in the sense that there are isometries between them.
Which model one wants to work with very much depends on the nature of the
problem of interest. The most common models are the Poincaré unit disc model
and the half plane model. These are also the models that appear in this thesis.
For an account of other models of hyperbolic geometry, see for example [9]. We
now concentrate on the properties of the unit disc model.

Write z = z + iy for a point in the complex plane C. The Poincaré disc
model of hyperbolic space is the open unit disc U = {z € C : |z| < 1} equipped
with the metric (which we will refer to as the hyperbolic metric)

dz? + dy?

2 .
(1.1) ds® := 4(1 oyl

We write H? for this space, which we sometimes will call the hyperbolic plane.
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Figure 1.3: A realization of the Poisson process on a portion of HZ.

From 1.1 we see that near the origin, ds? behaves like a scaled Euclidean metric,
but there is heavy distortion near the boundary of U. The factor 4 in (1.1) is
often left out in the definition of the hyperbolic metric. We remark that it is
also common to identify points of H? with points in the open unit disc in the
Euclidean plane rather than in the complex plane. Figures 1.3 and 1.4 show a
realization of a Poisson process and the corresponding Poisson Boolean model
in HP.
In the hyperbolic metric, a curve {y(t)}i_, gets length

_y [
b0 =2 [ e

and a set A gets area

_ dx dy
pea=1 A= @+ P°

If 21, 22 € H2, then the geodesic (that is, the shortest curve that starts at z and
ends at y) between them is either a segment of a Euclidean circle that intersects
the boundary of U orthogonally, or a segment of a straight line that passes
through the origin. Recall that Euclid’s parallel postulate says that given a line
and a point not on it, there is exactly one line going through the given point
that is parallel to the given line. The space H? does not satisfy Euclid’s parallel
postulate which means H? is a non-Euclidean geometry.



Figure 1.4: A realization of the Poisson Boolean model on a portion of H?, using
the Poisson points in figure 1.2.

Let us consider some areas and lengths in this metric. Let 21, 2, € H2. The
hyperbolic distance between z; and z is given by

d(zl,zg) = 2tanh_1 M

1-— 2129

Let S(z,r) := {y € H? : d(x,y) < r} be the closed hyperbolic ball of radius r
centered at . The circumference is given by

L(0S(z,r)) = 2w sinh(r)
and the area is given by
(1.2) u(S(z,r)) = 2m(cosh(r) — 1).

Observe that

(1.3) 2w sinh(r) = 277 + o(r?)
and
(1.4) 27 (cosh(r) — 1) = 7r? + o(r®)

so the formulas are well approximated with the Euclidean formulas at a small



scale. Also, we see that as r — o0, both the area and circumference grow
exponentially with the same rate. Moreover, the ratio between them tends to 1
as r — oo. In fact, if A is any bounded set with u(A4) and L(0A) well defined,
we have

(1.5) L(8A) > p(A).

This is the so called linear isopermetric inequality for H?. Such an inequality is
not available in the Euclidean plane. The isoperimetric inequality is one of the
main tools for our analysis in [27].

In [27] we use the hyperbolic first law of cosines for geodesic triangles. So
for an example of hyperbolic trigonometry, let us consider this law. Let A, B,
and C be three points in H? such that they are not on the same geodesic. Let
04, 0p and O¢ be the corresponding angles. Let a, b and ¢ be the lengths of the
geodesics from B to C, from A to C, and from A to B respectively. The the
hyperbolic first law of cosines says

cosh(c) = cosh(a) cosh(b) — sinh(a) sinh(b) cos(6¢)

If 8 = 7/2, we get the hyperbolic Pythagorean theorem:

cosh(c) = cosh(a) cosh(b). Note that if a,b and ¢ are small, then the hyperbolic
first law of cosines is approximately the same as its Euclidean counterpart, that
is 2 ~ a? + b? — 2abcos(0¢).

Next, we consider tilings of H?. Recall that two sets are said to be congruent
if there is an isometry between them. A regular tiling of a space is a collection
of congruent polygons that fill the space and overlap only on a set of measure
0, such that the number of polygons that meet at a corner is the same for
every corner. For example, there exists exactly three kinds of such tilings of
the Euclidean plane. These are made up of equilateral triangles, squares or
hexagons (however, given any side length, a regular tiling of any of these types
exist). In the hyperbolic plane the situation is different. There exists an infinite
number of regular tilings. More precisely, if p and ¢ are positive integers such
that (p — 2)(¢ — 2) > 4, then it is possible to construct a regular tiling of
the hyperbolic plane into congruent p-gons, where ¢ of these p-gons meet in
each corner. However, given p and ¢, there is only one side length of the p-
gon available. Each regular tiling of H? can be identified with graph G. More
precisely, each side in the tiling is identified with an edge in G and each corner
is identified with a vertex in GG. Such a graph is transitive, and it always has
a positive isoperimetric constant (see Section 1.3 for definitions). Figure 1.5
shows an example of a tiling.

We mention one more fact about the Poincaré disc model of hyperbolic
geometry that comes to use in [2]. Consider the ball S(z,r). This ball actually
looks precisely like an Euclidean ball. However, its Euclidean center is closer to
origin than its hyperbolic center z, and its Euclidean radius is smaller than its
hyperbolic radius r. There are explicit formulas for both these quantities, that
are used in [2].
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Figure 1.5: A tiling of H? into congruent 4-gons, 5 meeting at each corner.

We briefly discuss the Poincaré half plane model. This model is the complex
upper half plane {z + iy : y > 0} together with the metric

dz? + dy?
2 . _
ds® =4 " .

In this model, the intersection of the upper half plane with Euclidean circles
orthogonal to the real line are infinite geodesics. In [2], we use this model
to calculate a certain area, which would be more difficult to calculate in the
disc model. An isometry from the half plane model to the unit disc model is
given by f(z) = (z —i)/(z + i), and the inverse of this isometry is given by
J7H2) =i(1+2)/(1 - 2).

Hyperbolic space is an example of a symmetric space. A symmetric space is
a connected Riemannian manifold M, such that for every point p € M, there is
an isometry I, such that I,(p) = p and I, reverses all geodesics through p. In
H?2, such an isometry is simply given by a rotation of 180 degrees, around the
point p. Other symmetric spaces are Euclidean space and the sphere (in any
dimensions). Symmetric spaces belong to the class of homogeneous spaces.

1.3 Discrete percolation

Most of the results in this thesis have analogs in the theory of discrete per-
colation. These analogs will be mentioned in the summaries of the papers in
Section 2. Therefore we give here some preliminaries. Grimmett’s book [12] is



the standard reference for this theory.

Let G = (V, E) be an infinite connected graph with vertex set V' and edge set
E. A bijective map f : V — V such that {f(u), f(v)} € E if and only if {u,v} €
E is called a graph automorphism on G. The set of graph automorphisms on
G forms a group under composition which we denote by Aut(G). The graph G
is said to be transitive if for any pair of vertices u,v € V there is an f €Aut(G)
such that f(u) =v.

Let w be a random subgraph of G where all vertices (edges) are kept. We
call w a bond (site) percolation on G. We say that w is an invariant percolation
if the law of w is invariant under Aut(G). A connected component of w will
be called a cluster. The most important example is Bernoulli percolation (also
called independent percolation), in which each edge (vertex) is kept or deleted
inependently with probability p and 1 — p respectively.

Bernoulli percolation is the discrete analog to the Poisson Boolean model
of continuum percolation. Many of the basic questions in Bernoulli percolation
are the same as those in the continuum setting. The model was first studied by
Broadbent and Hammersley [7] on the graph whose vertex set is Z¢ and whose
edge set consists of all pairs of vertices sitting at Euclidean distance 1 from each
other. Write Z¢ for this graph. They showed that there is a critical intensity
pe = pe(d) € (0,1) such that if p < p., then there is a.s. no infinite clusters,
while if p > p. there are a.s. infinite clusters. Later it was established that in
the case p > p., there is a unique infinite cluster a.s. (for d = 2 this is due to
Harris [17], while for d > 3 the result is due to Aizenman et. al [1]). The exact
value of p.(d) is unknown except in the trivial case d = 1 where it is 1, and in
the case d = 2, where Kesten [20] showed that it is 1/2.

Recent years have witnessed a rapid development of percolation on more
exotic graphs than Z%. Of particular interest is the number of infinite clusters
in Bernoulli percolation. It is well known that this number is an almost sure
constant that is either 0, 1 or oo if the graph is transitive. Let p. = p.(G) be
the infimum of the set of p € [0,1] that produce infinite clusters in Bernoulli
percolation on G, and similarly let p, be the infimum of the set of p € [0,1]
that produce a unique unbounded component. Then it is known that there is at
most three phases regarding the number of infinite clusters: if p € [0,p.) then
the number is 0 a.s., if p € (p., py) then the number is co a.s. and finally when
D € (pu, 1], then the number is 1 a.s. What happens at the critical values p, and
Py, depends on the graph.

To determine for which graphs one has p. < p,, the following quantity turns
out to be fundamental. Let

e oV
ky (GQ) == 1Ir)1Vf W]

where the infimum ranges over all finite connected subsets W of V' and 9y W is
the set of vertices of W with at least one neighbor in V\W. Then &y (G) is called
the isoperimetric constant or Cheeger constant for the graph. If kv (G) > 0
then G is said to be non-amenable, otherwise it is said to be amenable. Non-



amenable, transitive planar graphs are useful in the study of continuum percola-
tion on H2 since they can be embedded in a proper way in H2. It is conjectured,
and proved for many graphs, that if kv (G) > 0, then p. < p,. It is known that
if ky(G) = 0, then p. = p,.-

2 Summary of papers

In this section we summarize the results of the three papers in this thesis.

2.1 Summary of paper I

In the first paper of this thesis, “The number of unbounded components in
the Poisson Boolean model of continuum percolation in hyperbolic space”, we
study the question of the number of unbounded components in C' and V. Denote
these numbers by No and Ny respectively. First we study the model in H2.
The main result here, is that there are two critical intensities A\, and A, such
that 0 < A, < Ay < 00 and

0,1),  A€[0,A]
(Nc,Nv) = (00700)7 A€ ()\c; u)
(1,0), A € [Ay, )

Note that this result includes what happens at the critical intensities A, and
Ay. The main inspiration for this is the result by Benjamini and Schramm [5]
that says that for any nonamenable planar transitive graph, one has p. < p,, for
Bernoulli bond and site percolation. Techniques that we use include the study
of certain random subsets of H? that have an isometry invariant law, using the
so called mass transport principle.

Then the model is studied in H" for any n > 2. Here the main result is that
given n, there is some Ry such that in the model with balls of radius R > Rq
we have A\:(R) < Ay (R). There is a discrete analog for this result also: Pak
and Smirnova [22] showed that there are (not necessarily planar) Cayley graphs
with a large enough set of generators for which A, < A, (see [27] for precise
definitions). They used a theorem due to Benjamini and Schramm [6], and our
proof is inspired by the proof of this theorem.

2.2 Summary of paper II

In the second paper “Continuum percolation at and above the uniqueness thresh-
old on homogeneous spaces” we study the uniqueness phase of the Poisson
Boolean model on some various spaces. In [27] we showed that for all A > A,
there is a unique unbounded connected component with probability 1 on H2,
but left the corresponding problem open in H” for n > 3. So on HZ, if A; < Ao
and there is a.s. a unique unbounded component at A;, then this is also the case
at A2. This phenomenom is sometimes called uniqueness monotonicity. This

10



was established in the setting of independent bond and site percolation on tran-
sitive graphs under the assumption of so called unimodularity by Higgstrom
and Peres [15] and shortly thereafter for all transitive graphs by Schonmann
[23].

The first result in this paper resolves the question for H*, n > 3, as well
as in considerably greater generality: for the Poisson Boolean model on a large
class of Riemannian homogeneous space, if A\; < A2 and Py,[Ng = 1] =1 then
also Py,[N¢ = 1] = 1. Actually two proofs are given, one is inspired by the
proof in the discrete case by Haggstrom and Peres and the second by the proof
of Schonmann. The first proof is valid only for the class of symmetric spaces
(which includes for example H").

Then we consider the situation at A, on H? x R. In H? it is known (see [27]
that No = 1 at A,. We show that at A\, on H? x R, there is a.s. not a unique
unbounded component at A,. Hence the number of infinite clusters at A, is
either 0 or co. We expect it to be oo, a result that would follow immediately if
we could prove the natural conjecture that A, < A, for such spaces.

On the way to the proof of this result, we obtain a characterization of A, in
terms of connectivity between large balls.

2.3 Summary of paper III

In the third paper “Visibility to infinity in the hyperbolic plane despite ob-
stacles”, coauthored with Benjamini, Jonasson and Schramm, we consider a
different aspect of the Poisson Boolean model on H2. Given a closed random
subset Z of H? with an isometry invariant law, is it possible to find (bi-infinite)
hyperbolic lines that are completely covered by Z? It turns out that there is
a useful sufficient criterion for this. Let B be a ball of radius 1 in H2. Then
there is a universal constant py such that if P[B C Z] > po then with positive
probability there are hyperbolic lines that are fully covered by Z. The first
result in this fashion for invariant discrete percolation is due to Higgstrom [13]
for homogeneous trees.

We then introduce the concept of well-behaved percolation on H?, which is
a class of random subsets of H? that have an isometry invariant law and satisfy
some quite natural conditions. Examples of well-behaved percolations include
the covered and the vacant regions in the Poisson Boolean model. For a well-
behaved percolation Z, define f(r) to be the probability that a line segment
of length r is completely covered by Z. First we show that there is a unique
constant « (depending on the law of Z) and a constant ¢ > 0 such that ce™*" <
f(r) < e ®" holds for every r > 0. Then we show that if @ < 1, then there
are a.s. infinite geodesics contained in Z, and if @ > 1, then there are a.s. no
infinite geodesics contained in Z. Moreover, if & < 1 and we fix o € H2, then
with positive probability there are (infinite) hyperbolic half-lines starting at o
that are contained in Z

Then we consider the cases when Z is the covered and the vacant region
in the Poisson Boolean model. For the vacant region V' we show that if A >
1/(2sinh(R)) then there are a.s. no infinite geodesics contained in V', while if
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A < 1/(2sinh(R)) then there are a.s. infinite geodesics contained in V. Thus we
know the exact value of the critical intensity Ag, for the occurrence of infinite
geodesics in the vacant region. We actually determine this exact value in two
quite different ways. The first proof is uses methods from the theory of covering
the circle with random arcs (see for example [24]). The second proof amounts
to showing that a = 2Asinh(R) for V.

For the covered region C, we also show that there is a critical intensity A4
such that if A < Ay, then there are a.s. no infinite geodesics in C' and if A > Ay
then there are a.s. infinite geodesics in C. In this case, we do not get an explicit
formula for Ay, but we do get an integral equation for it.

Finally we consider some dynamical versions of the Poisson Boolean model.
In one of the models, the balls update their positions according to independent
exponential waiting times. The new center for a ball is chosen uniformly at
random from a ball of radius 1 around its previous center. We then consider
infinite geodesic rays in the vacant region emanating from the origin. We show
that if A < Agy, then a.s. for all ¢ > 0 there are infinite rays emanating from
the origin contained in that intersect only finitely many balls. We show that if
A > Mgy then a.s. for all ¢ > 0 there are no infinite geodesics emanating from
the origin contained in V. This means that there is no A for which there are so
called exceptional times for which the model behaves differently compared with
the static one in this respect.

3 Some open problems

Timar [26] has recently shown the following theorem.

Theorem 3.1. Consider Bernoulli bond percolation on a transitive unimodular
graph. If C1 and Cy are two infinite clusters, then the set of vertices in C1 that
are ot distance 1 from a vertex in Cs is finite a.s.

This gives rise to the following natural conjecture:

Conjecture 3.2. Consider the Poisson Boolean model of continuum percolation
inH". Fizr > 0. If C; and Cs are two unbounded components, then the number
of Poisson points in Cy that are at distance less than or equal to r from Cs is
finite a.s.

Conjecture 3.3. Consider the Poisson Boolean model of continuum percolation
on a infinite homogeneous space M. Suppose there is a linear isoperimetric
inequality. Then

3.1) Ac(M) < Ay (M)

It might also be of interest to consider dynamical versions of the Poisson
Boolean model. One such model was described at the end of Section 2.3. A
different but at lest as natural, choice would be to let the centers of the balls

12



move according to independent Brownian motions. Meester et. al. [19] con-
sidered this model on R¢ and proved that for A > A, there are no exceptional
times when percolation does not occur, and for A < A, there are no exceptional
times when percolation does not occur. The case A = A, remains open.

Question 3.4. Consider the Brownian motion dynamical version of the Poisson
Boolean model of continuum percolation on H?. Are there exceptional times
when percolation occurs on \.? Are there exceptional times when percolation
occurs in'V on A\, ?
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The number of unbounded components in the
Poisson Boolean model of continuum percolation
in hyperbolic space

Johan Tykesson*

Abstract

We consider the Poisson Boolean model of continuum percolation with
balls of fixed radius R in n-dimensional hyperbolic space H*. Let A be
the intensity of the underlying Poisson process, and let N¢ denote the
number of unbounded components in the covered region. For the model
in any dimension we show that there are intensities such that Ng = oo
a.s. if R is big enough. In H? we show a stronger result: for any R there
are two intensities A\; and A\, where 0 < A\; < A, < 00, such that N¢ =0
for A € [0, Ac], N¢ = oo for A € (A, Au) and Ng =1 for A € [Ay, 00).

Keywords and phrases: continuum percolation, phase transitions, hyperbolic
space
Subject classification: 82B21, 82B43

1 Introduction

We begin by describing the fixed radius version of the so called Poisson Boolean
model in R”, arguably the most studied continuum percolation model. For a
detailed study of this model, we refer to [18]. Let X be a Poisson point process
in R™ with some intensity A. At each point of X, place a closed ball of radius
R. Let C be the union of all balls, and V be the complement of C. The
sets V and C will be referred to as the vacant and covered regions. We say
that percolation occurs in C' (respectively in V') if C' (respectively V') contains
unbounded (connected) components. For the Poisson Boolean model in R”, it
is known that there is a critical intensity A. € (0,00) such that for A < A,
percolation does not occur in C, and for A > A., percolation occurs in C. Also,
there is a critical intensity A% € (0,00) such that percolation occurs in V if
A < X} and percolation does not occur if A > A%. Furthermore, if we denote
by N¢ and Ny the number of unbounded components of C' and V' respectively,
then it is the case that No and Ny are both almost sure constants which are

*Department of Mathematical Sciences, Division of Mathematical Statistics, Chalmers
University of Technology, S-41296 Go&teborg, Sweden. E-mail: johant@math.chalmers.se.
Research supported by the Swedish Natural Science Research Council.



either 0 or 1. In R? it is also known that A\, = \* and that at )., percolation
does not occur in C or V. For n > 3, Sarkar [21] showed that A, < A%, so that
there exists an interval of intensities for which there is an unbounded component
in both C and V.

