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Some Markov Processes in Finance and Kinetics

Mattias Sundén

Department of Mathematical Sciences
Chalmers University of Technology and Goteborg University

Abstract

This thesis consists of four papers. The first two papers treat extremes for Lévy pro-
cesses, while papers three and four treat the Kac model with unbounded collision kernel.

The Lévy process papers relate the distribution of the supremum of a Lévy process
over a compact time interval to the distribution of the process value at the right end-
point of this interval. Lévy processes are sorted into different classes depending on the
tails of their univariate marginal distributions. In the first paper we treat processes with
heavier tails, while processes with lighter tails are handled in the second paper. Our
results are applicable to many processes recently introduced in mathematical finance.
For instance, they may be used to approximate the distribution of the maximum of a
stock price over a finite time span.

The papers on the Kac model mainly deal with an approximation of the Kac model
with unbounded collsion kernel where small jumps are replaced by a Brownian mo-
tion. In the first and more theoretical of these papers we prove convergence of the
approximating processes to the process with unbounded collision kernel. We also give
results on the spectral gap of the Kac model with unbounded collision kernel. In the
second paper on the Kac model we present numerical results which show that our ap-
proximation scheme gives a considerable improvement of the standard approximation
which uses only a truncated collision kernel and that this improvement is more obvious
as the collsion kernel gets more singular. Our numerical investigations are carried out
for the Kac model with Gaussian thermostat as well as for a more physically relevant
three-dimensional model.

Keywords: CGMY process; Collision kernel; Direct simulation Monte Carlo; Diffu-
sion approximation; Extreme value theory; Feller process; Generalized hyperbolic pro-
cess; Generalized z-process; Infinitesimal generator; Laplace-Beltrami operator; Lévy
Processes; Long-tailed distribution; Kac equation; Kac model; Markov process; Semi-
group; Semi-heavy tailed distirbution; Spectral gap; Subexponential distibrution; Su-
perexponential distribution; Tauberian theorem; Thermostat.
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1 Background

1.1 Markov processes

Let (Q,F, (Ft)¢>0,P) be a filtered probability space. A stochastic process {X;};>0 with
state space (S,S), where S is the Borel o-algebra over a metric space S, is called a
Markov process if for s < ¢ and A € S it holds that

P{Xt € A|fs} = P{Xt S A|XS} a.s.

The intuition here is that our prediction of what happens tomorrow is as good knowing
only what happened today as it is knowing the whole history.

All stochastic processes considered in this work are time-homogeneous Markov pro-
cesses, for which the semigroup {T}};>o is given by

Tif(z) = E{f(Xi+s)| X5 = z}

for t > 0 and s > 0 and f € B(S), the space of bounded measurable functions equipped
with the norm || f|| = sup,cg | f(x)|. Henceforth, by a Markov process we mean a time-
homogeneous Markov process. The semigroup is determined by a linear operator L,
called the infinitesimal generator, with domain D (L) consisting of all functions f € B(S)
such that the strong limit

. Thf - f
="
exists. It can be shown that the infinitesimal generator uniquely determines the finite-
dimensional distributions of the Markov process. If L is closed (i.e., if the graph
{(f,Lf);f € D(L)} is a closed subspace of B(S) x B(S)) a subspace D of D(L) is
a core for L if the closure of the restriction £|p of £ to D is £. In this case L is
uniquely determined by L|p.

1.2 Feller processes

Here we assume that the metric space S is locally compact and separable. Let Cy =
Co(S) be the Banach space of continuous functions vanishing at infinity equipped with
the norm || f|| = sup,eg|f(z)|. Under these assumptions a Markov process with semi-
group {T}};>0 for which it holds that

T,.Cy C Cy fort >0 and Tif(x) — f(x)ast ] 0 for f € Cy, z €S,

is called a Feller process and its corresponding semigroup a Feller semigroup. All
stochastic processes considrerd in this work are Feller processes.

For more on the theory of Markov and Feller processes we refer to the comprehensive
textbooks of Ethier and Kurtz [7] and Kallenberg [9].

1.3 Lévy processes

Lévy processes are, simply put, stochastic processes with independent and stationary
increments. The feature of independent increments means that Lévy processes consti-
tute a subclass of Markov processes, the canonical examples being the Poisson process
and Brownian motion. It can be shown (see e.g., Kallenberg [9], Theorem 19.10) that a



Lévy process is a Feller process.
A formal definition of an R-valued Lévy process is as follows. The process { = {&; }+>0
is a Lévy process if

) & =0,
(e3) &, —&pyys---5€ — &, are independent for 0 < ¢, <t, <--- <t, < o0,
(194) the distribution of &;1s — &5 does not depend on s for s,t > 0,

(iv) P{|& —&| >¢e} —>0fore>0ast— sfor s>0,

(

v) every sample path of £ is right-continuous with left limits.

It is easy to see that the distribution of a Lévy process is uniquely determined by its
distribution at ¢ = 1. This distribution in turn is specified by the so called characteristic
triplet (v,m, s?) through the Lévy-Kintchine formula

E{ewf(l)} = exp {iOm + /]R (ew”lc -1- iOm(w)) dv(z) — 022—82} (1)

for € R, where k(z) = z/max{1,|z|}. The quantities m € R and s?> > 0 are con-
stants and the measure v is the (Borel) Lévy measure on R, satisfying v({0}) = 0 and
Jg min{1, z2}dv(z) < co. One may note that, discarding the integral with respect to
the Lévy measure, equation (1) is just the characteristic function of a Gaussian random
variable with mean m and variance s?>. For instance, this means that the standard
Brownian motion has the characteristic triplet (0,0,1). The Lévy measure describes
the jump structure of the process. In many cases v([—1, 1]) = oo, which corresponds to
sample paths displaying many small jumps. The canonical example of a jump process is
the Poisson process with rate A, which has the characteristic triplet (Ad1, A, 0), 61 being
the unit mass at 1. For more on Lévy processes the reader is referred to Sato [11].

1.4 Extremes for Lévy processes

During the last decade, R-valued Lévy processes have become popular in financial ap-
plications, where they are often used to model logarithmic stock returns. Obviously, it
could be of interest to quantify the probability of the return process exceeding a very
high or a very low level. For R-valued Brownian motion {B;};>¢ it is well known that

P{ sup B > m} = 2P{B;, > z}
te[0,h]

for x > 0. For more general Lévy processes no such formulas are known. However,
letting C denote a suitable class of distributions, results such as

sup L €eC o€ eC (2)
t€[0,h]
and
c i P {supte[o,h] & > a:} o 5
e T Pl )
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for some constant H > 1, are known to some extent. Letting £(a) denote the class of
distribution functions F' for which
1-F(z+uw)

% TT-F@) ¢

—QT

for some a > 0 and S(a) the subclass of £(«) for which it also holds that

y 1— Fx%F(u) <
umoo 1— F(u) 0

Braverman and Samorodnitsky [3] showed that (3) holds for C = S(«) and Willekens
[13] proved that (2) and (3) hold for C = £ = L(0).

1.5 The Kac model

The Kac model, introduced by Kac in 1956 [8], is a toy model or charicature of the
Boltzmann equation. It consists of a vector v = (v,,...,v, ), which may be considered
as the particle velocities of a monoatomic dilute gas. The velocity vector evolves under
a random mechanism corresponding to collisions of the atoms. To each particle pair 1, 7,
where 1 < ¢ < 5 < N, is assigned a Poisson clock. When the clock rings the velocities
v; and v; undergo the transformation

v; = v;cos0 +v;sinf and v; — v;cosf — v;sinf 4
j j j )

where 6 is chosen in some random fashion. In Kac’s original work [8] the angle € is
uniformly distributed over [—7, 7]. Note that the mappings (4) keep the kinetic energy
constant. We choose this constant to be N. This means that the Markov process at
hand has state space SV ~1(v/N), the sphere of radius v/N centered at the origin of RV .
The generator of the process is given by

=51 X [ U@ - oo, Q

1<i<j<N Y~

where R;;(6) is the mapping (4) and p determines the distribution of the scattering
angle 0. The integral on the right hand side of (5) is to be interpreted as a principal
value and the domain D(L) depends on the choice of p.

Letting 9, = 1(v), denote the density of the vector v at time ¢ > 0, 1, is a solution
to

509 = L9,
which is also known as the Kac master equation. In the language of probability theory,
this is the Kolmogorov backward equation.

An interesting feauture studied by Kac in [8] is that of propagation of chaos or the
Boltzmann property. Intuitively this means that if the particle velocities are initially
independent as the particle number N goes to infinity this property propagates in time
so that particle velocities are asymptotically independent as N — oo for all ¢ > 0. This
feature is not studied in our work and has to our knowledge not been verified to hold
for the Kac model with unbounded collision kernels. Thus, verifying if propagation of
chaos is a feature of our models may serve as future work.



2 Summary of the papers

2.1 Paperl

In the first paper, ”On the asymptotics of Lévy processes, Part I: subexponential and
exponential processes”, we establish conditions for the existence of a constant H as
in equation (3) and tail-behaviour for the very general process classes of generalized
hyperbolic, CGMY and generalized z-processes. These classes include most of the pro-
cesses used in mathematical finance such as NIG, VG and Meixner processes (see e.g.,
Schoutens [12] for more details). One feature of these processes is semi-heavy tails i.e.,
the processes have univariate marginal distributions with densities F’ for which it holds
that
F'(u) ~ CuPe™ " as u — oo

for some constants C,a > 0 and p.
It turns out that semi-heavy tailed distributions belong to L(a) \ S(a) if p > —1
and to S(a) if p < —1. Our main results show that for a Lévy process £ such that the

limit
lim P{Et }

J e > exists for ¢t € (0, h), (6)

we have that

& € L(a) & sup & € L(a)
t€[0,h]

and that H = 1 if the limit (6) equals zero. This result relies on Tauberian theorems
and an extension of Willekens [13] result for £ to the class OL of distributions F for
which
1-F 1-F
0 < liminf (z +u) < lim sup (z+u)

_ - f > 0.
T B o B s N 2 <ooforu>0

We also state and prove a result which says that if H = 1 and £ is not a subordinator
(an increasing Lévy process that is) then it either holds that

1m in P{é-t > u}
e B e > u

or &, € L. This is used to show that H > 1 for a non-subordinator ¢ such that & € S(a).

=0 for all £ € (0, h)

2.2 Paper II

The second paper, ”On the asymptotics of Lévy processes, Part II: superexponential
processes”, may be viewed as a continuation of the first paper. It deals with processes
with tails lighter than the ones treated in Paper I.
We introduce the notion of superexponential Lévy processes, by which we mean Lévy
processes ¢ such that
E{eagl} < oo for a>0.

Also here Tauberian techniques are used to establish the existence of constants H as
in (3) and to study tail behaviours. To us it seems that as tails get lighter proving
Tauberian theorems becomes more technical.

The paper contains two main results. One gives the existence of a constant H as



in (3). A condition for this first result is that the distribution of &; belongs to the Type-I
attraction of extremes. This means that, for some positive function w, it holds that

. P{gt >u+ :L"LU(’U,)} _ -
ulbrgo P{ft > U} B .

Criteria for the Type-I attraction and the determination of the tail behaviour of super-
exponential Lévy processes is the other main result of paper I and it is proved under
some technical condtitions. We provide a series of lemmas and propositions, some of
which allow for verification of the technical conditions starting from the characteristic
triplet of the process. Our results are applied to, e.g., Brownian motion with drift,
Merton jump-diffusion and totally skewed to the left a-stable processes.

2.3 Paper III

Paper III, “The Kac master equation with unbounded collision rate”, treats the Kac
model with unbouded collision kernel

p(6) =10/77" for a € (0,2) (7)

and approximations of this process. We introduce an approximation scheme for simula-
tion of the Kac model with p as in (7) which involves a Brownian motion on the sphere
SN=1(y/N). This Brownian approximation scheme was inspired by the works of As-
mussen and Rosinski [1] and Cohen and Rosinski [6], where such schemes are presented
for Lévy processes. The idea is to replace small jumps by a continuous process. We show
that the convergence in terms of infinitesimal generators is faster for the process with
Brownian approximation than the convergence of the process given by just truncating
the collision kernel.

We also prove that the Kac model with p as in (7) is a Feller process and that
Brownian motion on SV ~1(v/N) can be obtained as the grazing collision limit of the
Kac model.

Furthermore, we establish that the rotation inavariant probability measure on the
sphere SV ~1(y/N) is an invariant measure for all processes considered in this work. We
give lower bounds for the spectral gap k of the generator £. The constant k quantifies
the speed of convergence to the distribution given by the invariant measure, here being
the uniform distribution and thus having density 1, in the sense

ITef — 1ll2 < e *(If = 1|2,

where || - ||2 denotes the L?-norm, T is the semigroup generated by £ and f is some
initial density. The inspiration for this part of our work was found in Carlen, Carvalho
and Loss [4], where one of many results is an explicit calculation the spectral gap for
the Kac model with p(8) = (27)~!. For more on spectral gaps, we refer to Chen [5].

We also present a diffusion approximation scheme for a physically more relevant
model with three-dimensional velocities and constant momentum. The diffusion process
used here is generated by the Balescu-Prigogine operator

> (V= Vi)lv — v (Vi — V). (8)
1<i<j<N

We give a stochastic differential equation representation for the process generated by
(8) which facilitates simulation.



2.4 Paper IV

In the fourth paper, “Brownian approximation and Monte Carlo simulation of the non-
cutoff Kac equation”, we present numerical results of the approximation schemes pre-
sented in paper III. This involves direct simulation Monte Carlo (DSMC), which is
a probabilistic scheme for solving kinetic equations introduced by Bird [2]. See also
Rjasanow and Wagner [10].

The model that we simulate is not the Kac model as described in subsection 1.5,
but rather the Kac model with Gaussian thermostat. This means that an extra term is
added to the operator £ as in (5) so that the generator of the process is given by

al J ]
Lf=E 1- o) —f+2 9
/ ;( o) goef 4L (9
for some constant £ > 0 and f in some space depending on the singularity of p and

where
1N | N
_ _ 2
Jy = kgl vy and Uy = — kglvk.

The first term on the right hand side of (9) corresponds to an external uniform force field
and a Gaussian thermostat. The force field accelerates the particles between collisions
and the energy thus supplied to the system is absorbed by the thermostat, keeping
the kinetic energy constant. For more on the Kac model with thermostat, the reader
is referred to Wondmagegne [14]. We also make simulations of the three-dimensional
model as in paper III but also here modified to incorporate a thermostat.

Our numerical results show that the diffusion approximation scheme is very effective,
both in terms of computation time and accuracy, especially for values of a close to 2.

2.5 On the contribution of Mattias Sundén

Papers I and IT are joint work of J.M.P. Albin and Mattias Sundén. Mattias and J.M.P.
Albin have contributed equally to both papers.

Papers 11T and IV are joint work of Mattias Sundén and Bernt Wennberg. In paper
ITT most results are due to Mattias, using guidelines and ideas from Bernt. Paper IV is
a numerical implementation of some of the ideas from paper III.

References

[1] S. Asmussen and J. Rosinski (2001). Approximations of small jumps of Lévy pro-
cesses with a view towards simulation. J. Appl. Probab. 38, 482-493.

[2] G.A. Bird (1976). Molecular Gas Dynamics. Oxford University Press.

[3] M. Braverman and G. Samorodnitsky (1995). Functionals of infinitely divisible
stochastic processes with exponential tails. Stochastic Process Appl. 56, 207-231.

[4] E.A. Carlen, M.C. Carvalho and M. Loss (2003). Determination of the Spectral
Gap for Kac’s Master Equation and Related Stochastic Evolutions. Acta Math.
191, 1-54.



[5]
[6]

[9]
[10]

[11]
[12]

[13]

[14]

M-F. Chen (2005). Eigenvalues, Inequalities, and Ergodic Theory. Springer.

S. Cohen and J. Rosinski (2007). Gaussian approximation of multivariate Lévy
processes with applications to simulation of tempered stable processes. Bernoulli
13, 195-210.

S.N. Ethier and T.G. Kurtz (1986). Markov Processes, Characterization and Con-
vergence. Wiley.

M. Kac (1956). Foundations of Kinetic Theory. In Third Berkeley Symposium on
Mathematical Statistics and Probability. Edited by J. Neyman, 171-197.

O. Kallenberg (2002). Foundations of Modern Probability, Second Edition. Springer.

S. Rjasanow and W. Wagner (2005). Stochastic Numerics for the Boltzmann Equa-
tion. Springer.

K. Sato (1999). Lévy processes and infinitely divisible distributions. Cambridge.
W. Schoutens (2003). Lévy processes in Finance. Wiley.

E. Willekens (1987). On the supremum of an infinitely divisible process. Stochastic
Process Appl. 26 173-175.

Y. Wondmagegne (2005). Kinetic Equations with a Gaussian Thermostat, Doctoral
Thesis, Chalmers University of Technology and Goteborg University.



Available online at www.sciencedirect.com

stochastic

: ScienceDirect processes
gf and their

applications

ST

ELSEVIE Stochastic Processes and their Applications I (1HEN) KnI—EER —_——
www.elsevier.com/locate/spa

On the asymptotic behaviour of Lévy processes,
Part I: Subexponential and exponential processes

J.M.P. Albin*, Mattias Sundén

Mathematics, Chalmers University of Technology, 412 96 Gothenburg, Sweden

Received 20 May 2007; received in revised form 15 February 2008; accepted 16 February 2008

Abstract

We study tail probabilities of the suprema of Lévy processes with subexponential or exponential
marginal distributions over compact intervals. Several of the processes for which the asymptotics are studied
here for the first time have recently become important to model financial time series. Hence our results
should be important, for example, in the assessment of financial risk.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decade there has been a great interest to use Lévy processes in mathematical
finance, see, e.g., Schoutens [34] for a review. Most of the classes of Lévy processes that
feature here, such as generalized z processes (GZ), CGMY processes and generalized hyperbolic
processes (GH) have univariate marginal distributions with semi-heavy tails.

Recall that a probability distribution is said to have a semi-heavy (upper) tail if it has a
probability density function (PDF) f such that

f(u) ~ CuPe™" asu — oo for some constants C,« > 0 and p € R. (1.1
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Owing to the exponential in (1.1) Lévy processes with semi-heavy tails could also be called
exponential processes. This is a custom that we will adopt later.

We study the (upper) tail behaviour of suprema over compact intervals of Lévy processes
{£()};>0 with semi-heavy tails and other related behaviours of the tails of their marginal
distributions. More specifically, given a constant 2 > 0 we prove that

sup £E(t)eC s &(h) el (1.2)
t€[0,h]

for different classes of distributions (tail behaviours) C together with the implication

EhyelC=> hm sup £(t) > u} = H exists. (1.3)

_ I 5
oo P{&(h) > u} {0<t<h

The classes of distributions C we are most interested in for (1.2) and (1.3) are the exponential
classes L£(«) and S(«) which are well-known from the literature, see Definition 2.5. In particular,
L () includes all distributions with semi-heavy tails.

The implication (1.3) is known from Braverman and Samorodnitsky [14] for C = S(«).
We prove (1.2) and (1.3) for C = L(«) under an additional technical condition that always
seems to be met in practice. In particular, as £(«) includes S(«) and distributions in S(«) satisfy
our technical condition, we complete the result of Braverman and Samorodnitsky [14] with the
equivalency (1.2) for C = S().

It turns out that semi-heavy-tailed Lévy processes with p < —1 belong to S(«) while
processes with p > —1 belong to L(«) \ S(«). Many of the above-mentioned specific Lévy
processes have p > —1, so that (1.2) and (1.3) are established here for them for the first time. We
also show that H > 1 when p < —1 unless & is a subordinator (a result which does not follow
from Braverman and Samorodnitsky [14]) and that H = 1 for p > —1.

Distributions in the class £ = L£(0) are called long-tailed. As these distributions have tails
that decay slower than any exponential they can also be called subexponential. The relations (1.2)
and (1.3) are known from Willekens [39] for C = L, see Theorem 4.1. We complete his results
by establishing a partial converse to (1.3) for C = L.

As there is no converse to (1.3) for C = L(«) when ¢ > 0 we consider the larger O-
exponential class OL of Bengtsson [8] and Shimura and Watanabe [37], see Definition 2.5. For
C = OL we prove (1.2) together with the following version of (1.3):

Eh) e OL = hmsupw {Osuphé(t) > u} < 0. (1.4)
U—00 <t<

In addition, we establish a partial converse to (1.4).
From a practical point of view the implication (1.3) for C = L(«) should be the most
interesting of our results. For example, an asset price process {S(#)}o<:<n such as a stock price

is often modelled by an exponential Lévy model S(r) = e where & is a Lévy process. Then
the risk that S falls below a low level ¢ is given by

O<r<h 0<t<h

P{ inf S(t) < 8} P: sup —&(t) > —ln(s)} ~ HP{=&(h) > In(1/e)}

as ¢ | 0 provided that —& € C for a class C such that (1.3) holds.

Please cite this article in press as: J.M.P. Albin, M. Sundén, On the asymptotic behaviour of Lévy
processes, Part I: Subexponential and exponential processes, Stochastic Processes and their Applications (2008),
doi:10.1016/j.spa.2008.02.004
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To establish (1.3) for the class L£(«) we develop Tauberian results for infinitely divisible
distributions which should be of substantial interest in their own.

The paper is organized as follows: In Section 2 we review various classes of subexponential
and exponential distributions that feature in the paper.

In Section 3 we develop the mentioned Tauberian results. In particular, they show that
&(h) € L(a)\S(«) when & has a semi-heavy-tailed Lévy measure such that p > —1in (1.1). We
also express the tail behaviour of £(h) in terms of the Lévy characteristic triple of the process.
Note that on a less precise level than our Tauberian results, it is well-known that a Lévy measure
with an exponential tail more or less corresponds to an infinitely divisible distribution with an
exponential tail with the same exponent, see, e.g., Sato [33], Theorem 25.3.

In Section 4 we prove a partial converse to (1.3) for C = L. This converse is crucial for our
proof that H > 1 in (1.3) for C = S(«).

In Section 5 we prove (1.2) for C = OL as well as the implication (1.4) together with a partial
converse to that implication. The equivalency (1.2) for C = OL is crucial for our proof of (1.2)
for C = L(«) in Section 6.

In Section 6 we prove (1.2) and (1.3) for C = L(«). The results from Section 3 are crucial to
verify the hypothesis of these results.

In Section 7 we give applications to the process classes GZ, CGMY and GH.

In the companion article Albin and Sundén [2] we study the tail behaviour of superexponential
Lévy processes with lighter than exponential tails. This rich class of processes includes many
processes for which the limit H in (1.3) does not exist.

2. Subexponential and exponential distributions
In this section we review classes of probability distributions that feature in our work.
2.1. Subexponential distributions

Here we discuss distributions with tails that are heavier than exponential ones.
The following classes of distributions £ and S are well-known from the literature:

Definition 2.1. A cumulative distribution function (CDF) F belongs to the class of long-tailed

distributions £ if
1-F
fim D v eR
u—oo 1 — F(u)

A CDF F belongs to the class of subexponential distributions S if
. 1 —=—FxF(u)
lim ———— =
u—oo 1 — F(u)
In Definition 2.1 » means convolution, that is, F x F(u) = f]R F(u — x)dF (x).

It turns out that S C £ (see Embrechts and Goldie [16], Section 3). It is easy to see that F' € S
if 1 — F is regularly varying at infinity with a non-positive index:

Definition 2.2. A measurable function g > 0 is regularly varying at infinity with index o € R,
g € R(o), if

lim 895 _
m =
Uu—>00 g(u)

x? forx € (0, 00).
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A measurable function g > 0 is O-regularly varying at infinity, g € OR, if

0 < timinf £ < limsup £ < o6 forx € (0, 00).
u—oo  g(u u—oo g
Example 2.3. Given constants (parameters) xo, 0 > 0, the Pareto distribution F(x) = 1 —

(x/x0) € for x > x satisfies 1 — F € R(—p),sothat F € S C L.

For the class £ we will need the following lemma, the proof of which is elementary:

Lemma 2.4. A CDF F belongs to the class L if and only if
1—Fu+x)

liminf ——— = > 1 forsomex > 0.
u—00 1 — F(u)

2.2. Exponential distributions

Here we discuss distributions with exponential tails.
The following classes L£(«) and S(«) are well-known from the literature. The class OL of
Bengtsson [8] and Shimura and Watanabe [37] is an exponential analogue of OR.

Definition 2.5. Given a constant « > 0, a CDF F belongs to the class L(«) if
. 1 —Fu+x)
lim ——— =
u—oo 1 — F(u)
A CDF F belongs to the exponential class S(a) if F € L(«) and
1—F*xFu
lim ————=
u—oo 1 — F(u)
A CDF F belongs to the class of O-exponential distributions OL if
1—F(u+x) 1—F(u+x)

0 < liminf ——————— < limsup ————— < oo forx € R.
u—00 1 — F(u) =00 1 — F(u)

—ax

forx € R. 2.1

exists (and is finite). 2.2)

Pitman [31], p. 338, argued that the class £ should be called subexponential rather than S.
By his logic the class £(«) should be called exponential instead of S(«). In fact, the exponential
distribution itself belongs to L(«) \ S(«) by Example 2.11. This is the reason that we talk about
exponential distributions when dealing with £(«).

Note that £(0) = £, S(0) = S [as the limit (2.2) is 2 for S(0), see Embrechts and Goldie [17],
Section 2], and S(a) € L(a) € OL. To illustrate how OL differs from U, >0 L(c) we give the
following simple result which is proved in Appendix A.1:

Proposition 2.6. An absolutely continuous CDF F belongs to L(«) if and only if

u
F(u)=1-—exp {—/ (a(x) + b(x))dx} foru e R, 2.3)
—00
for some measurable functions a and b with a + b > 0 such that
u u
Iim a(x) = «, lim f a(x)dx =00 and lim b(x)dx exists. (2.4)
X—>00 u—oo J_ o u—oo J_ o
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An absolutely continuous CDF F belongs to OL if and only if (2.3) holds for some
measurable functions a and b with a + b > 0 such that

u
lim sup |a(x)| < oo, liminf/ a(x)dx = o0 and
X—>00 U—0oo J_~
u
limsup/ b(x)dx| < o0. 2.5)
u— 00 —00

Example 2.7. Leta(x) = o 1jp,c0)(x) and b(x) = B cos(e® —1)1o,00) (x) in (2.3) where | 8| < «
and @ > 0 are constants. Then we have F € L(«) since limy,_, o fé’ cos(e* —1)dx exists. Instead,
if we take b(x) = B cos(x) 1{0,00)(x), then (2.5) holds but (2.4) does not unless 8 = 0, so that
F e OL\ L(a) for B #£ 0.

The following elementary result for the class OL corresponds to Lemma 2.4 for L:

Lemma 2.8. A CDF F belongs to the class OL if and only if
1—Fu+x)

liminf —————— > 0 for some x > 0.
u— 00 1—F(u)

2.3. Distributions with semi-heavy tails

In mathematical finance log increments of asset prices are often modelled to have semi-heavy
tails, see, e.g., Barndorff-Nielsen [6] and Schoutens [34].
The following simple corollary to Proposition 2.6 is proved in Appendix A.2:

Corollary 2.9. A CDF F is semi-heavy tailed satisfying (1.1) if and only if

F(u)=1—exp {— /u c(x)dx} for u e R, (2.6)

for some measurable function ¢ > 0 that satisfies
lim c(x) =a and
X—> 00
u

c
lim (c(x) — o 1000y () + S 11.00) (x)) dx = In <;> . 2.7

u—>00 J_ o
If any of these equivalent conditions hold so that both of them hold, then F € L(w).

Corollary 2.9 shows which distributions in Example 2.7 are semi-heavy:

Example 2.10. The distributions in Example 2.7 are semi-heavy only if § = 0 as they have
c(x) =a+ Bcos(e* — 1) and c(x) = o + B cos(x) for x > 0in (2.6).

By Corollary 2.9 semi-heavy-tailed CDF’s belong to L(«). However, by the following
example a semi-heavy-tailed CDF belongs to S(«) only if p < —1in (1.1).

Example 2.11. For a semi-heavy-tailed CDF F with p < —1, Pakes [29], Corollary 2.1 ii and
Lemma 2.3 (see also [30]), show that the limit (2.2) exists with value 2 fR e“*dF(x) < o0, so
that F € S(«). For a semi-heavy-tailed CDF F with p > —1 we have floo e**dF (x) = oo.
Hence Pakes [29], p. 411 (see also [30]), shows that the ratio in (2.2) goes to infinity as u — 00,
sothat F € L(a) \ S(a).
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3. Tauberian theorems for £ () \ S(a)

In this section we first introduce some standard notation for Lévy processes that will be
used repeatedly from here on. Then we state and prove the Tauberian results mentioned in the
Introduction that are of fundamental importance in Sections 6 and 7.

An infinitely divisible CDF F is characterized by a characteristic triple (v, m, s*) as

2
for 6 € R. 3.1

) ) 92S2
/ e dF (x) = exp {iem +/ (e“)x 11— 191(_1,1)(x)x) dv(x) — —}
R R

Here v is the Lévy (Borel) measure on R that satisfies v({0}) = 0 and fR(l A lx[P)dv(x) < 0o
while m € R and s > 0 are constants. This triple is unique.

A Lévy process is a continuous in probability and cadlag stochastic process {£(f)};>0 with
£(0) = O that has stationary and independent increments. As the marginal distribution of &(¢)
is infinitely divisible with characteristic triple (vt, mt, szt) where (v, m, s2) is the characteristic
triple of £(1), the latter triple is called the characteristic triple of &.

The Tauberian results Theorem 3.3, Corollary 3.5 and Theorem 3.6 establish that if &€ is a Lévy
process with Lévy measure v that satisfies the condition (3.3), possibly together with additional
conditions, then we have the behaviour (3.4) the tails of the Lévy process. The claim (3.4) is a
key condition in Sections 6 and 7.

Our first Tauberian result is derived from Braverman [12], Lemma 5, together with the
following two results from the literature that are stated here for easy reference:

Theorem 3.1 (Embrechts, Goldie and Veraverbeke [18], Sgibnev [36]). Given a constant o« > 0
and a Lévy process & with Lévy measure v, we have

v([1, 00) N-)
v([1, 00))
Moreover, if any of these conditions holds so that all of them hold, then we have

PEO > 1) pews 0y fors = 0.
u—oo v((u, 00))

€S(a) & &) € S(w) forsomet >0 E(r) € S(a) fort > 0.

Theorem 3.2 (Albin [1], Pakes [29,30]). Let @« > 0 be a constant and & a Lévy process with
characteristic triple (v, m, s%). Write £ = & +& where &| and & are independent Lévy processes
with characteristic triples (v(-N[1, 00)), 0, 0) and (v(-N(—o0, 1)), m, sz), respectively. We have
v([1,00)N ")

v([1, 00))
Moreover, if £1(t) € L(a) fort > 0, then we have

€ L(a) =& (t) e L) fort>0= &) e L(x)fort>D0.

P{E(t) > u} ~ P{&E() > u}/ e dFg, ) (x) asu — oo fort > 0. (3.2)
R

Here is our first Tauberian result. This result is due to Braverman [13], Theorem 1, but our
proof is very much shorter. See also Section 8 on priority:
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Theorem 3.3 (Braverman [13]). Let & be a Lévy process that satisfies

_v([1v-,00) . 1 —Fu)
F() = —v([l, o) € L(w) forsome o >0 and uli)n;o T_FsF( Fa) 0. (3.3
Then it holds that
E(t) e L)\ S(a) fort>0 and lim M =0 forO<s<t. (3.4)

u—oco P{&(t) > u}

Proof. Let & have triple (v, m, s?) and write £ = & + & where & and & are independent
Lévy processes with triples (v(-N [1, 00)), 0, 0) and (v(- N (—o0, 1)), m, s2), respectively. From
Theorem 3.2 we have &(¢),&(t) € L(x). As & is a compound Poisson process with jump
CDF F, and as the second requirement of (3.3) means that F is light-tailed in the sense of
Braverman [12], Definition 1, it follows from Braverman [12], Lemma 5, that &; satisfies the
second requirement of (3.4). As tail probabilities for &; are proportional to those of & by (3.2) we
see that the second requirement of (3.4) holds also for &. Hence £(¢) ¢ S(«) by Theorem 3.1,
which finishes the proof of all claims of the theorem. O

In Corollary 3.5 and Theorem 3.6 below we specialize Theorem 3.3 to semi-heavy-tailed Lévy
measures with p > —1 and p = —1, respectively (see Example 2.11). We also express the tail
probability P{£(t) > u} as u — oo in terms of the characteristic triple, which makes possibly
more explicit results in our applications in Section 7.

For the statement of Corollary 3.5 and Theorem 3.6, consider the moment generating function
(MGF) of a Lévy process & given by

b1, ) = Efe 0y = (E{e—““)})' —¢(1, 1) =¢(0) fort>0andieR. (3.5

Writing (v, m, s2) for the characteristic triple of &, Sato [33], Theorem 25.17, shows that

¢, A) <oo forsomet >0« ¢(t,A) <oo fort >0

& e Mdv(x) < oo. (3.6)
R\(~1,1)
We will need the following functions p and V given by [cf. (3.1)]
¢'0)

n) =

o0y /ﬂé (xe™ —x 11 () dv(x) +m — is?

3.7
V) =—pu/ () = f xZe M dv(x) + 52
R
for . € R such that the definition makes sense. We will also need the inverse function u " ()
of u which will be well-defined in all cases we encounter for u € R sufficiently large as we will
have lim, | () = oo with /(X)) = —V () < 0 (see below).

We will need the following well-known Tauberian result for compound Poisson processes
with semi-heavy Lévy measures. Our version of the result is stated slightly differently than in the
literature to better suit our purposes, but it is easy to see that it is equivalent to the results in the
literature.
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Theorem 3.4 (Embrechts, Jensen, Maejima and Teugels [19], Homble and McCormick [23,
24], Jensen [25]). For a compound Poisson process & with Lévy measure v that is absolutely
continuous sufficiently far out to the right with
dv(u)
Cdu
we have, with the notation (3.5) and (3.7),

eu,u&(u/f)¢(ue(u/t))l
a2t V(< (u/1))

The following corollary to Theorems 3.3 and 3.4 addresses processes which have semi-heavy-
tailed Lévy measures with p > —1:

~ CuPe™™ asu — oo for some constants C,a > O and p > —1, (3.8)

P{E@) > u} ~

asu — oo fort > 0.

Corollary 3.5. Let & be a Lévy process with characteristic triple (v, m,s?) such that v is
absolutely continuous sufficiently far out to the right and satisfies (3.8). Write £ = & + &
where &1 and &, are independent Lévy processes with triplets (v(- N [1, 00)),0,0) and (v(- N
(—o0, 1)), m, s2), respectively, and let ¢1, |11, ,uf and V| denote the quantities ¢, |1, £~ and
V in (3.5) and (3.7) calculated for the process & instead of €. Eq. (3.4) holds and

o)1 @/ )

P{£(t) > u} ~ Efe a2t Vit (/1)

asu — oo fort > 0. 3.9)

Proof. As (3.3) holds by (3.8) and Example 2.11 we get (3.4) from Theorem 3.3. As &; is a

compound Poisson process that satisfies (3.8) Theorem 3.4 shows that

e Gy (i (/1)
a2t V(i (/1))

Hence (3.9) follows from (3.2) [as & () € L(«) by the proof of Theorem 3.3]. O

P{& () > u} ~ asu — oo forr > 0.

By further calculations one can phrase (3.9) in terms of ¢, u, ©< and V instead of ¢;, u1,
w,~ and V in special cases: See the proof of (7.8) below for an example on this!

In Theorem 3.6 we address processes which have semi-heavy-tailed Lévy measures with
o = —1. Now the Tauberian arguments have to be developed in detail from scratch as there
are no suitable results in the literature to take off from. However, the idea of the proof to use
Esscher transforms to find tail probabilities is well-known and is also used in the companion
paper Albin and Sundén [2], where we give a bibliography.

Theorem 3.6. If & is a Lévy process with Lévy measure v that is absolutely continuous
sufficiently far out to the right and satisfies (3.8) with p = —1, then (3.4) holds. If in addition
Ct > 1and

o x  dv(x)
liminf ———— = (3.10)
x40 In(l/x) dx
then we have
Ct n—Ct up " (u/t) <« t
P{g(z)>u}~‘/aa) e e TIOWTW/NN L e 3.11)

al'(Ct+1) o(u<(u/t))
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Proof. We get (3.4) from Theorem 3.3 as (3.3) holds by Example 2.11.
To prove (3.11) consider the Esscher transform of £ (¢), which with the notation (3.5) and (3.7)
is a random variable Z; ; with CDF defined by the change of measure
e_“ng(t) (x)
p)!
By elementary calculations we have E{Z; 3} = fu(A) and Var{Z;,} = tV(A) = to(1)2.
Further, (3.1) and (3.7) show that (Z; , — tu(1))/o (A) has CHF g; , given by

60.=10/00)' iy

dFz,,(x) = fort > 0 and A € R such that ¢ (1) < oo. (3.12)

gra(0) = 50
= exp {tf (cos( Ox ) — 1) e M dv(x)
R o (%)
+it/ (sin( 0x ) — 9—x> e~ dv(x) — 65 } (3.13)
R o () o () 2V ()

By (3.7), (3.8) and elementary calculations we have

c
u() ~ —— and V() ~
o

C

Let I'c; denote a gamma distributed random variable with PDF f., (x) = xCt-lg—x /I'(Ct) for
x > 0. By (3.8), (3.14) and the change of variable x = o (1) y in (3.13) we have

o 0 _1 1 ) 00 .t 0 _9 - ‘
& (0) — exp{Ct/ &e_ﬁ}d)’—i—l(ﬁ/ sin(0y) ye ﬁ}dy}
0 y 0 y
{ CtIn(1 +62%/0C)
exXxpy—mmm—————

010 (wen () - )]

_ 1 e iVC1o
(1 —i6/4/C)C
- E [exp [iG(FC, — Ct)/«/E]} =g (0) ash | —a, (3.15)

cf. Erdélyi, Magnus, Oberhettinger and Tricomi [21], Equations 4.2.1, 4.7.59 and 4.7.82.
A key step in the proof is to prove that

limsup/ |g:1(0)]d0 — 0 as K — oo, (3.16)
rM—a JI0|>K

as this shows that g, , is integrable for A > —a small enough (since g; , is bounded by 1), so
that (Z; 5 — tu(A))/o(A) has a continuous PDF f(z,, _1,.1))/0 (), Which by (3.15) and (3.16)
satisfies (using bounded convergence)

lim sup sup ‘f(Z;,rm(A))/ﬂ(k) ) = fire,—cnyve (x)‘
M—a xeR

< lim sup lim sup </ |81.0.(6) — ()] 6 + / (18.10)] + 18:(6)1) de)
|O|<K 16]>K

K—oo M—«a

=0. (3.17)
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From (3.12) and (3.17) together with (3.14), we get

A (L) —x 1)
f&(t)(t,u()\) —x/A) = % f(Zt,)L—l‘,u()h))/U()&) <_)\'O-.x()")>

etk,u()»)fxqb ()\)t
Y ooy Jae-cnve©®

B \/f(ct)Ctef(fl‘ etku(l)fxqs(}k)t
- I(Ct+ 1D o (L)

as A | —a. (3.18)

Note that sup,cgr f(z, ,—ru()) /o) (x) is bounded for A > —o small enough by (3.17) [as
Ct > 1], so that we may integrate (3.18) using bounded convergence to obtain

_ /OOO fsa)(m(_/\; —X/k)dx
00 \/E(Ct)Cte_Ct etku(k)—x(p()\')t
~ /0 —0TCt+1) o)
\/E(Ct)Cte_Ct etA”(A)(j)(k)t
T TerCrr ) o)

P{g() > 1u(1)}

dx

as A | —a.

From this in turn we get (3.11) by a change of variable in the limit.

In order to finish the proof of the theorem it remains to prove (3.16). To that end pick constants
¢ €(0,1)and A > 1 such that (1—¢)°Cr > land e tdv(x)/dx > 161In(1/x)/x forx € (0, 1/A),
cf. (3.10). As 1 — cos(x) > yx? for |x| < 1 we have [as e™** > 1 for x > 0]

Ox o(r)/10] x292
et/ <1 — COos <—>> e M dv(x) stf —dv(x)
R o () 0

/161 402
> / x In(1/x)dx
0 V()

v

92

1+1 for 0] > Ao (M
i n(m)> or 1012 Ao

and A > —a small enough. As (3.8) shows that dv(x)/dx > (1 — &) Ce™**/x for x > B, for

some constant B > 0 large enough to make B + 2w /A < B/(1 — ¢), we further have

Ox —AX
(1 —E)ZAA{(l — cos (m))e dv(x)

00 rB/o(A)+2m(k-+1)/10] o—(@+1)o ()x
> (1 —¢)2Ct f (1 — cos(fx)) ——dx
X

B/o(\)+2mk/|6)]
—(a+1)o (W) (Bo (W)+27 (k+1)/10])

k=0

o0
2
>(1-elcty 2
k=0

|6 B/o(A)+2m(k+1)/]0|
0 o—(@+N)o (W) (x+27/(Ac (1))

1— 2c/
e T Xt 2nj Ao

B 00 e—(a+k)a(k)x
J

> (1 _ S)ZCI e—ZJT(Ol-‘r)L)/Am

dx
Jo (V) X
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oo —X

> (1 — 8)4Ct/ C dr

B(a+r) X

> (1 —¢)°Ct ln< for |6] > Ao (L)

1
B(a + )»))

and A > —oa small enough, where the last inequality is an elementary calculation.
By the estimates of the previous paragraph together with (3.13) and (3.14) we obtain

/ 0 (O)]d6 = f exp{—t / <1—Cos (9—x>>e_“dv(x)}d9
|8]=Ao (1) 16]>A0 (1) R o))

< [ g a0 S
16> Ao (1) 6

N5
_ (1-er’cry 2(B(a + )1 Clo(3)
A

Moreover, we have, using Erdélyi, Magnus, Oberhettinger and Tricomi [21], Eq. 4.7.59, together
with the inequality 1 — cos(x) < x2/2 and (3.14),

t/ (1 — cos <0_x>> e M dv(x)
R o(A)
00 —(a+A)x
z(l—e)Ct/ (1—cos<9x ))e dx
B o(A) x
oo Ox \\ e—(@+hx B 6x \\ 1
Z(l—e)Ct/ <l—c0s< )) dx—Ct/ (l—cos (—)) —dx
0 o(A) X 0 o (i) X

L U=, <1+—(92 )—thB 6% i
== " (@—+ 12V (h) 0 2V

(1—¢)Ct 62 A2B?
>——" In —Ct

—0 asil—a (3.19

- 2 2C 4
for |0| < Ao (A) and A > —« small enough.

Hence we have (for A > —a small enough)

o A2B?  (1-¢)Ct 2
f |8.2.(6)]d6 < 2 / exp {cf _d=ecr, <_>}d9
K<|8|<Ac (M) K 4 2 2C

A?B%) @C)U-oci/2 Kl-(1-e)Cr,
4 (1—-e)Ct—1
which goes to 0 as K — oo since (1 — ¢) Ct > 1. Recalling (3.19) this gives (3.16). O

= 2exp {Ct

4. Subexponential Lévy processes

The following result we will later extend from long-tailed processes to exponential ones.

Theorem 4.1 (Berman [9], Marcus [28], Willekens [39]). For a Lévy process & we have

Ehye L& sup &(t) € L.
t€[0,h]
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Moreover, if any of these memberships holds so that both of them hold, then

) 1

The following simple converse to Theorem 4.1 is new and will be used in Section 6 to prove
that H > 1in (1.3) for C = S().

Theorem 4.2. For a Lévy process & that satisfies (4.1), but is not a subordinator, one of the
following two conditions holds:

1. £(h) € L;
2.

1&@% =0 forallt (0, h).

Proof. Let (4.1) hold and assume that the liminf in Condition 2 takes a value £(¢) > 0 for some
t € (0, h). To show that Condition 1 holds note that

. 1

0= ull)ngom (P ls:E(l)I,)h]S(S) > u} —P{E(h) > u})
o PEM) < . E() > u)
e P{EG) > u)

> Pleth— 1) < e imsup ;{;((13 S Z}+ .

= (PG — 1) <~} limsup T ;{5((;)) f Z}+ :

As & is not a subordinator we have P{£(h —¢) < —e} > 0 for ¢ small enough, see, e.g., Sato [33],
Theorem 24.7. Therefore (4.2) shows that

L PEQ@) > u+¢)
liminf ———— =1
oo PED > u)

Hence £(¢) € £ by Lemma 2.4, so that £(h) € L by the existence of the limit £(z). O

v

fore > 0. “4.2)

While subordination of £ implies (4.1), as does Condition 1 of Theorem 4.2 by Theorem 4.1,
Condition 2 does not imply (4.1) as is exemplified by Brownian motion.

5. O-exponential Lévy processes

In this section we extend Theorems 4.1 and 4.2 from the class £ to OL. The extension of
Theorem 4.1 will be used in Section 6 in the proof of (1.2) and (1.3) for C = L(«).
Theorem 5.1. For a Lévy process & we have

Eh) e OL & sup &(r) € OL.
t€[0,h]
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Moreover, if any of these memberships holds so that both of them hold, then

. 1
llgs;me{tes;a]é(t)>u} < 00. 5.1

Proof. The fact that & (h) € OL implies sup, (g 5§ (1) € OL and (5.1) follows as

} _ PE>x—1) _ CPEM >x)
P{zel[l(l),fh]S(t) > —1} P{tel[%’fh]é(t) > —1}

P{&(h) > x} < P{ sup &(t) > x
1€[0,h]

for x large enough for some constant C > 0, where the middle inequality follows from Sato [33],
Remark 45.9. Conversely, if sup, (g 5; £(1) € OL, then by the same inequality

minf LEW) > u +x}
u—co  P{&(h) > u}

> limian{ inf &(t) > —1}P sup E(t) >u+x+1;/P{ sup £&@) >uy >0
u—00  |rel0,h] 1€[0,h] 1€[0,h]

for x > 0, so that £(h) € OL by Lemma 2.8. O

Theorem 5.2. For a Lévy process & such that —& is not a subordinator and (5.1) holds one of
the following two conditions holds:

1. £(h) € OL;
2.
P{&(r) > u}

l}lfggcl)fm =0 fOl"t (S (0, ]’l)

Proof. If (5.1) holds and the liminf in Condition 2 equals £(¢) > O for a ¢ € (0, k), then

u—oo P{E(R) > u} |0

. P{§(t) > u — ¢}
>P{E(h—1t) > ¢e}limsuyp ————
> P{&( ) > ¢} m sup PE() = )
P{&(h —
S LOPEG — 1) > &) limsup Lo > =& e,
u—soco  P{&(h) > u}
As —& is not a subordinator we get P{&(h — 1) > €} > O for ¢ > 0 small enough as in the proof
of Theorem 4.2. Hence we see that £(h) € OL using Lemma 2.8. O

1
o0 > limsup—P{ sup &(t) > u}

6. Exponential Lévy processes

For Lévy processes in S(«) Braverman and Samorodnitsky [14], Theorem 3.1, proved that

1
lim ———— P sup §(#) >uy = H exists with value H € [1, 00). (6.1)
u—oo P{&(h) > u} {tE[O,h] }

Although Braverman [11], Theorem 2.1, expresses H in terms of the characteristic triple, he also
notes that the expression typically cannot be evaluated except for subordinators.
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The next theorem extends Theorem 4.1 from £ to L(«) as well as (6.1) from S(a) to L(«)
assuming (6.2) given below. It seems that specific processes in L(«) always satisfy (6.2) (see
Sections 3 and 7), making our result very useful in practice, while we are unsure of the real
theoretical significance of (6.2). Our proof is quite short and transparent while in the literature
already proofs of (6.1) for S(«) are long and difficult.

Theorem 6.1. For a constant @ > 0 and a Lévy process & such that

P{E@) > u}

L(t) = 1 W exists for t € (0, h) (6.2)
we have
E(h) € L(a) & sup &(t) € L(w) fora > 0.
t€[0,h]

Moreover, if any of these memberships holds so that both of them hold, then (6.1) holds. In that
case we have H = 1if L(t) =0 fort € (0, h).