It is possible to consider the Poisson Boolean model in more exotic spaces
than R™, and one might ask if there are spaces for which several unbounded
components coexist with positive probability. The main results of this paper is
that this is indeed the case for n-dimensional hyperbolic space H"*. We show
that there are intensities for which there are almost surely infinitely many un-
bounded components in the covered region if R is big enough. In H? we also
show the existence of three distinct phases regarding the number of unbounded
components, for any R. It turns out that the main difference between R™ and
H"™ which causes this, is the fact that there is a linear isoperimetric inequality in
H"™, which is a consequence of the constant negative curvature of the spaces. In
H2, the linear isoperimetric inequality says that the circumference of a bounded
simply connected set is always bigger than the area of the set.

The main result in H? is inspired by a theorem due to Benjamini and
Schramm. In [6] they show that for a large class of nonamenable planar tran-
sitive graphs, there are infinitely many infinite clusters for some parameters in
Bernoulli bond percolation. For H? we also show that the model does not per-
colate on A.. The discrete analogue of this theorem is due to Benjamini, Lyons,
Peres and Schramm and can be found in [4]. It turns out that several techniques
from the aforementioned papers are possible to adopt to the continuous setting
in H2.

There is also a discrete analogue to the main result in H". In [17], Pak and
Smirnova show that for certain Cayley graphs, there is a non-uniqueness phase
for the number of unbounded components. In this case, while it is still possible
to adopt their main idea to the continuous setting, it is more difficult than for
HE.

The rest of the paper is organized as follows. In section 2 we give a very
short review of uniqueness and non-uniqueness results for infinite clusters in
Bernoulli percolation on graphs (for a more extensive review, see the survey
paper [14]), including the results by Benjamini, Lyons, Peres, Schramm, Pak
and Smirnova. In section 3 we review some elementary properties of H*. In
section 4 we introduce the model, and give some basic results. Section 5 is
devoted to the proof of the main result in H? and section 6 is devoted to the
proof of the main theorem for the model in H".

2 Non-uniqueness in discrete percolation

Let G = (V, E) be an infinite connected transitive graph with vertex set V and
edge set E. In p-Bernoulli bond percolation on G, each edge in E is kept with
probability p and deleted with probability 1—p, independently of all other edges.
All vertices are kept. Let P, be the probability measure on the subgraphs of
G corresponding to p-Bernoulli percolation. (It is also possible to consider p-



Bernoulli site percolation in which it is the vertices that are kept or deleted, and
all results we present in this section are valid in this case too.) In this section, w
will denote a random subgraph of G. Connected components of w will be called
clusters.

Let I be the event that p-Bernoulli bond percolation contains infinite clus-
ters. One of the most basic facts in the theory of discrete percolation is that
there is a critical probability p, = p.(G) € [0,1] such that P,(I) = 0 for
P < pe(G) and P,(I) = 1 for p > p.(G). What happens on p. depends on the
graph. Above p. it is known that there is 1 or oo infinite clusters for transi-
tive graphs. If we let p, = p,(G) be the infimum of the set of p € [0,1] such
that p-Bernoulli bond percolation has a unique infinite cluster, Schonmann [22]
showed for all transitive graphs, one has uniqueness for all p > p,. Thus there
are at most three phases for p € [0, 1] regarding the number of infinite clusters,
namely one for which this number is 0, one where the number is oo and finally
one where uniqueness holds.

A problem which in recent years has attracted much interest is to decide for
which graphs p, < p,. It turns out that whether a graph is amenable or not is
central in settling this question:

For K C V, the inner vertex boundary of K is defined as Oy K := {y €
K :3z ¢ K, [z,y] € E}. The vertez-isoperimetric constant for G is defined
as ky(G) := infy %L where the infimum ranges over all finite connected
subsets W of V. A bounded degree graph G = (V, E) is said to be amenable if
Ky (G) =0.

Benjamini and Schramm [7] have made the following general conjecture:

Conjecture 2.1. If G is transitive, then p, > p. if and only if G is nona-
menable.

Of course, one direction of the conjecture is the well-known theorem by
Burton and Keane [8] which says that any transitive, amenable graph G has a
unique infinite cluster for all p > p..

The other direction of Conjecture 2.1 has only been partially solved. Here
is one such result that will be of particular interest to us, due to Benjamini
and Schramm [6]. This can be considered as the discrete analogue to our main
theorem in H2. First, another definition is needed.

Definition 2.2. Let G = (V, E) be an infinite connected graph and for W CV
let Nw be the number of infinite clusters of G\W . The number supy, Nw where
the supremum is taken over all finite W is called the number of ends of G.

Theorem 2.3. Let G be a nonamenable, planar transitive graph with one end.
Then 0 < p.(G) < pu(G) < 1 for Bernoulli bond percolation on G.

Such a general result is not yet available for non-planar graphs. However, be-
low we present a theorem by Pak and Smirnova [17] which proves non-uniqueness
for a certain class of Cayley graphs.



Definition 2.4. Let T be a finitely generated group and let S = {git*, ..., g='} be
a finite symmetric set of generators for I'. The (right) Cayley graph T' = T'(G, S)
is the graph with vertex set T and [g, h] is an edge in T if and only if g~'h € S.

Let S* be the multiset of elements of T' of the type gi192...gk, g1,--, gk € S
and each such element taken with multiplicity equal to the number of ways to
write it in this way. Then S* generates G.

Theorem 2.5. Suppose T' = T'(G,S) is a nonamenable Cayley-graph and let
Iy =T(G,S*). Then for k large enough,

pc(Fk) < pu(rk)-

Theorem 2.5 is the inspiration for our main result in H".

3 Hyperbolic space

We consider the unit ball model of n-dimensional hyperbolic space H", that
is we consider H" as the open unit ball in R® equipped with the hyperbolic
metric. The hyperbolic metric is the metric which to a curve v = {y(t)}i_,

assigns length
1 !
' (0]
Ly) =2 / Tzt
o 1=P®P

and to a set E assigns volume

dz1...dx,

wE) ﬂ"LW'

The volume measure is invariant under all isometries of H", see [20], p.82.
The linear isoperimetric inequality for H? says that for all measurable A C
H? with L(OA) and u(A) well defined,

L(8A)
p(A)

Denote by d(z,y) the hyperbolic distance between the points 2 and y. Let
S(z,r) :=={y : d(z,y) <r} be the closed hyperbolic ball of radius r centered at
z. In what follows, area (resp. length) will always mean hyperbolic area (resp.
hyperbolic length). The volume of a ball is given by

(3.1)

> 1.

(3.2) 1(S(0,7)) = B(n) /OT sinh(¢)"~* dt

where B(n) > 0 is a constant depending only on the dimension. We will make
use of the fact that for any € € (0,r) there is a constant K (e,n) > 0 independent
of r such that

(33) w(S(0,7)\ S(0,r —€)) = K(e,n)u(S(0,7))



for all r. For more facts about H", we refer to [20].

3.1 Mass transport

Next, we present an essential ingredient to our proofs in H?, the mass transport
principle which is due to Benjamini and Schramm [6]. We denote the group of
isometries of H? by Isom(H?).

Definition 3.1. A measure v on H? x H? is said to be diagonally invariant if
for all measurable A, B C H? and g €lsom(H?)

v(gA x g¢B) = v(A x B).

Theorem 3.2. (MASS TRANSPORT PRINCIPLE IN H2) If v is a positive diag-
onally invariant measure on H2 x H? such that v(A x H?) < oo for some open
A C 2, then

v(B x H?) = v(H? x B)

for all measurable B C H2.

In our applications of Theorem 3.2, it is often the case that v(A x B) =
E[n(A, B,-)] where the third argument is a random object like C or V, and
n(A, B,-) = n(gA,gB,g(-)) for any g €lsom(H?). The function 5 can often
intuitively be interpreted as the amount of mass that is transported from A
to B. With this interpretation, the interpretation of v(4 x B) becomes the
expected amount of mass that goes from A to B. The mass transport principle
then says that the expected amount of mass that goes out of B is the same as
the expected amount of mass that goes into B.

4 The Poisson Boolean model in hyperbolic space

Definition 4.1. A point process X onH" distributed according to the probability
measure P such that for kK € N, A > 0, and every measurable A C H" one has

k
— ] = () Qu(A))”
P (4)] = ] = e
is called a Poisson process with intensity A on H*. Here X (A) = XN A and |- |
denotes cardinality.

In the Poisson Boolean model in H", at every point of a Poisson process X
we place a ball with fixed radius R. More precisely, we let C' = J,cx S(z, R)
and V = C° and refer to C and V as the covered and vacant regions of H"
respectively. For A C H" we let C[4] := U,ex(a) S(z, R) and V[A] := C[A]".
For z, y € H" we write & + y if there is some curve connecting x to y which
is completely covered by C. Let do(z,y) be the length of the shortest curve
connecting x and y lying completely in C if there exists such a curve, otherwise
let do(z,y) = oo. Similarly, let dy(z,y) be the length of the shortest curve



connecting z and y lying completely in V' if there is such a curve, otherwise let
dy(z,y) = oo. The collection of all components of C is denoted by C and the
collection of all components of V' is denoted by V. Let N¢ denote the num-
ber of unbounded components in C' and Ny denote the number of unbounded
components in V. Next we introduce four critical intensities as follows. We let

Ac :=inf{\ : N¢ >0 as.}, A\, =inf{\ : N¢c =1as.},
Ay =sup{A : Ny >0as. }, A\, =sup{A : Ny =1as. }.
Our main result in H? is:

Theorem 4.2. For the Poisson Boolean model with fized radius in T2
0< A <Ay <o0.
Furthermore, with probability 1,

0,1),  X€0,A]
(NC,NV) = (00,00)7 A€ (/\CJ/\u)
(1,0), A € [Ay, )

The main result in H" for any n > 3 is:

Theorem 4.3. For the Poisson Boolean model with big enough fixed radius R
i HY, Ao < Ay

In what follows, we present several quite basic results. The proofs of the
following two lemmas, which give the possible values of No and Ny are the
same as in the R™ case, see Propositions 3.3 and 4.2 in [18], and are therefore
omitted.

Lemma 4.4. N¢ is an almost sure constant which equals 0, 1 or co.
Lemma 4.5. Ny is an almost sure constant which equals 0, 1 or co.
Next we present some results concerning A, and A}.

Lemma 4.6. For the Poisson Boolean model with balls of radius R in H" it is
the case that A\.(R) > u(S(0,2R))~1.

The proof is identical to the R™ case, see Theorem 3.2 in [18].

Proposition 4.7. Consider the Poisson Boolean model with balls of radius R
in H™. There is Ry < oo and a constant K = K(n) > 0 independent of R such
that for all R > Ry we have A\.(R) < Ku(S(0,2R))~L.

Proof. We prove the proposition using a supercritical branching process, the
individuals of which are points in H*. The construction of this branching process
is done by randomly distorting a regular tree embedded in the space.

Without loss of generality we assume that there is a ball centered at the
origin, and the origin is taken to be the 0’th generation. Let a be such that a



six-regular tree with edge length a can be embedded in H? in such a way that
the angles between edges at each vertex all equal /3, and d(u,v) > a for all
vertices 4 and v in the tree. Suppose R is so large that 2R — 1 > a.

Next pick three points 1, z2, x3 on 85(0,2R) N 2 such that the angles
between the geodesics between the origin and the points is 27/3. We define a
cell associated to z; as the region in S(0,2R)\ S(0,2R — 1) which can be reached
by a geodesic from the origin which diverts from the geodesic from the origin
to x; by an angle of at most 7 /6.

For every cell that contains a Poisson point, we pick one of these uniformly
at random, and take these points to be the individuals of the first generation.
We continue building the branching process in this manner. Given an individual
y in the n:th generation, we consider an arbitrary hyperbolic plane containing y
and its parent, and pick two points at distance 2R from y in this plane such that
the angles between the geodesics from y to these two points and the geodesic
from y to its parent are all equal to 2w /3. Then to each of the new points, we
associate a cell as before, and check if there are any Poisson points in them. If
S0, one is picked uniformly at random from each cell, and these points are the
children of y.

We now verify that all the cells in which the individuals of the branching
process were found are disjoint. By construction, if y is an individual in the
branching process, the angles between the geodesics from y to its two possible
children and its parent are all in the interval (7/3,7), and therefore greater
than the angles in a six-regular tree. Also, the lengths of these geodesics are in
the interval (2R — 1,2R) and therefore larger than a. Thus by the choice of a,
if all the individuals were in the same hyperbolic plane, the cells would all be
disjoint.

Suppose all individuals are in H2, with the first individual at the origin. For
each child of the origin we may pick two geodesics from the origin to infinity
with angle 6 less than /3 between them that define a sector which contains the
child and all of its descendants and no other individuals, and the angle between
any of these two geodesics and the geodesic between the origin and the child is
0/2. In the same way, for each child the grandchildren and their corresponding
descendants can be divided into sectors with infinite geodesics emanating from
the child and so on. Now, such a sector emanating from an individual will
contain all the sectors that emanates from descendants in it.

From a sector emanating from an individual, we get a n-dimensional sector
by rotating it along the geodesic going through the individual and its corre-
sponding child. Then this n-dimensional sector will contain the corresponding
n-dimensional sectors emanating from the child. From this it follows that the
cells will always be disjoint.

Now, if the probability that a cell contains a poisson point is greater than
1/2, then the expected number of children to an individual is greater than 1
and so there is a positive probability that the branching process will never die
out, which in turn implies that there is an unbounded connected component in
the covered region of H".

Let Bg denote a cell. By 3.3 there is K; > 0 independent of R such that



w(Br) > K1(S(0,2R)). By the above it follows that

log 2 log 2
Ac(R) < )
WS u(Ba) = Kan(S0.2R)

completing the proof. O

Lemma 4.8. For the Poisson Boolean model in H? , \* < oo.

Proof. Let I be a regular tiling of H? into congruent polygons of finite diameter.
The polygons of I' can be identified with the vertices of a planar nonamenable
transitive graph G = (V, E). Next, we define a Bernoulli site percolation w on
G. We declare each vertex v € V to be in w if and only if its corresponding
polygon I'(v) is not completely covered by C[I'(v)]. Clearly, the vertices are
declared to be in w or not with the same probability and independently of each
other. Now for any v,

lim P[v is in w] = 0.

A—00

Thus, by Theorem 2.3, for A large enough, there are no infinite clusters in w.
But if there are no infinite clusters in w, there are no unbounded components
of V. Thus A} < c0. O

In H?, we will need a correlation inequality for increasing and decreasing
events. If w and w' are two realizations of a Poisson Boolean model we write
w < ' if any ball present in w is also present in w’. An event A measurable with
respect to the Poisson process is said to be increasing (respectively decreasing)
if w < w' implies 14(w) < 14(w") (respectively 14(w) > 14(w")).

Theorem 4.9. (FKG INEQUALITY) If A and B are both increasing or both
decreasing events measurable with respect to the Poisson process X, then P[AN
B] > P[A]P[B].

The proof is almost identical to the proof in the R case, see Theorem 2.2
in [18]. In particular, we will use the following simple corollary to Theorem 4.9,
the proof of which can be found in [12], which says that if A, As, ..., A, are
increasing events with the same probability, then

P[] > 1 - (1-PUZ, 4™

The same holds when A;, Ag, ..., A, are decreasing.
For the proof of Theorem 4.2 we need the following lemma, the proof of
which is identical to the discrete case, see [14].

Lemma 4.10. If limg(y y)—00 Plu <> v] = O then there is a.s. not a unique
unbounded component in C.



5 The number of unbounded components in H?

The aim of this section is to prove Theorem 4.2. We perform the proof in the
case R = 1 but the arguments are the same for any R. We first determine
the possible values of (N¢, Ny) for the model in H?. The first lemma is an
application of the mass transport principle. First, some notation is needed.

Definition 5.1. If H is a random subset of H?, we say that the distribution
of H is Isom(H?)-invariant if gH has the same distribution as H for all g €
Isom(HZ).

In our applications, H will typically be a union of components from C or V
or something similar.

Lemma 5.2. Suppose H is a random subset of H? , such that its distribution is
Isom(H? )-invariant, and such that it contains only countably many connected
components. Also suppose that if A C HP is measurable and bounded, then
L(ANOH) is well-defined and has finite expectation. If H contains only finite
components a.s., then for any measurable A C H?

E[u(A N H)] < E[L(AN§H)).

Before the proof we describe the intuition behind it: we place mass of unit
density in all of H2. Then, if h is a component of H, the mass inside h is
transported to the boundary of h. Then we use the mass transport principle:
the expected amount of mass transported out of a subset A equals the expected
amount of mass transported into it. Finally we combine this with the isoperi-
metric inequality (3.1).

Proof. For A, B C H2, let

5 (B 0 h) L(AN8h)

n(Ax B, H) := L(oh)

h: L(8R)>0

and let v(A x B) := E[n(A x B, H)]. (Note that only components h that
intersect both A and B give a non-zero contribution to the sum above.) Since
the distribution of H is Isom(H?)-invariant, we get for each g €Ilsom(H?)

v(gA x gB) = E[n(gA x gB, H)] = E[n(gA x 9B, gH)]

= E[(A x B, H)] = v(A x B).

Thus, v is a diagonally invariant positive measure on H? x H2. We have v(H? x
A) =E[u(ANH)] and

) (h) L(A N Oh)
v(Ax H2) = E Y 2N < B[L(ANJH)
g h:L%)>0 L(ah)



where the last inequality follows from the linear isoperimetric inequality. Hence,
the claim follows by Theorem 3.2. O

In the following lemmas, we exclude certain combinations of Ng and Ny .
The first lemma can be considered as a continuous analogue to Lemma 3.3 in

[6]-
Lemma 5.3. If H is a union of components from C and V such that the dis-

tribution of H is Isom(H? )-invariant, then H and/or H® contains unbounded
components almost surely.

Proof. Suppose H and D := H€ contains only finite components, and let in this
proof Hy and Dy be the collections of the components of H and D respectively.
Then every element h of Hq is surrounded by a unique element h' of Dy, which in
turn is surrounded by a unique element A" of Hg. In the same way, every element
d of Dy is surrounded by a unique element d' of Hy which in turn is surrounded
by a unique element d” of Dy. Inductively, for j € N, let H;4q :={h" : h € H,}
and Dj4q1 := {d" : d € D;}. Next, for r € N, let

A= .LTJ({hGHO ssup{i : he H;} =j}U{d €Dy : sup{i : d € D;} = j}).