Proof. Assume that £(h) € L(a). Note that for each t € (0,4) with L(¢) > 0 we have
&(t) € L(a) by (6.2). This in turn by inspection of (2.1) means that

ulergoP{S(t) —u>x &) >u}=e"* forx >0. (6.3)

Letting 1 be an exp(«) distributed random variable that is independent of £ (6.3) gives

o 1
R pie = " {[:E?Fhf " }

> hllefoup hun_l)gcl)fm {k:OTI..l.E,Ii(h/aJ Eh — ka) > u}
W/al preh — ka) > up
=1 liminf _
lrlrllfoup imin Z PE) > 1] ﬂ{g(h ta) <u}|&h —ka) > u
Lh/a]
= lim sup Z L(h— ka)P{ﬂ{é((k Da)+n < 0}} (6.4)
al0  r—o

(where me;o is the empty intersection, that is, the whole sample space). For a matching upper
bound, note that the strong Markov property gives

P{ sup &(t) > u—i—x}

te[0,h]

< P{k_omax ajé(h — ka) > u} —I—P{ sup £(t) > u —i—x} P{tei[r(l),fa]g(t) < —x}

t€l0,h]

From this together with (6.4) and the fact that £(h) € L(«) we get

1
ISP PE ) > ) {,S[‘?fh]g(” - ”}
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1
= limsuplimsuyp —— sup £(t) >u+x
0 oo PLECR) > u +x) {fe[o?h] }

oxX

< limsup liminflimsup ———
x]0 al0 u— 00 P{S(h) > Lt}

xP{k_ max S(h—ka)>u}/P{ inf é(t)>—x}

0,...,[h/a] t€[0,a]
Lh/a]
< hmlnf Z L(h —ka)P ﬂ{g((k —0a)+n <0} 6.5)
From (6.4) together with (6.5) we conclude that (6.1) holds with
lh/a] k—1
H = lim L(h—ka)Piﬂ{é((k—E)a)+n 50}}. (6.6)
w0 i3 =0

Here H > 1 by (6.1) with H = 1 if L(¢) = 0 for ¢t € (0, ) by (6.6), while H < oo by
Theorem 5.1.

Conversely, assume that sup,c( ) §(t) € L(a). To finish the proof we have to show that
&(h) € L(a). Assume that ¢ > 0 as we are done otherwise by Theorem 4.1. Observe that it is
enough to show that given any x > 0 we have

PEE(R) > uy + )
m
n0 " PE(R) > i)

—e 6.7)

for any sequence u,, — 0o as n — oo such that the limit (6.7) really exists. This is so because
the ratio in (6.7) is bounded so that every subsequence of that ratio has a further subsequence
that converges to the limit e~**. It follows that (2.1) holds for x > 0, which in turn gives (2.1) in
general by an elementary argument.
Consider the distributions supported on [0, co) with CDF given by
P{&(h) > up + x}

Fo(x) =P{ER) <up+x | EHR) > upt =1 — EOE for x > 0.

For suitable constants N € N and C, ¢ > 0, Theorem 5.1 gives [use (5.1) in the first step]

lim sup sup (1 — F;(x))

xX—>00 p>N

< limsup C supP{ sup &(t) >un+x}/P: sup E(t)>u,,}

X—>00 n>N t€[0,h] t€[0,h]

P sup &(¢) > u, +k
Lx] 1€[0,h]
< limsup C sup 1_[

— 00 N
' "= klP sup £(t) > u, +k—1
te[0,h]

Lx]
< limsup C sup 1_[(1 +e)e™*=0.

X—>00 n=N j—]
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Hence the sequence {F,};2 | is tight in the sense of weak convergence Therefore Prohorov’s

theorem shows that there exists a weakly convergent subsequence F;,, 4 F.
Letting 1 be a random variable with CDF F that is independent of £ (6.4) gives

1
hm inf ——— P 1 sup &) >u
koo PER) > up,) {,qo,h] }

lh/a] k—1
> lim sup Z L(h —ka)P {ﬂ{g((k —0a)+n < 0}} )

ald =0 =0

Using that sup, (o 5 §(t) € L(a) we further get the following version of (6.5):

1
limsup ———— sup £(t) > u
o, PLE() > ttn,) {,e[o%] g
eO()C
= limsuplimsup ——— sup &(t) > up, +x
TP P BE ) = ) i "

Lh/a)
< lim inf Z L(h— ka)P{m{f;‘((k —0a)+n < 0}}

With the notation (6.6) we thus obtain the following version of (6.1):

P{ sup &(t) > unk} ~ HP{EM) > uy} ask — o0
1€[0,h]

with H € [1, 00) as before. This gives the required (6.7) since sup,cg 5 §(#) € L(@). O

We immediately get the following powerful corollary to Theorem 6.1. See also Braverman
[13], Theorem 2, and Section 8 below on priority issues:

Corollary 6.2. For a Lévy process & satisfying (3.4) we have (6.1) with H = 1.

We now complete the result (6.1) of Braverman [11] and Braverman and Samorodnitsky [14]
for S(a) to a result in the fashion of Theorem 4.1. We also show that H > 1 unless & is a
subordinator which does not follow from the mentioned literature.

Corollary 6.3. For a constant o > 0 and a Lévy process & we have

1, n-
VAL OINYD o) o £(h) € S@) & sup £(r) € S(@) and (6.2).
v([1, 00)) t€[0,h]
Moreover, if any of these memberships holds so that all of them hold, then (6.1) holds. In that
case we have H > 1 unless a = 0 or & is a subordinator.

Proof. The left equivalency in the corollary follows from Theorem 3.1, as does the fact
that £(h) € S(a) implies (6.2). Hence Theorem 6.1 shows that £(h) € S(«) also implies
sup;cio.n1 (1) € S(a) as (6.1) holds. Conversely, the fact that sup, ¢, () € S(«) and (6.2)
imply &(h) € S(«) follows from Theorem 6.1 alone, again as (6.1) holds.

As any of the equivalent statements in the corollary implies that (6.2) holds with £ (h) € L(«),
Theorem 6.1 shows that they also imply (6.1).
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If « > 0, then Condition 1 of Theorem 4.2 fails. As £(h) € S(«) implies that the limit in
(6.2) is strictly positive, by Theorem 3.1, also Condition 2 of Theorem 4.2 fails. Since £ is not a
subordinator Theorem 4.2 thus shows that

1
limsup —— P sup &) >u; > 1,
u—oo P{&(R) > u} {te[O,h] }

which combines with (6.1) to show that H > 1. [0
7. Applications

We now consider applications of our results to GZ, CGMY and GH processes.
7.1. GZ processes

The GZ process was introduced by Grigelionis [22], thereby generalizing the z processes of
Prentice [32]. The GZ process is a Lévy process with characteristic triple

(dv(x)7m’s2>
dx

28
= ( <e2”f""1(,oo,o)(x) +e7 7271 0,00 (x)) ,m, 0) , (7.1)

el (1 — =277

where B1, 2,6, ¢ > 0 and m € R are parameters.

Theorem 7.1. For a GZ Lévy process (6.1) holds with H = 1. If in addition h > 1/(28), then
we have

o(A=25y)h

P h ~ 26h—1 727r;32u 72
{&(h) > u} —Znﬂzf(%h) u e asu — oo, (7.2)

where y is Euler’s constant and

A =2nfom + /]R <€2nﬁ2x1(,oo’1)(x) —1- 271/321(,1’1)()6) x) dv(x)

+/OO <62”’3NM - §> dx.
1 dx X

Proof. By inspection of (7.1) we see that (3.8) holds with C = 28, p = —1 and o = 27f;.
Hence (3.4) holds by Theorem 3.6, so that Corollary 6.2 gives (6.1) with H = 1.

If h > 1/(26), then the hypothesis of the second part of Theorem 3.6 holds, as (3.10)
holds by inspection of (7.1). Hence (3.11) applies. By (3.14) we have u " (u) 4+ 278, ~ 28/u
as u — 00, so that by dominated convergence [note that u < (u/h) + 27, > 0 and
(W (u/h) +27Br) u/(2hd) > 1/2 for u large enough] and a change of variable

o0
/ e MW/ Mxqy(x)

1

_ /°° o (/W2 x (eznﬁzx dve) _ @) dx 425 /OO =W/ my+2mpy) x X
1 dx X 1 X

o0 d 28 o0 —X
_ / (ezmszxﬂ _ _> dx + 25/  dx+o(l) asu— oco. (1.3)
1 dx x 2msju X
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Using (3.1) together with (3.11), (3.14) and (7.3), elementary calculations give
28h 26h nAh —27Bou o] —x
PLEG) = u) ~ )€ ¢ exp{Z(Sh/ c dx}
2nBrI'(26h) u 2hju X

(28h)25heAh e=27Bu [a—Vy 26h
T 2B (20h)  u < 25h ) as = 00,

which establishes (7.2): Here the last asymptotic relation follows from, e.g., Erdélyi, Magnus,
Oberhettinger and Tricomi [20], Equations 6.9.25 and 6.7.13. O

Example 7.2. The Meixner process of Schoutens and Teugels [35] is a GZ process with 81, 82 >
0 and 81 + B> = 1. Thus it satisfies (6.1) with H = 1. Further, (7.2) holds when & > 1/(24).

Remark 7.3. According to Barndorff-Nielsen, Kent and Sgrensen [7], Theorem 5.2, if for a
constant @ > 0 and a PDF f the function

X
Fe(x) = / Ve F(pdy, x> 0,
0

has an ultimately monotone derivative with a Laplace transform that satisfies

o0
/ K@ £)dx ~ C I'(k — p)(—s)~*K+P+D 455 1 0, (7.4)
0

for some constants C > 0,k € Nand p > —k — 1, then f satisfies (1.1). However, in general one
cannot tell whether F; has an ultimately monotone derivative just by inspection of the Laplace
transform. And should such additional information on f be available the Tauberian result should
typically not be needed anyway.

For example, Grigelionis [22], Corollary 1, deduces that

o ~ (27‘[ I +ﬁ2))2‘” it {_Znﬂz(u — mi)
0 cT(B) T (B ) T(261) ¢

for GZ processes from information like (7.4) only, with the property that Fj has a monotone
derivative waived as “standard calculations”: We find this argument incomplete!

} asu — o0

7.2. CGMY processes

The CGMY Lévy process of Carr, Geman, Madan and Yor [15] has characteristic triple

(4.0

- (c,(—x)—l—YfeG"l(,oo,o)(x) O T e MY (1), m, 0) , (1.5)

where C_,Cy,G,M > 0,Y_,Y, <?2and m € R are parameters.

Theorem 7.4. For a CGMY process (6.1) holds. Further, we have H > 1 and

—Mu

Cih M e
exp{hMm—i—hAé(e x_1_Ml(_l,l)(x)x)du(x)}m(%)

+
M
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asu — oo for Yy > 0, while H = 1 and
Ceh—leBh
P{&(h ~ eyt e M 7.7
{E(h) > u} T u e (7.7)

as u — oo for Yy = 0, where y is Euler’s constant and

B =Mm+ /]R (eM"l(,oo’o)(x) —1 =M1y 1)(x) x) dv(x),

and H = 1 and
(CLhI'(1 — Yy )~ 1/ @1=Y)
M\2x(1 — Yy ) u(-Y+/2/(0=Y+)

P{&(h) > u} ~

(1+1/I'(1 — Yy)) u=T+/0=T5)
(CyhI(1 — Yy )~ 1/1=Y4)

X exp {—Mu + + Bh} (7.8)

asu — oo for Yy < 0.

Proof. For Y, > 0, (7.5) and Example 2.11 show that v([1, co) N -)/v([1, 00)) € S(M), so that
Corollary 6.3 gives £(h) € S(M) and (6.1) with H > 1 (as & is not a subordinator). Further, we
get (7.6) by insertion of (7.5) in the second part of Theorem 3.1.

For Y, = 0, (7.5) shows that (3.8) holds with p = —1, so that Theorem 3.6 gives (3.4).
Hence (6.1) holds with H = 1 by Corollary 6.2. To prove (7.7), write £ = & + & where &
and &, are independent Lévy processes with triplets (v((0, 00) N -), C(1 —e~M)/M, 0) and
(=00, 0)N ), m —C4(1 — e’M)/M, 0), respectively. Then &; is a gamma subordinator, see,
e.g., Schoutens [34], Section 5.3.3, and satisfies

Cih—1
P& (h) > u} ~ M Cohtg M gy 00, (7.9)
I'(Cih)
so that £ (h) € L(M). As E{ef2(M} < o0 for B > 0 [recall (3.6)] it follows from Pakes [29],
Lemma 2.1 (see also [30]), that [cf. (3.2)]

P{e(h) > u} ~ P{&1(h) > u}E{eM2M}  asu — 0. (7.10)

Inserting (7.9) and calculating the MGF in (7.10) using (3.1) and (7.5) we get (7.7).

For Y4 < 0, (7.5) shows that (3.8) holds with p = —1 — Y, > —1l,0a = M and C = Cy,
so that Corollary 3.5 gives (3.4). Hence (6.1) holds with H = 1 by Corollary 6.2, with the
asymptotic behaviour of P{£(h) > u} as u — oo in (6.1) given by (3.9), by Corollary 3.5. To
evaluate (3.9) we note that (3.7) and (7.5) give

o0

c

wi(h) = c+/ x Ve MYy — C (1 — YO M + 1)+ — ﬁ +o(1)
1 B

o0
Vioh) = C+/ 2T e MHNX Gy ~ CLT Q2 — Y (M 4+ 1)+
1

as A | —M. It follows that

1/(Ya—1)
o u—Cy/(1-Yy) 1/(Ys—1)—1
U (u) = M+< CiTU =1y +0(u ) as u — o0,
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so that
up ;" (/b)) ~ —Mu + (Coh (1 — Y)Y/ A1), Ve /=D

Vit /h) ~ C1T'(2 = Y)(Cyh T(1 — Yy )T+ =2/071), (0 =2/ =1
= (- Y+)h71(C+h ra-— Y+))*1/(1*Y+)M(Y+*2)/(Y+*1)

as u — 0o. Moreover, we have

In (E{eM&(’“}(pl (A)h) ~h /0 I Y M g + Bh
= C,h (=Y )(M + )" + Bh
as A | —M, so that
In (E{eMEz(h)}qb] (uf_(u/h))h) ~ Coh(Ch (1 = Yy))Y+/ A=Y Yo /amD) o gy,
~(CLh T =Y )OO pa -y~ lu+/¥=D 4 pj
as u — oo. Inserting the above findings into (3.9) we readily obtain (7.8). O

Braverman [11] and Braverman and Samorodnitsky [14] apply to CGMY for Y > O.

CGMY processes with Y_, Y, < 0 are compound Poisson and light tailed in the sense of
Braverman [12], Definition 1, by Example 2.11. Hence Braverman’s Theorem 1 applies if the
process has non-negative drift while his Theorem 3 applies if 0 < M < 1 and the drift is
negative, in both cases to yield (6.1) with H = 1.

Example 7.5. As the variance gamma processes of Madan and Seneta [27] are CGMY processes
with C_ = C4 and Y_ = Y, = 0 they satisfy (6.1) with H = 1 and the asymptotic behaviour
of P{£(h) > u} asu — oo in (6.1) given by (7.7).

Example 7.6. The Kou [26] jump-diffusion Lévy process has characteristic triple

(d';ix),m, s2> = ((1 — PIAE (o0 (x) + phe (g o) (X)., m, sz), (7.11)
where p € (0, 1), m e Rand A, A_, A4, s > 0are parameters.

Besides the Gaussian component s2,(7.11) is (7.5) with Y_ = Yy = —1. Hence the proof
of Theorem 7.4 carries over to show that (6.1) holds with H = 1 and the asymptotic behaviour
of P{(h) > u} as u — oo in (6.1) given by (3.9). The evaluation of (3.9) in the proof of
Theorem 7.4 can be modified in a straightforward manner to include the Gaussian component,
but we omit the details.

7.3. GH processes

The GH Lévy process introduced by Barndorff-Nielsen [3,4] has characteristic triple

<dv(x) 2)
,m, s
dx
_ (e /°° exp{—x|y/2y + 0%}
x| \Jo 72y (Jjc|(83/2)% + Y| (63/2)2
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where 8,¢,m € R, 8 > 0 and ¢ > |B] are parameters. Here J; denotes the Bessel function and
Y, the Bessel function of the second kind, respectively.

Theorem 7.7. For a GH process (6.1) holds where H = 1 if ¢ > O while H > 1if ¢ <O.

Proof. Using the facts from Watson [38], Equations 3.1.8, 3.51.1, 3.52.3 and 3.54.1-2, about the
asymptotic behaviour of J; (y) and Y (y) as y | 0 we readily obtain

/"O exp{—|x|v2y + 0%} dy N/"" expl—xe+y/o)}
0 72y (Jo(63/29)% 4 Y (84/2)?) 0 m2yYe(84/2y)?
2 8% [sin(m¢)I'(1 — )12y~ exp{—x(0 + y/0)}
r22¢

dy for¢ €[0,00)\ N

0
) 8%y exp{—x(0 + v/0)}
i T 0y dy for¢ e N\ {0}
/oo exp{—x(o + )’/Q)}dy for £ = 0
0 yIn(y/0)?

as x — 00, so that by insertion in (7.12)

2 [sin(w &) (1 + §)1* exp{—(0 — B)x}
j-[z(nggfxl_f

2¢ exp{—(0 — B)x}

dv(x) ) 82t r(—g)2x1¢

for ¢ € (—o0,0]\ N

for ¢ € (=N) \ {0}

(7.13)
dx exp(—(e — A)x} £=0
In(2)x -
ge—(Q—ﬂ)X
—— for¢ > 0.

For ¢ > 0, (7.13) shows that (3.8) holds with p = —1, so that Theorem 3.6 gives (3.4). Hence
Corollary 6.2 shows that (6.1) holds with H = 1. For ¢ < 0, (7.13) and Example 2.11 show that
v([1,00)N-)/v([1, 00)) € S(o — B), so that Corollary 6.3 gives (6.1) with H > 1 (as € is not a
subordinator). [

Braverman [11] and Braverman and Samorodnitsky [14] apply to GH for ¢ < 0.

Example 7.8. The normal inverse Gaussian process introduced by Barndorff-Nielsen [4,5] is a
GH processes with ¢ = —%. Thus it satisfies (6.1) with H > 1.

Example 7.9. The hyperbolic process introduced by Barndorff-Nielsen [3] is a GH process with
¢ = 1. Thus is satisfies (6.1) with H = 1.

Remark 7.10. When ¢ < 0 the asymptotic behaviour of P{£(h) > u} as u — oo in (6.1) for
GH processes is given by the second part of Theorem 3.1 together with integration of (7.13).
When ¢ > 0 the asymptotic behaviour of P{£(h) > u} can be calculated from (3.11) in the
fashion of Theorem 7.1 for & large enough. We have omitted these calculations to avoid additional
technicalities.
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8. Two priority issues

Theorem 3.3 is due to Braverman [13], Theorem 1.

Braverman showed us his result during Fall 2004, so we were aware of his finding when
submitting our paper (although, frankly, we had forgotten about it for the final version of our
article, so we had to be reminded about it).

Braverman [13], Theorem 2, states that the conclusion of Corollary 6.2 holds under the
hypothesis of Theorem 3.3. Thus our Corollary 6.2 is more general than Braverman [13],
Theorem 2. However, from a practical point of view, one may argue the importance of the added
generality.

Our version of Corollary 6.2 is implicit in Chapter 5 of the thesis of Bengtsson [8] (now named
Sundén) that already appeared during Fall 2004, which is also acknowledged by Braverman [13],
Remark 1.

It should be noted that there is a more or less complete difference between the approach and
methods of proof of Theorem 3.3 and Corollary 6.2 and those of the corresponding results of
Braveman.
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Appendix. Technical details of Section 2

Here we prove Proposition 2.6 and Corollary 2.9. We remark that these results are not very
far from some standard results on regular variation that can be found in e.g., Bingham, Goldie
and Teugels [10], as is indeed indicated by their proofs: The results and proofs are just supplied
as a service to the reader not very expert in regular variation.

A.l. Proof of Proposition 2.6

We have F € L(«) if and only if 1 — F(In(-)) € R(—«) and F € OL if and only if
1—F(In(-)) € OR, see, e.g., Shimura and Watanabe [37], p. 451. By the representation theorems
for R(—a) and OR (see e.g., Bingham, Goldie and Teugels [10], Theorems 1.3.1 and 2.2.7) a
function 1 — F(In(-)) belongs to R(—«) [OR] if and only if

u &(x)

1 — F(In(u)) = ¢(u) exp {—/ dx} for u € R large enough, (A.1)
0

for some measurable functions a and ¢ such that limy_, o a(x) = « and lim,_, o, ¢(x) > 0 exists
[limsup,_, o, [@(x)| < oo and 0 < liminfy_ oo ¢(x) < limsup,_, , ¢(x) < oo]. Since F is
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absolutely continuous with lim,,_, _ F(#) = 0 and lim,_, » F(#) = 1 we can rewrite (A.1) as

fe“ a(x) + b(x)
exp {— —dx
0 X

1 — F(u)

exp {— /u (&(ex) + 5(ex)) dx} foru € R,

—00

where a(x) = a(e’) and b(x) = l;(ex) satisfies (2.4) and (2.5), respectively, depending on
whether F' € L(«) or F € OL. Finally, as F is non-decreasing we havea +b > 0. O

A.2. Proof of Corollary 2.9

Integrating (1.1) we readily obtain

as u — 00. (A2)

1= Fu) :/mf(x)dXN gu’oe_‘)‘“ AC)
u o o

In particular we see that F' € L(«), so that (2.3) holds with a 4+ b > 0 as in (2.4), where
u

. c
lim (a(x) +b(x) — o 1jg.00) () + g 1[1,00)(x)) dx =1In <;>

u—>00 J_ o

by (A.2). Writing ¢ = a + b, we thus have (2.6) with ¢ > 0 as well as the second part of (2.7).
Differentiating both sides of (2.6) and using (A.2) we get

u

D)

o

as u — oo, (A.3)
—00

J ) = c(u)exp {—/ C(X)dX} =c(u) (I = Fu) ~ cu)

which gives the first part of (2.7).

Conversely, if (2.6) and (2.7) hold, then it is immediate that (A.2) holds so that F € L(«a),
while (1.1) follows from (A.3). O
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Abstract

We study tail probabilities of suprema of Lévy processes with superexponential marginal
distributions over compact intervals. Several of the processes for which the asymptotics
are studied here for the first time have recently become important in financial modeling.

Hence our results may be of importance in the assessment of financial risk.

Short title: Superexponential Lévy Processes



1 Introduction

In this work, which may be considered as a second part of Albin and Sundén [3], we
study extremes of superexponential Lévy processes.

By a Lévy process we mean a stochastically continuous process & = {{(t) }s>0 starting
at £(0) = 0, that has stationary and independent increments. Writing x(z) = z/(1V|z|)
for x € R, the finite dimensional distributions of a Lévy process are fully determined by

its so called characteristic triple (v, m, s?) through the relation

16252

E{ewf(t)} = exp{z'tem + t/ ("% —1—ibk(z)) dv(z) — } for 8 € R and ¢ > 0.
R

Here m € R and s > 0 are constants while v is the so called Lévy measure on R that
satisfies v({0}) = 0 and [ (1 A |z|*)dv(z) < .

We call a Lévy process ¢ superexponential if E{eaﬁ(l)} < oo for a > 0. It follows
from Sato [23], Theorem 25.17, that ¢ is superexponential if and only if it has a well-

defined Laplace transform
$:(A) = B{e MW} = ¢ (A\)! <00 for A< 0 and ¢ > 0. (1.1)

Under technical conditions on the superexponential Lévy process &, we establish the
existence of a constant H > 1 such that

) 1

For the verification of these technical conditions, we provide a series of lemmas, propo-
sitions and theorems, which in turn are established by means of some new Tauberian
techniques that we develop for this purpose.
We also find the asymptotic behaviour of P{{(h) > u} for large u in (1.2), in closed
form, so that the asymptotic behaviour of P{supycjo 5 £(t) > u} is fully understood.
We now state our main result on extremes of superexponential Lévy processes. See
Albin and Sundén [3] on bibliographic information for results on this type. In addition,

two relevant references not mentioned there are Albin [1] and Braverman [9, 11].

Theorem 1.1. Let & be a separable superexponential Lévy process with infinite
upper end-point [see (2.1) below]. Assume that there ezist functions w > 0 and

q > 0, with w continuous, such that



—((a) as u— o0 for a >0 (1.3)

and

L(t’ 3;) = lim P{f(h —q(u)t) > u+ :Ew(u)}

Jim PLe(h) > u} ezxists for t >0 and z € R (1.4)

with L(0,z) = e~*. Further, assume that ((a) is continuously distributed for
a > 0, or that L(t,-) is a continuous function for t > 0. If

1
lim limsupiP{ sup E(t) > u} =0, 1.5
T—oo usoo P{E(h) >u}  Ligon—rq(u)] (% (L5)

then the limit (1.2) ezists with value H € [1,00).

The constant H in (1.2) is a rather complicated functional of the quantities ¢ and
L, see the proof of Theorem 1.1 in Section 4 for more information. Clearly, it seems,
in general H cannot be calculated in closed form. However, as we will see below, in
some cases we encounter H really can be calculated. Also, in other cases, qualitative
information such as whether H > 1 or not can be established.

The structure of the paper is as follows: In Section 2 we give an array of results that
are helpful to verify two of the key conditions (1.3) and (1.4) of Theorem 1.1. In the same
fashion, Section 3 is devoted to develop a tool to verify the condition (1.5). In Section
4 we give the proof of Theorem 1.1, while in the concluding Section 5 we consider an
array of examples of application of our results to important specific superexponential
Lévy processes. Except for the first example (Brownian motion), the conclusions of
these examples are new.

Section 2 is very technical and makes up for more than half the bulk of the paper
on its own. We belive that for most readers it is best to skip the details of Section 2 in
a first reading and instead move on to study Sections 3 and 4. Then, when need arises
in the examples of Section 5 to verify the conditions of Theorem 1.1, it might be more

appropriate to go back to study selected details of Section 2.

2 Tauberian results for superexponential processes

The condition (1.4) of Theorem 1.1 is closely related to the notion of Type I domain of

attraction of extremes:



Definition 2.1. A random variable X belongs to the Type I domain of attraction

of extremes, with auxiliary function w(u) > 0, if

. P{X >u+zw(u)} _
1 =7 R.
Jim PIX > u] e for z €

The auxiliary function in Definition 2.1 satisfies lim, o w(u)/u = 0 and can be
chosen to be continuous (see e.g, Bingham, Goldie and Teugels [8], Lemma 3.10.1
and Corollary 3.10.9). Further, w is another auxiliary for X function if and only if
limy, 00 w(u) /w(u) = 1.

Feigin and Yashchin [15], Theorems 2 and 3, give a scheme to deduce the asymp-
totics of the right tail of a probability distribution function from the the left tail of its
Laplace transform. The usefulness of this to establish Type I attraction was noted in
a particular case by Davis and Resnick, [12], Section 3, see also Rootzén [20, 21]. Bal-
kema, Kliippelberg and Resnick [4, 5, 6] and Balkema, Kliippelberg and Stadtmiiller [7]
characterized convergence of the Esscher transforms (exponential families), which are
the key ingredient of proofs in this area. But they impose conditions on densities that
we are not comfortable with. And it is not that convergence which is our goal, but
to find the actual tail behaviour and to show Type I attraction. In fact, we have to
deal with random variables, the distribution of which depend on how far out we are in
the tail (an “external parameter”). This makes the existing literature non-applicable
anyway.

Our main proposed route to verify the condition (1.4) as well as to find the asymp-
totic behaviour of P{¢(h) > u} for large u in Theorem 1.1 will be the following Theorem
2.2. To prepare for that result, recall that the right end-point sup{z € R : P{{(¢) >

z} > 0} of a Lévy process £ is infinite for some ¢ > 0 if and only if
sup {z € R: P{{(t)>z} >0} =oco for each ¢ >0 (2.1)

(see e.g., Sato [23], Theorem 24.10). Moreover, for a Lévy process ¢ with Laplace

transform (1.1), we introduce the following notation:

' p(A) = —zigi; = /R (ze™ — k(z)) dv(z) + m — Xs>  for A <0,
{ oV = —p'(\) = /xze)‘wdy(m) + 52 for A <0, (2.2)
R
| 7 () = inf{A € R:pu(A) <u} for u > 0 large enough.



The so called Esscher transform of ; is defined to be a random variable X; , having

probability distribution
e’\“” dF&(t) (.T)

oA

where Fy(;) denotes the cummulative probability distribution function of &;. It is easy

dFx, ,(z) = (2.3)

to see that s(\) and o(\)? are the mean and variance of X; 5, respectively.

The following Theorem 2.2 will be crucial for us to verify the condition (1.4) of
Theorem 1.1. It is a development of a scheme of Feigin and Yashchin [15], and Davis
and Resnick [12], with additional input from Albin [2], to establish Type I attraction for
infinitely divisible probability distributions. The key to verify the rather involved con-
ditions of Theorem 2.2 in turn is Proposition 2.8 below, which gives sufficient conditions

in terms of the characteristic triple for the conditions of Theorem 2.2 to hold.

Theorem 2.2. Let £ be a superexponential Lévy process with characteristic triple

(v, m, s2) and infinite upper end-point (2.1). With the notation (2.2), assume that

lim Ao(\)? = oo, (2.4)
A——00

lim z—Q e Mdy(z) =0 for >0 (2.5)

A==00 Jjz|>e0(n) O(A)? '

and
Ox 0252
lim limsu / ex {—t[/ (l—cos — )e_)‘mdua: + ]}d&z()
K—o0 )\—)—CXP 18]>K p R (0’(}\)) ( ) 20’()\)2

(2.6)

for t in a neighborhood of h > 0. Further assume that the following limit exists

: Au(A) _
A ) (o)) - (27)

With the notation
1 1

e o7 I A T et i 077 M
we have lim,_, q(u) /w(u) =0,
Pl g > utmo) o, o
uli)ngo PLEh) > ul =e f €R and t >0, (2.9)
as well as

N euuk(u/h)qﬁl(uk(u/h))h as u 0
P{¢(h) > u) \/%_ha(lu(_(u/h))(_'u’(—(u/h)) — OQ. (2.10)




Proof. Our first aim is to establish asymptotic normality of a normalized Esscher trans-
form (Z;» — pt,n)/o(A) to be defined below. To that end, note that by (2.1), we have
0
/ (—z)dv(z) =00 or v((0,00)) >0 or s>0 (2.11)
—1
(see e.g. Sato [23], Theorem 24.7). For the function y it is therefore easy to see that

0 o0
_ Ay k(z)) dv(z Ay k() dv(z —\)s” +m
u()\)—/ (e () dv( )+/O (e (2)) dvlz) + (=N)s" + (2.12)

— 00 as A — —o0o

[note that all terms on the right of the equality in (2.12) are non-negative]. Further,

observe that

_ xa ﬁ)l
QM) = s = (/R (€ — 1+ A(0)) dule) + mA+ 2
satisfies
Q(A) >0 for A sufficiently small, with /\Er_n Q(A) =0: (2.13)

This follows readily when v/((0,00)) > 0 or s2 = 0 [recall (2.11)] using that
0
/ (e — 1+ Az)dv(z) = o(A\?) as A — —c0. (2.14)
-1

This in turn is so because

/0 (e M —1+Az)dv(z) = [w/w deV(y)]Ol

-1 T -1

—A —z 2¢~T_9 /A
_/\2/ ze —I—:H;’ e (/ y2dz/(y)>d;c
0 z ~1 (2.15)

0 1 00 —T 2¢ T_9
N )\2/ y2d1/(y) (_ _/ xre +.T‘|; e d.Z‘)
-1 2 0 A

=0 as A\ — —©

(as the right-most inner integral of the calculation equals 1/2). Further, if instead

v((0,00)) = s2 = 0, then (2.13) holds since (2.11) ensures that

A——00 A——o0 2 — oo

0 2/A
lim ﬁ /_oo (e — 14+ X&(z))dr(z) > lim 1/ —k(z)dv(z) = 0.

As a final preparation we observe that

AEIPOO/R(% - sin(%)) e Mdy(z) =0 for # R (2.16)

This is so because (2.5) gives



2|6| z2

coV)? e du(z)

0x ) O0x
00" sm(m)

e M dy(z) < lim sup/
AM—a J|z|>ea(N)

lim sup /
M—a J|z|>ea(N)
=0 for ¢ >0,

while, by Taylor expansion, given any ¢ > 0, and for ¢ = ¢(6) > 0 sufficiently small,

Oz Oz 60222
lim sup/ —— — sin(—— ‘e_)‘z dv(z) < limsup/ — e Mdy(z
Moo Jgj<co)|T(A) (0()\)) (@) Moa Jizj<eon) T(N)? (@)

< 662
Let Z; ) be the Esscher transform of £(h—Q(A)t) given by

e M dFe gy (#)
Ph-qt(A)
for A < 0 sufficiently small [recall (2.3)]. Notice that, writing

dFz, ,(z) = for z € R and ¢ >0,
(dut,A(:v),mt,A,s?’)\) = (h—Q(N)?) (e)‘Clc dv(x), m—/ m(:v)(l—ef)‘w)du(x) — s, 32>,
R

the random variable Z; ) has characteristic function

| ' 6%s?
B{e?%) = exp{igmt,,\ - / (9% —1 — ifk(z)) dvy p\(z) — 2t,)\}
R

for # € R and ¢t > 0, for A < 0 sufficiently small. Hence the random variable Z; ) is

infinitely divisible with characteristic triple (v x,my», si »)- Observing that

E{Zi2} = (h = QNt)u(X) = pu

it follows that

. . 6?52
E{e?Zn} = exp{wut,)\ + / (&% — 1 —i0x)dv; p\(2) — ;’A}
R

(see e.g., Sato [23], p. 39). Hence the characteristic function g; y of (Z;x — ps,2)/0(A) is
given by

gin(6) = (exp{— /IR <1 —cos(ae(i)>> N dy (1)

Here (2.5) and (2.16) together with (2.13) and a Taylor expansion readily give limy_, .,

aA(0) = e "0°/2 for f € R and t > 0. Since 1— cos(z) > z2/4 for |z| < 1 we further have

[ laea@)1a0 = [ exp{—(h—Q(A)t) / (1—608(%)>e‘”du(x)}d0
g/|9|>Kexp{—(h—Q(,\)t)/R(1—cos(o_e(i)»eMdu(x)}da

—(h— i z2e M du(z
+ /9|<Kexp{ (h-QD) 1137 /WJ(WK v )}de.
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Here the first term on the right-hand side can be made arbitrarily small as A — —o0
and K — oo (on that order) using (2.6). For the second term on the right-hand side,
(2.5) and (2.13) show that there exists a constant § = §(K) € (0,1) such that

62
/WSKexp{—(h—Q()\)t) o 0) /|$|SU(WK zle™ A" du(x)}d@
S/ exp{—h(l—é) 0—2}d0 for A small enough..
o1<K 4
The integrability of |g; x| established in the previous paragraph together with the
Riemann-Lebesgue lemma show that (Z; — ptx)/o(M) has a well-defined continuous
probability density function f Zyn—tie2)/o(A) for A small enough. Furthermore, using

(2.6) again, we readily see that

1
e~/ (2h)
2mh

lim sup sup
Al—o0 z€ER

< lim sup lim sup (/ ‘gt,)\(H) — e_h92/2‘d9 —I—/
|o]<K

K—oo Al—oo [0|>K

f(Zyn=pe ) o) (®) =

(|9t,A(9)| + e—ha2/2) d9) (2.17)

=0.
Observing that

fiz @) = e~ MoWNatuen) £ ooy (e + o (A)z) o ()
e $h-q(A)

for x € R and ¢ > 0. Hence (2.12) together with (2.4) and (2.17) show that

f(Zt,A_Nt,A)/O'(/\) (x/(/\a(/\)))e)‘“t’*fﬁh—Q(A)t(A)

feth—oon (Ben + /X)) = €” o)
LM P (N)h=QN)E (2.18)
V2rho(X) .
hAu(X) h
z—t© ¢1 ()\)
—_— A — —00.
V2rho()) » >

We are now prepared to establish (2.9): By the the asymptotic behaviour (2.18) of
feth—@oe) (Be.x + /X)) together with application of (2.4) and (2.17), we get

“AP{E(h — QA\)E) > pupx — y/A}

lim
A——00 Feth—on) (Ben — T/ A)
o0 _ —z/A
— o lim Fech—ooon (en — 2/ )dz
A=r—00 J, f&(h—Q(A)t)(Nt,A) (2.19)
e 1 © [ Zir—nir) o) (—2/ (A (X))
=¢% lim e dz
A=o00 Jy fzep—nen) 1o (0)

xz

=e" Y for r,y e R



Observing that
—Aeth-oon (e + (Lt—y)/A)
’ >0, 2.20
PLE— QD > pp +11/3} U7 (220
is a probability density function, (2.19) and the theorem of Scheffé [24] show that
L PLEB—QY > o +(Le—2)/A)
As—co  P{E(h—QN)t) > pygr+Lt/A}
— lm o feth—oon (ex + (Lt—y)/A)
A=y —QNp(N) P{E(R—Q(A)T) > pur+Lt/A}

= / e Ydy=e* for x>0.

dy (2.21)

Using this in turn, together with (2.18) and (2.19), we readily obtain
I P{&(h—Q(N)t) > wx + (Lt—x)/A} p—

for z,t > 0.
Asoo PLE(R) > pr + Lt/A} nete
As (2.7) shows that, given any € > 0,
Lt +¢ Lt —

pex + \ < hu(X) < pey + 3 £ for A small enough,

we may now conclude that

P{E(h— Q1) > hu()) — zA}

lim sup

A——00 P{{(h) > hu(N)}
< limsup P{(h—Q(N)t) > puyx + (Lt+ |le—x)/A}
S P{&(h) > e + (Lt—e)/A}
— lim sup P{{(h—QN)t) > + (Ltte—z)/A}  P{{(h) > pe + Lt/A}
A—r—o0 P{&(h) > pa + Lt/A} P{&(h) > pea + (Lt—e)/ A}
eZs—z—t

—e 7t as el0.

Treating the corresponing lim inf in an entirely similar fashion, it follows that

i PLEG = Q) > b —aX}
=T PLEm) > (V)

As p is continuous and eventually strictly decreasing [by (2.4)], with p(A) — oo if and

for z,t > 0. (2.22)

only if A - —o0, we may substitute A = 4 (u) in (2.22), to obtain

lim P{¢(h — q(hu)t) > hu + zw(hu)}
u=00 P{{(h) > hu}

=e >t for z,t>0. (2.23)

From (2.23) it is a simple matter to establish (2.9) in full generality with z € R
rather for z > 0 only. Further, the asymptotics (2.10) follow from inspection of (2.18)
and (2.19). Finally, by inspection of (2.8), the limit lim, o g(u)/w(u) = 0 holds if
limy, o A/ In(é1(A)) = 0. However, this latter limit holds by the arguments we use to
establish (2.13). This finishes the proof of all claims of the theorem. O



Remark 2.3. For h € (0, h) it is possible, with extra work, to prove a version
of Theorem 2.2 where (2.9) holds uniformly (in an obvious sense) for ¢ € [0, (h —

h)/q(u)]. As we do not need this extension, we do not elaborate on it.

To check all the technical conditions of Theorem 2.2 we provide Proposition 2.8

below, the proof of which involves the following concepts of regular variation at 0:

Definition 2.4. A monotone function f > 0 is regularly varying as = T 0 with

inder o € R, denoted f € Ry- (), if

1(yz) =y* for y>0.

lim
210 f(z)
Definition 2.5. A monotone function f > 0 is O-regularly varying as z 1 0, with
Matuszewska indices —o00 < a < 8 < 00, denoted f € ORgy- (o, B), if for some

constant o < 0 and for each € > 0, there exists a constant C' > 1, such that

yﬂ;s < ff(éf)) < Cy*™*  for x € [19,0) and y € (0,1],

where o« and B are the largest and smallest numbers, respectively, such that these

two inequalities hold.

By Potter’s theorem (see e.g. Bingham, Goldie and Teugels [8], Theorem 1.5.6), we
have Ry- (@) C ORy-(a, ) for @ € R

The next lemma which is used in the proof of Proposition 2.8 is a version at 0 of the
Stieltjes version of Karamata’s theorem for one-sided indices at oo (see e.g., Bingham,

Goldie and Teugels [8], Section 2.6.2):

Lemma 2.6. For U € ORq-(«, 8) nondecreasing with —2 < a < 8 < 0, we have

1 0 1 0
liminf ——— 2d <1 _ 2d : 2.24
0 <limin e /z y“dU(y) < m D ) /z y dU(y) <oco.  (2.24)

Proof. We have limy z°U(z) = 0 because

U C 24+a—¢e
lim sup 2> ﬂ < lim sup b

=0 for € > 0 small enough.
210 U(zo) 0 zhte

From this in turn we get the upper bound noticing that

v dUy) _, [° (=y)U(y) _ o [T 2U(z2) L atle
/wm—2/$ Wdy_l_Z/o U(2) d2—1§2/0 Czot1 ¢dz — 1
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where the right-hand side is finite for € > 0 small enough. Further, as we have
1 1 2—
U C(z — a+2—¢
lim SUPZ/ ya) dy < lim supz/ Cy* *dy = limsup Clz—2"77)
240 z U("E) 240 2 210 a+1—c¢
for z € [z9,0) and € > 0 small enough, Fatou’s Lemma gives

0,2 1 1 1
Lo y*dU (y) L 2U (zx) / / . . Uyx)
1 f = =21 f —-1>2 1 f — 1.
H?T%)n /:c 22U (z) H;IT%)H o Ulz) dz ~—Jo U, 1r£1T%)n U(z) dy |dz
(2.25)

=0

Since U(yz)/U(z) > 1 is a nondecreasing function of y € (0, 1), the liminf on the left
in (2.24) can be 0 only if liminf 4 U(yz)/U(z) = 1 for y € (0,1), as otherwise the
right-hand side of (2.25) is strictly greater than 2f01(fz1 dy)dz — 1 = 0. And so the

lim inf on the left in (2.24) must be strictly greater than 0, because
B+e
C

-

lim inf (yz) L
10 U(.T)

> >1 for €,y > 0 small enough. O

Our second lemma, which is also used in the proof of Proposition 2.8, is a version
at 0 of the de Haan-Stadtmiiller theorem (see e.g., Bingham, Goldie and Teugels [8],
Theorem 2.10.2):

Lemma 2.7. For U € ORy-(a, ) nonincreasing with 0 < a < < oo and

f_loo e M d(-U)(z) < oo for A small enough, we have

L 0 e Md(—~U)(x) . 0 e M d(—U)(x)
o<yt [ g < [ o<

Proof. As U(—z/A)/U(1/)) <1 with

UU((_;;{\/)\) <C(-z)* <1 for z €[—1,0) and A small enough,
we have

0 e~ A2q(—U)(x) 0 e=2q(-U)(z) 1 O U(—z/)
. . > J . _ N /v — Z_ N -\ "I/
I;E“&f/_oo U = liﬂuéﬁ/m I hfiSlif/_le vy “

with the right-hand side is strictly positive [cf. the concluding argument for (2.24) in the
proof of Lemma 2.6]. Turning upwards the fact that limy_, ., e}2/U(1/)) = 0 gives

0 e_)‘wd(—U)(:v) _e)‘U(—l)_ 0 e U(:v) e’\/2 1 xef2
/oo o/ U@/ /1e va/n “ T oamny /ooe d(=U)(=)

e)‘U(—l) M2 1 Crp/o
v o [ e racueE

—0 as A — —oo. O

10



As have been mentioned already, the following proposition is a key result to verify

the conditions of Theorem 2.2:

Proposition 2.8. For a superezponential Lévy process & with characteristic triple (v,

m, %) and infinite upper end-point (2.1), we have the following implications:

1.

2.

10.

If s> > 0, then (2.4) and (2.6) hold.
If 2 > 0 and v((0,00)) = 0, then (2.4)-(2.7) hold.

If v((0,00)) > 0, then (2.4) and (2.7) hold.

. Equations (2.4), (2.5) and (2.7) hold if v((0,00)) > 0 and there exists a non-

decreasing function g such that

9@ _ *
:L'li)nolo In(z) oo and /1 exp{g(z)z}dv(z) < oo. (2.26)

Equations (2.4)-(2.7) hold if
zo = sup {z : v((z,00)) > 0} € (0,00)

and v is absolutely continuous with a version of dv(z)/dz that is bounded, strictly
positive for x € (x1,x2) for some 0 < 11 < z9 < zy and satisfies

dv(z)

o Cz™'"P as 0T for some constants C >0 and p € (0,2). (2.27)
x

Equations (2.4)-(2.7) hold if v is absolutely continuous with sup {z : v((z,00)) >
0} = oo, if v satisfies (2.26) and (2.27), and if v has a version of dv(z)/dz that

is ultimately decreasing.

Equation (2.4) holds if

v((—00,-)) € ORy- (e, B) for some constants —2 < a < 3 <0. (2.28)

If v((0,00)) = 0 and (2.4) holds, then (2.5) holds.
If v((0,00)) = 0 and (2.28) holds, then (2.4)-(2.6) hold.
If € is selfdecomposable, then (2.4) and (2.5) hold.

11



11. Ifv((0,00)) = 0 and dv(z) = k(z)dz/|z|? for z < 0 where k > 0 is non-decreasing,
then (2.4)-(2.6) hold.

12. Equations (2.4)-(2.7) hold if v((0,00)) =0 and

v((—00,-)) € Ro-(a) for some constant —2 < o < —1. (2.29)

Proof. Statement 1 of the proposition is quite immediate.

To prove Statement 2, notice that

z? 1 [0
lim sup/ —— e Mdy(z) < limsup — 2™ dy(z) =0 2.30
As—oo J]a>ea(n) T(A)? (@) A—s—o0 52 J oo (@) (2.30)
when s2 > 0 and v((0,00)) = 0, so that (2.5) holds. In view of Statement 1 it thus
remains to prove (2.7). To that end it is sufficient to show that the limit
lim In(¢1(N) lim Jg (€7 =14 Xk(z)) dv(z) +mA + X2s%/2

- wlL  (2.31
A=—oo  Ap(A) Ao—oo [ (Aze A —\k(z)) dv(z) — mA — A2s2 equiv (2.31)

exists and is not equal to —1. As it is obvious that
-1 -1
/ (e —1+4Xk(z))dv(z) = O(\) and / (Aze ™% — \k(z)) dv(z) = O()N)
—o0 —00
as A — —oo, (2.31) with L = —2 will in turn follow provided that we prove that
0 0
/ (e_’\x — 1+ Az)dv(z) = 0o()\?) and / (A:ce_’\” — \z)dv(z) = 0o(N\?)
—1 -1
as A = —oo. The first of these asymptotic relations is established in (2.15). The second
asymptotic relation follows in a simlar fashion noticing that, by integration by parts,

/0 (Aze ™ — Az)dv(z) = —\? /_)\ ze *+ jiw —1 (/z/)‘ y%iu(y))dz

-1 0 €z -1

0 o] —x T _ 1
~ ,\2/ y2dv(y) (—1 —/ e +§ d:l:),
1 0 xz

where the second inner integral on the righ-hand side equals —1, so that the whole

expression under consideration is o(A\2?) as A — —oo, as required.
To prove Statement 3, notice that (2.14) readily gives (2.4). Further, by inspection
of the proof of Statement 2, (2.7) holds with L =1 if
o0 o0
lim (e™ — 1+ Ax(z)) dl/(x)/(/o (As(z) — Aze?) du(m)) =0

A——00 0

and

12



lim i/oo( A1+ \k(z ))dv(z) = lim i/Oo ()\ﬁ(w)—/\:vef)‘w) dv(z) = oc.

A——00 A2 A——oc0 A?

However, both these requirements are quite obvious consequences of the fact that

/ (M&(z) — Aze™?) dv(z) > / (e™* — 1+ X&(z)) dv(z) > 0.
0 0

To prove Statement 4, notice that by (2.26), the function G(z) = g(1/z) is non-

decreasing with

lim Glx) =oo and /00 exp {G(2®)z} dv(z) < occ. (2.32)

Z00 ln(m)

As we must have v((z,00)) > 0 for some z > 0, (2.32) gives that

2 2 00
lim infM > hm inf — G 62/ r2e M dy(z)
A——00 - A——00 —A z
> liminf — G<€ z?v((z, oo))e)@)
A=—00 —A

=00 for e >0.

From this in turn we readily obtain, making use of (2.32) again [see also (2.30)],

A——00

1
2 —/\:c 2,z —2Az
dv(z) + (supz“e (hm sup / e dv(z )
Ao oo O(A /_ (@) (w<% ) Ao oo AZa(X)? |z|>ea () (@)

< lim sup
<0+ sup:v e’ ( exp {G(.’L‘2).’E}dl/(il,‘)) (lim sup sup exp{—2\z — G(mQ)x}>
<0 A—=—00 z>e0(N)

2
x
limsup/ e dy(x)
|ac|>5t7 A) 0()‘)2

=0 for e >0.