In words, H; and D; define layers of components from H and D. Thus A, is the
union of all layers of components from H and D that have at most r layers inside
of them. Now let B be some ball in H2. Note that L(B N dA,) < L(BNAC)
and E[L(B N 0C)] < oo. Also, almost surely, there is some random 7o such
that B will be completely covered by A, for all » > ry. Thus the dominated
convergence theorem gives

lim E[u(BNA,)] = u(B) and Tli)rgo E[L(BNJA,)] =0.

T—00

Since the distribution of A, is Isom(HP?)-invariant we get by Lemma 5.2 that
there is r; < oo such that for r > rq,

P[A, has unbounded components] > 0.

But by construction, for any r it is the case that A, has only finite components.
Hence the initial assumption is false. O

Lemma 5.4. The cases (N¢, Ny) = (00,1) and (N¢, Ny) = (1, 00) have prob-
ability 0.

Proof. Suppose Ngo = oo. First we show that it is possible to pick r > 0 such
that the event

Az, r) =

{S(z,r) intersects at least 2 disjoint unbounded components of C[S(z,r)°]}
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has positive probability for z € H2. Suppose S(z,ro) intersects an unbounded
component of C' for some ro > 0. Then if S(z,79) does not intersect some
unbounded component of C[S(z,r9)¢], there must be some ball centered in
S(z,r0 +2)\S(z, 79 + 1) being part of an unbounded component of C[S(z,rq +
1)¢], which is to say that S(z,ro + 1) intersects an unbounded component of
C[S(z,re +1)°]. Clearly we can find 7 such that

B(z,7) :== {S(z,7) intersects at least 3 disjoint unbounded components of C'}.

By the above discussion it follows that P[A(z,7) U A(z,7 + 1)] > 0, which
proves the existence of r such that A(z,r) has positive probability. Pick such
an r and let E(z,r) := {S(z,r) C C[S(z,r)]}. E has positive probability and
is independent of A so AN E has positive probability. By planarity, on AN E,
V' contains at least 2 unbounded components. So with positive probability,
Ny > 1. By Lemma 4.5, Ny = oo a.s. This finishes the first part of the proof.
Now instead suppose Ny = oo and pick r > 0 such that

A(z,r) :== {S(z,r) intersects at least two unbounded components of V'}
has positive probability. Let
B(z,r) := {C[S(z,r + 1)¢] contains at least 2 unbounded components}.

On A, C\S(z,r) contains at least two unbounded components, which in turn
implies that B occurs. Since P[A] > 0 this gives P[B] > 0. Since B is in-
dependent of F(z,r) := {|X(S(z,r + 1))| = 0} which has positive probability,
P[BNF]>0. On BNF, C contains at least two unbounded components. By
Lemma 4.4 we get No = o0 a.s. O

The proof of the next lemma is very similar to the discrete case, see Lemma
11.12 in [12], but is included for the convenience of the reader.

Lemma 5.5. The case (N¢, Ny) = (1,1) has probability 0.

Proof. Assume (N¢,Ny) = (1,1) as. Fix 2 € H2. Denote by A% (k) (re-
spectively A% (k), AL (k), AL (k)) the event that the uppermost (respectively
lowermost, rightmost, leftmost) quarter of 9S(z,k) intersects an unbounded
component of C\S(z,k). Clearly, these events are increasing. Since N¢ = 1

a.s.,
Jim PLA (k) U AL(6) U AD (k) U AL ()] = 1.
—00

Hence by the corollary to the FKG-inequality, limy_,o, P[AL (k)] =1 for

t € {u,d, r,1}. Now let A% (k) (respectively A (k), A7 (k), A% (k)) be the
event that the uppermost (respectively lowermost, rightmost, leftmost) quarter
of 8S(z, k) intersects an unbounded component of V'\S(z, k). Since these events
are decreasing, we get in the same way as above that limj_,., P[A} (k)] = 1
for t € {u, d, r,1}. Thus we may pick ko so big that P[A% (ky)] > 7/8 and

11



P[AY (ko)] > 7/8 for t € {u, d, r, I}. Let
A= A% (ko) 1 A (ko) 1 AL (ko) 1 AT (ko).

Bonferroni’s inequality implies P[A] > 1/2. On A, C\S(z, ko) contains two
disjoint unbounded components. Since Ng = 1 a.s., these two components
must almost surely on A be connected. The existence of such a connection
implies that there are at least two unbounded components of V', an event with
probability 0. This gives P[A] = 0, a contradiction. O

Proposition 5.6. Almost surely, (Nc, Ny) € {(1,0), (0,1), (c0,00)}.

Proof. By Lemmas 4.4 and 4.5, each of N¢ and Ny isin {0, 1, co}. Lemma 5.3
with H = C rules out the case (0,0). Hence Lemmas 5.4 and 5.5 imply that
it remains only to rule out the cases (0,00) and (00,0). But since every two
unbounded components of C' must be separated by some unbounded component
of V, (00,0) is impossible. In the same way, (0, c0) is impossible. O

5.1 The situation at A\, and A}

It turns out that to prove the main theorem, it is necessary to investigate what
happens regarding N and Ny at the intensities A, and A%. Our proofs are
inspired by the proof of Theorem 1.1 in [4], which says that critical Bernoulli
bond and site percolation on nonamenable Cayley graphs does not contain in-
finite clusters.

Theorem 5.7. At A, No =0 a.s.

Proof. We begin with ruling out the possibility of a unique unbounded compo-
nent of C at A.. Suppose A = A, and that No = 1 a.s. Denote the unique
unbounded component of C' by U. By Proposition 5.6, V' contains only finite
components a.s. Let € > 0 be small and remove each point in X with probability
€ and denote by X, the remaining points. Furthermore, let C, = Uzex, S(z,1).
Since X, is a Poisson process with intensity A.(1—e¢) it follows that C, will con-
tain only bounded components a.s. Let C. be the collection of all components
of C.. We will now construct H, as a union of elements from C. and V such
that the distribution of H, will be Isom(H?)-invariant. For each z € H? we let
U.(z) be the union of the components of U N C, being closest to z. We let each
h from C. UV be in H, if and only if sup,c, d(2,U) < 1/e and Uc(z) = Uc(y)
for all z, y € h. We want to show that for € small enough, H, contains un-
bounded components with positive probability. Let B be some ball. It is clear
that L(BNOH,) — 0 a.s. and also that u(B N H,) — u(B) a.s. when ¢ — 0.
Also L(BNOH,) < L(BN(0C. UAC)) and E[L(BN (0C. UIC))] < K < oo for
some constant K independent of €. By the dominated convergence theorem, we
have
lim E[u(B N H,)] = u(B) and 11_1}1’(1) E[L(BNOH,)] = 0.

e—0
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Therefore we get by Lemma 5.2 that H. contains unbounded components with
positive probability when € is small enough. Suppose hq, ha, ... is an infinite
sequence of distinct elements from C.UV such that they constitute an unbounded
component of H.. Then U(z) = Uc(y) for all z,y in this component. Hence
U N C. contains an unbounded component (this particular conclusion could not
have been made without the condition sup,;, d(z,U) < 1/e in the definition of
U(z)). Therefore we conclude that the existence of an unbounded component in
H, implies the existence of an unbounded component in C.. Hence C, contains
an unbounded component with positive probability, a contradiction.

We move on to rule out the case of infinitely many unbounded components
of C' at A\.. Assume Ng = oo a.s. at A.. As in the proof of Lemma 5.4, we
choose r such that for x € H? the event

A(z,r) :=

{S(z,r) intersects at least 3 disjoint unbounded components of C[S(z,r)]}

has positive probability. Let B(z,r) := {S(z,r) C C[S(z,r)]} for z € HZ.
Since A and B are independent, it follows that A N B has positive probability.
On AN B, z is contained in an unbounded component U of C. Furthermore,
U\S(z,r + 1) contains at least three disjoint unbounded components. Now let
Y be a Poisson process independent of X with some positive intensity. We call
a point y € H? a encounter point if

e yeyY:
e A(y,r) N B(y,r) occurs;
* Sy, 2(r+1))NY = {y}.

The third condition above means that if y; and y» are two encounter points,
then S(y;,r+ 1) and S(y2,7+ 1) are disjoint sets. By the above, it is clear that
given y € Y, the probability that y is an encounter point is positive.

We now move on to show that if y is an encounter point and U is the
unbounded component of C' containing y, then each of the disjoint unbounded
components of U\S(y,r + 1) contains a further encounter point.

Let m(s,t) = 1 if ¢ is the unique encounter point closest to s in C, and
m(s,t) = 0 otherwise. Then let for measurable sets A, B C H?2

n(A x B) = Z Z m(s,t)

SEY(A) teY (B)
and
v(A x B) = E[n(A x B)].

Clearly, v is a positive diagonally invariant measure on H? x HZ2. Suppose A is
some ball in H?. Since ),y m(s,t) < 1 we get v(A x H) < E[|Y(4)]] < oc.
On the other hand, if y is an encounter point lying in A and with positive
probability there is no encounter point in some of the unbounded components
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of U\S(y,r + 1) we get > ey D sy (aym(s,t) = oo with positive probability,
so v(H? x A) = oo, which contradicts Theorem 3.2.

The proof now continues with the construction of a forest F', that is a graph
without loops or cycles. Denote the set of encounter points by 7', which is a.s.
infinite by the above. We let each ¢t € T represent a vertex v(t) in F. For a
given t € T, let U(t) be the unbounded component of C' containing ¢. Then
let k£ be the number of unbounded components of U(t)\S(¢,r + 1) and denote
these unbounded components by Cy, Cs,..., Cx. Fori =1, 2, ..., k put an edge
between v(t) and the vertex corresponding to the encounter point in C; which
is closest to ¢ in C' (this encounter point is unique by the nature of the Poisson
process).

Next, we verify that F constructed as above is indeed a forest. If v is
a vertex in F, denote by t(v) the encounter point corresponding to it. Sup-
pose vy, V1, ..., Up = vp is a cycle of length > 3, and that dc(t(vo),t(v1)) <
dc(t(v1),t(v2)). Then by the construction of F it follows that do (t(v1),t(ve)) <
de(t(v2),t(v3)) < ... < dco(t(vp—1),t(v0)) < dc(t(vo), t(v1)) which is impossible.
Thus we must have that dc (¢(v;), t(viy1)) is the same for all ¢ € {0,1,..,n—1}.
The assumption de(t(vo), t(v1)) > do(t(v1),t(v2)) obviously leads to the same
conclusion. But if y € Y, the probability that there are two other points in YV
on the same distance in C' to y is 0. Hence, cycles exist with probability 0, and
therefore F' is almost surely a forest.

Now define a bond percolation F, C F' : Define C. in the same way as above.
Let each edge in F be in F, if and only if both encounter points corresponding
to its end-vertices are in the same component of C.. Since C. contains only
bounded components, F, contains only finite connected components.

For any vertex v in F' we let K (v) denote the connected component of v in
F, and let Op K(v) denote the inner vertex boundary of K(v) in F. Since the
degree of each vertex in F' is at least 3, and F is a forest, it follows that at least
half of the vertices in K (v) are also in Or K (v). Thus we conclude

Pz € T,v(z) € OrK(v(z))|z € Y] > -Plz € T|z € Y].

N | =

The right-hand side of the above is positive and independent of €. But the left-
hand side tends to 0 as € tends to 0, since when € is small, it is unlikely that an
edge in F'is not in F,. This is a contradiction. O

By Proposition 5.6, if N¢ = 0 a.s., then Ny = 1 a.s. Thus we have an
immediate corollary to Theorem 5.7.

Corollary 5.8. At A;, Ny =1 a.s.

Next, we show the corresponding results for A*. Obviously, the nature of V'
is quite different from that of C, but still the proof of Theorem 5.9 below differs
only in details to that of Theorem 5.7. We include it for the convenience of the
reader.

Theorem 5.9. At \;, Ny =0 a.s.
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Proof. Suppose Ny = 1 a.s. at AX and denote the unbounded component of
V by U. Then C contains only finite components a.s. by Proposition 5.6. Let
e > 0 and let Z be a Poisson process independent of X with intensity e. Let
Ce := UgexuzS(z,1) and V. := C¢. Since X U Z is a Poisson process with
intensity A} + € it follows that C, has a unique unbounded component a.s. and
hence V, contains only bounded components a.s. Let V. be the collection of
all components of V,. Define H, in the following way: For each z € H? we let
U.(z) be the union of the components of U NV, being closest to z. We let each
h € CUV, be in H, if and only if sup_c;, d(2,U) < 1/e and Uc(z) = U(y) for all
2,y € h. As in the proof of Theorem 5.7, for € > 0 small enough, H, contains
an unbounded component with positive probability, and therefore V. contains
an unbounded component with positive probability, a contradiction.

Now suppose that Ny = oo a.s. at A%. Then also N¢ = oo by Proposition
5.6. Therefore, for x € H?, we can choose 7 > 1 big such that the intersection
of the two independent events

Az, r) =
{S(z,r) intersects at least 3 disjoint unbounded components of C[S(z,r)°]}

and B(z,r) := {|X(S(z,r))| = 0} has positive probability. Next, suppose that
Y is a Poisson process independent of X with some positive intensity. Now we
redefine what an encounter point is: call y € H? an encounter point if

e ycY;
e A(y,r) N B(y,r) ocurrs;
e S(y,2r)NY = {y}.
By the above discussion,
P[y is an encounter point |y € Y] > 0.

If y is a encounter point, y is contained in an unbounded component U of V
and U\S(y,r) contains at least 3 disjoint unbounded components. Again we
construct a forest F' using the encounter points and define a bond percolation
F. C F. Let V, be defined as above. Each edge of F is declared to be in F, if
and only if both its end-vertices are in the same component of V.. The proof is
now finished in the same way as Theorem 5.7. O

Again, Proposition 5.6 immediately implies the following corollary:

Corollary 5.10. At A}, N¢c =1 a.s.

5.2 Proof of Theorem 4.2

Here we combine the results from the previous sections to prove our main the-
orem in H2.
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Proof of Theorem 4.2. If A < A, then Proposition 5.6 implies Ny > 0 a.s.
giving A < A% If A > A, the same proposition gives Ny =0 a.s. giving A > A%.
Thus

(5.1) Au = AL

By Theorem 5.7 No = 0 a.s. at A., so Ny > 0 a.s. at A, by Proposition 5.6.
Thus by Theorem 5.9

(5.2) Ae < AL

Hence the desired conclusion follows by (5.1), (5.2) and Lemma 4.8. O

6 The number of unbounded components in H"

This section is devoted to the proof of Theorem 4.3. First, we recall a method
for dominating the distribution of C'(u), the component of C' containing u € H".
This method is found in for example [15].

Construct a branching process, whose members are points in H", as follows.
The point in the 0:th generation is taken to be u. Given points Z,1, Zp2, ..., Znn,
in the n:th generation, the (n + 1):th generation is defined as follows. For
l=1,..,N, let X,,; be a Poisson process with intensity A, independent of the
previous history of the branching process and also of X, for | # I'. At each
point of X,,; center a ball of radius R. The progeny of Z,,; is then taken to
be the points of X,,; whose associated balls intersect that of Z,,;. Observe that
the distance between a point and its parent is at most 2R. The number of
descendants of Z,; has a Poisson distribution with expectation Ap(S(0,2R)).
Therefore, by independence, the expected number of points in generation n is
given by A"u(S(0,2R))"™.

We next describe how to get a connected component with the same distri-
bution as C'(u) using the above branching process.

To each point of the branching process, associate a ball of radius R centered
at the point. Then color the balls of the branching process except the ball in
the 0:th generation green or red as follows. The balls in the first generation
that contain u (the point in the 0:th generation) are colored green, the other
balls in the first generation are colored red. Then by induction proceed as
follows. For n > 2, given the colors of the balls in the n — 1 first generations,
for I = 1,..., N, the ball corresponding to the point Z,; is colored green if the
following conditions are met:

1. The ball corresponding to the parent of Z,,; is green.
2. It does not intersect some green ball from a generation earlier than n — 1.

3. It does not intersect some green ball corresponding to some parent of any
of Z,, for k < .
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4. It does not contain u.

Otherwise, it is colored red.

Then it is easy to see that the union of green balls has the same distribution
as C(u). Thus the distribution of the union of all balls centered at points of the
branching process dominates that of C'(u).

First part of proof of Theorem 4.3. In view of Lemma 4.10, it is enough to show
that Plu > v] = 0 as d(u,v) — oo for some intensity above A.. Fix points w
and v and let d = d(u,v). We use a duplication trick. Let X;(u) and X2(u) be
two independent branching processes as described above, where the point in the
0:th generation is taken to be u for both of them. Let Cj(u) and Cy(u) be the
union of balls of radius R placed at every point of X;(u) and X5 (u) respectively.
Let Cy(u) and Cy(u) be the union of the green balls from C)(u) and Cy(u). If
we for some € > 0 can find points v and v on an arbitrarily large distance from
each other such that « is connected to v in C}(u) with probability at least e,
then the event

B(u,v) := {u is connected to v in both C;(u) and Cs(u)}

has probability at least e? since C;(u) and C(u) are independent. So it is

enough to show that P[B(u,v)] — 0 as d(u,v) = oo for some intensity above
Ae. Let

B(u,v) := {u is connected to v in both C}(u) and Ca(u)}.

Then clearly

P[B(u,v)] < P[B(u,v)].

Let & = [d/(2R)] be the smallest number of balls of radius R needed to
connect u and v. Observe that B(u,v) is included in the event that there are
integers l1,ls > k — 1 such that there is at least one point z; in generation /; of
X1 (u) and one point 5 in generation Iy of X5(u) such that d(z;,z2) < 2R (if
two balls intersect, the distance between their corresponding centers is at most
2R). Below, when we mention (sequences of) points with a certain property,
we assume that they are chosen uniformly at random among all (sequences of)
points with the property on the event that they exist.

Suppose that y,, is a point in the n:th generation of X;(u) and z,, is a point
in the m:th generation of Xs(u). By independence of X;(u) and X(u), the
expected number of such pairs (yn,2m) is given by (Au(S(0,2R))*+™.

Observe that the distance between y, and z, has the same distribution
as the distance between u and a point in generation n + m of Xi(u). Let
Pgr(n) be the probability that a point in generation n of X;(u) is at distance
at most 2R from u. Then the expected number of points in generation n of
X1(u) at distance at most 2R from wu is given by (Au(S(0,2R)))"Pgr(n). Con-
sequently, the expected number of pairs (yn, zm) with d(yn,zm) < 2R is given
by (Au(S(0,2R)))™*" Pr(m +n).
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Therefore we get

o0

PBwo)) < Y D On(S(0,2R)™ " Pa(n +m).
—k—

m=k—1n 1

We will now estimate the terms in the sum above.

Lemma 6.1. There is a sequence of i.i.d. random wvariables Y1, Ys,....,Y, 1
with positive mean such that

n—1

> Y <2R|.

i=1

Pr(n) <P

The distribution of Y; will be defined in the proof.

First part of proof of Lemma 6.1. Suppose yo = u, ¥y, ..., Yn iS a sequence of
points in X (u) where y;_; is the parent of y;. Given y;, the distribution of y;41
is the uniform distribution on S(y;,2R) (with respect to the volume measure).
Let dz = d(yz’,yz’+1).

Then dy,d; ..., d,—1 is a sequence of independent random variables with den-
sity

d pu(8(0,r) _  sinh(r)"7! )
dr p(S(0,2R)) [ sinh(t)n1 dt for r € [0, 2R].

(6.1)
Next we write

n—1

(6.2) Pld(yo,yn) < 2R] =P Z(d(yo,yiﬂ) —d(yo,yi)) < 2R]| .

The terms in the sum 6.2 are neither independent nor identically distributed.
However, we will see that the sum is always larger than a sum of i.i.d. random
random variables with positive mean. Suppose without loss of generality that
yo = u = 0. Let ~; be the geodesic between 0 and y; and let ¢; be the geodesic
between y; and y;41 for ¢ > 1. Let 6; be the angle between v; and ¢; for
1> 1 and let 8g = w. Then 61,60, ...,0,_1 is a sequence of independent random
variables, uniformly distributed on [0,7]. Since the geodesics 7;, vit+1 and ¢;
are in the same hyperbolic plane, we can express d(0,y;+1) in terms of d(0,y;),
d; and 6; using the first law of cosines for triangles in hyperbolic space (see [20],
Theorem 3.5.3), which gives that
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d(0,yi+1) — d(0,y;) = cosh™* (cosh(di) cosh(d(0,y;))
(6.3)
— sial(a5) (40, 3:) co(6) ) = 0,3

Next we prove a lemma that states that the random variable above dominates
a random variable which is independent of d(0, y;). Put

f(z,y,0) := cosh™'(cosh(z) cosh(y) — sinh(z) sinh(y) cos(d)) — y.

Lemma 6.2. For fized x and 6, the function f(x,y,6) is strictly decreasing in
y and g(z,0) :=lim,_, f(z,y,0) = log(cosh(z) — sinh(x) cos(h)).

Proof. For simplicity write a = a(x) := cosh(z) and b = b(x, §) := sinh(zx) cos(h).
Then by rewriting

acosh(y) — bsinh(y) + v/(a cosh(y) — bsinh(y))% — 1
exp(y)

(6.4) f(x,y,0) =log (

we get by easy calculations that the limit as y — oo is as desired. It remains to
show that f,(z,y,6) <0 for all z, y and §. We have that
(6.5)

£ @.0) = -1 —bcosh(y) + asinh(y)
Y ’d -

* \/—1+ acosh(y) — bsinh(y)/1 + a cosh(y) — bsinh(y)

which is less than 0 if
(6.6)
v/—1+ acosh(y) — bsinh(y)+/1 + a cosh(y) — bsinh(y) > asinh(y) — bcosh(y)

If the right hand side in 6.6 is negative then we are done, otherwise, taking
squares and simplifying gives that the inequality 6.6 is equivalent to the simpler
inequality

a> —b?>1
which holds since a? —b? = cosh?(z)—sinh? () cos?(f) > cosh?(z)—sinh?(z) = 1,
completing the proof of the lemma. O

Second part of proof of Lemma 6.1.  Letting Y; := g(d;,0;) we have (since
Yo > 0),

n—1 n—1
(6.7) Pld(yo,yn) <2R] <P |) Y;<2R| <P |> Y;<2R
i=0 i=1
where g is as in Lemma 6.2, which concludes the proof. O

We now want to bound the probability in Lemma 6.1, and for this we have
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the following technical lemma, which in a slightly different form than below is
due to Patrik Albin.

Lemma 6.3. Let Y; be defined as above. There is a function h(R,€) such that
for any € € (0,1) we have h(R,e) ~ Ae 19 as R — oo for some constant
A = A(e) € (0,00) independent of R and such that for any R > 0,

> Yi < 2R| < (R, e)"e".

i=1

(6.8) P

Proof. Let K be the complete elliptic integral of the first kind (see [11], pp.
313-314). Then we have

-Y1/2 = =
Ele jda] = B v/cosh(d;) — sinh(dy ) cos(6:) d1‘|
e—d1/2
=E lVI — COS(01/2)2(1 _ e—2d1) dl]

_ 2e”h/2K ({1 —e~2d)
= - .
Using the relation K(z) = 7 2F1(1/2,1/2,1,2)/2 where 3F; is the hypergeo-
metric function (see [11], Equation 13.8.5), we have

Ele™Y1/2|d)] = e~ 1/ ,F(1/2,1/2,1,1 — e~2%),

Since 2F1(1/2,1/2,1,-) is continuous on {z € C : |z| < p} for any p € (0,1),
this gives

(6.9) Ele Y1/2|d,] < Aje= /2 for d; < o,

for some constant Aj(xzo) > 0, for any o > 0. Large values of d; makes the
argument of o3 (1/2,1/2,1,1 — e~241) approach the radius of convergence 1 of
2F1(1/2,1/2,1,-) so we perform the quadratic transformation

1-+v1-1z)?
2F1(a, b, 2b, .CL') = (]. - .'L')ia/22F1 (a, 2b — a,b + 1/2, —%) s
(see [10], Equation 2.11.30), giving
Ele™/2|d)] = 2 F1 (1/2,1/2,1, —e®(1 — e~ 4)?/4) .

By the asymptotic behaviour of the hypergeometric function (here the analytic
continuation of the hypergeometric function is used), we have

log |z|

|2F1(1/2, 1/2, 1,.73)' ~ A2

=

|z
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as |z| = oo (see [10], Equation 2.3.2.9), for some constant A, > 0. Combining
this with 6.9 we get

E[G_Yl/2|d1] < A3(1 + dl)e_d1/2 < A4€_(1_€)d1/2
for di > 0, for any € € (0,1), for some constants Az > 0 and A4(e) > 0. Thus
E[ele/Q] < E[A4efd1(1fe)/2]

2R . 11—
_ A4 fO SII;};(t)" 16 t(1—e)/2 dt
JPR sinh(t)n—1 dt

Clearly h(R,€) := Ay f02R sinh(t)"~le~t(1=9/2 4t / fOQR sinh(t)"~! dt ~ Ae~F(-¢)
as R — oo for some constant A € (0,00). Finally we get using Markov’s in-
equality that

n
P Y Vi<2R| =P [ XiaYi s o f]
i=1
S eRE I:e_% Z?:l Y1:|
=ef'E [e_yl/z]n
< h(R,€) e’
completing the proof. O

Second part of proof of Theorem 4.3. By the estimates in Proposition 4.7 and
Lemma 6.3 we get that

i (Ac(R)u(S(0,2R))™ "™ Pr(m +n)
—k—

m 1n 1

<t S S (RhR
—k—

m 1n=k-1

for any € € (0,1) and some constant K € (0,00). Thus if we take R big enough,
the sum goes to 0 as £ — oo. This is also the case if we replace A, with tA.
for some t > 1, proving that there are intensities above A, for which there are
infinitely many unbounded connected components in the covered region of H"
for R big enough. O
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Continuum percolation at and above the
uniqueness threshold on homogeneous spaces

Johan Tykesson*

Abstract

We consider the Poisson Boolean model of continuum percolation on
a homogeneous space M. Let A be the intensity of the underlying Poisson
process. Let A, be the infimum of the set of intensities that a.s. produce
a unique unbounded component. First we show that if A > A\, then there
is a.s. a unique unbounded component at A. Then we let M = H? x R
and show that at A, there is a.s. not a unique unbounded component.
These results are continuum analogs of theorems by Haggstrom, Peres
and Schonmann.

Keywords and phrases: continuum percolation, phase transitions
Subject classification: 82B21, 82B43

1 Introduction and results

In this paper we show continuum analogs to some theorems concerning the
uniqueness phase in the theory of independent bond and site percolation on
graphs. Before turning to our results, we review these theorems.

Let G = (V, E) be an infinite, connected, transitive graph of bounded degree
with vertex set V and edge set E. Keep each edge with probability p and delete
it otherwise, independently for all edges. We call this independent bond perco-
lation on G at level p, and let P, be the corresponding probability measure on
the subgraphs of G. A connected component in the random subgraph obtained
in percolation is called a cluster. It is well known that the number of infinite
clusters is an a.s. constant which is 0, 1 or co. Let

Pc(G) :=inf{p : P, — a.s. there is an infinite cluster}

be the critical probability for percolation.

In what follows we will discuss percolation at different levels, and when we
do this, we always use the following coupling. To each e € FE we associate
an independent random variable U, which is uniformly distributed on [0, 1].

*Department of Mathematical Sciences, Division of Mathematical Statistics, Chalmers
University of Technology, S-41296 Go&teborg, Sweden. E-mail: johant@math.chalmers.se.
Research supported by the Swedish Natural Science Research Council.



Then say that e is kept at level p if U, < p and deleted otherwise. Using this
construction, we have that if p; < py then any edge kept at level p; is also kept
at level p,. We call this coupling the standard monotone coupling.

Now suppose that p. < p1 < p2 and use the monotone coupling. We say
that an infinite cluster at level p, is p;-stable if it contains an infinite cluster at
level p;. Schonmann proved the following theorem:

Theorem 1.1. Suppose G is a transitive graph and that p.(G) < p1 < ps < 1.
Then any infinite cluster at level ps is a.s. pp-stable.

Theorem 1.1 was first shown by Héggstrom and Peres [7], under the tech-
nical assumption of so-called unimodularity (for definition see [6]), and shortly
thereafter by Schonmann [12] in its full generality.

Theorem 1.1 has the following immediate consequence, where

pu(G) :=inf{p : P, — a.s. there is a unique infinite cluster}

is the uniqueness threshold for percolation.

Corollary 1.2. Suppose G is a transitive graph and that p > p,(G). Then
P, [there is a unique infinite cluster] = 1.

So Corollary 1.2 settles what happens above p,. But there is also the ques-
tion of what happens at p,. It turns out that the answer depends on the graph.
The following theorem of Peres [11] is of special interest to us:

Theorem 1.3. Let G = (Vg, Eg) and H = (Vig, Eg) be two infinite transitive
graphs and suppose G is nonamenable and unimodular. Consider Bernoulli
percolation on G x H and let p, = py (G x H). Then

P,.[3 a unique infinite cluster] = 0.

In contrast to this result, Benjamini and Schramm [1] showed that on any
planar, transitive unimodular graph with one end, there is a.s. a unique infinite
cluster at p,.

In the proof of Theorem 1.7 below we shall need a result concerning invariant
site percolation. First some definitions are needed. Denote the group of graph
automorphisms on G by Aut(G). A random subgraph of G in which all edges
are kept, is called a site percolation on G. We call w an invariant site percolation
on G if the law of w is invariant under the action of Aut(G). The graph G is
said to be amenable if for every € > 0 there is a finite set of vertices Vy such
that |0Vy| < €|Vo| and nonamenable otherwise. In [2] the following theorem is
shown.

Theorem 1.4. Suppose G is nonamenable and w is an invariant site percolation
on G. There is a constant ¢ = ¢(G) < oo such that for u € V,

Plu belongs to an infinite cluster of w] > Plu € w](1+¢) —c.



Recall that a graph G is said to have one end if for every finite set of vertices
Vo C V there is precile one infinite connected component of G C V. A nona-
menable, infinite transitive graph with one end is quasi-isometric to H? (see for
example [1]). We will later embed such a graph HZ.

We will now discuss analogs of Theorems 1.1 and 1.3 in a continuum per-
colation setting. A Riemannian manifold M is said to be a (Riemannian) ho-
mogeneous space if for each z,y € M there is an isometry that takes z to
y. Throughout this paper we assume that M is a simply connected, complete
and noncompact homogeneous space, with metric dys and volume measure pps.
When it is clear which space we are working with we will write d = dps and
= ppr- We let 0 denote the origin of the space.

For one of the main results below it is possible to give a somewhat shorter
proof under the additional assumption that M is a symmetric space. A con-
nected Riemannian manifold M is said to be a (Riemannian) symmetric space
if for each point p € M there is an isometry I, such that I,(p) = p and I,
reverses geodesics through p. While the condition that a space is homogeneous
is analog to the condition that a graph is transitive, the condition that a space is
symmetric is in some sense the analog to the condition that a graph is unimod-
ular. The most important symmetric spaces to study continuum percolation on
are arguably n-dimensional Euclidean space R™ and n-dimensional hyperbolic
space H™. Also products of symmetric spaces are symmetric spaces, for example
H? x R. Any symmetric space is homogeneous. For examples of a noncompact
spaces which are homogeneous but not symmetric, one may consider certain
Damek-Ricci spaces, see [3].

We now introduce the Poisson Boolean model of continuum percolation. Let
S(z,r):={y € M : du(z,y) <r} be the closed ball with radius r centered at
z. Let X* be a Poisson point process on M with intensity A relative to volume
measure fys. Around every point of X* we place a ball of unit radius, and
denote by C* the region of the space that is covered by some ball, that is C* :=
Uzex»S(z,1). We remark that all proofs below work if we instead consider the
model with some arbitrary fixed radius R. Write P for the probability measure
corresponding to this model, which is called the Poisson Boolean model with
intensity A.

Next we introduce some additional notation. Let V* := (C*)¢ be the vacant
region. Let C*(x) be the component of C* containing z. C*(z) is defined to be
the empty set if = is not covered. Let X*(A) be the Poisson points in the set
A. Furthermore denote by C*[A] the union of all balls centered within the set
A. Let N¢ and Ny denote the number of unbounded connected components of
C* and V* respectively. The number of unbounded components for the Poisson
Boolean model on a homogeneous space is an a.s. constant which equals 0, 1
or oo. The proof of this is very similar to the discrete case, see for example
Lemma 2.6 in [6], so we omit it. As in the discrete case, we introduce two
critical intensities. Let

Ae(M) :=inf{\ : N¢ >0 as.}



and
Ay(M) :=1inf{\ : N¢ =1 a.s.}

be the critical intensity for percolation and the uniqueness threshold for the
Poisson Boolean model.

Remark. Obviously it is only interesting to study what happens at and
above A, when )\, < oo. For example this is case for H? x R and may be proved
by adjusting the arguments for the H? case, see [13]. Simple modifications (just
embed a different graph in the space) of the arguments in Lemma 4.8 in [13]
show that for \ large enough there are a.s. unbounded components in C* but
a.s. no unbounded components in V*. Since any two unbounded components
in C* must be separated by some unbounded component in V* it follows that
for A large enough there is a.s. a unique unbounded component in C*.

We will often work with the model at several different intensities at the same
time. Suppose we do this at the intensities Ay < Ay < ... < A,. Then we will
always assume that C*i+! is the union of C*¢ and balls centered at the points of
a Poisson process, independent of C*¢, with intensity A\;;; —A;. We call this the
standard monotone coupling and is obviously the analog of the discrete coupling
described earlier.

Now suppose A1 < A and use the monotone coupling. We say that an
unbounded component in C*2 ig )\;-stable if it contains some unbounded com-
ponent in C*1. We now state a continuum version of Theorem 1.1.

Theorem 1.5. Consider the Poisson Boolean model on a homogeneous space
M. Suppose \e(M) < Ay < A2 < 00. Then a.s. any unbounded A2-component
is A1-stable.

From Theorem 1.5, the following corollary is immediate.

Corollary 1.6. Consider the Poisson Boolean model on the homogeneous space
M. Suppose \y(M) < XA. Then Py\[N¢c =1]=1.

Remark. Corollary 1.6 is known in the cases M = R™ for any n > 2 (see [10])
and M = H? (see [13]).

We will present two proofs of Theorem 1.5: one relatively short proof re-
quiring the additional property that M is symmetric, and then a more involved
proof for the more general case. The first is inspired by the proof of Theorem
1.1in [7] and the second is inspired by the proof of Theorem 1.1 in [12].

To get a continuum analog to Theorem 1.3 we consider the Poisson Boolean
model on a product space.

Theorem 1.7. Consider the Poisson-Boolean model on H? x R. Then
P, [Noc=1]=0.

Note that on H?, Corollary 5.10 in [13] says that at A, there is a.s. a unique
unbounded component. We now move on to the proofs.



2 Uniqueness monotonicity

In this section we first present a relatively short proof of Theorem 1.5 in the
symmetric case, and then a proof which only needs the assumption that the
space is homogeneous.

First we present an essential ingredient to the first proof, the mass transport
principle which is due to Benjamini and Schramm [1]. We denote the group of
isometries on the symmetric space M by Isom(M).

Definition 2.1. A measure v on M x M is said to be diagonally invariant if
for all measurable A, B C M and g €Isom(M)

v(gA x gB) = v(A x B).

Theorem 2.2. (MASS TRANSPORT PRINCIPLE ON M) If v is a positive diag-
onally invariant measure on M x M such that v(A x M) < oo for some open
AC M, then

v(Bx M) =v(M x B)

for all measurable B C M.

The intuition behind Theorem (2.2) can be described as follows. In appli-
cations for the Poisson Boolean model, it is often the case that v(4 x B) =
E[n(A, B,C)] where 7 is a function such that (A, B,C) = n(g9A4, gB,gC) for
any isometry g (here C is again the covered region in the model). We think
of n(A,B,C) as the amount of mass that is transported from A to B. Thus
Theorem (2.2) says that the expected amount of mass transported into B is the
same as the expected amount of mass transported out from B.

Actually the mass transport principle is proved in [1] for the case when
M = HP, but as is remarked there, it holds for any symmetric space.

Proof of Theorem 1.5 in the symmelric case: Suppose A, < A1 < Ay. We
couple C* and C*2 using the monotone coupling. Since any ball in C** is also
present in C*2, it is enough to show that any unbounded component of C*2
intersects an unbounded component of C*. For any point z € M let

D(z) := inf{d(z,y) : y is in an unbounded component of C**}
and let - D " o™
P = { Dl e
Define the random set H to be the set of all points z satisfying the conditions
e C*2(z) is a A\j-unstable unbounded component
<

e D(z) < D(z)+1/2



and write B(z) for the event that 2 € H. Suppose that C*2 contains an un-
bounded component which does not intersect an unbounded component of C*1.
Then this unbounded component contains regions of positive volume in H, so it
suffices to show that P[B(z)] = 0. Let H(z) be the intersection of H and C*? ().
Let B®(z) := B(z) N {u(H(z)) = oo} and Bf(z) := B(z) N {u(H(z)) < co}.
The events Bf (x) and B> (z) partition B(z). First we show that P[B/(z)] =0
using the mass transport principle.