Hence (2.5) holds. The statement now follows from Statement 3.
To prove Statement 5, notice that Statement 4 shows that (2.4), (2.5) and (2.7)

hold. Using the elementary inequality 1 — cos(z) > x2/4 for |z| < 1 we further get

O0x
lim su / ex {—t/ (1—(:03 )e_)‘mdu z }d9
R K<|0]<a(A)/zo P R (0(/\)> (@)
ZQ t02$2
< limsup/ exp{—/ 72e_’\md1/(:v)}d9
A—o0 J|o]> K o 4o(}) (2.33)

2
:/ exp{—ﬁ}dﬁ
0]>K 4

Further, using (2.27) to find a § € (0,1 A zp) such that dv(z)/dx > $Cz~'=P for

z € (0,9), we get in a similar fashion

13



Oz
limsup/ exp{—t/ (1—cos )e_mdu z }dH
A——00 Ja(N)/zo<|0|<a(A\)vV—=A R (0()\)> (@)

50(2)//6] 210
< limsup/ exp{—/ Cteiwze_’\zdw}dﬁ
A=—00 Jo(X)/zo<|0]<e(N)V-X o/lo)/2 8(A) (2.34)

: Ct(1 =200 5 /=52
< lim sup / exp{— e 12340
Aor—oo J 18]>a(N) /2o 8(2 — p)dr—2a(N)P

=0,

where we made use of the simple fact that
lim sup o(X)%e*® = 0 (2.35)
A——00

to get the last equality. Finally, we have, based in part on a slight modification of (2.34),

and noticing the quick oscillations of the cosinus function,

0z
limsup/ exp{—t/ (1—cos )e)‘xdu z }dﬁ
A——00 J]0[>e (VA R (G(A)) (@)

) Ct(1-2°72)|9)r ¢ “( Oz ) Y }
< limsu / ex {— ——/ 1—cos| ——= )] e “dv(x) ;db
oo Joseopya T U 16R—p)sr 2a(N)r 2, (0@)) @)

_ 9p—2)|g|P _
< limsup/ exp{_ Ct(1—2 _2)|9| P bt G dv(z) e_’\ml}dﬁ
Ar—o0 JIB|>0(AV=X 16(2 — p)or—2a(A)? 4 ze(ma) dr

=0,

(2.36)
using (2.35) at the end again. Putting (2.33), (2.34) and (2.36) together we arrive at
(2.6).

To prove Statement 6, notice that Statement 4 shows that (2.4), (2.5) and (2.7)
hold. As

21n(y) — Xy — yg(y) — (2In(z) — Az — zg(z)) < (y—2)2 - A —g(z)) for 1<z <y

by the first part of (2.26), we can further find a function zg(A\) with limy_, o 2o(A) = 00
and

lim exp{Ae}zo(A) =0 for € >0, (2.37)
A——00

such that 2In(z) — Az — zg(z) is non-increasing for z > z¢(A), giving, by the second

part of (2.26),

[ ate i) < oot -sonen) [ o) 0 @
zo(A) 1
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as A = —oo. Now by (2.38), the argument for (2.33) in the proof of Statement 5 carries

over to show that

0x
lim limsup/ exp{—t/ (1 — cos )e_)‘zdu T }dH =0. (2.39
K=00 x5 00 JE<|0/<a(N)/z0(N) R (U()\)) (@) ( )

Notice that (2.38) also gives

:Co()\) o0
a(\)? ~ /0 r2e M du(x) < xo()\)Qe_)“CO()‘)/O (1A z%)dv(z) as A — —oo,

from which we readily conclude that (2.37) implies

exp{—AXe}

JJim m =00 for € >0. (2.40)

By (2.40) in turn, there exists a function f(\) > 0 with limy_,_ f(A) = 0 such that

exp{- AN} _ (2.41)

Armoe Zo(N) P In(o (V)
Selecting § € (0,1) such that dv(z)/dz > 3Cz~'=7 for z € (0,6), the analogue of (2.34)

in the proof of Statement 5 now becomes

limsup/ exp{—t/ (1—cos(9—x>) e_)‘mdu(a:)}dﬁ
A——00 Ja(N)/zo(N)< 8] <6\ /(2 (V) R a(A)

5o (N)/16) 2 1-p
< limsup/ exp{—/ Cte%e”da:}dﬁ
Ao—co Ja () [mo(\)<|6] <8(N)/(2F(N) o/18)/2 80 ()

— 9p=2)|9|P
Slimsup/ exps — Cy(1 = 2"7)|0) e)‘f(’\)}dﬂ
10]>a(A)/z0(A)

A——00 8(2 — p)or—2a(N)?

— limsup 2 (8( Ct(1 — 2°-2) . e_/\f(/\)>1/pF (1’ ( o(N) )pS( Ct(1 — 2°-2) . e_’\f(’\)>

A——o0 P 2 — P)éP—QO'()\ P g;O(A) 92 _ p)(sp—Zo.()\
_ 2/0(A\)\1-r( Ct1-2"2) _ -1
= li\riilolf;(ﬂio()\)) (8(2 — P)dp_Qo'()\)pe /\f()\))
aA)\» Ctl-2"%2)
X exp{_<x0()\)) 8(2 — p)ér—2a(N)P e /\f(A)}
=0,

(2.42)

by well-known asymptotics for the incomplete Gamma function I'(1/p, -), and provided

that
cWeo(NPt [ texp{-Af(N)
A>mo0 exp{-Af (V) © p{ zo(N)?

the latter fact which in turn holds when (2.41) does. Finally, the analogue of (2.36)

}:O for t >0,

becomes
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Ox
limsup/ exp{—t/ (1—(:05 )e_)‘mdu x }d@
Ao 181560\ /(2F(N)) R (0()\)) (=)

< limsup/
A=—00 J10]>d0(A)/(2f(N))

_9p— z0o(A) x
o i) s

1-9r—2)|9|P xo(A)
< limsup/ exp{— Ct( _2)|0| - E/ e Azl du(x)}d&
A——00 J|0]>60(N)/(2F(N)) 16(2—p)r—2ac(X)? 4 )

, Ct1—-20-2)[0]7  tel o(N)?
< lim sup / exp{— — do
A——00 J181>80(A)/(2f(\) 16(2—p)or=2a(A)? 4 zo(N)?

L 2/ Ct1—202) \YP /1 /60(M\)\r Ct(l-2"2)
- lfgfgg 5(16(2 - p)ép2a(A)P> F(E’ (2 f(A)) 16(2 — p)5ﬂ20()\)P>

<on - 2o )

L 2 /0c(AM\1-p [ Ct(1—2r"2) \ !
= hmees (2f(>\)) (16<2 - p)aﬂau)p)

So(A)\e  Ct(l —202) te=l o())?
XeXp{_(2f(/\)> 16(2 — p)or—2c(A)p 4 :1:0(/\)2}

(2.43)
by the already cited properties of the incomplete Gamma function, and provided that

a(\)?
.'IJ()()\)2

the latter fact which in turn holds provided that

lim o(X\)f(A)P~! exp{ —t

A——00

}ZO for t > 0,

e
A eI N) (244)

because (2.41) readily gives that f(A)"! = o(c()\)) as A = —oo. However, it is also
readily seen that (2.40) implies (2.44), using that o(\)/zo(A) — oo by (2.37), and that
a(N\)?7Pe — oo. Putting (2.39)-(2.43) together we now finally arrive at (2.6), which
in turn completes the proof of Statement 6.

To prove Statement 7, notice that Lemma 2.6 gives

0 2 0 2
0<Cigliminf/ Mglimsup/ v oo (245)
T T

1T a0 #?v((=00, 7)) T a0 z?v((—o0, 7))

for some constant C; > 1. As this also shows that | % 42du(y) belongs to ORg- (o +

2,8 + 2), Lemma 2.7 now in turn gives
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1 0 ~-1 £0 0
0 < = <lim inf(/ deV(y)) / e_’\xd(—/ deV(y)>
02 A——00 l/A — 00 T
0 ~-1 £0 0
< lim sup (/ deV(y)) / e_)‘wd(—/ deV(y)) <Oy <
A——o00 1/A —00 T

for some constant Cy > 1. And so we get (2.4) in the following manner [recall (2.11)]:

0 0
liminf \20(\)? > lim inf \? / e_)‘wd(— / deV(y))
—0o0 T

A——00 A——00

1 0
> — lim inf \? 2d
2 & limint /1 K v(y)

(2.46)
>

liminfv((—o00,1/X))

102 A=»—0

= 0

To prove Statement 8, using that —eo(A\) < 1/A for A small enough, we get (2.5) in

the following manner:

—ea(A) 72 N
lim sup/ e "dv(z
i BT VA

< (supa?e"/?) lim sup X" M/2 y((—o0, ~ea(X))) / (1 / " du(:z;))

z<0 A——00 € Ji/x
=0 fore>0.
To prove Statement 9, in view of Statements 7 and 8, it is enough to prove that
(2.6) holds. Note that, since v((0,00)) = 0, the arguments that were use to establish

(2.46) carry over to show that

o v((=00 1/A) v((=00,1/}))
< — < — 5 < .
Ci0, SRR T 00z Shms T S e

(2.47)

Further, using the inequality 1 — cos(z) > z2/4 for |z| < 1 we have by (2.45) and (2.47)

Oz ) . 6? /0 >
1—cos({——) e Mdv(z) > —— zodv(z
/]R( (G(A)) (=) 2 4ea(A)? Jmax{—o(2)/16,1/2} *)

v{{(—oo 2
> gora mind (oo, o/, NS
> —min{ 6] 7 v (=00, —o (X)) 6 }

— 8Ce C ' 201 Cy

for |#| > 1 and A small enough. As the fact that limy_, o o(A) = 0 gives limy, o v((
—00, —0(A))) = oo [recall (2.11)], it follows that (2.6) holds.

To prove Statement 10, by Statements 1 and 3 we may assume that v((0,00)) = 0
and s2 = 0. Tt is enough to prove (2.4), as Statement 8 then gives (2.5). Recall that
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selfdecomposability means that dv(z) = k(z)/|z| where k& > 0 is non-decreasing (see
e.g., Sato, [23], Corollary 15.11). From (2.11) we get in addition that limgg k(z) = oo.

And so we get (2.4) as follows:

A——00 A——00

0
lim inf A\20(A)2 > lim inf / N2z%e ™2 dy ()
/A

1 0
> — liminf / N (—2)k(x)dx
/A

e A—>—o0

1 0~ 0 T
> —liminf \2(—07) k(y)dy + - hm inf \? ( k(y) dy) dz
€ A=—o0 /A € A=—o0 1/ /A

> 2— liminfk(1/))

€ A\—>—o0

= Q.

To prove Statement 11, by Statement 1 we may assume that s> = 0. Further, ¢
is selfdecomposable (see the proof of Statement 10), so that Statement 10 gives (2.5).
Noticing that

d 0?/2 —\y Ok(y) A k( ) 0 -y d

- _ g d — - yd f)\:c: —d Y -y >

[ Lot = [ ERe vy B = [T L e k) dy 2 0
(2.48)

it is now an easy matter to finish off the proof: Using that 1 — cos(z) > x2/4 for |z| < 1
we get (2.6), as (2.48) together with (2.5) give that

Oz 0 023:267)\:6 0 $2|0| ef)\a: |0|
1—cos(——=) e ™ dv(z 2/ ———dv(z 2/ ————dv(z) > —
/]R( (0()\))) (@) —o/j0) 4o (A)? (@) —o(n) 4o(A)? (e} 2

for A small enough and |6] > 1.
To prove Statement 12, in view of Statement 2 we may assume that s> = 0. By

(2.54) below we have

/O (e_Mc — 1+ Xs(z))dv(z) ~ —I'(1+ a)v((—o0,1/X)) as A — —oco.  (2.49)

—0oQ
Moreover, by (2.53) below together with Feller’s Tauberian theorem (see e.g., Bingham,
Goldie and Teugels [8], Theorem 1.7.1'), we have

0
/ (Aze " — Ak(z)) v (z)

:/ (e — 1 +/ 1 (Aze™7 + X) du(z)

= e = 1)y( +/0 e M+ Av((—00,z))dz + O(N)

>_A
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:)\2/_01()\35—2)63Awd(/:(/_ylu((— ))dz) 0(\)

33 (1/ NP4+ a)v((—o0, =1/) 9)2 (1/2)’T (3 +a)v((=00, —1/X))  (2.50)
—(a+1) 2+« —(a+1)(2+ )

=-TI'(2+ a)v((—o0,—1/X)) as X — —oo,
where o < —1 ensures that limy_, o v((—00,1/A))/(=A) = oo. Putting (2.49) and
(2.50) together we see that (2.31) holds with L = 1 + a. O

~

The next proposition gives sufficient conditions for condition (1.4) of Theorem 1.1

to hold in terms of the characteristic triplet:

Proposition 2.9. Let £ be a supererponential Lévy process with characteristic
triple (v, m,s?) and infinite upper end-point (2.1). With the notation (2.8) we

have the following implications (with obvious notation):

1. If v((0,00)) > 0, then tlag(u)) 40 asu— oo for a > 0;
w(u)
2. If v((0,00))=0 and s?>0, then % 4 N(0,2a) as u— o0 for a>0.

3. If v((0,00)) = 0 and s> = 0 and (2.29) holds, then

4 S_a ((a cos(—g—a))_l/a, —1,0) as u — oo for a > 0.
Proof. We have weak convergence & (ag(u))/w(u) 4 X ifand only if we have convergence

of the Laplace transform

lim E{e } = hm b1 (t/w(u ))GQ(U)

Uu—00

= u]giolo exp {aq(u) In(¢1 (t/w(u)))}

~ aln(g (—t))
"Aﬂm&eXp{—Au<) lhm¢mA»} (2.51)

— Jg (A" —1—tAk(z)) dv(z) + mtX+ (ths)?/2
Do P e () @) + ()2

A——o00
=E{e™™} for t € (-1,0)

(see e.g., Hoffmann-Jgrgensen [17], pp. 377-378).
To prove Statement 1, notice that by arguing as for the proof of (2.7) in Statement
3 of Proposition 2.8, the limit in (2.51) is 1 when v((0,00)) > 0, which implies weak

convergence to a degenerate random variable X = Q.
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To prove Statement 2, notice that by arguing as for the proof of (2.7) in Statement
2 of Proposition 2.8, the limit in (2.51) is e** when v((0,00)) = 0 and s > 0, which
implies weak convergence to a normal N(0,2a) distributed random variable X.

To prove Statement 3, assume that v((0,00)) = 0 and s2 = 0. Notice that by

Karamata’s theorem (see e.g., Bingham, Goldie and Teugels [8], Section 1.5.6),
2?v((—00,))

T ERy-2+a) as z710.

0
—/yWwaDWN
T
Hence Feller’s Tauberian theorem (see e.g., Bingham, Goldie and Teugels [8], Theorem
1.7.1") gives

/0 (1—e (1 + o)) du(z) = /(; A%Md(— /: yl/((—oo,y))dy>

—Q

(2.52)
~ T2+ a)v((—o0,1/X)) as A — —oo.

Moreover, using Karamata’s theorem again we get

0/ ry 22 ((—00,3)
/m (/_1 v((—00, 2)) dz) dy ~ e+ 2+ a) €ERp-2+ ) as z10, (2.53)

so that by Feller’s Tauberian theorem

0 0
/ (™ =1 = thn(z)) dv(z) = o(1) + / (tA — X tA)v((—00, 7)) do

—o0 -1

~ (BN /01 . d(/: ([ s as)an) (2.54)

T2+ a)v((—o0, —1/(tN)))
—(a+1)

~—(=t)*Ir'1+ a)v((—o0,1/A)) as A = —o0

for t € [-1,0). Since @ < —1 ensures that limy_, o, v((—00,1/A))/(—=A) = oo it follows
that the limit in (2.51) is e=*(=)"* which is the Laplace transform of the —a-stable
distribution in Statement 3 (see e.g., Samorodnitsky and Taqqu [22], Proposition 1.2.12).

O

By (2.1) we have o < —1 in (2.28) when v((0,00)) = 0 and s? = 0. But @ = —1 was

not covered in Proposition 2.9 and turns out to behave differently than o < —1:

Proposition 2.10. Let & be a superexponential Lévy process with characteristic
triple (v,m,0) and infinite upper end-point (2.1). Assume that v((0,00)) =0 and
that v((—00,-)) € Ro-(—1). Denoting
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1 1

vl ==y ™ G e )
we have
. P{¢(h — q(u)t) > u+ zw(u)} _ e % for te€R and t=0
u1—>oo P{&(h) > u} { 0 for zeR and t>0 (2:59)
and
g(Z)q(S;)) La asu— oo for a > 0. (2.56)

Proof. We still have (2.52) with & = —1. However, by so called de Haan theory (see
e.g., Bingham, Goldie and Teugels [8], Proposition 1.5.9a), (2.53) changes to
0 y
/ (/ y((—oo,z))dz) dy € Ry (1) (2.57)
- \J-1
with

h%m /IO (/_yl V(= 00, 2)) dz> dy = o, (2.58)

And so by Feller’s Tauberian theorem the corresponding modification of (2.54) becomes

/_(; (67— 1+ Mn(x)) di(z) = o(1) + AQ/_Ole_’\Id(/zO(/_ylu((—oo, 2) dz) dy)

~ I'(2) /\2/1;)/\ (/yl V((—oo,z))dz> as A — —oo,

where the right-hand side is regularly varying by (2.57). Since (2.11) shows that

(2.59)

S Y A _
)\Er_noom/_oo(e AT _ 1+ \k(z))dv(z) = oo,

we now readily obtain (2.56) in the following manner: For ¢ € (—1,0) we have
{aln(¢1(—tu‘_(u/h))) }
In(¢1 (4 (u/h)))
{ ffoo (e —1—tAk(z)) dv(z) + mtA }
¢ f_ooo (e — 1+ Ak(z)) dv(z) — mA
(—t) [° (e — 1+ Ak(z)) dv(z) }
ffoo (e — 1+ Xk(z)) dv(z)

lim E{eftﬁ(aq(“))/w(“)} = lim exp

U—00 U—00

= lim exp
A——00

= lim exp{a

A——00

=e

Changing the definition of @ to Q(X) = 1/1In(¢1(N)) in the proof of Theorem 2.2,
that proof still goes through in essence. The only important change is that since

M)~ In(¢1(3)
A——00 1I1(¢1 ()\))

=0
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by (2.52) and (2.58)-(2.59) [recall that v((—o0,1/)))/(—A) = oc], (2.18) changes to

Feth—aonn (12(X) + /) ~ e /(M) -Inr () SMNG N
V2rho(A)

This does not affect the validity of (2.19)-(2.21), while (2.22) and (2.23) change to

. P{f(h — q(hu)t) > hu — mw(hu)} e? for xR and t=0,
limn =
u—00 P{¢{(h) > hu} 0 for zeR and ¢>0.
From this in turn it follows that (2.55) holds as claimed. O

3 A general upper bound and consequences

We will study the probability P{supte[o’h} &(t) > u} for a separable Lévy process €. As
that probability coincide for all separable Lévy processes with the same finite dimen-
sional distributions, it is enough to consider one specific such process: In proofs we can
thus henceforth assume that ¢ is cadlag (right continuous with left limits).

The following simple general upper bound for the above mentioned probability will

be an important tool for us:

Proposition 3.1. For a separable Lévy process & we have

1 1
<. 3 F 0.
ST O < AP e

Proof. Writing T = inf{t >0 : £(t) > u} and g¢(¢t) = P{{(t) > —¢}, we have
PE(h) > u— e} > B{P{T < h,¢(h) - £(T) > —¢|T})
= B{Ir<nP{¢(h) — {(T) > —¢|T}}
=E{Ir<pg9(h —T)}

> P{ sup £(t) > u} inf g(t)

te[0,h) te[0,h]
=P<{ su t) >wup inf g(t). O
{te[ogz]f( ) }te[o,h} (¥

A simple version of the following corollary to Proposition 3.1 for symmetric processes

appears already in Doob [13], p. 106:

Corollary 3.2. For a separable Lévy process & such that
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lim inf P inf P{¢(t) > 1
i In {€@) >0t >0 or wanb {¢(t) > 0} >0, (3.1)

we have

1
R PLE(h) > u) P{ti}éﬂ]“” g “} < oo

Proof. By Proposition 3.1 it is enough to show that the left condition in (3.1) implies
that to the right. So assume that the left condition holds and that the right one does

not. Then there exists a sequence {t,}52; C [0, h] such that
P{&(t,) >0} — inf P{{(t) >0} =0 as n — oo.
t€[0,h]
Picking a convergent subsequence {t],}°; C {t,}5°, with lim,_, t,, = to, we get
P{£(to) > 0} < liminf P{£(t}) > 0} < Iminf P{E(#,) >0} =0 (3.2)
by continuity in probability of £&. Hence the left condition in (3.1) gives top > 0. And so

¢ is supported on (—oo, 0] by (3.2), which contradicts the left condition in (3.1). O

The next example addresses the difference between Proposition 3.1 and Corollary

3.2:

Example 3.3. Let {N(t)};>0 be a unit rate Poisson process and {7}, inde-
pendent Bernoulli distributed random variables satisfying P{n, = 1} = P{n =
-1} = % Rather spectacularly, Braverman [9], Section 4, shows that for the Lévy

process &(t) = Ziv:(tl) Nk — t, it holds that

| i in P { sup;epo ) £(t) > u} < Tim sup P{ supepopn &(t) > u} _
u—00 P{&(h) > u} u—00 P{¢(h) > u}

Hence neither Corollary 3.2 nor (3.1) holds for this process.

For an example of a Lévy process that does not satisfy (3.1) it is enough to

consider ¢(t) = N(t) — t.

The following proposition can be very useful to verify that the condition (1.5) of

Theorem 1.1 holds:

Proposition 3.4. Let £ be a separable Lévy process such that

inf P{¢(t) >
OBt {¢() >0} >0
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and

. P{{(h —Tq(u)) >u} 7
% PEm) >up
It holds that

m 1 { £(t) > } 0
im limsup ———~—— sup L
T—00 y—00 P{f( ) > u} t€[0,h—Tq(u)]

Proof. By Proposition 3.1 together with the hypothesis of the proposition, we have that

lim limsup ; { sup £(t) > u}
T—o0 usoo P{E(R) > u} te[0,h—Tq(u)]

P{{(h —Tq(u)) > u}1

< lim limsup inf P{&(t) > 0}

T—00 y—oo P{¢(h) > u} t€[0,h—Tq(u)]
P{{(h —Tq(u)) > u} 1
< lim limsu -
Thoo umee.  P{E(R) >u}  infyepon PLE(E > 0
1
-T

< lim e - -
0% nfio PLER) > 0F

=0. O
4 Proof of Theorem 1.1

Proof of Theorem 1.1. Provided that L(¢,0) > 0 repeated use of (1.4) gives

Ehgi-u_ |0\ Plelh-g) >utow) | Lta)
P{ w(w) 7| Sl )“>} P{E(h—g(u)t) > u] Zeo)

as u — oo for z > 0. Let {(;(a)}2, be independent random variables distributed as
((a). Further, let 7y be a possibly infinite valued random variable that is independent of
{Ci(a)}$2,, that has the possibly improper cummulative probability distribution function
1 — L(t,z)/L(t,0) when L(¢,0) > 0 and that is when L(¢,0) = 0. By (1.3) and (4.1)
together with the assumed continuity properties of ((a) and L(t,-) we get

1
Hmint e P €00 >

> lim hmsuphmmme{ max  &(h—kag(u)) >u}

T—o00 al0 U—00 k=0,...,|T/a]
|T/a] k—1
= lim limsup Z (ka,0) hmlan{ﬂ{{ (h—Lag(u)) (4.2)
S =0

~ ¢(h—hag(u)) + €(h—kag(u)) — u < 0} \ (h—kag(u)) > u}

[T/a] k-1 k—2£
ZTh_l}gohmsup Z (ka,0) {ﬂ{zci(a)+nka<0}}.

al0 35 1=0 “i=0
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Here the first inequality is due to discretization, while the equality follows from the

inclusion-exclusion formula and the fact that

P{ max §(h—kaq(u))>u}

k=0,...,| T/a)
[T/a] k-1
= > p{teth—togu) < ‘ 6(hkag(w) > u [P{E(- hag(u) > u)
k=0 =0

The last inequality follows from (1.3) and the reasoning on the first few lines of this
proof by means of dividing by w(u) in the featured intersected events.
For an upper bound we make some preparations: The strong Markov property gives

P{ sup £(t)>u-|—xw(u)}

telh—Tq(u),h]

< P{k:O{.r.l?ﬁ“/aJ &(h—kaq(u)) > u} (4.3)

—l—P{ sup  &(t) > u—HUw(u)} P{ inf £(t) < —ww(u)} for z > 0.
te[h—Tq(u),h] t€[0,aq(w)]

Further, by the continuity of w and the fact that w(u) = o(u) [since (k) is Type I
attracted], the functions u and u + zw(u) range over the same values as u — oo for any

fixed z > 0. Hence we have

limsupg(u) = limsupg(u + zw(u)) for z € R for any function g. (4.4)

u—00 u—00
From (1.3) together with basic theory of Lévy processes (see e.g., Sato [23], Theorem
8.7, together with Fristedt [16], p. 251), we have that {{(tq(u))/w(u)}i>0 4 {{(®) >0
in the space D[0,1] of cadlag functions equipped with the Skorohod J; topology, where
{¢(t)}+>0 is a Lévy process. This gives that

x
lim inf lim inf P inf — > liminf Pq inf — =1 (4
11}11&)11 im in {te[(fﬁq(u)]g(t) > :v'w(u)} > nzlul)n {tel[(r)l,m]g(t) > 2} (4.5)

for z > 0. Using (4.3)-(4.5) together with (1.4) and (1.3), we get in the fashion of (4.2)

1
limsupiP{ sup &(t >u}
u—oo P{E(h) >u} Lo Q
eJJ
= lim limsuplimsup——— P<{ su t >u-|-x'wu}
T—00 4]0 P e, P{E(R) > u} {te[ogz]g() (u)
-1

< lim limsuplim inf lim sup(P{ inf £(t) > —xw(u)})
t€[0,aq(w)]

1
* P{¢(h) > u} P{kzof?.?‘é’/aj &(h — kag(u)) > u}
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o 1

te Oah_Tq(u)]
1
< Tm L infli B
< Th_{%ohri%)nthﬂs;}p RO P{ - I,HE:LL{EF/&J £(h — kag(u)) > “} (4.6)
|7/a)
< < .
Th—{rololu(%})nf 2 L(ka,0) {ZOI{ZQ + Nka < 0}}

Here the first equality this due to the Type I attraction, the first inequality is due to
(4.3), the second inequality is due to (4.5) and (1.5), while the last inequality follows
from the same arguments as were used to establsih (4.2).