In any unbounded component of C*2 such that the volume of the intersection
between it and H is positive and finite, we put mass of unit density. Then, the
mass in any such unbounded C*?-component is distributed uniformly on the part
of H that intersects it. Suppose A and B are bounded sets and let ¥(A x B) be
the expected amount of mass sent from the set A to the set B. Then v is easily
seen to be a positive diagonally invariant measure on M x M. The expected
amount of mass going out from A, that is v(A x M), is at most u(A4) < oc.
However, on B (z) there are bounded sets of positive finite volume that receive
an infinite amount of mass. Hence, by the mass transport principle we must
have P[B(z)] = 0.

Next we show P[B*(z)] = 0 by showing P[B®(z)N{r < D(z) < r+1/4}] =
0 for any 7 > 0. To do this we use the following method of building up the
process at level Ay in three steps. Fix r > 0. In step one, we add all balls in
C*. In the second step, we add all balls that appear in the coupling between
level \; and Ay and are centered at distance at least r + 1 from unbounded
components in C*. In the third and final step, we add all balls that appear
in the coupling between level A\; and A2 that are centered at distance less than
r + 1 from unbounded components in C*1.

For B*®(z)N{r < D(z) < r+1/4} to occur, it is necessary that the following
two things happen when building up the process as described above. First, x
must belong to an unbounded connected component, using balls only from step
one and two, such that it does not intersect any unbounded C*-component but
contains infinitely many balls centered at distance between r + 1 and 7 + 1 +
1/2 +1/4 = r + 7/4 from unbounded C*'-components. Then, this unbounded
component must not be connected to any unbounded C*'-component by the
balls that appear in step three above. However, if the first of these two things
happen, then the second will a.s. not happen as can be seen as follows.

Suppose z belongs to an unbounded component using only balls from step
one and two, with the properties described above, and call it C*2(z)’. The
balls that appear in step three above, are centered at a Poisson process with
intensity A2 — A; > 0 in the region of the space that is distance less than r + 1
from some unbounded C** component, and this Poisson process is independent
of everything else. By the properties of C**(z)', we can find an infinite sequence
{z;} of Poisson points (in X**) in unbounded components of C** centered at
a distance between r 4+ 1 and r 4 7/4 from C**(z). From this sequence, we
extract an infinite sequence {x;} such that S (wlj,r +1) and S(z;,r + 1) are
disjoint for ¢ # j. Let A; be the event that S (x’j,r + 7/4) is covered by balls
that appear in the coupling between A\; and Ay and that are centered in the



interior of S (a:'], r + 1) (all these balls are added in step three). Obviously A;
and A; are independent for ¢ # j and P[A;] is positive and independent of j.
Therefore, a.s. infinitely many A; will happen. But if some A; happens, then
CcHe (a:)’ will be connected to some unbounded C*'-component, which means
C*(x) is not A\j-unstable. Thus P[B®(z) N {r < D(z) < r +1/4}] = 0 for any
r and consequently P[B*°(z)] = 0. O

For the second proof of Theorem 1.5, we need some preliminary results.
First we describe a method for exploring the component of C* containing a
fixed point z € M. This may be considered to be the continuum version of the
algorithm described in for example [12] for finding the cluster of a given vertex
in discrete percolation.

At a fixed point x € M, we grow a ball with unit speed until it has radius
1, when the growth of the ball stops. Whenever the boundary of this ball hits
a Poisson point, a new ball starts to grow with unit speed at this point until
it has radius 2. In the same way, every time a new Poisson point (which has
not already been found) is hit by the boundary of a growing ball, a ball starts
to grow at this point until it has radius 2 (note that if two balls are connected,
their corresponding centers are within distance 2 from each other) and so on.
Several balls may grow at the same time. Let L)}(x) denote the set which has
been passed by the boundary of some ball at time ¢. If C*(z) is bounded, then
L)} (z) stops growing at some random time 7. In this case C*[L}(z)] = C*(x)
and L)(z) is the l-neighbourhood of C*(z). (If the first ball does not hit
any Poisson point, then C*(z) is the empty set). If C*(z) is unbounded, then
L)(z) never stops growing. We will refer to this procedure to as “growing the
component containing z”.

In what follows we will make use of the following lemma, which may be con-
sidered intuitively clear. Its proof is inspired by the proof of the corresponding
lemma for the discrete situation which is Lemma 1.1 of [12].

Lemma 2.3. Consider the Poisson Boolean model on a homogeneous space M .
Let R > 0 and let A > .. Any unbounded component of C* a.s. contains balls
of radius R.

For the proof we need to introduce some further notation. For a connected set
A containing = we let C*(z, A) be all points in A which can be connected to z
by some curve in C* N A. Let E,(z) be the union of all balls centered within
S(z,r+1) that are connected to z via a chain of balls centered within S(z,r+1).
Note that C*(z, S(z,r)) C E,().

Let 6,(z) := supycp, (2)\5(z,r) 4y, 0S(z, 7)) where the supremum is defined
to be 0if E,(x)\ S(z,r) is empty. Let {A < B} be the event that there is some
continuous curve in C* which intersects both the set A and the set B. Let A°
be the interior of the set A.

Proof. Since the case R < 1 is trivial we suppose R > 1. Fix a point z € M.
For any r > 0 let F.(z) := {z < 05(z,r)} and let

G, (z) := {C*(z,S(x,r)) does not contain a ball of radius R}.



Let D,(z) := F.(z) N Gr(z). Let D(z) be the event that z is an unbounded
component that does not contain a ball of radius R. Then D,(z) | D(z) so it is
enough to show that P[D,.(z)] — 0 as r — oo. Note that D,.(z) is independent
of the Poisson process outside S(z,r + 1). Also note that §,(x) € [0, 2].

If D.(z) N {6.(z) < 1/2} occurs, then there is a ball centered in S(z,r —
1/2)°\ S(z,r — 1)° which is connected to z by a chain of balls centered in
S(z,m—1/2)°. All these balls are also included in the set E,_;/3(x), and one of
these balls is centered at a distance at most 1/2 from 0S(z,r —1/2). This gives

(1) Di(@) N {5:(2) < 1/2} C D, 113(2) N {5, 172(x) > 1/2}.

We will now proceed by contradiction. Suppose that P[D(z)] > 0 and that
lim, 0 P[6-(2) < 1/2|D,(z)] = 1. These assumptions imply that

Tll>n010 P[D,(z) N {,(z) < 1/2}]
= lim P[0-(z) < 1/2|D,(z)]P[D,(z)] = lim P[D,(z)] = P[D(z)] > 0.

T—00

However, by (2.1) we get that

limsup P[5, 1/5(z) > 1/2|D, 15()] > limsup P[D, _1/5(@)N{d,_1/2(x) > 1/2)]
T—00

T—00
> lim P[D,.(z) N {é,(z) < 1/2}] >0,
r—00
so that in particular P[6,(x) > 1/2|D,(x)] does not go to 0 as r — oo which
contradicts the assumption lim,_,, P[0.(z) < 1/2|D,(z)] = 1. Thus we con-
clude that P[D(z)] = 0 and/or liminf, ,. P[6-(z) < 1/2|D,(z)] < 1. We
now assume liminf, , P[6.(z) < 1/2|D,(z)] < 1 and show that this im-
plies P[D(z)] = 0. By the assumption, we may pick a constant ¢; > 0 and
a sequence of positive numbers {a;}32, such that ap41 —ar > 2R+ 1 and
P[do, (z) > 1/2|D,,(z)] > ¢ for all k. On the event D,, (z) we may pick a
point Y on 8S(z,ar + R+ 1) such that if S(Y, R 4+ max(0,1 — d,, (z))) is com-
pletely covered by balls centered within S(Y, R), then D,,_, ()¢ occurs since
a ball of radius R has been found in C(z, S(x,a+1)) (this ball is contained in
C(z,S(x,ar41)) since apy1 —ap > 2R+ 1 and R > 1). The configuration of
balls within S(Y, R) is independent of the Poisson process within S(z,ay, + 1).
Now let A; be a random variable with the same distribution as the conditional
distribution of dj(x) given the event Dg(z). By the above observations we get
that

P[Dak+1 (m)C|Dak (m)] 2 P[S(O7R+ maX(O, 1- Ak)) C C)‘[S(O,R)]] > C2

for some constant co > 0 for all k. Since {D,, (z)} is decreasing, this implies
limg_,oo P[D,, (2)] = 0 and consequently P[D(z)] = 0. O

Proof of Theorem 1.5:



We consider the monotone coupling of the model at intensities A\; < Az, and
we write C' = (C*1,C*2). Let

E(z) := {z is in an unbounded C*2-component which is \;-unstable.}

Let
Ei(z) := E(x) N {D(z) < 3} and Es(z) := E(z) N {D(z) > 2},

where D is defined as in the proof of Theorem 1.5.

Finally let E, E; and E, be the events that E(z), Ei(z) and E2(x) respec-
tively happen for some z.

We will first show that P[E»(z)] = 0. Pick a and R = R(a) so that

P[S(z, R) intersects an unbounded component of C*1] > 1 —a

Let Z = (Z*,Z'*) and Z" = (Z'*,Z"*?) be two independent copies
of C, and let X' = (X'* X'*) and X" = (X"*,X"*2) be their underlying
Poisson processes. A prime will be used to denote objects relating to Z and a
double prime will be used to denote objects relating to Z' .

Grow the component of Z A2 containing x as described above, with the excep-
tion that if at time ¢ we find that a ball of radius R is contained in Z'*» [L't’\2 (2)]
we stop the process. Let T" denote the random time at which the process stops.
Note that T' < 00 a.s., since if Z'*2(z) is unbounded, then Z'** () contains balls
of radius R a.s. by Lemma 2.3. Let F} be the event that the process stops when
a ball of radius R is found, and note that Z *2(z) is a.s. bounded on Ff. On
Fi, we may (in some way independent of Z") pick a point Y such that S(Y, R)
is covered by Z'**[L2 ().

Fori=1,2let

XY= (XM N L2 (3) U (X NN L2 (x)°)

and ZN = U,cx»; S(z,1). In this way, Z*i is a Poisson Boolean model with
intensity A; for i = 1,2, and any ball present in Z*! is also present in Z*2.
Now let

F, .= F1 n{S(Y, R) intersects an unbounded component of Z”AI}.

On F, there is some point in Z*2(z) which is at distance less than or equal
to two from some unbounded Z*'-component, that is {f)(az) < 2} occurs for Z
so that Es(x) does not occur for Z. Since Ex(z) is up to a set of measure 0
contained in F; we have that

P[Ey(z)] < P[F N FE).
Since Z' and Z" are independent it follows that
P[F:|F1] = P[S(Y, R) intersects an unbounded component of Z”’\l] >1l-a

and consequently
P[Fy N F5] < P[Fj|F] < a.



Since we may choose a arbitrary small it follows that P[Ex(x)] = 0 as desired.

Next we argue that P[Ex(z)] = 0 for all 2 implies P[E>] = 0. Let D be a
countable dense subset of M. Then P [UzepEs(z)] = 0. But if E5 occurs then
Es(z) occurs for all z in some unbounded component of C*2, in particular for
some z in D, so it follows that P[Es(z)] = 0 implies P[E,] = 0.

Next we show that P[E; (z)] = 0. Let E{ (z) be the event that E;(z) occurs
and all points in the \;-unstable unbounded C*2-component of z which are at
distance less than or equal to three from some unbounded C*t-component are
contained in the ball S(0, N) for some random finite N. Let E{°(z) be the event
that Ej(z) occurs but that there is no such finite N. Let E{ and E{° be the
events that Ef (z) and E°(z) respectively happen for some z.

First we show that P[E/] = 0. Let B/ := Ef n{N < M}. We will show
that P[E/] > 0 implies that P[E,] > 0. So suppose P[E/] > 0. Then we may
pick M so large that P[E{c ’M] > 0. Again let Z and Z" be independent with
the same distribution as C. Then for 4 = 1,2 let Z* be the union of all balls
from Z'* centered within S(0, M + 1) together with the union of all balls from
Z"X centered within S(0, M +1)¢. Then if {Z'*2[S(0, M +1)] = 0} occurs and
E™M occurs for Z”, then E, occurs for Z. So since Z and Z" are independent
we get

P[R,] > P [22[5(0,M +1)] = 0] P [E{M] > 0

which is a contradiction, so P[E{] = 0.

Finally it remains to show that P[ES®] = 0. However the event E°(z) is
very similar to the event B*(z) in the first proof of Theorem 1.5, and is shown
to have probability 0 in the same way. In the same way it then follows that
P[EX]=0. O

3 Connectivity

In this section we show how )\, can be characterized by the connectivity between
large balls. This result will be used when we study the model at A\, on a product
space in the next section. Let

App :=inf{\: lim inf P[S(z,R) < S(y,R) in C*] = 1}.

R—oo 2,y
Note that obviously Apg > A.. We will show the following;:

Theorem 3.1. For the Poisson Boolean model on a homogeneous space with
Ay < 00 we have Ay = ABB-

The discrete counterpart of this result is Theorem 3.2 of [12], and the proof
is similar. The proof is also similar to the second proof of Theorem 1.5 above.

Proof. First we show that A, < App. Suppose that Apg < A1 < A2 and again
use the monotone coupling of the model. We will show that at Ay there is a.s.
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a unique unbounded component. For ¢ = 1,2 let

Ai(,y) = {u(C* (2)) = 00, u(CM (y)) = o0, CY(z) # CH(y)},

and let
Aj = UAi(w,y).
$7y

Since App > A we have by Theorem 1.5 that any unbounded A\, component
a.s. intersects some unbounded A; component. Therefore

31) [ J{u(C*2(@)) = 00, w(C*(y)) = 00, C*(2) # C*(y)} C A,UN

$7y

where N is a set of measure 0. In the same way as in the second proof of Theorem
1.5 we have that P[A;(z,y)] = 0 for all z and y implies P[4;] = 0. By (3.1),
P[A2] = 0 implies P[there is a unique unbounded component at level A;] = 1.
Hence it suffices to show that P[A;(z,y)] = 0 for all  and y. To show this, we
need the following definition.

Definition 3.2. Suppose C1 and Csy are two distinct components in the Poisson
Boolean model. A pair of Poisson points x1 € Cy; and x2 € Cs is called o
boundary-connection between C1 and Cs if d(x1,22) < 6 (so that the distance
between their corresponding balls is less than 4) or there is a sequence of Poisson-
points yi,...,Yn such that

o the unit ball centered around y; intersects the unit ball centered around
Yi+1 for all i.

o y; is outside Cy and Cs for all i.
e d(z1,y1) <4 and d(z2,y,) < 4.

Note that if there is a boundary connection between two components, then
at most two more balls are needed to merge them into one component.

If z,y € C* and CM(z) # CM(y), let B(zx,y) be the number of boundary
connections between C* (z) and C* (y). Let

Al(z,y) == Ai(z,y) N {B(z,y) = 0},
Al (z,y) = Ai(z,y) N {B(z,y) < o},

A7 (z,y) = Ai(z,y) N {B(z,y) = oo},

and for ¢ € {0, f,00} let A¢ be the event that A!(z,y) happens for some z and
y. In the same way as before it is seen that P[A}{(z,y)] = 0 for all z and y
implies P[A!] = 0.

Next we will argue that

(3.2) P[A)(x,y)] = 0 for all z and y.

11



Let Z'M and Z'M be two independent copies of the Poisson Boolean model
with intensity A\; and let X ** and X ** be their underlying Poisson processes.
Since A1 > Agp we may for any a > 0 pick R = R(a) such that

inf P)\I[S(zl,R) <« S(ZZ,R)] >1-—a.

21,22

Fix z and y and grow the component of z in Z'* (as described earlier) but
stop if a ball of radius R is found. Do the same for y. Let F; be the event
that the processes are stopped when balls of radius R are found, and note that
AY(z,y) is up to a set of measure 0 included in Fy. Let T, and T, denote
the random times at which the processes are stopped. On F; we pick X and
Y in some way independent of Z"* such that S(X,R) c Z'™ [L:}m1 (z)] and

S(Y,R) C ZM (L7 ()] Let
XM= (XN (L2 () UL () U (X2 0 (L2 (3) U L2 (1))

and Z* := Uycxri S(z,1). The distribution of Z*' is by construction the
distribution of the Poisson Boolean model with intensity A;. Let

Fy := F; N{S(X,R) + S(Y,R) in Z *}.

If we are on Fy then either {Z*1(z) = Z* (y)} occurs or {B(z,y) > 1} occurs
for Z* and in neither case we are on AJ(z,y). Since

P[F|F] = P[S(X,R) & S(Y,R)in Z M]>1-a
it therefore follows that
P[Al(z,y)] < P[Fi N F5] < P[F5|Fi] < a

proving (3.2).
Next we show that

(3.3) P[4/]=0.

Let A{’N be the event there are two distinct unbounded components in
C* such there is a finite number of boundary connections between them and
they are all contained in the ball $(0, N). Suppose P[A]] > 0 and pick N so
large that P[A7"] > 0. Let Z* be the union of the balls from Z'» centered
outside S(0, N) and the balls from Z ** centered inside S(0, N). Now suppose
that A>™ happens for Z'** and that {Z"*[S(0,N)] = 0} happens. Then we
can find two separate unbounded components of Z** such that there are no
boundary connections between them. It follows by the independence of Z " and
Z" that

P43] > P [A[] P [2(S(0, M) = 0] >0,

a contradiction which proves (3.3).

12



The event A$°(x,y) may happen in three different ways. Either there are
infinitely many Poisson points in C*!(z) that are part of boundary connections
between C* (z) and C* (y) and only finitely many in C*t(y), or there are
infinitely many in C** (y) and only finitely many in C*! (z), or there are infinitely
many in both of C*(z) and C*(y). If any of the first two cases happen,
then we get a configuration in A by deleting all Poisson points within some
bounded region in the same way as it was proved that P[A]] = 0, which shows
that these cases have probability 0. Now suppose the third case happens, that
is, there are infinitely many Poisson points in both C*(z) and C*(y) that
are part of boundary connections between C*t(x) and C*t(y). Then it is a.s.
not possible to delete all boundary connections between C*1(z) and C*(y)
by deleting all Poisson points within any bounded region. Therefore C* ()
and C*1(y) will almost surely be merged into one unbounded component at
level A2 by balls that appear in the coupling between level A; and Aa. That
is, P[Aa(z,y) N A(z,y)] = 0. Thus, since Az(z,y) C Ai(z,y) and A;(z,y) is
partitioned by Af (z,y) and A$°(z,y) we conclude

P[As(z,y)] = P[As(w,y) N Af (2, )] + P[A2(z,y) N AP (z,y)] = 0.

for all  and y and so Ay < AppB-

Next we show the easier result that A, > App. Suppose A > \,. By Theorem
1.5 there is a.s. a unique unbounded component in C* which we denote by C2..
By the continuum version of the FKG inequality (see [10]) and the fact that
there is an isometry mapping x to y it follows that

P,[S(z, R) < S(y, R)] > PA[S(z, R) and S(y, R) intersect C2]
> P,[S(z, R) intersects C2 ]°.

Since limp_, o PA[S(z, R) intersects C2] = 1 it follows that A > App and thus
Au > ABB- O

4 The situation at )\, on H? x R

This section is devoted to the proof of Theorem 1.7. We introduce some new
notation: if the points z,y € H? x R are in the same component of C* then
dx»(z,y) is the smallest number of balls in that component forming a sequence
that connects z to y. For a set A we let C*(A) be the union of all components
of C* that intersect A. In this proof u = e and d = dip «g.

Proof. As noted earlier, A\, (H? x R) < oo. Suppose that A, is such that there
is a.s. a unique unbounded component in the Poisson Boolean model with
intensity A, on H2 x R. We consider the monotone coupling of the model for all
intensities below A.. It suffices to show that there is some intensity below A,
that also a.s. produces a unique unbounded component, so this is what we set
out to do. Denote the unbounded component at A, with C2:. For any r > 0,
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any positive integer n, and any A € (0, A«) we define the following three random

sets:
Ai(r) ={z €M xR : S(z,r)NCAx # 0}

As(r,n) :={z € H2 x R : sup{dx».(s,t) : s,t € S(z,7 +3/2)NCx} < n}
Az(ryn,\) = {z € B2 x R : S(z,r 4+ 2n) N (X \ X*) = 0}.

Then let
A(r,n, A) := A1 (r) N Aa(r,n) N As(r,n, A).

Pick y1, y2 € R and let for i = 1,2
D; = D;(y;,m,n,\) :={z € H : (z,y;) € A(r,n,A\)}.

Let D = D(y1,y2,7,m,A) := D1 N Dy. Then D, D; and D5 are random sets
in H? such that their laws are Isom(H?)-invariant. Note that the laws of D;
and D are the same and independent of the choices of y; and y2. Next we will
show that given a, we can choose the parameters r,n and A in such a way that
the probability a given point in H? belongs to an unbounded component of D
is larger than 1 — a/2 for any choice of y; and y,.

To do this, we embed an infinite nonamenable transitive graph G with one
end in H2, in such a way that the faces are congruent. Identify each face of G
with a vertex of the dual graph Gf. For i = 1,2 let T; = T';(y;,7,n,\) be all
vertices of Gt for which the corresponding face is completely covered by D;, and
let ' = D(y1,y2,7,n,A) :==T1 NTy. Then I', I’y and Ty are site percolations on
Gt such that their laws are invariant. Note that the laws of T'; and Ty are the
same and independent of the choices of y; and ys.

Suppose E is some bounded set in H? x R. It is clear that
(4.1) lim P[E C As(r)] =1,

T—0Q0

and that for fixed r,

(4.2) lim P[E C Ax(r,n)] =1,

n—oo

and that for fixed r and n,

(4.3) )1‘1Tr{t P[E C A3(r,n,A)] = 1.

Since the law of T is invariant and G' is nonamenable, we get by Theorem
1.4 that there is a constant ¢ = ¢(GT) < oo such that for any u € V(G')
we have P[u is in an infinite cluster of Il > Plu € T[)(1 + ¢) — ¢. By (4.1),
(4.2) and (4.3) we get that we can find first r; big enough, and then n; big
enough, and finally A\; close enough to A, so that Plu € T';(y;,m1,n1,M)] >
1—a/(4(1+¢)) for i = 1,2 and any u. With these choices of parameters, we
get Plu € T'(y1,y2,71,n1,A1)] > 1 —a/(2(1 + ¢)) for all u and any choice of y;
and y2 and consequently P[u is in an infinite cluster of '] > 1 — a/2 for any u
and any choice of y; and y». If the vertex w is in an unbounded component of
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T, then all points in H? in the corresponding face of G are in an unbounded
component of D which implies

P[z belongs to an unbounded component of D(y1,y2,71,11,A1)] > 1 —a/2

for all z € H? and any choice of y; and ys.

Since the event that D contains unbounded components is Isom (H? )-invariant
and determined by the underlying Poisson processes in the model, D contains
unbounded components with probability 1.

Suppose that ui,us,... € H2 is an infinite sequence of points such that
they are all in the same component of D, dge (u;,uir1) < 1/2 for all 4 and
dip (u1,u;) — 00 as i — oo. Since (uj,y1) € A there is some ball s; in C:
centered within distance r; + 1 from (u;,y1). Since d((ui, y1), (Wit1,¥1)) < 1/2
and (u;, 1) € A for all i there is a sequence of at most n balls in C* connecting
the center of s; to the center of s;11 . Since the distance between the center of
any ball in this sequence and (u;,y1) is at most 71 + 2n and (u;,y1) € Az, all
balls in the sequence is present also at level A;. Thus there is an unbounded
component in C*! that comes within distance r; from (u;,y1) for all i. In the
same way there is an unbounded component in C** that comes within distance
ry from (u;, ya) for all 4.

Now choose A2 and A3 so that Ay < Ay < A3 < A,. For z € H? let D(x) be
the component of D containing z. Then we have from the above that

(4.4) P[S((z,y1),m1) & S((z,y2),m1) in C**|u(D(z)) = o0] = 1.

This follows from the fact that the two unbounded components at level A; above
will a.s. be connected by balls appearing in the coupling between level A\; and
A2. Since the probability that x belongs to an unbounded component of D is at
least 1 — a/2 it follows by (4.4) that

(4.5)  P[S((z,y1),m1) & S((z,y2),71) in C**] > 1 —a/2 for all y; and ys.
Fix two points 21 = (u1,v1) and 22 = (ug,vs) of H?2 x R. For y € R let
Fy = {S(z1,m1) & S((u1,9),m1) in C*?}N{S(22,71) ¢ S((u2,y),r1) in C**}

By (4.5) we get P[F] > 1 —a for all y. In particular it follows that with
probability at least 1 — a the set {y € R : F, occurs} is unbounded. But then
the set of points in C*2(S(z1,r;)) that come within distance 2r; + dg2 (u1, us)
from C*2(S(zs,71)) is unbounded. But if this occurs then some component in
C*2 intersecting S(z;,r1) will a.s. be connected to some component in C*2
intersecting S(z2,71) by balls occurring in the coupling between level Ay and
As. That is,
P[S(z1,71) & S(z9,71) in C¥] > 1 —a.

Since a is arbitrary small it follows by Theorem 3.1 there is a.s. a unique
unbounded component in C?s. O

Remark. The proof works without substantial modifications if HZ x R is re-
placed by H® x M for any n > 2 and any noncompact homogeneous space M
such that A\, (H® x M) < oo.
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5 Further problems

In this section we list some open problems.
1. For which manifolds is A, < c0?

2. In [13] it is shown that A\ (H") < A, (H") for any n > 2 if the radius of the
percolating balls is big enough (for n = 2 this is shown for any radius).
For which manifolds is A\, < A,?

3. For which manifolds with A, < oo is there a.s. a unique unbounded com-
ponent at A,? For which manifolds is there a.s. not a unique unbounded
component at A,?
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despite obstacles
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Abstract

Suppose that Z is a random closed subset of the hyperbolic plane
H?, whose law is invariant under isometries of H?>. We prove that if
the probability that Z contains a fixed ball of radius 1 is larger than
some universal constant po < 1, then there is positive probability that Z
contains lines.

We additionally consider the Poisson Boolean model of continuum per-
colation in the hyperbolic plane H2. Let \ be the intensity of the under-
lying Poisson process and let R be the radius of the balls. We show that
there is a critical value Agy = Agv(R) such that if A < Agy, then there are
a.s. hyperbolic lines contained in the complement of the covered region,
but not if A > Agv. A similar result is proved for the covered region itself,
instead of the complement. We also find the exact value of the critical A
in both cases. We also consider dynamical versions of the Poisson Boolean
model, and rule out the existence of certain types of exceptional times.

Keywords and phrases: continuum percolation, phase transitions, hyperbolic
space
Subject classification: 82B21, 82B43

1 Introduction and main results

In this paper, we are interested in the existence of hyperbolic half-lines and lines
(that is, infinite geodesic rays and bi-infinite geodesics respectively) contained

*Departments of Mathematics, The Weizmann Institute, Rehovot, Israel 76100. E-mail:
itai.benjamini@weizmann.ac.il

TDepartment of Mathematical Sciences, Division of Mathematical Statistics, Chalmers
University of Technology, S-41296 Gé4teborg, Sweden. E-mail: jonasson@math.chalmers.se.
Research partially supported by the Swedish Natural Science Research Council.

fMicrosoft Research, One Microsoft Way, Redmond WA 98052, USA. E-mail:
schramm@microsoft.com

$Department of Mathematical Sciences, Division of Mathematical Statistics, Chalmers
University of Technology, S-41296 Go&teborg, Sweden. E-mail: johant@math.chalmers.se.
Research supported by the Swedish Natural Science Research Council.



in unbounded connected components of some continuum percolation models.
Our first result is quite general:

Theorem 1.1. Let Z be a random closed subset of H?, whose law s invariant
under isometries of 2, and let B denote some fized ball of radius 1 in H2.
There is a universal constant p, < 1 such that if P[B C Z] > po, then with
positive probability Z contains hyperbolic lines.

The first result of this type was proven by Olle Haggstrém [5] for regular
trees of degree at least 3. That paper shows that for automorphism invariant site
percolation on such trees, when the probability that a site is open is sufficiently
close to 1, there are infinite open clusters with positive probability. This was
subsequently generalized to transitive nonamenable graphs [1]. The new obser-
vation here is that in H?, one can actually find lines contained in unbounded
components when the marginal is sufficiently close to 1. The proof of Theorem
1.1 is not too difficult, and is based on a reduction to the tree case.

We also obtain more refined results in some standard continuum percolation
models. Consider a Poisson point process with intensity A on a manifold M. In
the Poisson Boolean model of continuum percolation with parameters A and R,
balls of radius R are centered around the points of the Poisson process. One
then studies the geometry of the connected components of the union of balls,
or the connected components of the complement. In particular, one asks for
which values of the parameters there are unbounded connected components or
a unique unbounded component. In this note, we ask when the union of the
balls or its complement contains half-lines or lines. It is easy to see that this
can never happen on R*. Here, we deal mostly with the hyperbolic plane H?,
though we raise questions regarding other spaces.

Other aspects of the Poisson Boolean model in H? have previously been
studied in [14]. For further studies of percolation in the hyperbolic plane, the
reader may consult [2, 9]. In [4], an introduction to hyperbolic geometry is
found, and for an introduction to the theory of percolation on infinite graphs
see for example [3, 10, 6].

Let X = X be the set of points in a Poisson process of intensity A in HZ.
Let
B:= | J B(z,R)

zeX

denote the occupied set, where B(x,r) denotes the open ball of radius r centered
at z. The closure of the complement

W:=Hm\B

will be reffered to as the vacant set. Let Agy = Agy(R) denote the infimum of the
set of A > 0 such that for the parameter values (R, A) a.s. W does not contain
a hyperbolic line. Let Ag, denote the infimum of the set of A > 0 such that
with positive probability, a fixed point z € H? belongs to a half-line contained
in W. Later, we shall see that A\gy = Agy. Clearly, if A > Agy, there are a.s. no



hyperbolic lines in W. Let f(r) = fr,a(r) denote the probability that a fixed
line segment of length r in H? is contained in W.

Theorem 1.2. For every R > 0, we have 0 < A\gy(R) = Agy(R) < o0, and the
following statements hold at A\gy(R).

1. A.s. there are no hyperbolic lines within V.

2. Moreover, W a.s. does not contain any hyperbolic ray (half-line).

3. There is a constant ¢ = cg > 0, depending only on R, such that
(1.1) ce "< f(r) <e™T, Vr>0.

Furtheremore, the analogous statements hold with B in place of W (with
possibly a different critical intensity).

We also show that the critical value Agy is given by

1

An equation characterising the corresponding critical A for B follows from our
results (i.e., (4.1) with a = 1), but in this case, we do not have a closed form
for the critical .

The key geometric property allowing for geodesic percolation to occur for
some A is the exponential divergence of geodesics. This does not hold in Eu-
clidean space. It is of interest to determine which homogeneous spaces admit a
regime of intensities with geodesics percolating.

We then consider two dynamical continuum percolation models. In the first
model, each ball in the Poisson Boolean model independently of all other balls
update its position as follows. First it waits a random amount of time, which
is exponentially distributed with parameter 1. Then, the ball moves to a center
which is chosen uniformly at random within the ball of radius 1 around the
original center. This procedure is then repeated.

In this setting, we consider half-lines contained in W, emanating from a fixed
point z € H2. We show that if A < Agv, then a.s. for all ¢ > 0 there are half-lines
containing x intersecting only finitely many balls in W. Then we show that for
A > Agv a.s. for all ¢ > 0 there are no half-lines containing x contained in W. In
other words, in this model, there are no exceptional times for which the model
behaves differently from the stationary one in this sense.

In the second model, we start with a Poisson process X in H2 x R with some
intensity A. Around each point, place an open ball of radius R. First suppose
that A is supercritical for the a.s. existence of hyperbolic lines contained the
vacant region of H? x t for a fixed t € R. We show that the set of ¢ € R such
that the vacant region of H? x ¢ contains hyperbolic lines is empty a.s. Then we
suppose that A is subcritical for the a.s. existence of hyperbolic lines contained
in the vacant region of H? x t for fixed ¢+ € R, and show that the set of ¢t € R
such that the covered region of H? x ¢ does not contain hyperbolic lines is a.s.
empty. The analogous results are obtained for the covered region.



Figure 2.1: A tree embedded in the hyperbolic plane, in the Poincaré disk
model. On the right appears the tree together with some of its lines of symmetry.

2 Lines appearing when the marginal is large

The proof of Theorem 1.1 is based on a reduction to the tree case. We will
need the following construction of a tree embedded in HZ, which is illustrated
in Figure 2.1. (This construction should be rather obvious to the readers who
are proficient in hyperbolic geometry.) Consider the hyperbolic plane in the
Poincaré disk model. Let o € H? correspond to the center of the disk. Let Ag
be an arc on the unit circle of length smaller than 27/3. Let A; denote the
rotation of Ay by 27 j/3; that is A; := e>™/34,, j = 1,2. Let L;, j = 0,1,2,
denote the hyperbolic line whose endpoints on the ideal boundary OH? are
the endpoints of A;. Let I' denote the group of hyperbolic isometries that is
generated by the reflections -y, y; and 7, in the lines Ly, L1 and L, respectively.
If w= (w1, ws,...,w,) € {0,1,2}", then let v, denote the composition 7, o
“Yaws ©** O Vu, - We will say that w is reduced if wjy1 # w; for j =1,2,...,n—1.
A simple induction on n then shows that v, (0) is separated from o by L,,, when
w is reduced and n > 0. In particular, for reduced w # (), we have v,(0) # o
and 7, # 7()- Clearly, every 7, where w has w; = wj;; for some j is equal to
~Yw where w' has these two consecutive elements of w dropped. It follows that
I acts simply and transitively on the orbit T'o. (“Simply” means that yv = v
where v € I and v € T'o implies that v is the identity.) Now define a graph T'
on the vertex set T'o by letting each v(0o) be connected by edges to the three
points v 0 y;(0), j = 0,1,2. Then T is just the 3-regular tree embedded in the
hyperbolic plane. In fact, this is a Cayley graph of the group T', since we may
identify I' with the orbit I'o. (One easily verifies that I' is isomorphic to the free
product Zo x Zo * Zs.)

We will need a few simple properties of this embedding of the 3-regular tree
in H2. Tt is easy to see that every simple path vg,v1, ... in T has a unique limit
point on the ideal boundary OH2. (Figure 2.1 does not lie.) Moreover, if vy = o



and v; = v;(0), then the limit point will be in the arc A;. If (v; : j € Z)is a
bi-infinite simple path in T with vy = o, then its two limit points on the ideal
boundary will be in two different arcs A;. Hence, the distance from o to the line
in H? with the same pair of limit points on 8HP is bounded by some constant
R, which does not depend on the path (v; : j € Z). Invariance under the group
I" now shows that for every bi-infinite simple path 8 in T, the hyperbolic line
Lg joining its limit points passes within distance R from each of the vertices of
B. Tt follows that there is some constant R’ > 0 such that Lg is contained in
the R'-neighborhood of the set of vertices of 3.
We are now ready to prove our first theorem.

Proof of Theorem 1.1. We use the above construction of T, I' and the
constant R'. Given Z, let w C V(T') denote the set of vertices v € V(T') such
that the ball B(v, R') is contained in Z. Then w is a (generally dependent) site
percolation on T and its law is invariant under I'. Set ¢ := P[o € w]. By [1],
there is some py € (0,1) such that if ¢ > pg, then w has infinite connected
components with positive probability. (We need to use [1], rather than [5], since
the group I is not the full automorphism group of T'.) Set p; := (po +1)/2. Let
N be the number of balls of radius 1 that are sufficient to cover B(o, R'). Now
suppose that P[B(o,1) C Z] > 1— (1 —po)/(2N). Then a sum bound implies
that ¢ > (po + 1)/2. Therefore, if we intersect w with an independent Bernoulli
site percolation with marginal p > (po + 1)/2, the resulting percolation will still
have infinite components with positive probability, by the same argument as
above. Thus, we conclude that with positive probability w has infinite compo-
nents with more than one end and therefore also bi-infinite simple paths. The
line determined by the endpoints on OH? of such a path will be contained in Z,
by the definition of R’. The proof is thus complete. O

3 Lines in well-behaved percolation

The proofs of the statements in Theorem 1.2 concerning B are essentially the
same as the proofs concerning W. We therefore find it worthwhile to employ an
axiomatic approach, which will cover both cases.

Definition 3.1. In the following, we fix a closed disk B C H? of radius 1. A
well-behaved percolation on H? is a random closed subset Z C H? satisfying the
following assumptions.

1. The law of Z is invariant under isometries of HZ.

2. The set Z satisfies positive correlations; that is, for every pair g and h of
bounded increasing measurable functions of Z, we have

E[g(Z2)h(2)] > E[g(2)] E[h(2)].
3. There is some Ry < oo such that Z satisfies independence at distance Ry,

namely, for every pair of subsets A, A’ C H? satisfying inf{d(a,a’) : a €
A,a' € A’} > Ry, the intersections ZN A and ZN A’ are independent.