By (1.5) together with (4.2) and 4.6), the following three limits exist and coincide
H= i . { £) > }
= lim ——— sup
u=oo P{(h) > u} = Liejo,n

|T/a] 0
:qli_r)rgolimsup Z (ka,0) { m {ZCZ + NMka < 0}} (4.7)

al0 p_o =k-1
[T/a]
= lim liminf ka,0) <0 ]
At 2, Lika. {EQI{Z@ * ha = }}

As it is clear that H > 1 it only remains to show that H < oco. However, this follows
from applying (1.5) and (4.5) to the following version of (4.6), with a > 0 small enough
and T > 0 large enough,

u—00 P{§ ) > u} te[0,h]

limsup —————— P{ sup £&(t) }
1

< (Pt 0> 31) e gy P €0 R > o}

1
+ limsu 7P{ sup (¢ >U}
u—)oop P{{(h) > u} t€[0,h—Tq(u)] ©

1 |T/a)
Slimsup(P{ inf ((t) > —%}) Z L(ka,0)

z0 t€[0,2a] =0

1
-l—limsupi { sup t) > u} for z > 0.
u—oo P{E(h) >u}l Liejo,n-Tqu )]6( )

This concludes the proof of the full statement of Theorem 1.1. O

5 Examples on extremes of superexponential Lévy pro-

cesses

Brownian motion is the canonical example of a superexponential Lévy process:
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Example 5.1. Brownian motion with drift is a superexponential Lévy process &
that has characteristic triple (0, m, s?) for some constants m € R and s? > 0.

By Proposition 2.8 2, Brownian motion ¢ satisfies (2.4)-(2.7), so that Theorem
2.2 shows that (1.4) holds. Further, Proposition 2.9 2 shows that (1.3) holds with
¢(a) N(0,2a) distributed.

For m > 0 (1.5) follows readily from Corollary 3.2 together with (2.9). For
m < 0 (3.1) does not hold. But a simple trick does the job: Let &, be a Lévy
process with characteristic triple (0,0, s2). Then Corollary 3.2 and (2.9) give (1.5)
in the following way, using that ¢(u) = o(w(u)) by Theorem 2.2:

P{te[ swp 0> ub<P{ s &) >u-mh-Tow)

0,h—Tq(u)] t€[0,h—Tq(u)]

< P{ sup  &o(t) > u—mh—w(u)}
t€[0,h—Tq(u)]

<2P{&(h—Tq(u)) > u—mh—w(u)} (5.1)
< 2P{&(h—Tq(u)) > u—m(h—Tq(u))-w(u)}
=2P{{(h—Tq(u)) > u—w(u)}

~2e"TP{¢(h) > u)} as u — oco.

Notice that by Proposition 2.8 2 and Proposition 2.9 2, (1.3) and (1.4) hold
with ((a) N(0,2a) distributed and the functions w and ¢ given by (2.8) for any
Lévy process with characteristic triple (v,m,s?) such that v((0,00)) = 0 and
s2 > 0. But we cannot hope to show (1.5) as simply as for Brownian motion in
this more general case. However, when (1.5) holds, then we must have H = 2 in

(1.2) by well-known properties of Brownian motion.

Example 5.2. The Merton jump-diffusion [19] is a Lévy process £ given by

N(t)
Et) =yt +oW(t)+ Y Y for t>0,

i=1
where W is standard Brownian motion, ¢ > 0 a constant, N a Poisson process with
intensity A > 0 and the Y;:s independent N(0,d?) distributed random variables.
Since s? > 0, (2.4) and (2.6) hold by Proposition 2.8 1. Further the Lévy

measure is given by
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dlj . )\ 7$2/2

— e
dr /27
Choosing g(x) = v/ in Proposition 2.8 4 we see that (2.4), (2.5) and (2.7) hold.

Hence Theorem 2.2 applies. Because s2 > 0 we have infyepon P{() > 0} >0
so that Proposition 3.4 applies. This means that Theorem (1.1) applies with
¢(a) = 0. An inspection of (4.7) finally gives that H = 1.

Example 5.3. Pick a constant a € (1,2). A totally skewed to the left a-stable

Lévy process ¢ has charactersitic triple (v, m,0), where

dv(z) ay
= fi 0, f tant 0.
e (—F(l — a)) (_ cos(%))(—x)aﬂ or x <0, Ior some constant y >

By Albin [1], Theorem 1, (1.2) holds with H > 1 for m = [, (k(z) — z)dv(z). In
this example we use Theorem 1.1 to extend Albin’s result to a general m without
using difficult results from the literature about a-stable distributions, contrary to
what did Albin.

By Proposition 2.8 12, ¢ satisfies (2.4)-(2.7) so that Theorem 2.2 shows that
(1.4) holds. Further, Proposition 2.9 3 shows that (1.3) holds with ((a) having
a Sa((—a cos(%))l/a, —1,0) distribution. For m > 0 (1.5) follows from Corollary

3.2 together with (2.9) using that
P{£(1) >0} > P{(€(t)-mt) >0} = P{/a(¢(1)-m1) >0} = P{(¢(1)-m1) >0} > 0

by self-similarity. For m < 0 we can use the trick (5.1) in exactly the same way
as in Example 5.1 observing that again ¢(u) = o(w(u)).

By Proposition 2.8 3 and Proposition 2.9 3, (1.3) and (1.4) hold with ((a)
having a S, ((—acos(Z2))!/®, —1,0) distribution and the functions w and g given
by (2.8) for Lévy processes such that v((0,00)) = 0 and (2.29) holds. But we
cannot hope to verify (1.5) as easily as for a-stable processes for these more general
processes. However, when (1.5) holds, then we have H > 1 in (1.2) because H

only depends on a and was shown to satisfy H > 1 for totally skewed a-stable

processes with m = 0 by Albin [1], Theorem 1.

Example 5.4. A totally skewed to the left 1-stable Lévy process & has charac-
tersitic triple (v, m,0) given by
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d 2
v(z) = 7 for £ < 0, for some constants v >0 and m € R
dx w(—1z)?2

By Albin [1], Theorem 2, (1.2) holds with H = 1 in the case when m = 0. We

now extend Albin’s result to a general m € R by application of Theorem 1.1 and
without using complicated results from the literature about tails of totally skewed
1-stable distributions, contrary to what did Albin.

With the functions w and ¢ given by (2.8), Proposition 2.10 shows that (1.3)
and (1.4) hold with ((a) = a in (1.3) for Lévy processes such that v((0,00)) =0
and v((—00,+)) € Ry-(—1). We may derive (1.5) from Corollary 3.2 together with

(2.55) for all values of m, because
P{&(t) > 0} > P{t&(1) — 2ytIn(t)/m+mt >0} =1 as ¢, 0.

Now this implies that inf;co,P{{(t) > 0} > 0 so that also inficjop—g(u)m
P{{(t) > 0} > 0. Hence Corollary 3.2 shows that
P{ sup  £(t) > u} < KP{&(h—q(u)T) > u}
te[h—q(u)T]
for some constant K, so that

KP{E(h—q()T) >u} _

lim sup ;P{ sup  &(t) > u} < lim sup
u—oo P{E(h) >u}  Lielh—qu)1] T u—oo P{¢{(h) > u}

Here we used (2.55) to get the last equality. Finally notice that an inspection of
(4.7) gives that H = 1.

The methodologies of Examples 5.3 and 5.4 readily carry over to, for example, the
sum of two independent totally skewed stable Lévy processes with different stability

indices.

Example 5.5. An unnamed superexponential Lévy process ¢ is defined by Lin-
nik and Ostrovskil [18] pp. 52-53, see also Sato [23], Exercise 18.19, as having
characteristics (v, m,0), where

dv(z) ebe

I 2] = o) for £ < 0, for some constants a,b > 0.

For a suitable constant ¢ = ¢(a,b,m) > 0 the corresponding Laplace transform is

given by
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_ T((b—A)/a)cMe
By Proposition 2.10, (1.3) and (1.4) hold with {, = a. Further, picking a

function g(t) > 0 with limy o tIn(1/¢(t))/g(t) = 1, Corollary 3.2 and (2.55) show

for A <0.

that (1.5) holds, as by Stirling’s formula (see e.g., Erdélyi, Magnus, Oberhettinger
and Tricomi [14], Eq. 1.18.2) we have

o) ~ gl () gt ) a0

ast | 0 for A <0, so that

P{£(t) > 0} = P{E(t)/g(t) >0} > P{1/a >0} =1 as t 0.

We finish by demonstrating how (2.10) gives the asymptotics of P{£(h) > u}
as 4 — oo in (1.2): Taking a = 1 for simplicity and denoting the polygamma
function 1 (see e.g., Erdélyi, Magnus, Oberhettinger and Tricomi [14], Sections
1.16-1.17), we have

1 1
PO) == In(e) + 96 = ) = (b~ N)/e) = 55— + O(ﬁ) as A = —00,
2 _ " _ 1 1 _
oW = PB-N = 0()\2) as A — —oo,
p(z) = b— 1 —ce®+ Oe ®) as T — 0o.
Using this together with (2.10) and Stirling’s formula, we get
(h—1)/2
P{&(h) > u} ~ ?;}%wexp{—(cu + heln(c/e)) e/ — %} as u — 00.
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Abstract

The Kac model is a Markov jump process on the sphere Zf;l v? = N. The
model was conceived as model for an N-particle system with pairwise inter-
actions, and hence the jumps involve only pairs of coordinates, (v;,v;). This
paper deals with Kac models with unbounded jump rates. We prove that the
processes are Feller processes, and introduce a diffusion approximation that is
useful for numerical simulation of the processes. We also study the spectral gap

of the Markov generators, using methods from Carlen, Carvalho and Loss.
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1 Introduction

The Kac model, introduced by Mark Kac[18] in 1956, is a much simplified
model of a dilute gas in which all interactions are binary collisions: for a real
gas consisting of N particles, the phase space is 6/N-dimensional and involves
the position and velocity in R® for each particle; the Kac-model neglects the
spatial variables and assumes velocities to be one-dimensonal, and hence the
phase space is N-dimensional. And while the particles in a real gas evolve
deterministically, the particles in the Kac model suffer random collisions. In
spite of these simplifications, the model retains some of the key features of a
real gas, and the simplifications made it possible to make a rigorous derivation
of the limiting kinetic equation, the “Kac equation”, which has attracted much
interst in recent years, see for example Desvillettes [11, 12].

In this paper we are interested in the Kac model for a fixed but arbitrary
number of particles, and the state of the system is thus given by a vector v =
(v1,v3, ....uy ). The vector v evolves according to a jump process, involving only

pairs of velocities:
(vi,v5) +—  (vicosf +v;sinf,v;cosf — v;sinb); (1.1)

all jumps occur independently, and the rate of jumps with 8 € [a, b] is given by

a density h(9),

Cn /ab h(6) do.

The non-negative function h(8) is usually taken to be even, and locally integrable
(locally bounded) in [—m, 7]\ {0}. Kac himself considered essentially a constant
h(8) = 1/(2x), but it is relevant to consider also functions h(f) which have
power law singularities near § = 0. This corresponds to the influence of grazing
collisions in realistic models, and is often called the non-cutoff case, as opposed
to the cutoff case where h(6) is integrable. To make sense of the limit N — oo,
one must take Cnx ~ 1/(N —1).

The jumps described in (1.1) conserve energy,

N
v[> =) o} = const,
i=1



and when considering the limit N — oo it is convenient to assume that the
constant is proportional to N. With this scaling, our models constitute Markov
processes with state space SV ~1(v/N). The infinitesimal generators of the pro-
cesses considered, are integral operators defined by the right hand side of Kac’s

master equation

0 2

AR =iV | U0 = 1300 p0) 0.

Here f € C([0, 0], L'(SN-1(v/N), un)), or some subspace thereof depending
on the choice of collision kernel p. The measure uy is the rotation invariant

probability measure on S¥~1(v/N) and
Ri;j(0)v = (v1,...,v;co88 +v;sinb, ..., —v;sinf + v cosb, ..., vN).

A subject of particular interest for a stochastic evolution of this kind is the
rate of convergence to equilibrium, i.e. how fast is the relaxation T} fo — v[fo],
for some initial data fo, invariant measure v and {T};};>o the semigroup deter-
mined by the infinitesimal generator of the process. This rate of convergence is
closely related to the spectral gap of the infinitesimal generator. Spectral gaps
of Markov generators is a topic that has attracted much interest recently (see

e.g. Chen [9] for more on this).

In this paper, the collision rate is given either by functions that behave like
p() =16|">"" for 0 € (—m,7], (1.2)

where a € (0,2), by truncated forms,

pe(6) = min(p(6), p(€)), (1.3)
or by step functions,
g3 when 0] < e
p() = _ (1.4)
0 otherwise.

These give rise to jump processes where small jumps are dominating, and the
process obtained by taking the limit € — 0 in case (1.4) is a Brownian motion on

the sphere, in which no jumps of finite size remain (this is proven in Section 2.2).



The inspiration for this paper comes from several sources. One example are
the papers [20, 21] who take different diffusion processes on the sphere SV=1(+/N)
as the starting point for obtaining kinetic equations as the limit when N — oo,
much in the same way as Kac did for the original model.

Another source is a series of papers by Carlen et al [7, 8] who present a very
detailed analysis of stochastic processes with a structure similar to the one in the
Kac model, and obtain accurate estimates for the spectral gap of the generator
of the corresponing model, and in some cases even explicit, exact expressions. In
particular they proove a conjecture by Kac concerning the asymptotic behavior
of the spectral gap in the limit N — oc.

We have also used some recent results concerning the approximation of Lévy
processes (see Asmussen and Rosinski [4] or Cohen and Rosinski [10]), to develop
an efficient method for simulating stationary state for a non-cutoff Kac-equation
(see [5]). Ome can prove that methods based on truncation of the collision
rate function converge to the correct solution (see e.g. Méléard et al [12], [14]
and [15]), but adding a diffusion term to the truncated jump-operator may
considerably improve the convergence rate. This is demonstrated by numerical

example in Sundén and Wennberg [27], and analysed in more detail in this
paper.

Subsection 2.4 deals with the approximation of the process corresponding
to the unbounded collision kernel (1.2). We show that simple truncation of
(1.2) corresponds to a Markov process which converges weakly to the process
corresponding to the unbounded collision kernel. We also motivate that adding
a Brownian part to mimic small angles gives a better (in terms of convergence of
infinitesimal generators) approximation than just truncating the collision kernel.
In section 4 we consider diffusion approximation in a three dimensional model,
i.e. a model where velocities are elements of R® and where also momentum is

assumed constant.

The processes considered in the work at hand are so called Feller processes
and in the Appendix below we give a brief review of the properties of such
processes. The main reason for our interest in Feller processes are the available
convergence result such as a.g., the Trotter-Kurtz theorem (i.e. Theorem A.3).

We also state and prove to lemmas which are used to prove the convergence of



some stochastic processes presented in this paper.

Throughout function spaces are to be taken as function spaces over SN ~1(v/N)

unless otherwise noted.

2 Convergence and approximation

2.1 The Kac model with truncated collision kernel

To approximate the Kac model corresponding to collision kernel (1.2) we will
make extensive use of the Kac model corresponding to collision kernel (1.3).
The inifinitesimal generator of the Kac model is defined by

=5 Y [ uwie - oo (2.1)

1<i<j<N Y~

When p is bounded, this is well-defined for f € LP(SN~1(v/N)) for any p > 1,
and it also can be given a sense for measures on SV ~1(v/N), and finally, for all
the cases we consider here, it is well-defined as a principal value integral if f is

sufficiently smooth.
We now give a general result on Kac models with bounded collision kernels.

Lemma 2.1. Let p be a bounded function on (—m,w|. The Markov pro-
cess defined by the Kac model, i.e. the process generated by the closure

of L as in (2.1), is a Feller process.

Proof. According to the Hille-Yosida theorem (See Theorem A.1 of the Ap-
pendix), it is enough to prove that (i) the domain D(L) of £ is dense in C,
(z) if f(v*) = SUDy e 5N —1(y/) f(v) >0 then £f(v*) <0 and (i4¢) the range of
A — L is dense in C for some A > 0. Condition (i) is satisfied because D(L) is
taken to be L2 and (ii) holds by definition. To verify condition (i), it suffices
to show that for each f € C'*° there is at least one g € C'*° such that, for some
A it holds that

(A\=L)g = f. (2.2)

We claim that the solution to (2.2) is given by g = Ry f, where Ry is the
resolvent of the semigroup generated by £ (see Appendix equation (A.2)). By



boundedness of p, it follows that £ is a bounded operator. Thus, we have that

/1]
A=l

so that R, is bounded for A\ sufficiently large. Using this bound we see that

IRl < / e MellEN £ dt <
0

differentiation and resolvent action commute so that Ry f € C*°. O

2.2 Brownian motion on SV '(v/N) as a grazing collision

limit of the Kac model
Here we consider families of collision kernels p,, which satisfy

/ pn(0)df — 0 and 6?pn(0)dd - K as n — oo,
[6|>n—1

-7

for some constant K. The collision kernels p, may be of the form

p(6) = n*¢(6/n),

where v has compact support. This is the “grazing collision limit” that has been
considered for the Kac equation and the Boltzmann equation e.g. in Desvillettes

[11] and Alexandre and Villani [1]. A particular example is

pr(0) = n*1_1/n1/n)(0),

which yields the infinitesimal generator

n3 1/n
Lof =5 / > [(Ry(©®)) - fldo, for feLl’  (23)

N-1
1/n1<i<j<N

Letting n grow, we will see that the limiting operator is a multiple of the
Laplace-Beltrami operator in SV=1(v/N), i.e. the infinitesimal generator of a
time-scaled Brownian motion on SV~ (v/N) (see e.g. @ksendal [24], p.149-150
or Stroock [26]). For processes related to Brownian motion on S¥~1(v/N) in a

kinetic setting, see Lancelotti and Kiessling [20] and [21].

Theorem 2.2. The operator L, as in (2.8) converges pointwise in C'™

to the scaled Laplace-Beltrami operator

2N
3(N-1) S"'YM)

as n — 00.



Proof. Consider an arbitrary term f(R;;(6)-) — f of the sum in (2.3) for some

f € C°°. Taylor expansion gives
f(Ri(0)-) — f
=f,;(vi(cosf — 1) +v;sin6) + f, (vj(cosf — 1) — v;sin0)
+%f{,’wi (vi(cos@ — 1) + v; sin6)* + %f{,'jvj (vj(cos@ — 1) — v; sin 6)?
+%le)le (vi(cos@ — 1) + v; sin @) (v;(cos§ — 1) — v; sin ) (2.4)

+% wyv; (Vi(cos @ — 1) + v; sin 6) (v;(cos 6 — 1) — v; sin §)

3
+0 (|[Ri0) - 11-[*).
Taylor expansion of the trigonometric functions in (2.4) yields
02
cosf —1= 3 +0(8?)
(vi(cos@ — 1) + v;sinf)* = v76” + O(6%) (2.5)
(vi(cos® — 1) + v; sin8) (vj(cos§ — 1) — v; sin§) = —vv;0% + O(6°)
and O (|[Rij(0) —1- |3) = 0(6%).
Replacing the expressions in (2.4) by its respective Taylor expansions from (2.5)
and noting that sin(f) is an odd function, we obtain, after integration with

respect to 6

w [ 11/;[f(Rij (6)) — f]d6
=§ (—Uz'fql),- - Uijl;j)

1
43 (032 + 0 2, — vy, — oy f) +0 (3)
1 ! !
—)g (_vifv,- — Ujf’l)j)

1
2 e 2 e n 1
+§ (U] ViVi + v’i VjVj - ’Uivjf‘vi’(}j - Uivjfvjvi) ?

—

as n — oo. This means that the integral operator (2.3) converges to the diffusion

operator

2
m Z (U?@f - vivjc‘)iaj - vivjajai + vf@f —0;0; — ’l}jaj) , (2.6)
1<i<j<N

where 0y, is to be interpreted as % and 0;0; as %;Uj. Now the sum in (2.6) is

precisely the Laplace-Beltrami operator Agy—1, where SV~ is the unit sphere



in RV (see e.g. Oksendal [24], Example 8.5.8). The relation
NASN—l = ASN_I(\/N) (2.7)

gives the desired result. O

Theorem 2.2 thus says, that the Markov process which has infinitesimal
generator given by (2.6) is a (time-scaled) Brownian motion on SV=1(v/N). It
is known from the literature (see e.g. Molchanov [23]) that diffusions such as
Brownian motion on SN~!(v/N) are Feller processes. The following corollary
deals with the weak convergence of the processes generated by (2.3) to Brownian

motion.

Corollary 2.3. The processes {X['}s>0, generated by the closures of
the operators L, as in (2.8) converge weakly to a time scaled Brownian
motion on SV "1(v/N) as n — oo, given that their initial distributions

Converge.

Proof. We want to employ the equivalence of conditions (i) and (i¢) of the
Trotter-Kurtz theorem (see Appendix Theorem A.3). By Lemma A.4, C* is a
core for the Laplace-Beltrami operator (2.6). To prove (i) of Theorem A.3, we
arbitrarily choose an f € C*, and as (2.3) is defined for f € L?, we may let
fn = f for all n. By Lemma 2.1 the closures of the operators £,, are generators
of Feller processes, and by Theorem 2.2 it holds that £,f — Lf. Thus, the

desired weak convergence follows, given convergence of initial distributions. O

2.3 The Kac model with unbounded collision kernel

In this subsection we extend our analysis to Kac models with certain unbounded
collision kernels, namely those p for which p(8)|0|2*! — C as 8§ — 0 for some
constants C' and « € (0,2). The essential behaviour is captured by functions of

the form

[ s for 0| <6y <m
p(0) =

0 otherwise.