4. The expected number m of connected components of B\ Z is finite.
5. The expected length £ of BN 0Z is finite.
6. po:=P[BC Z] >0.

Invariance under isometries implies that m, £ and py do not depend on
the choice of B. We say that Z is A-well behaved, if it is well-behaved and
po,m~ 1, 0=, Ryt > A. Many of our estimates below can be made to depend
only on A. In the following, we assume that Z is A-well behaved, where A > 0,
and use O(g) to denote any quantity bounded by cg, where ¢ is an arbitrary
constant that may depend only on A.

If z,y € H2, let [z,y]s denote the union of all line segments [z',y'] where
d(z,z") < s and d(y,y') < s. Let A(z,y,s) be the event that there is some
connected component of Z N [z,y]s that intersects B(z,s) as well as B(y,s),
and let Q(z,y,s) be the event that [z,y]s; C Z.

Lemma 3.2. There is a constant ¢ = c¢(A) < oo, which depends only on A,
such that for all x,y € H? satisfying d(zx,y) > 4 and for all € > 0

(3.1) P[Q(z,y,€)] > (1 —ce) P[A(z,y,¢€)].

Proof. Observe that the expected minimal number of disks of small radius e
that are needed to cover 9Z N B is O(£/¢). It follows by invariance that

(3.2) P[B(z,€) N0Z # 0] = O(e) £ = O(e)

holds for z € H2.
Let v : R — H? denote a hyperbolic line parameterized by arclength, and
let L; denote the hyperbolic line through ~(¢) which is orthogonal to 7. Set

g(r, 3) = P[A(’Y(O)a '7(7')5 3) \ Q(W(O)av(r)a 3)] .

By invariance, we have P[A(z,y,s) \ Q(z,y,s)] = g(d(z,y),s).

Set B := B(y(0),1). Fix some € € (0,1/10). Let S; denote the intersection
of B with the open strip between Lzje and La(jy1)e, where j € J := NN
[0,e7!/10]. Let z; and y; denote the two points in L(zjt1)e N 0B. Let Jy
denote the set of j € J such that S; is not contained in Z but there is a
connected component of Z N S; that joins the two connected components of
S; NOB. Observe that the number of connected components of B\ Z is at
least |Ji| — 1. Hence E[|Ji|]] < m + 1. Let J, denote the set of j € J such
that A(zj,y;,€) \ Q(x;,y;,€) holds. Note that if j € J» \ Ji, then 02 is within
distance O(e) from z; Uy;. Therefore, P[j € J> \ Ji] = O(e) £ holds for every
j € J, by (3.2). Consequently,

E[|5|] <E[|2\ L[] + E[l4]] <O()£]J[+m+1=0(1).

Thus, there is at least one j = j. € J satisfying

P[A(zj,y5,€) \ Qz),y5,€)] = P[j € Jo]

(3.3) <O(1)/1J] = O(e).



Set r. := d(z;.,y;.), and note that r. € (1,2]. Now suppose that z,y € H?
satisfy d(z,y) = 2. Let z¢ be the point in [z,y] at distance r, from y, and
let yo be the point in [z,y] at distance 7. from z. Observe that A(xz,y,€) C
A(zo,y,€) N A(z,y0,€). Moreover, since [z,y]. C [z,Y0]c U [zo,y]e, Wwe have
Q(.’E,y,é) ) Q($;y076) N Q(.’L'(),y,(?)- Thus,

A(z,y,€) \ Q(z,y,¢€) C (A(z0,y,€) \ Q(20,9,€)) U (A(z,0,€) \ Q(z,0,€))
and therefore (3.3) and invariance gives
(34) 9(2,€) <2P[A(z).,y5.,€) \ Q(zs.,y;..€)] = O(e).
The same argument, shows that
(3.5) g(r',e) < 2g(r,e), if2<r<r <2r.

We will now get a bound on g(2 k, €) for large k € N. For j € [k] :== NN|[0, k],
let r; be the distance from 7(2j) to the complement of [y(0),v(2k)].. Let

Aj = A(Y(25),7(25 +2),5 Vi), Q5 = Q(v(24),7(25 + 2),m5 V 1j41),
where j € [k — 1]. Also set A := A(v(0),7(2k),€). Then

k—1
Q(1(0),7(2k),e) > () Qs -
j=0

Hence,

£
|
-

(3.6) 9(2k,€)

IN

P[A\ Q;]-

.
Il
<

We now claim that
(3.7) P[A\Q;] =0Q)P[A] P[4;\ Q,],

where the implied constant depends only on pg and Ry. Let j' := |j— Ro/2—2]
and j" := [j + Ro/2 + 3]. Suppose first that 5/ > 0 and j"” < k. Let A'(j)
denote the event that Z N [vy(0),v(2k)]. contains a connected component that
intersects both B(7(0),€) and B(y(2j'),¢), and let A”(j) denote the event
that Z N [v(0),v(2 k)] contains a connected component that intersects both
B(v(2j"),€) and B(y(2k),e). Then A C A'(j) N A"(j) N A;. Indepedence at
distance Ry therefore gives

P[A\Q;] <P[A() N A"()] P[4;\ Q;].
Now note that the fact that Z satisfies positive correlations shows that

P[A'(j) n A"(j)] < 0(1) P[],



where the implied constant depends only on Ry and pg. Thus, we get (3.7) in
the case that j' > 0 and j"” < k. The general case is easy to obtain (one just
needs to drop A'(j) or A”(4) from consideration). Now, (3.6) and (3.7) give

k—1
(3.8) 9(2k,e) SO P[A] Y g(2,1; Vrjpa)-

Jj=0

Note that there is a universal constant a € (0,1) such that r; < al/lNk=ile.
(This is where hyperbolic geometry comes into play.) Hence, we get by (3.4)
and (3.8) that g(2k,€) < O(1)P[A]e, where the implied constant may depend
on £,m, Ry and pg. This proves (3.1) in the case where d(z,y) is divisible by 2.
The general case follows using (3.5) with r' = d(z,y) and r = 2 [r'/2]. O

Let f(r) denote the probability that a fixed line segment of length r is
contained in Z. Clearly,

P[Q(x,y,s)] < f(length[z,y]) < P[A(z,y,s)],

and Lemma 3.2 shows that for s sufficiently small the upper and lower bounds
are comparable.

Lemma 3.3. There is a unique o > 0 (which depends on the law of Z) and
some ¢(A) > 0 (depending only on A) such that

(3.9) ce < f(r)y<e "
holds for every r > 0.

Proof. Since the uniqueness statement is clear, we proceed to prove existence.
Positive correlations imply that

(3.10) flri4mr2) > f(r1) f(r2),

that is, f is supermultiplicative. Therefore, —log f(r) is subadditive, and
Fekete’s Lemma says that we must have

a:= lim M:infM.

r—00 r >0 r

Since for every r we have a < —log(f(r)) /r, the right inequality in (3.9) follows.
On the other hand, if we fix some R > Ry, then independence at distance
larger than Ry gives

F(r) fra) > (i + Rt ra) 2 f(ra +72) F(R).

Dividing by f(R)?, we find that the function r — f(r)/f(R) is submultiplicative.
Thus, by Fekete’s lemma again,

o B SR) _ o)/ F(R)

T—00 r r>0 r




The left hand side is equal to —«a, and we get for every r > 0

1 R
o B/ 1)
r
By positive correlations, there is some ¢ = ¢(A) such that f(R) > ¢, which
implies the left inequality in (3.9). O

Lemma 3.4. If a > 1 (where « is defined in Lemma 3.3), then a.s. there are
no half-lines contained in Z.

Proof. Fix a basepoint o € H2. Let s = (2¢) !, where c is the constant
n (3.1). Then

(1) P[A(x,4,9)]/2< P[Q(r,y,9)] < f(d(z,y)) < e~

holds for every z,y € H? satisfying d(z,y) > 4. For every integer r > 4 let
V(r) be a minimal collection of points on the circle 8B(o,r) such that the disks
B(z,s) with z € V cover that circle. Let X, be the set of points z € V(r) such
that A(o, z,s) holds. By (3.11)

(3.12)  E[|X,|]] <2|V(r)| f(r) = O(1) s™" length(0B(o,7)) ™" = O(1),

since we are treating s as a constant and the length of dB(o,r) is O(e").

The rest of the argument is quite standard, and so we will be brief. By (3.12)
and Fatou’s lemma, we have limsup,_, . |X,| < oo a.s. Thus sup, |X,| < oo
a.s. Now fix some large r and let ' € N satisfy »' > r + Ry + 2. Since
Z\ B(o,7+ Ro+1) is independent from ZN B(o, r), positive correlations implies
that

(3.13) P[X,. =0|ZnB(o,r)] >p~ %1,

where p > 0 is a constant (which we allow to depend on the law of Z). Since
sup, | X,| < oo a.s., it follows by (3.13) that inf, |X,| = 0 a.s., which means that
max{r : X, # 0} < co a.s. Therefore, a.s. there is no half-line that intersects
B(o, s). Since H? can be covered by a countable collection of balls of radius s,
the lemma follows. O

Lemma 3.5. Suppose that o < 1. Then (i) a.s. Z contains hyperbolic lines, (i)
for every fized x € H2, there is a positive probability that Z contains a half-line
containing x, and (i) for every fized point x in the ideal boundary OFHP there
is a.s. a geodesic line passing through x whose intersection with Z containes o
half-line.

Proof. We first prove (ii). Fix some point 0 € H?. Let A denote a closed
half-plane with o € 0A, and let I := ANdB(o,1). For r > 1 and = € 0B(o0,1),
let L,(z) denote the line segment which contains z, has length r and has o as



an endpoint. Set Y, := {z € I : L.(z) C Z}, and let y, denote the length of Y.
Then we have

E[y.] = length(I) f(r).

The second moment is given by

E[y?] =/I/IP[a:,m' €Y, dzds' .

Now note that if r5 > r; > 0, then the distance from L,,(z')\ L., (z') to L,,(z)
is at least d(z,z') €™ /O(1) as  — z'. Consequently, by independence on sets
at distance larger than Ry, we have

Plz,2' € Y;] < f(r) f(r +logd(z,2') + O(1)).

Now applying the above and (3.9) gives

—0Q1) //d(m,m’)*a drdz' = 0(1),
IJr
since a < 1. Therefore, the Paley-Zygmund inequality implies that
;r;flP[yT > 0] >0.
Since y, is monotone non-increasing, it follows that
P[V,>1 yr >0] >0.

By compactness, on the event that y, > 0 for all » > 1 we have (., Y, # 0. If
z € (Y., then the half-line with endpoint o passing through z is contained in
Z N A. This proves (ii).

We now prove (i). Fix s = 1/(2¢), where ¢ is given by Lemma 3.2. For
z € 0B(0,1) let z.(x) denote the endpoint of L.(x) that is different from o
and let Y, be the set of points = € I such that [z,z.(z)] C Z holds for every
z € B(o,5). Let y, denote the length of Y,). Then Y, C Y, and therefore
y. < y,. By the choice of s, we have E[y.] > E[y,|/2. On the other hand,
E[(y.)?] < E[y?] = O(I)E[yrf. As above, this implies that with positive
probability Y7, := (N,5, Y, # 0. Suppose that 2 € Y. Let & denote the
endpoint on the ideal boundary OH? of the half-line starting at o and passing
through z. Then for every z € B(o, s) the half-line [z, %) is contained in Z. By
invariance and positive correlations, for every € > 0 there is positive probability
that Y is within distance e from each of the two points in 9ANI. If z' and z"
are two points in Y that are sufficiently close to the two points in AN I, then
the hyperbolic line joining the two endpoints at infinity of the corresponding
half-lines through o intersects B(o, s). In such a case, this line will be contained
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in Z. Thus, we see that for every line L (in this case 0A) for every point 0 € L
and for every € > 0, there is positive probability that Z contains a line passing
within distance € of the two points in 8B (0,1)NL. Now (i) follows by invariance
and by independence at a distance.

The proof of (iii) is similar to the above, and will be omitted. O

Remark 3.6. Let o € H2. Let Y denote the set of points z in in the ideal
boundary OH? such that the half-line [0, 2) is contained in Z. Tt can be concluded
from the first and second moments computed in the proof of Lemma 3.5 and
a standard Frostman measure argument that the essential supremum of the
Hausdorff dimension of Y is given by

[|[dimg(Y)|loo =1— a.

It would probably not be too hard to show that dimg(Y) = 1 — a a.s. on the
event that Y # 0.

A modification of the above arguments shows that there is positive probabil-
ity that Z contains a line through o if and only if a < 1/2. In case a < 1/2, the
essential supremum of the Hausdorff dimension of the set of lines in Z through
oisl—2a.

It should be possible to show that the Hausdorff dimension of the union of
the lines in Z is a.s. 3 — 2 when a € [1/2,1).

4 Boolean occupied and vacant percolation

Recall the definition of B and W. First, we claim that B and W are well-behaved.

Proposition 4.1. Fiz a compact interval I C (0,00). Then there is some
A= A(I) > 0 such that if \, R € I, then B and W are A-well behaved.

Proof. It is well known that B and W (and therefore also W satisty positive
correlations. For W, m is bounded by the expected number of points in X that
fall in the R-neighborhood of B. Observe that each connected component of
W N B, with the possible exception of one, has on its boundary an intersection
point of two circles of radius R centered at points in X. Since the second
moment of the number of points in X that fall inside the R-neighborhood of B
is finite, it follows that m is also bounded for B. The remaining conditions are
easily verified and left to the reader. O

We are now ready to prove our main theorem.

Proof of Theorem 1.2. We start by considering W. Fix some R € (0, 00). If
we let A\ 0, then f(1) 1 and by (3.9) @ N\, 0. Thus, Lemma 3.5 implies that
Agv > 0. (We could alternatively prove this from Theorem 1.1.) It is also clear
that Agv < o0, since for A sufficiently large a.s. ¥ has no unbounded connected
component.

Since the constant ¢ in Lemma 3.3 depends only on A, that lemma implies
that « is continuous in (A, R) € (0,00)2. In particular, Lemmas 3.4 and 3.5
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show that when A = Az (R), we have o = 1 and that there are a.s. no lines or
half-lines in W. Also, we get (1.1) from (3.9). Finally, it follows from Lemma 3.4
and Lemma 3.5 (ii) that Agy = Ag,. The proof for B is similar. O

Next, we calculate o for B and W.
Lemma 4.2. The value of o for line percolation in W is given by

a=2AsinhR.

and consequently
Agv(R) =1/(2sinh R) .

Proof. Consider a line v : R — H2, parameterized by arclength, and let r > 0.
A.s. the interval [0, 7] is contained in W if and only if the R-neighborhood of
the interval does not contain any points of X. Let IV denote this neighborhood,
and let A denote its area. Then f(r) = e *4. For each point z € H?, let ¢,
denote the ¢ minimizing the distance from z to y(t). Then N = No U Ny U N>,
where Ny := {2z € H? : d(2,7(t.)) < R,t, € [0,7]}, N1 := {z € B(v(0),R) :
t, < 0} and Ny := {2z € B(v(r),R) : t, > r}. Observe that Ny and N, are
two half-disks of radius R, so that their areas are independent of r. We can
conveniently calculate the area of Ny explicitly in the upper half-plane model
for H?, for which the hyperbolic length element is given by |ds|/y, where |ds|
is the Euclidean length element. We choose v(t) = (0,e?). Recall that the
intersection of the upper half-plane with the Euclidean circles orthogonal to the
real line are lines in this model. It is easy to see that for z = (p cos 8, p sinf),
we have v(t,) = (0, p). Moreover, the distance from z to v is

w/2 d
pdy | _
‘/0 psinw‘ = |log tan(6/2)|.

Thus, if we choose 6 € (0,7/2) such that tan(f/2) = e, then Ny consists of
the set {(p cosy,p sine) : p € [1,€7],¢ € (6,7 —6)}. Thus,

w—0 pe”
dpd
area(Np) = M =2rcotf =r(cot ¢ —tang) =2rsinh R.
2 qin2 2
9 1 psin”y

The result follows. (]

Remark 4.3. Let A.(R) be the infimum of the set of intensities A > 0 such that
B contains unbounded components a.s. and let A, = A, (R) be the infimum of
the set of intensities A > 0 such that B contains a unique unbounded component
a.s. Proposition 4.7 in [14] says that \.(R)/e*f = O(1) as R — oo. Since
obviously A, (R) > Agv(R) we get by Theorem 4.1 in [14] that for R big enough,
there are intensities for which there are lines in the vacant component, but also
infinitely many unbounded components in both the covered and vacant regions.
On the other hand, since A.(R) > 1/(27(cosh(2R) — 1)), it follows that for R
small enough, we have A.(R) > Agy(R). So for R small enough, there are no
intensities for lines in the vacant region coexist with unbounded components in
the covered region.
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Lemma 4.4. In the setting of line percolation in B, « is the unique solution of
the equation

2R
(4.1) 1=/0 e Hp () dt,

where

t/2 h
Hpg\(t) := —exp (—4/\/ sinh (cosh_1 (COS R)) ds) .
0 cosh s

Proof. Consider a line v : R — H?, parameterised by arclength. Recall that X
is the underlying Poisson process. We now derive an integral equation satisfied
by

f(r) =P[~[0,r] C B].
For a point z in the R-neighborhood of v, let uy(x) := sup{s: v(s) € B(z,R)}
andu_(z) := inf{s : y(s) € B(z,R)}. Let Xg:={z € X :u_(z) <0< uy(z)}.
This is the set of z € X such that y(0) € B(z, R). Also set

S .= inf{u+(x) S X(]} X(] # @,
o —0o0 XO = @ .

Assume that r > 2R. As., if S = —oo, then [0, r] is not contained in B.
On the other hand, if we condition on S = s, where s € (0,2R) is fixed, then
v[0,s) C B and the conditional distribution of «[s,r] N B is the same as the
unconditional distribution. (Of course, S = s has probability zero, and so this
conditioning should be understood as a limit.) Therefore, we get

(4.2) P[[0,r]C B | S] = f(r - 5),

where, of course, f(oc0) = 0.

Let G(t) :== P[S € (0,t)]. Shortly, we will show that G(t) = Hg(t) + 1.
But presently, we just assume that G'(t) is continuous and derive (4.1) with G
in place of H. Since the probability density for S in (0,2 R) is given by G'(t),
we get from (4.2)

2R
(4.3) f(r) = flr—s)G'(s)ds.
0
Suppose that g > 0 satisfies
2R
(4.4) 1 :/ P2 G'(s) ds .
0

Since fOZR G'(s)ds = P[S > 0] < 1, continuity implies that there is some such
. Suppose that there is some 7 > 0 such that f(r) < e=#" f(2R), then let rq be
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the infimum of all such r. Clearly, ro > 2 R. By the definition of ro and (4.3),
we get

f(ro) > /R e=B0=9) F2R) G'(s)ds "= e=F™0 f(2R).