In this case, the infinitesimal generator of the process is the closure of the

operator L given by

th= s Y [ U@ -fota, @

1<i<j<N Y7
where the integral is to be interpreted as a principal value for functions f € C2.
To analyse the weak convergence of the process generated by (2.1) with collision
kernel (1.3) to the process generated by (2.8), we need to prove that the closure

of £ as in (2.8) is indeed the generator of a Feller process:

Proposition 2.4. Let £ be the operator defined by (2.8) with domain

C?. The closure of L is the generator of a Feller process with values in

SN—l(\/N)'

To prove this, we use Proposition A.2, which requires that there is a se-
quence of finite dimensional subspaces L, C C such that L, is dense in
C = C(SV~1(v/N)). Here we take L,, to be the space of spherical harmonics of
degree less or equal to n, and recall that these are the restrictions of the har-
monic, homogeneous polynomials in NV real variables, of degree less or equal to n.
For the following two lemmas, we note that the operator £ : C2(SVN—1(v/N)) —
C?(SN-1(v/N)) actually does not depend on the radius v/N of the sphere, and
hence there is a natural definition of £ : C?(RY) — C2(RY).

Lemma 2.5. The operator L defined by (2.8) and the Laplacian A =

Efzvzl % commute for polynomials of N variables.

Proof. Let L;; denote the term corresponding to the pair ij of the sum defining
N=LL. Letting £ # i # j # ¢, it is sufficient to check that
Lij(07 + 07 + 0;)vF = (87 + 07 + 97 ) LijvF,

. . 2
where vF = v{“ .- -vaN for non-negative integers ki, . . ., ky and where 62, = 8‘22
B

for m =i, j,¢. It is obvious that £;;07vF = 87 L;;v* for £ # i, j. Letting

K\ij — k1 ki-1 ke o kio1 Riv kN
v =1 Vi1 Vit Vi1 Vi UN

we have for the remaining part that
Lij(02 + 03w = v\ £,,(02 + 92)okivl

ZVk\ij (k,(kz - I)Eijvf"_%fj + kj (kj - l)ﬁijvfiv‘fjiz) .



We also have that

07 + 8]2')»Cijvk = v\ (57 + a?)ﬁijvfivfj

= vi\ii (52 4 8]2) / [(vi cosf + v; sin8)*i (v; cos § — v; sin §)*i

- vfivff‘] 16|~ dg
= vi\i / [k, (ki — 1) cos® B(v; cos § + v; sin 0)% =2 (v; cos @ — v; sin )"
k; — 1) sin® O(v; cos § + v; sin 6)* (v; cos § — v; sin §)*i 2

ki=2,
i — 1), ’

kj(
= ki( )
ki(k; — 1) sin 0(1)1 cos 6 + v; sin )% =2(v; cos § — v; sin §)*9
kj(k; — 1) cos? 8(v; cos 8 + v; sin 6)¥i (v; cos § — v; sin §)*s 2
ki (k; — yolioki™ ]|6|°‘1d0

= VA (i (ks = D) Ligof 20l + (ks = DLigofop ™).

It follows that LAp = ALp for all polynomials p. |

Lemma 2.6. The operator L defined by (2.8) maps homogeneous har-
monic polynomials of degree n to homogeneous harmonic polynomials of

degree at most n.

Proof. Let h, be a homogeneous polynomial of degree n. We may write

= CpLv*

|k|=n
vk = k1 kN N
where k = (k1,...,kn), Ck = Cry..ky, VF =01 ---0xY and |k| = >, _; ki, for

km > 0. Note that if v; # 0, for 1 <i < N then

2
k _ k1 oo ko kg kjoa Kig1 kN
Lvt = N_1 E oyt o 0 oA o X
1<i<j<N

/ [(vicosé?+vjsin0)k"(vjcos0—visine) i —of vj ]|0| a=1 49

B S MR

1<i<j<N




where

Gkik; ('Uz';vjae) =

ki kj ) ) —L+m
_1+C0ski+k]‘(0)2 Z ( ]Z >< k] )(_1)m (Z})_;) + tanl+m(0)_

£=0 m=0

Due to the presence of the factor (v;/v;)~¢T™ in each term of the double sum
in gg;x;, it follows that Lh, is homogeneous of degree n. By Lemma 2.5 it
follows for a homogeneous harmonic polynomial H,, of degree n that LH, is a

homogeneous harmonic polynomial of degree n. |

Corollary 2.7. The homogeneous polynomials H™ of N variables con-

stitute a core for the operator L defined by (2.8).

Proof. By Proposition 19.9 of Kallenberg [19] a sufficient condition for a dense
subset D of D(L) to be a core for £ is that T;D C D. Let D = 1. It is known
(see e.g. Vilenkin [28] p. 448) that the homogeneous harmonic polynomials are
dense in D(L) (as they are dense in C' and D(£) C C) and thus H" is dense in
D(L). Letting {T}}¢>0 be the semigroup generated by the closure of £, we note
that its restriction, Ty|~, to HV can be written
tk
Tyl = H‘Ck'
£>0

By the same arguments as in the proof of Lemma 2.6 it follows that Tyh € HN
for h € HN. |

Proof. (of Proposition 2.4) To prove the statement we use Proposition A.2,
which tells us that the closure of £ is the generator of a strongly continuous
contraction semigroup on C' if £ is dissipative and if there are invariant finite
dimensional subspaces Lj, La,... such that |J L, is dense in C. It is known
that the homogeneous harmonic polynomials of N variables are dense in C' (see
e.g. Vilenkin [28], p. 448), and according to Lemma 2.5 and 2.6 the space of
spherical harmonics of degree less than n is invariant under £. It is clear that £
satisfies the maximum principle, i.e. condition (i¢) of Theorem A.1, and thus it

is dissipative. Proposition A.2 gives that the closure of £ is the generator of a

10



strongly continuous contraction semigroup. In order to check that the semigroup
T = {T}}+>0 generated by the closure of £ is a Feller semigroup we have ensure
that T is positive, but this follows from Theorem 1.6 p. 125 of Arendt et al [3],
which states that a semigroup on C(K), K compact, will be positive, given that

its generator satisfies the positive maximum principle. O

2.4 Approximation of unbounded collision kernel model
2.4.1 Truncated collision kernel approximation

A natural way of approximating the process generated by the closure of (2.8) is
to just truncate the collision kernel, i.e. to replace the collision kernel in (2.8)
by the one given by (1.3). That this approximation method actually works is
proven in Proposition 2.8 and Corollary 2.9 below, which deal with the generator

of the process, and the process itself, respectively.

Proposition 2.8. Define the operator L. by

2

LI=Ng

> [0 - oo @9

1<i<j<N
with p. as in (1.3). For all f € C*™ we have L.f — Lf, where the
operator L is defined by (2.8).

Proof. We want to show that for any f € C*

lim sup |L.f(v) = Lf(v)] =0.
S0y gN-1(VR)

To this end let £ > 0 and pick an arbitrary f € C°°. Note that

p(0) — p-(6) = 1yjg1<cy (107 —e771),

so that for an arbitary v € S¥~1(v/N)

2 } —a— —a—
-2t =5 X [ @O - s 0 =] as.
1<i<j<N ' ¢
Using the same Taylor expansion arguments as in (2.5) we get that

1<i<j<N 7~ v tefisj

e - g < K50 [ [(sw s 15,0

Fsup sup [, ()67 + 0@ (0]t —e7) dg

v ly,82€{i,5}
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for some constant K depending on N. By compactness of SN ~1(v/N) we get
that

sup |£f(v) = Lf(v)| < K /_ (6> +0(6%) (18] —e7>71) do

for some constant K' depending on N. Letting € | 0 we have the desired

convergence. O

Corollary 2.9. Given that initial distributions converge, the process
X¢ = {X[}i>0 generated by the operator L. as in (2.9) converges weakly
to the process X = {X;}1>0 generated by the closure of L in (2.8)

Proof. Given that initial distributions converge, the Trotter-Kurtz theorem (i.e.
Theorem A.3) gives that the convergence X°© 4 Xis equivalent to L. f — Lf
for f in a core for £. By Lemma A.4 C* is a core for £. Thus the statement

follows from Proposition 2.8. O

2.4.2 Brownian approximation

The operator defined by equation (2.8) is unbounded and this makes the process
generated by it hard to simulate. The idea of this subsection is to replace small
jumps (angles) by a continuous process in order to get a better approximation of
the process generated by (2.8) than the approximation given by just truncating
the collision kernel as in (1.3). This idea originates from Asmussen and Rosinski
[4] and Rosinksi and Cohen [4], where Brownian approximation schemes for Lévy
Processes in R and R™, respectively, are proposed and analysed. Replacing small
jumps by an appropriately scaled Brownian motion gives processes which can
be simulated at moderate computational cost and some numerical results are
presented in Sundén and Wennberg [27]. In terms of infinitesimal generators

our approximation is given by the operator £ which is defined by

NK. ,

Loel =57 (2| UR00) = )0 0)d0 + 252 Mgnes 1 |

i<j
(2.10)
where p. is as in (1.3) and f € C?. It remains to choose K. , in (2.10) appro-

priately. This choice is made by equating the second moments of the truncated

12



and the unbounded collision kernels with respect to small 6 such that |0] < e.
For the unbounded collision kernel p in (2.8) the second moment of angles 6

such that |8] < ¢ is given by

Cepwydn= [ elpetas =2
— P B — B 2-a’

and for the truncated collision kernel p., we have that
252—(1

Op(0)dg == | 62do = =

What is lost by truncation in terms of second moments is to be compensated

for by the Brownian part. This means that the right choice of K, , is given by

K. o:i=e"" ( S _ 1) ) (2.11)

2—«a

Note that, given convergence of initial distributions Xg RN Xo, an argument
analoguous to Corollary 2.9 implies that X% 4 x ,as € | 0, for X =
{x} “}>0 and X = {X;};>0 the processes with infinitesimal generators given
by (2.10) and (2.8), respectively. To further justify the idea of replacing small

angles by a time-scaled Brownian motion, we have the following proposition.

Proposition 2.10. Let L., L. and L be the operators defined in
(2.10), (2.9) and (2.8), respectively. For an arbitrary function f € C™,
the rate of the convergence Ly - f — Lf is of the order O(3~%), whereas
the rate of the convergence L.f — Lf is of the order O(g?~2).

Proof. Let Ei{E, L% and LY be the terms of L., L. and L corresponding to
the velocity pair (v;,v;). To prove the assertion of the lemma, it clearly suffices
to check that the convergence /.'.2{5 f = LU f is of the order £3~%, whereas the
convergence L% f — L f is of the order £2~.

Pick f € C*. A Taylor expansion as in the proof of Theorem 2.2 leads to

13

(LY — L) f = (f(Ri;0)) = f)(e> = |97>" ") db

1 € 12 ' S 1 2 o " 5
=§ / ((_vif”i a Ujf”j + U Jyw; TV viv; QUinfvivj)H
+0(6%)) (== — [6]7*") df

1 2 2 3—
- m) (V5 fonwy V5 Foyu; = 20305 foo, — Vify, — vjify,) +OE*).

Wl

=E27a (

(2.12)
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Note that
i . 1 1
E;]J’E = ﬁ? + g2« (m — 5) (1)]2612 + Uf@f - 2Ui1)j6i6j —0;0; — Ujaj).

This means that when we add the diffusion part to £, the €2~ term in (2.12)

will cancel so that
(L. — L£9)f = OE*).
Since SV~1(v/N) is compact

sup (£ = Lo)f(v)| = O@E*),

vESN-1(VN)
whereas
vesz\srl_lP(\/ﬁ) (£ = Loe)f(v)| = OE* @)
and we are done. ]

We would like to be able to draw conclusions about the speed of convergence
of the processes invlolved as did Asmussen and Rosinski [4] for R-valued Lévy
Processes, but as of now we are in no position to do this. We are not aware of any
general results on how the rate of convergence of processes can be determined
by the rate of convergence of a family of generators. Asmussen and Rosinski

established bounds of the type
sup [P{X7* < o} — P{X; <z} < K.,
z€ER

where the constant K. depends on the Lévy measure of the process X. Their
proof uses the Berry-Esseen Theorem (see e.g. Gut [16] p.355), which is not
available in our setting. In the paper on R"-valued Lévy processes by Cohen
and Rosinski [10] there are no explicit bounds for the rate of convergence of
distributions. This may indicate that it is hard to draw conclusions about the

rate of convergence of the distributions in our case.

3 Invariant measures and spectral gaps

Recall that a measure v is invariant for the Markov process with generator £

and state space S if

/ Lfdv =0 (3.1)
S
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for f in the domain of £. If v has a density g, (3.1) is equivalent to £L*g = 0
where £* is the adjoint of L.

Due to compactness of the state space SN~1(v/N), all processes considered
in this work enjoy invariant measures. Kac proved that the uniform measure,
N, is the unique invariant measure for the processes that he considered, i.e.
the ones with bounded jump rate. It is almost obvious that the same holds for
the processes with unbounded jump rate that are considered here, but below
we will nontheless give an argument for making this rigorous.

For a measure v and a function f € L?(v) we define

A= [ g
SN-1(V/N)
and
vif s 1= vif*] = (wlf])?
Consider now an arbitrary Markov process with generator £ and unique invari-

ant measure v. The spectral gap of £ with domain D(L) is the largest constant

k such that
kv(f; f1 < —v[fLf] for feD(L),

or equiavalently

k =inf{—’;5f]{]],f ED(E)}.

Letting {7} }+>0 be the semigroup generated by £ it holds for an initial density
fo that

v [(Tefo = vife)’] < e 0l fol (3:2)
For the Kac model with bounded jump rate, (3.2) takes the form

i [(Tefo = 17] < el fo; fo

which makes sense for all fo € L?(juy).
With the collision kernel p(§) = (2r)~! Carlen, Carvalho and Loss [7] prove

that the spectral gap is
_1N+2

T2N-1°
This is a consequence of Theorem 1.3 of Carlen et al [7], which can be stated as

follows:
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Theorem 3.1 (Carlen, Carvalho and Loss). Let p be a bounded
collision kernel. The spectral gap k of the collision operator defined by

£ =25 [ U@ - 1100) ds

for f € L2, is bounded from below and the following estimate holds

N+2 . T 5 (mb
> — . .
k_N_lér;éfO/_wsm (2>p(0)d0 (3.3)
The following proposition concerning the spectral gap of the Kac model with

a truncated collision kernel p. as in (1.3) is a simple consequence of Theorem 3.1.

Corollary 3.2. The spectral gap k. of the operator L. as in (2.9) is
bounded from below and the following estimate holds,

ko > Ex a i; [ 7; sin? (g) p.(6) db. (3.4)

Proof. For ¢ sufficiently small the infimum in (3.3) is attained at m = 1 and the

claim follows from Theorem 3.1. O

Note that the the integral is (3.4) is bounded, uniformly in € — 0, and
increasing with decreasing e, and hence one is lead to believe that the rate
of convergence for the process given by (2.8) can be determined immediately
by letting £ — 0; the first step is to establish the uniqueness of the invariant

measure.

Proposition 3.3. Let £ be as in (2.8). The rotation invariant prob-
ability meausure py on SN"1(V/N) is the unique normalized invariant

measure for the process generated by the closure of L.

Proof. First we note that £ (and its closure) commutes with convolution in the
following way: Let g be a radial, smooth, function, which for clarity will be

written g(|v|), and let

gxf(v) = mlg(lv—-DfI.

Then
L(gxf) = g*(Lf).
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For f € C?, this follows by a direct calculation:
gecf) = m[ X[ alv= Do) (R0 - ) @0

1<i<j<N Y~

= [ X[ o)y - Ry(0) Do) £(Ris0)) -

1<i<j<N Y~

g(|lv —-)p(0)f df
= Lg*fv),
which holds because puy is invariant under rotations. For less regular functions f,
or measures, the same holds, because < g * f,h >=< f,gx h >.
If v is an invariant measure for the process generated by the closure of £,
then for all ¢ € C, and all t > 0, < T;¢p — ¢,v >= 0, where {T}};>¢ is the
semigroup generated by the closure of £. Take a smooth function g(|v|) with

compact support, and let g, = c¢,g(|v|y™!), and let ¢, be such that

plgy(lv=-D1 = 1,

where |w| = v/N (the result only depends on |w|), and let ¢ = g, * ¢ for some

function ¢ € C. Then, for an invarant measure v,
0=v[Ty¢ — ¢] = v[Ti(gy * V) — gy x ] = v[gy x (T1h — )]
=< Tpp =Y, gy x v >=<Y,Ti(g, *v) — g, ¥V >
But g, x v is a smooth function, and hence the last member of this equation can
be zero for all ¢ only if g, x v =1 for all -y, and hence v = uy. O
For the rate of convergence to the invariant measure we have the following
proposition.

Proposition 3.4. The spectral gap k for the process given by (2.8)

exists and is bounded below by
(N +2) /7r .o (0 —a—1
> — «
k> V=1 _Wsm 5 6] de

Proof. As seen in Corollary 3.2 the spectral gap for the Kac model with trun-

cated collision kernel p. is bounded from below by

Ex i— 3 /7r sin” (g) p=(0) db-

—m
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Letting £ be the generator of the Kac model with unbounded collision kernel,
as in (2.8), and L. be the generator of the Kac model with truncated collision
kernel p.. Let f € D(£) and f, € C* such that f, — f. By Proposition 2.8
we have

_iadfalin] _ . ialfaLefn]

im .
//’N[fn; fn] el0 ,uN[fn; fn]
Note also that

_P'N[fncsfn] : {_NN[f‘Csf]_ 2} (N+2) i 2 (Q)
i 2 e R ey L (5) e
Letting € | 0 it follows that
_NN[fn'cfn] (N+2) (7 in2 (Q) —a-1

i o | (5) e
Letting n — oo we get

pnlfLF] S (N42) [T 5 (0 5 ae

en e ooy Lo (5) e ae

and consequently

k:inf{—%;fel)(ﬁ)} (N +2) /_7;sin2 (g) 6]~ de.

v

O

The rotation invariant probability measure py on SN ~1(v/N) is the unique
invariant measure for the process generated by the closure of £, . as in (2.10) and

the rate of convergence to equilibrium is quantified by the following theorem.

Theorem 3.5. The operator Ly, . defined in (2.10) enjoys a spectral gap
kb,e for which it holds that

2
kb,s 2 ke + g Ka,a;

with k. and K. o as in (3.4) and (2.11), respectively.

Proof. As A SN-1(yN) 18 self-adjoint and A sn-1yml =0,it follows from Propo-
sition 4.5 of Ikeda and Watanabe [17] that the rotation invariant probability
measure /iy is the unique invariant measure for Brownian motion on SV-1(v/N).

This means that p, is the unique invariant measure for the process generated

18



by the closure of Ly .. As Agn-1 enjoys a spectral gap which is N — 1 (see e.g.
Ledoux [22], p.18) it follows from (2.7) that the spectral gap for

INK. 2
mASN (v 18 gRea

By Corollary 3.2 the truncated collision kernel p. gives a collision operator £,
with domain L? that enjoys a spectral gap k.. Now if the domain of £, is

restricted to C? we have that

. _lffN[fEEf]_ 2} . {_p’N[f'CEf]_ 2} i %
ks—lnf{ TN[f;f]’fEL < inf TN[f;f]’fEC =k

For the spectral gap kj . of Ly we have, by linearity of py[-], that

bl Lo f]
wlf;5 f]

(-
{ pn fLe f]
i

= inf

il e c2)

MUf’fecﬂ

ZNKEQ NN[fAsN 1(\/_)f] 9
; C
/l’N[f7f] 7f€

2

Keo > ke + 3Ke .

+ inf

Wi N

O

The following corollary is an immediate consequence of Theorem 3.1 and

Theorem 3.5.
Corollary 3.6. The spectral gap ky . for the operator Ly . defined in

equation (2.10) satisfies the following lowerbound:

N+42 [
kb,5>—+/ sin? (g) .(6) dO + Kga,

where K. o is given by (2.11).
4 Diffusion approximation in the three-dimensional
model

In this section we consider velocity vectors v = (vy,...,vy), where v, € R® and
a jump process that corresponds to physically realistic collisions between two

point particles moving in R%. Such collisions conserve momentum and energy
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and hence
N N
Z|vk|2:N and Zszﬂ.
k=1 k=1

As in the original Kac model, a jump involves only two components of the
velocity vector; in this case the components are three-dimensional and they are

updated by the formula

viw) =vi+ (w- (vj —Vvi)w

viw)=vj — (w-(vj = vi))w,

where w € S2 is picked at random. The generator of the Markov process is in
this case given by
2 *
LW =5 X[ ) = F] B (vi = v/ v = vil)de
1<i<j<N"YS®
(4.1)
where

*

vij(w) = (vl,__.,v;(w),...,v;‘(w),.._,vN),

and the cross-section B maps [—1,1] to R*. The integral in (4.1) is to be
interpreted as a principal value if B is non-integrable. If we define 6 through

cosf =w - (V,’ —v]-)/|v,- —le

we may rewrite an arbitrary term of the sum (4.1) as (see e.g. Desvillettes [11]

p.261)

/ﬁ/ Tr[f(vl,...,vi—%(vi—vj)(l—cos@ (4.2)
o Jo
1

+ §|v, —vj|(cos(@)hv,—v; +sin(¢)iv,_v,)sinb,...v; + %(vz —v;)(1 —cos®)

— 5 1Vi = Vil(COS(@)hv, v, + sin(@)iv,v,) sinb, .., vn) — f]D(O)db db,

where D : [0, 7] - RT and where

Vi —Vj .
(77 hvi—Vj ) ZVi—Vj>
Vi = v

is an orthonormal basis of R?. The relationship between the cross-sections B in
(4.1) and D in (4.2) is stated explicitely in Desvillettes [11] (eq. (7) and (10)).
In order to find the generator of the approximating diffusion for the process

generated by (4.2), we carry out a grazing collision limit similar to the one in
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Subsection 2.2. To this end we let

1

D) = 5

D(5'9),

and let f be an arbitrary C2-function. Replacing D with D? in (4.1), we note
that the upper integration limit of the outer integral becomes 7. A formal

Taylor expansion gives

om 27 1
/ / lf(vl,...,v,-——(vz-—vj)(l—COSO)
0 0 2
1

+ §|vi —vj|(cos(@)hv; v; +sin(¢)iv, v,)sinb,...v; + %(vl —v;)(1 —cosh)

- %|vz~ v 1(co8() s —v, + SI(@)ivi—v,) SN, ..., VN) — f] D% (6)de db
=€ (v = %)+ (75 = V) i = w5 = V]

as § | 0, where
om

C =rlim (1 —cos@)D°(6) db.
510 Jo
Taking the limit in each of the terms and summing we obtain a diffusion operator
known as the Balescu-Prigogine operator, which was introduced in [6] (See also

Lancelotti and Kiessling [20]). This operator may be written

2K} 1 2 2
Lae =37 > vi—vy)-(V;=Vi)+ Vi = vil" (Vi = Vi)
1<i<j<N
2K!
= N=1 > (V= Va)lvi—v[A (Vi = Vy),
1<i<j<N

Here we have introduced the notation with ¢ because, as in subsection 2.4.2,
the diffusion operator will be used to approximate the small jumps in 4.2: We
can then write

LrL+Lge,

where L. is obtained by restricting D to the interval [, 7] and where K} is
chosen to equate the difference in second moments of D and its restriction to
[e, 7).

For simulation purposes the following proposition is relevant.
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Proposition 4.1. Let {W;}i>o be a 3N-dimensional standard Brow-
nian motion. The S*N=*(\/3N)-valued process {V;}i>0 generated by
%Ed,g satisfies the SDE

dV; = —NV,dt + o(V;)dWy,

where the elements of the 3N x 3N matrix o have to be chosen so that

Sll 812 SlN

S Sz ... S
e

SNl SNQ SNN

where S;; are 3 X 3 matrices such that
NA+|v|)I ifi=j
—lvi—v;[? I ifi#j,

and where I is the 3 x 3 identity matriz.

S,'j =

Proof. Tt is well known from the literature, see e.g. (ksendal [24], Theo-
rem 7.3.3, that the generator A of the R*N -valued process {X;}:>o satisfying

dXt = b(Xt)dt + O'(Xt)th

is given by
3N 3N
- of 1 r &f
Af = kZ:lbuw) st 2 g::l(” e (@) g

for f € C2(R®N). Letting v; = (vi1,vi2,vi3)7, the drift coefficients by are
determined by
3
Z (vi—v;)-(V; =V;) = Z Z(Uie —vje)(0je — Oy).  (4.3)
1<i<j<N 1<i<j<N =1

It is an exercise to check that (4.3) equals

N N N 3
SN (Z Ume — va@) Ohe = =N D> vkeOhe,

k=1 {4=1 \m=0 k=1 £=1
where the last equality is due to the assumption of zero momentum. Re-indexing

according to (U11,U12,U13,U21,---UNN—1,UNN) = (U1,U2,U3,U4a---U3N—1,U3N)a
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we get

bk(v) = —va.