Since f(r) is continuous on (0, 00), this contradicts the definition of . A similar
contradiction is obtained if one assumes that there is some r > 0 satisfying
f(r) > e P28 Hence e A" f(2R) < f(r) < e Pr—28) which gives a = .

It remains to prove that G(t) = Hgra(t) + 1. Let Q¢ := B(y(0),R) \
B(7(t), R). Observe that

(4.5) Gt)=P[XNQ:#0]=1-P[XNQ;=0] =1— e *real@),

Hence, we want to calculate area(Q;). For z € H? let u(z) denote the ¢t € R that
minimizes d(z,7(t)), and let ¢(t,y) denote the point in H? satisfying u(z) = ¢
which is at distance y to the left of v if y > 0, or —y to the right of v otherwise.
Observe that {z € B(y(0),R) : u(z) < —t/2} is isometric to (see Figure 4.1)

{z € B(7(t),R) : u(z) < t/2} = {z € B(v(0),R) : u(2) <t/2} \ Q.
Therefore,
(4.6) area(Q;) = area{z € B(v(0), R) : u(z) € [—t/2,t/2]}.
By the hyperbolic Pythagorian theorem, we have
coshd((0),¢(s,y)) = coshs coshy.
Hence, the set on the right hand side of (4.6) is
(4.7) {¢(s,y) : s € [-t/2,t/2],coshy < cosh R/ cosh s }.

At the end of the proof of Lemma 4.2, we saw that the area of a set of the form
{¢(s,y) : s € [0,7],|y| < R} is 27 sinh R. Hence, the area of (4.7) (and also the
area of @);) is given by

t/2
/ 2 sinh(cosh ' (cosh R/ cosh s)) ds..
—t)2

The result follows by (4.4) and (4.5), since o = S. O

4.1 Circle covering approach

In this section we give a different and more basic proof of the fact that Ay, =
1/(2sinh R), which does not use any of the results that were needed to prove
Theorem 1.2. We will use methods from the theory of circle covering, so we first
give some preliminaries about this.
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Figure 4.1: Calculating the area of Q;:. The set @, is the left ball minus the
right ball. The area is calculated by first exchanging the left cap by its “shift”.

Let C be a circle with circumference 1 and let (I,)n>1 be a decreasing se-
quence of positive numbers approaching 0 as n — 0o. Let I, be the open interval
of length [,, centered at centered at a point chosen uniformly at random from C'
independently of all other intervals. Let E := limsup,, I, be the set of points
on C' which are covered by infinitely many intervals, and let F' := E°. By the
Borel-Cantelli lemma, P[z € E] =1 for any z € C if and only if 3 ° | [,, = oo,
and in this case the Lebesque measure of F' is a.s. 0. Shepp [13] proved

Theorem 4.5. P[F = (] =1 if and only if

21

Z _26l1+---+ln = 0.
n

n=1
In particular if I, = ¢/n for all n, then P[F = 0] =1 if and only if ¢ > 1.

Dynamical versions of this model have been studied in [8] and [7]. In one
such model, one associates to each interval an independent jump process which
is a Poisson process with intensity 1. At each jump time of the Poisson process
associated to the nth interval, I, is given a new center chosen uniformly on C.
For every t, let F; be the set of points on C that are not covered by infinitely
many intervals at time ¢. One then wonders if there are times for which F; # ()
even if the condition in Theorem 4.5 holds. Let u,, = [[,(1 — ;) be the
probability that a point is not covered by any of the n first intervals.

The following theorem from [7] will be of use to us.

Theorem 4.6. If limsup,, nu, < oo, then P[3t >0 : F; # (] = 0.

In particular, Theorem 4.6 covers the case [,, = 1/n. In fact, the proof of
Theorem 4.6 does not use the fact that the new center of an interval is chosen
uniformly at random from C, only that the process studied is an reversible
Markov chain.

Circle covering proof of A, (R) = 1/(2sinh R). Let X,, be the n:th closest
Poisson point from the origin, let d,, := d(0, X,) and let V,, := area(B(o,d,)).

Then {V,, — V,_1}52, is a sequence of independent exponential random
variables with parameter A (here V5 = 0). The relation between V,, and d,, is

15



given by

(4.8) d,, = cosh™! (E + 1)
2

Now let cg := tanh(R/2) and consider the ball of radius R centered at X .
Such a ball is also an Euclidean ball. The Euclidean distance from the origin to
its Euclidean center is given by

. (1—c})tanh(d,/2)
(4.9) d, = 1— cffta,nh(dn/Q)2

and its Euclidean radius is given by

cr(1 — tanh(d,/2)?)
1 — ¢% tanh(d,/2)?

(4.10) R; =

A derivation of formulas (4.10) and (4.9) can be found in [12]. Let 6,
denote the angle between the two geodesics starting at the origin and touching
the closed ball of radius R centered at X,, at exactly one point (if the origin is
covered by this ball, we let 6,, = 27). Then

_ e s gen . { sinh(R)
(4.11) 0, = 2arcsin(R;, /d?) = 2 arcsin (sinh(dn))

where the second equality follows from elementary calculations.

Let I, = 6,/(27) be the proportion of the ideal boundary OHP that can
not be reached by a geodesic starting from the origin and not intersecting
B(X(y),R). Inserting 4.8 in 4.11 and performing a long simplification gives
that [, can be expressed in terms of V,, as

(4.12) I, = 1 arcsin (M) .
™

V2 + 47V,

Fix ¢ € (0,1/2). Since V,, is a sum of independent exponential random
variables with parameter X it follows that P[|V;, —n/\| > n'/?%¢ i.0.] = 0 which
implies
(4.13) P[|1/V,, — A/n| > n3/> € i0] = 0.

Since

arcsin(2m sinh R/v/22 4 4nz) /7 = 2sinh R/z + O(1/2?)
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as £ — oo it follows from 4.12 and 4.13 that the limit

n
(4.14) nlgréo (Zl l; — 2Xsinh Rlog n)
i—
a.s. exists.
Therefore

=1
Z —Qell+"'+l“ < 00 a.s.
n

n=1

if A\ < 1/(2sinh R) and the sum is infinite a.s. if A > 1/(2sinh R). Recall that
the ideal boundary OHP can be identified with a circle of radius 1. By Theorem
4.5, there are a.s. half-lines starting at the origin that intersect only finitely many
balls if and only if A < 1/(2sinh R). Therefore, the probability that W contains
half-lines starting at the origin is positive if and only if A < 1/(2sinh R). O

5 Dynamical versions

In this section, we consider two dynamical models based on the stationary Pois-
son Boolean model.

In the space-time Poisson model, let X be a Poisson process with intensity
Ain H? x R. Then let B := |J,.x B(z, R), and for t € R let

Bi:={x € H? : (2,t) € BT}.

Here, B(z, R) is the open ball of radius R centered at x in H? x R. Also let
W; := H2 \ B;. The parameter t is interpreted as time, and By is the covered set
at time ¢ and W, is the vacant set at time ¢. In this model, as time increases,
balls appear in H? as points, grow to radius R, and then shrink to a point before
they disappear.

Observe that both B; and W; are well-behaved percolations on H?, and their
laws are invariant in ¢. Let \,4, be the infimum of the set of A > 0 such that
W, a.s. contains hyperbolic lines. Then, as in the proof of Theorem 1.2, we get
that 0 < A,y < 00. Let G be the set of lines contained in Wy. If A < gy, We
say that ¢ is an exceptional time for W, if Gy is empty, and if A > A4, we say
that ¢ is exceptional if G; is non-empty. Note that the Lebesgue measure of the
set of exceptional times is a.s. 0.

Proposition 5.1. In the space-time Poisson model, the set of exceptional times
for Wy is empty a.s. for A > Argy and X < Apgy. The analogous statement hold
for B;.

Proof. Suppose A < Apgy. For t > 0 let B; := Uo<s<¢ Bs and Wy =2 \ By,
and note that W; is a well-behaved percolation for every t. Put oy := a(W;).
Lemma 3.3 implies that a4 is continuous for ¢ € [0, 00). In particular, a; \, ag as
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t \( 0. Since A < Ay, we have ap < 1, so that for ¢g small enough, we also have
at, < 1. By Lemma 3.5, Wto contains lines a.s. If Wto contains hyperbolic lines,
then W contains lines for every s € [0,ty]. Therefore, by countable additivity,
a.s. there are no exceptional times for which W; does not contain hyperbolic
lines.

The proof for the case A > A;g, is similar. One just redefines B, = No<s<t Bs
and observes that ay, > 1 for tp small enough.

The proof for B; is similar to the above, so we omit it. O

We do not know what happens at the critical intensity A = A4y, but con-
jecture that there are no exceptional times in this case as well.

Next, we consider a different model. To each ball in the Poisson Boolean
model, we associate a jump process which is an independent Poisson process
with intensity 1. At each jump time in the Poisson process, the center of the
corresponding ball moves to a point chosen uniformly at random within distance
1 from the original center. Let F; be the set of half-lines from the origin to
infinity that intersect finitely many balls at time ¢.

Theorem 5.2. If A\ > Ay then P[3t > 0 : Fy # 0] = 0. If XA < Ay then
P(3t>0: F, = 0] =0.

Proof. First we remark that we cannot use the same technique for this model
as in the proof of Proposition 5.1, since the part of H? that has been covered
by some ball at some time s € [0, ¢] is not a well-behaved percolation for any t.
More precisely, for any ¢ > 0, there is not independence at any distance Ry.

First consider the case A > Ag,. Since the process is a reversible Markov
chain, it follows by Theorem 4.6 that it is enough to check that

(5.1) lim sup nu,, < co a.s.

where u, = [];_;(1 —1,). Since A > )\, it follows by (4.13) that there
is a constant cy > 1 such that the event J := {|l,, — ¢x/n| > 1/n*/? i.0. } has
probability 0. On J¢, we get by straightforward calculations that lim sup,, nu, <
oo and therefore lim sup,, nu, < co a.s.

Next suppose that A < Agy. Let Z,(t) be the Poisson process associated
to the m:th closest ball of the origin. Let X,,(¢) be the center at time ¢ of
the ball which at time 0 was the n:th closest ball of the origin. Let B(t) :=
U2, B(X,(t), R). Then let B(t) := U, B(X,,, R+ Zn(t)). Then for each ¢t > 0
we have

(5.2) Us<¢B(s) C B(t).

We will show that it is possible to find ¢ so small that with positive probability,
there are half-lines emanating from the origin that do not intersect B(t). By
(5.2), it then follows that with positive probability, there are halflines from the
origin that do not intersect any ball during the interval [0, ¢], which implies that
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a.s. Fy # 0 for all s € [0,t]. Countable additivity then implies that a.s. F; # ()
for all ¢ € [0, 00).
Let

In =1,(t) == 1 arcsin (27T sinh(R + Zn(t)))
T

V.2 + 47V,

if B(Xp,R + Z,(t)) does not contain the origin, and let [,(t) = 1 otherwise.
Then [, is the fraction of the ideal boundary 8H? that can not be reached by a
half-line starting from the origin not intersecting B(X,, R + Z,(t)).

Next pick a larger than but close enough to 1 so that a\ < Agy. By (4.13),
it follows that the event

B { 27 sinh(R) < 2masinh(R)

for all
VV2+4nV, ~ n+2maX sinh(R) ora n}

has positive probability. Note that on E, we have [,,(0) < 1/2 for all n > 1. If

we let
- 1 (27ra)\ sinh(R + Z,(t)) )

b= la(t) = Caresin | = Sinh(R)

if the argument in the arcsine function is less than one, and fn(t) = 1 otherwise,
then .
{ln(t) > 1,(t) for all n}

occurs on E for all ¢ > 0. Note that I,(t) < 1/2 if [,,(t) # 1 and that there is
positive probability that for fixed ¢,
E; := {in(t) <1/2 for all n}

occurs. Write Pz for the conditional probability given the random variables
(Zn(t))321-

Now consider the circle covering model, where interval I,, has length 1,,(t).
Let p denote Lebesgue measure on C. Let U, = Uyn(t) :={z € C : x € N7_, I}
and U := N2, U,. Define U, = []’n(t) in the same way as U,, but with intervals
of length I,,(¢) instead. Then P[F # (] = 1 if and only if

P[U # 0] = lim P[U, #0] = lim Plu(Uy) > 0] > 0.

We have
Plu(Uy,) > 0] > P[u(Uy,) > 0|EP[E].

Since I,, < I,, for all n on E, we get (since ,, is independent of E for all n)

P(u(Uy) > 0|E] > Plu(Us) > 0] = E[Pz(u(Un) > 0)] >

E[Pz(u(Un) > 0)|E;[P[E].
By the Paley-Zygmund inequality we get
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Bz p(Un)]
B [n(0.)’)

Let A, = Au(t) := {z € Un(t)}. By Fubinis theorem, Ez[u(U,)]> =
Pz[A;]? and

Py [u(Un) > 0] >

Ex{u(0,)?] = /C /o PalA, N A, )z dy < 2 /C Pyl A, N Aolda.

Since I,, < 1/2 for all n > 1 on E; we get

n

PzlAs N Ao = [[(1 -2l + (G —2)") < [ - 102 + (e — 2)T) (1 + 517)
k=1 k=1

= P[4 [[a+ (@ — =) +5E})
k=1
on Et.
Thus we get

Plu(0,) > 0] > E ! PARJIA

2 [ TIp—y (L + (I — 2)7) (1 + 512)dz
P[E;]
2E[fo TIr, (1 + (i — 2)*)(1 + 512)da| By

where the second inequality follows from the conditional version of Jensen’s in-
equality. It now remains to show that we can find ¢ so small that the expectation
in the denomiator does not tend to infinity with n.

The conditional distribution of I} given E; is stochastically dominated by
its unconditional distribution. So, using E[_;2 , [2] < co and independence we
get

1 .
<o, [y
0

/0 (I — 2)F) (1 + 512)da| By

k=1

Next let
. 2a\sinh(R + Zj(t))

b= 1(t) := k + 2maAsinh(R)

It is easy to see that E[Y-~, |ix — Ix]] < 00. So for any = € [0,1] we have

n

"Bl - a)*] < 3B )]+ O

k=1 k=1
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for some constant C independent of z and n. Furthermore for z € [0, 1] we get
that

n ~ L "=t/ [ 2aXsinh(R + j) *
;E[(lk(t) —z)f]=e Z Z A (k + 2waAsinh(R) B x)

k=1 j=0 J:
B iﬁ [2aA sinh(R+j) /] 2a)\smh(R+J)
- &~ ! k
7=0 k=1

O 1]
=Cs+ Z %2(1)\ sinh(R + j) log(2aAsinh(R + j)/z)
j=0""
R+te

_ ,—R+tte !
= Cy — 2a)\ (e ; ) log(x)

Let g(R,t) := (exp(R + te) — exp(—R + te~'))/2. Since aX < Agy, we can pick
to small enough so that 2a\g(R,to) < 1. Putting this together we get that

1 . 1
/ eZia Bll(to)-0)* gy < / 22020(Rt0) gy < o
0 0

This implies the theorem. O

6 No planes in higher dimensions

It is natural to ask for high dimensional variants. Fix some d € N, d > 2.
Let A\, R > 0. Let B := |J,x B(z,R), where X is a Poisson point process of
intensity A in H?. Let W be the closure of H¢ \ B.

Proposition 6.1. For every d € NN [3,00), \,R > 0, a.s. there are no 2-
dimensional planes in H® that are contained in B. Similarly, there are no 2-
dimensional planes in H® that are contained in WV .

Proof. Let Z be W or B. Fix some o € H?, and let » > 0 be large. Let
Y, be the set of planes L intersecting the ball B(o,2) such that L N B(o,r) is
contained in the 1-neighborhood of Z. If there is a plane L intersecting B(o, 1)
such that L N B(o,7) C Z, then Y, contains the set of planes L' such that the
Hausdorff distance between LNB(o,r) and L'NB(o0,r) is less than 1. It therefore
follows that if there is such an L, then the measure of Y, (with respect to the
invariant measure on the Grassmannian) is at least exp(—O(r)). However, if
we fix a plane L that intersects B(o,2), then P[L € Y;| < exp(—ce”) for some
¢ =c(d, R, ) > 0, because there are order e” points in LN B(o,r) such that the
distance between any two is larger than R + 3. This means that the expected
measure of Y, is at most exp(—ce”). Consequently, the probability that there
is some plane L intersecting B(o,1) such that B(o,7) N L C Z goes to zero as
T — 00. O
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7 Further Problems

We first consider quantitative aspects of Theorem 1.1.

Conjecture 7.1. Fiz some o € H?. For every r > 0 let p, be the least p € [0, 1]
such that for every random closed Z C H? with an isometry-invariant law and
P[B(o, r) C Z] > p there is positive probability that Z contains a hyperbolic
line. Theorem 1.1 implies that p, < 1 for every r > 0. We conjecture that
limsup,~ (1 — pr)/r < oo.

It is easy to see that liminf,~ (1 — p,)/r > 0; for example, take a Pois-
son point process X C H? with intensity A sufficiently large and let Z be the
complement of the e-neighborhood of J, . x 0B(x,1), where 0 < e < r.

Problem 7.2. What is lim,\o(1 — p,)/r?

The behaviour of p, as r — oo seems to be an easier problem, though
potentially of some interest as well. We now move on to problems related to

Theorem 1.2 and its proof.

Question 7.3. For either W or B, is there some pair (A, R) for which there is
with positive probability a percolating ray such that every other percolating ray
with the same endpoint at infinity is contained in it? (Note, such a ray must
be exceptional among the percolating rays.)

Question 7.4. Is it true that whenever Z has an unique infinite connected
component, the union of the lines in Z is connected as well?

Question 7.5. For which homogenous spaces W or B a.s. contain infinite
geodesics for some parameters (A, R)?

Note that since H? x R contains HZ, it follows that for every R there is some
X such that W on H? x R contains lines within an H? slice, and the same holds
for B.

Question 7.6. Let V be the orbit of a point 2 € H2 under a group of isometries
T'. Suppose that V is discrete and H? /T is compact. (E.g., V is a co-compact
lattice in H2.) Let Wy (R) := H? \ U, B(v, R), and let R} denote the supre-
mum of the set of R such that Wy (R) contains uncountably many lines. Does
Wy (RY) contain uncountably many lines?

Problem 7.7. It is not difficult to adapt our proof to show that in H?, d > 2,
for every R > 0 when X is critical for the existence of lines in W, there are a.s.
no lines inside W. This should also be true for B, but we presently do not know
a proof. It seems that what is missing is an analog of Lemma 3.2.
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