The diffusion coefficients (o007 )¢ are determined by

3

Yo wi=viP(Vi=V) = Y vi—vilP D (O — 20imOim + 05),
1<i<j<N 1<i<j<N m=1
(4.4)

so that the coefficient of each 02, is Zjvzl |vi — v;|? for 1 <i < N. Now

N
Do vi—viP=(N = Dvif = 2vi- > v+ > vl
i=1

i#i i
=(N = 1)|vif* = 2vi- (=vi) + N — |v;[?

:N(l + |Vi|2)a

where the second equality is due to zero momentum and constant and equal
to N kinetic energy. Thus, the diagonal elements (00T are N (1 + |v;|?) for
k = 3i —2,3i — 1 and 3i. For the off-diagonal elements we have that 0,0} =
OjmOim, since we assume that the domain of the operator L4 is C2. From (4.4)
it is clear that that the coefficient of 8;,0jm, is given by —2|v; — v;|? for i # j.
This means that the elements (c0”)y of the diffusion matrix are —|v; — v;|?
for (k,€) = (3i — 2,3 — 2),(3i — 1,35 — 1) and (3i,3j) for i # j. It follows that

T

the matrix oo” consists of the 3 x 3 matrices S;; as claimed in the proposition.

|

To sum things up, we get that the generator of the approximating process
to the process generated by the closure of the unbounded operator (4.2) is the
closure of L4 + L., where L4 is the appropriately scaled Balescu-Prigogine
operator and L. is (4.2) with the unbounded cross-section D replaced by its
restriction to [e,7]. A rather detailed numerical investigation of this approxi-

mation is presented in Sundén and Wennberg [27].

A Prerequisities on Feller processes

This appendix contains a few results on Feller processes that are used in the

paper. Standard references are e.g. Ethier and Kurtz [13] or Kallenberg [19].
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Let S be a compact metric space and let C(S) be the Banach space of con-
tinuous functions with norm || f|| = sup,cg |f(2)|- In our work S = SN~1(v/N).
A time-homogeneous Markov process {X;}¢>o on a probability space (2, F,P)

with values in S is associated with a semigroup T = {T}};>0 on C(9) if

E {f(Xt+s)|-7'—§} =T, f(Xy),

for all s,t > 0 and f € C(S). The semigroup T is said to be strongly continuous
if limy_o T3 f = f for all f € C(S) and it is said to be positive if it maps non-
negative functions to non-negative functions. The semigroup T is a contraction
if ||T3|| < 1for all ¢ > 0. A strongly continuouos positive contraction semigroup
is called a Feller semigroup. It can be shown, see e.g. Ethier and Kurtz [13],
chapter 4, that every Feller semigroup is associated with a Markov process with
sample paths in Dg[0, 00), the space of right continous with left limits functions

with values in S. Such a Markov process is called a Feller process.

The infinitesimal generator L of the semigroup is the linear operator defined
by the strong limit
Lf= }1_% w (A1)
The domain, D(L) C C(S), of the infinitesimal generator is the space of all
functions f € C(S) for which (A.1) exists. The infinitesimal generator of a
Feller semigroup uniquely determines the Feller semigroup (see e.g. Kallen-
berg [19] Lemma 19.5). If £ is closed (i.e. if the graph G = {(f, Lf); f € D(L)}
is a closed subspace of C(S) x C(S)) a subspace D of D(L) is a core for L if
the closure of the restriction £|p of £ to D is £ and in this case £ is uniquely
determined by £|p. An operator L is called dissipative if for all f € D(L) and
A > 0 it holds that ||[(A = £)f|| > Al f]]-

The resolvent Ry of a semigroup 7" may be defined for each A > 0 and
feC(S) as

Ryf = /0 b e (T, f)dt, (A.2)

It can be shown for the resolvent of a strongly continuous contraction semi-
group with generator £ (e.g. Ethier and Kurtz [13], Proposition 2.1, p.10) that
Ry = ()\ - ﬁ)_l .
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In order to determine which linear operators that are infinitesimal generators
of Feller semigroups, the Hille-Yosida theorem (see e.g. Kallenberg [19] Theorem
19.11) is very important.

Theorem A.1. (Hille-Yosida) Let £ be a linear operator on C(S) with
domain D(L). Then L is closable and its closure L is the generator of

a Feller semigroup on C(S) if and only if the following three conditions
hold:

(i) D is dense in C(S)

(it) if f(xz,) = sup f(z) > 0 then Lf(z,) <O (A.3)
z€S

(73t) the range of Ay — L is dense in C(S) for some X, > 0.

One should note that if, for an operator £, condition (i7) of the Hilla-Yosida

theorem is satisfied then £ is dissipative.

The following proposition, which can be found in Ethier and Kurtz [13], will

also be used to prove that certain operators are generators of Feller processes.

Proposition A.2. Let £ be a dissipative linear operator on a space L
with domain D(L) and L1, Lo ... finite dimensional subspaces of D(L)
such that US| L, = L. If it holds that LL, C L, then L is closable
and its closure is the generator of a strongly continuous contraction

semigroup on L.

The following theorem relates convergence of generators to weak convergence

of Feller Processes.
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Theorem A.3. (Trotter-Kurtz) Let
{Xi}>0, {X{} >0, {X7}i>0,--. be Feller processes taking wvalues
in a compact space S. Let the corresponding Feller semigroups {T}}¢>0,
{T} >0, {T?}>0,--- have infinitesimal generators L£,L1,Ls ... with
domains D,D1,D, ..., respectively. Let D be a core for D. Then the

following three conditions are equivalent:

(?) If f € D, there exist f, € Dy, with f, = f and L f, — Lf.
(id) If X™(0) % X (0) then X™ 3 X in Dg[0, 00).

(7it) For oll f € C, T]'f = Tif fort > 0.

To use the Trotter-Kurtz theorem in our setting, we need to verify that Kac
models with bounded collision kernels constitute Feller processes. This will be
done using the Hille-Yosida theorem (Theorem A.1). It is also of importance to
find cores of infinitesimal generators and the following lemma will be employed

in doing so.

Lemma A.4. The class C* is a core for the operator L defined by
(2.8) and for the Laplace-Beltrami operator Agn-1(vF)-

Proof. By Lemma 19.8 of Kallenberg [19], a subset D of the domain D(A) of
the generator A of a Feller semigroup on C| is a core for A if and only if for any
A > 0 it holds that (A — .A)D is dense in C. By Corollary 2.7, H is a core for
L so for any A > 0 we have that (A — £)H" is dense in C and thus (A — £)C>
is dense in C' and C* is a core for L.

Note that that Agy_i/xh € HN for h € HN. Letting {T{*}e>0 be the
semigroup generated by the closure of A SN-1(y/N): We note that its restriction
TA |y~ to HY can be written

£k
A _ Z k
k>0

It follows that T~h € HN for h € HIV. By Proposition 19.9 of Kallenberg [19]
HN is a core for Agn_1( /) and thus (A~ Agw_1(/x))H" is dense in C. Conse-
quently (/\—ASN_l(\/N))C"O is dense in €' and thus C* is a core for Agn_( /5

O
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Abstract The non-cutoff Boltzmann equation can be simulated using the DSMC method,
by a truncation of the collision term. However, even for computing stationary solutions this
may be very time consuming, in particular in situations far from equilibrium. By adding an
appropriate diffusion, to the DSMC-method, the rate of convergence when the truncation
is removed, may be greatly improved. We illustrate the technique on a toy model, the Kac
equation, as well as on the full Boltzmann equation in a special case.

Keywords Kac equation - Direct simulation Monte Carlo - Diffusion approximation -
Thermostat - Non-equilibrium stationary state - Markov jump process

The Boltzmann equation describes the evolution of the phase space density of a gas. It is
a nonlinear equation in many dimensions, which makes it difficult to treat by e.g. finite
difference methods. The classical way of solving the Boltzmann equation numerically is by
means of Monte Carlo simulation. The method was first described by Bird (see the book [4]),
but since then many variations on the theme have been published [2, 23, 25, 29].

Very briefly, the DSMC-method can be described as follows: The gas is represented by
a finite (although sometimes rather large) number of particles. The time evolution is then
carried out by alternating a transport step, in which the particles move independently with
their own velocity, and a collision step. The spatial domain of calculation is divided into cells
which should be large enough that it typically contains a not too small number of particles,
but still small enough to take into account the spatial gradients in the problem.

The collision step is then carried out in each cell separately as a jump process in R¥",
where n is the number of particles, and the jumps occur as the velocity change in clas-
sical collisions between randomly chosen pairs of particles. The collisions conserve en-
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ergy and momentum, so the jump process actually takes place on {(vy,...,v,) € R |
Yu=uecR Y vi=W}

The simulation can be understood as a sampling of the solution of a Poisson driven
stochastic differential equation. In the original DSMC methods, the rate of the underlying
Poisson process was always taken to be finite, but there are at least two reasons for con-
sidering infinite (or very large) collision rates. The first one occurs when the density of the
gas is very large in a cell, i.e. when 7 is very large. One way of handling that situation is
to sample the velocity distribution at the end of a collision step as a suitable mixture of a
distribution as the one that results from a moderate number of collisions and the equilibrium
distribution, which is a Maxwellian [25-27].

The other case derives from the fact that many realistic collision models correspond
to long-range potentials, which effectively gives rise to an infinite collision rate. The vast
majority of collisions only change the velocities marginally, and so the rate of change of
momentum due to collisions is finite.

To carry out a Monte Carlo simulation in this situation, one may truncate the jump
process so as to obtain a finite collision rate. It has been proven [10, 13, 14] that truncated
Monte Carlo methods converge as the truncation is lifted, and this has also been illustrated
by numerical experiments. However, we have found that in certain cases, in particular when
the stationary solutions are far from equilibrium, the jump rate must be truncated at a very
high (and so, costly) level to get an acceptable accuracy.

We propose here a method to replace the small jumps by an appropriate diffusion, and
show by example that this gives an important improvement of the accuracy compared to just
ignoring the small jumps. This has been inspired by the works [1, 30], where this technique
is proposed for simulating Lévy processes in R”.

There are, of course, other methods than the Monte Carlo methods, for solving the Boltz-
mann equation, and in particular there are fast methods based on the Fourier transform, that
have been used successfully for the non-cutoff situation [11, 12, 22].

This study was motivated by the difficulty of obtaining accurate estimations of the non-
equilibrium stationary state for a non-cutoff collision kernel, and of the theoretical results
in [5], where the one-dimensional Kac equation with a Gaussian thermostat was studied.
Also in this paper, the main part is devoted to the Kac equation. The diffusion term is then
a Brownian motion on the sphere $”~', and the approximation is very straight forward.
We describe the method in some detail for this case. However, from a conceptual point of
view, the method is not restricted to one-dimensional models, and we have also carried out
numerical calculations for the Boltzmann equation with a thermostat and Maxwellian non-
cutoff collisions. In that case, the diffusion model is more complicated (it is essentially the
Balescu-Prigogine model for Maxwellian molecules [18, 33]), and the actual calculation is
carried out somewhat differently, as described in Sect. 3.

In [34, 36], it is shown that, contrary to the Kac equation, the Boltzmann equation with a
thermostatted force field only has trivial stationary states, and hence it is only interesting to
compare the evolution of the solutions. At the end of the paper, we present some numerical
results for this model.

We note, finally, that for non-Maxwellian molecules the situation is rather different, and
then it may in some cases be more appropriate to go the other way around and to approximate
the diffusion process by a non-cutoff collision process [7].

1 The Kac Equation, the Master Equation and Monte Carlo Simulations

We consider a system of n particles that are entirely characterized by their one-dimensional
velocities v;, i =1, ..., n. These velocities undergo random jumps,
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(Vs ey V) Uy o e, )
= RijkoWisee oy Vjyee, Uy ont, Uy)
=(vi,...,vjc080 —vgsinf, ..., v;sinf + v cosh, ..., v,),
1<j,k<n,0e€]l—mm] (1)

These jumps occur independently with a rate proportional to
n~'b(0)do. )

This is the Kac model of a dilute gas [17]. In the original paper, b(9) = (27)~!, i.e. all
rotation angles 6 are equally probable.

We note that the jumps are rigid rotations in a plane spanned by a pair of velocities,
and hence it is clear that the kinetic energy, W = 5 Ly~ =1 V] 2 is preserved, and therefore this
describes a jump process with values in §”~!(+/2W). It is convenient to choose 2W = n.

Another important thing to notice is the factor n~! in (2); this implies that for the rate
of jumps that involve a particular velocity, e.g. vy, asymptotically does not depend on the
number of velocities, n. However, in many physically realistic cases, the rate of jumps de-
pend on the rotation angle, approximately as |#|~'+® where « € [0, 2[. This implies that
the total jump rate for the vector v= (v, ..., v;,..., U, ..., U,) is infinite. We speak about
non-cutoff models as opposed to the cutoff models where b is replaced by some function b
such that /7 b(6)do < co.

This jump process may equally well be defined by the master equation, which de-
scribes the evolution of a phase space density under the process. We let W(z,:) €
C([0, oo[, L'(§"(y/n))), and assume that ¥ (0, -) is a non negative density on S" ' (/n).
Then W satisfies the equation

oW (t,v) = Z / (W"(t, Rjx—oV) —W"(t,v)b(0)do, 3)

l</<k<n -

which is known as Kac’s master equation. The superscript n denotes the number of variables
in the model, and this corresponds to the number of particles in a cell. Kac proved that if one
considers the family of master equations for ¥,, n =0, ..., 0o, with initial data W that is
symmetric with respect to permutation of the variables, and such that the marginal densities
\IJ]:',O(U, ..., ;) satisfy

lim W} (v, ..., v) = lim ]_[ (). 4

Then also the time evolved density W" (z, v) factories into a product of one-particle marginals
f(t,v)=W](z,v), and that f (¢, v) satisfies the so-called Kac equation

o f =Q(f. 1), &)

where the collision operator Q
0w = [ [ (e)sw) - sz bO)do .. ©
RJ—m
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and where
V', v)) = (vcosH — v, sinf, vsinb + v, cos ). @)

Compared to the real Boltzmann equation, the Kac equation is very easy to analyze math-
ematically, and we refer to [9, 21] for some of the basic results concerning existence and
uniqueness of solutions, trend to equilibrium, etc.

From a numerical point of view, the connection between the jump process described
in (1) and (2) and the Kac equation, is that one may regard

1 n
- > b0 ®)
j=1

as an approximation of the probability density f(z,v), and it has been proven for many
different cases that (8) does indeed converge to f (¢, v) (see [3, 28]).

The solutions of (5) converge to equilibrium exponentially as ¢ increases to infinity, the
equilibrium solution being a Gaussian function with mean zero. It is of interest to study
situations where the stationary solution is not an equilibrium state. This is the case e.g. in
kinetic models for dissipative systems (see e.g. [6, 8, 15]).

Another example comes from molecular dynamics and the introduction of thermostats,
and which is used here as a test case for the Monte Carlo method with Brownian approxi-
mation.

The basic model is the one described in the beginning of this section, with a vec-
tor v € R”, that jumps according to (1). The difference in the thermostat model is that the
velocity field is accelerated by a constant force field E = E(1, ..., 1), which is projected on
the tangent plane to the sphere §"~'(y/n). This means that between jumps, the a velocity
component v; satisfies

d
—vj(z)=E<1— ©)

dt = )

PILI
Y’

The physical interpretation is that each particle is accelerated by the same, constant, force
field of strength E, but that a force field depending on the whole system of particles keeps
the total kinetic energy fixed. The model is described more in details in [34, 36], where
also the corresponding Kac equation is derived and analyzed. This Kac equation takes the
form

0 b
3—f+E—((1—§(t)v)f)=Q(f, 5, (10)
t dv

where
§(t)=/vf(v,t)dv- (11)
R

The collision operator, Q is defined as before, in (6). The stationary states to this equation
are far from Gaussian. One can show that for an integrable kernel, f fﬂ b(0) db, the stationary
state becomes singular for sufficiently large values of E (see [35]), whereas in the non-cutoff
case, the stationary state is C* (see [5]). The latter case is really the motivation for the work
presented in this paper, because it proved very difficult to get accurate numerical results
using a truncated kernel.
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2 Brownian Approximation

The evolution of the n-particle system (including a thermostatted force field of strength E)
can be described by a stochastic differential equation driven by a Poisson random measure:

! e-v(s)
v(t) = v(0) + E/O (e T NOE V(S)) ds

+ Z A[ﬂAj,k(Gj.k)v(s_)N(ds,d@M). (12)

1<j<k<n

Here A (0) is the n X n-matrix

1 0 ... 0 0 ... 0 0

o1 --- 0 0 ... 0 0

00 --- cos#—1 .-~ —sinf@ --- 0 O
Ajp@)=1: : : : : SRR P (13)

o o0 - sin 6 <. cosf—1 --- 0 O

o o0 - 0 0 .. 1 0

00 --- 0 0 .0 1
e=(1,1,...,1) e R", and N(ds, d6) is a Poisson random measure with intensity measure

n~'b(0) dé dt. In the non-cutoff case,

b(®) ~ 16|+ (14)

near 6 =0, and with 0 < o < 2, this implies that the total jump rate is infinite.
The Brownian approximation consists in replacing N (ds, d6) in (12) by a truncated mea-
sure N, (ds, d6) with intensity measure n~'b. () d6 dt, where b is defined by

be(0) = min(b(8), b(€)), (15)

and adding a Brownian term to compensate for the truncated part.

The explicit form of a stochastic differential equation whose solution is a Brownian
motion on an n-dimensional sphere S"~!(r) can be found e.g. in [31], or in @ksendal’s
book [24]:

X(t)=X(0)+/ krW(X(s))ds+/ Vo (X (s)dW(s), (16)
0 0

where {W (#)} is a standard Wiener process in R” with mean zero and whose covariance is
the identity matrix. The matrix o projects the dW onto the tangent plane to S"~!(\/n) at X,
its elements being given by

(x) =8, — Yk
0 (%) = 810 = T (17)
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The drift term ry is

n—1 x

> W (18)

rw(x) = —

The diffusion rate u is computed so as to match the second moment of the truncated part of
the jump measure:

p=pe = 221" o) — bey 02 a0, (19)
n—12J_,

When b(0) = |0|1+%), we find

2n I+a ,_
= T e, 20
M= 130—0)¢ (20)

Details of this calculation will be found in [32], where also the rate of convergence is
analysed. One result is that while the generators of the processes corresponding to (14)
with a truncated kernel converges with rate €27, the convergence rate is €3~ when the
Brownian term is added. When « is close to 2, the improvement is significant.

Adding the force term, like in (12), gives

V(1) = v(0) + / (Fen V() + r (V(s))) ds + / o (v(s) dW (s)
0 0

+ 3 [ aneoveonds.as, @)

1<j<k<N

e-v(s)
[v(s)[2
Sjk —vi(®)ve(t) /Iv|?, and where N, is a Poisson random measure with intensity measure

n1b.(0)do dt.

where rr,(v(t)) = e — v(t) = I'(v)e, I being the matrix with elements I';; =

3 The 3n Dimensional Master Equation and the Boltzmann Equation

The master equation that corresponds to the full Boltzmann equation and with an added
thermostatted force term is [36]

n a
B V4D o (F = Fj wil¥"(t,v)
i=1 !
2
== Z /Z(W"(r,Rj,k,wv)—\y"(r,v))b(e)dw, (22)
1<j<k<n?®

where in this case, v € R¥, and where R j .k, 18 an operator that models the collision of two
particles,

(vj, ve) > < 2 7 T 5

vitue v —ud vitue vy _Uk|w>
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In b(6), 6 = arccos( - =4
=

weletv=(vi,...,v,), wherev; € R3, j=1,...,n. The non-cutoff case again corresponds
to allowing st b(0) dw to diverge. The force field is F = (E,0,0), and j = % Z;'.:] v;. At
the level of the master equation, the Brownian approximation corresponds to truncating the
non-cutoff jump rate, and replacing the truncated part by a suitable diffusion term. For the
Kac equation, the diffusion is just the one given by the Laplace-Beltrami operator on the
sphere §”~!, but here it is rather the Balescu-Prigogine operator for Maxwellian interactions

(see [18, 33]),

). To keep the notation similar to the one-dimensional case,

"
— D (@, = 0oy — ul Py, (B, = By,), (23)
J#k

zz"

ik and u is a constant depending on the level of trunca-

where P} is the 3 x 3-matrix I —
tion.

Given this expression, one can write a stochastic equation much like (21). However, from
a computational point of view, it does not seem to be efficient, because of the effort needed
to compute o d W. An alternative, that gives good results at much lower computational cost,
is to replace (23) by

H 2pl
~ 2}; 3y lv; = vel’Py_,, ) (24)
J#

which corresponds to adding a Brownian motion R;dW; € R? to each velocity, where
R;-er = uz#k(h)j — v’ I — (v; — V) (v; — v)"). The matrices R; can be expressed in
terms of moments and v;, and hence the computational cost is proportional to the number of
particles. The increments (R; dWj, ..., R, dW,) still need to be projected onto the tangent
space of the manifold of constant energy and momentum, but that is an operation that can
be carried out in time proportional to the number of particles. Some numerical results are
given in the following section.

4 Numerical Experiments

The numerical experiments have been carried out in the most direct way, with no large effort
to make the code efficient. The large jumps have been simulated by computing exponentially
distributed time intervals with rate proportional to n ffﬂ 5(9)419. At the end of such an inter-
val, a random pair (j, k) is chosen and the jump is effectuated by rotating the vector (v;, vy)
by a random angle 6 distributed according to 5(8)/ ffn b(6)de.

In the intervals between the large jumps, we solve (21) using a simple explicit Euler
method with a step size that depends on .. The step size is taken to be a given fraction of
the typical rate for the truncated jump process. We have not made a rigorous analysis that
would help in choosing the step size, rather we have numerically tested that the choice gives
relevant answers.

We have computed uniformly distributed pseudo-random variables using the routine
DLARAN from the LAPACK package [19] and to compute normally distributed random
variables, we have used the ziggurat method of Marsaglia and Tsang [20].
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Velocity distribution
0.8 T T T T T
—— FDM E=3.0 f=2.0
— — &=0.2, Brown
07H — & .2, no Brown i
: £=0.02, no Brown
0.6
0.5
0.4
0.3
0.2
0.1
0
-2.5
Velocity distribution (detail)
T T T T
— FDM E=3.0 B=2.0
— - &=0.2, Brown
—- £=0.2, no Brown
065 £=0.02, no Brown i

04! I I I I I
0.4 0.6 0.8 1 12 1.4 1.6

Fig. 1 Simulation results using different values of truncation: the velocity distribution, and an enlargement

As initial data, we have taken 1 (8,1 + 8,—_1).
We have no exact solutions to compare the results with. However, taking the Fourier
transform of the time independent Kac equation, i.e. (10) considered without ¢, gives
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Fig. 2 Simulation results using different values of truncation: time evolution of some of the moments

equation

~ [~ 1 T ~ ~ ~
fé+ l—f(a?) =—— | (f(&cost)f(&sinb) — f(0)f(£))b(O)dH, (25)
vé EyE J_;

where y is the stationary current, which can be explicitly computed. Equation (25) can
be solved accurately numerically using a finite difference method, combined with the
built-in ODE-solvers of Matlab™. Numerical results obtained in this way were pre-
sented in [5], where also a detailed mathematical analysis of the non-cutoff Kac equa-
tion with a thermostat can be found. Although no rigorous error analysis has been car-
ried out, we consider this finite-difference solution to be an accurate solution to the sta-
tionary problem: a fine discretization was used, and the method was found to converge
well.

Another test for the accuracy is to compare the evolution of moments. Also here we
do not have any exact results to compare with, but as with other Boltzmann like equa-
tions of Maxwell type (i.e. models where the collision rate does not depend on the relative
velocity of the colliding particles), one can write a closed system of ordinary differential
equations for the first moments m; = f f(v,Hv* dv, and this system can then be solved
accurately with a numerical ODE-solver. We have used Matlab™ to solve the following
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Fig. 3 Simulation results using different values of truncation for a stronger singularity: the velocity distrib-
ution, and the evolution of moments. Here the effect of the Brownian correction is more evident
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Fig. 4 Simulation results using different values of the number of particles. The simulation is repeated more
times to get comparable results. As few as 50 particles gives a rather good agreement, but as few as five or

even three particles are clearly not enough
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Velocity distribution (detail)

T T T T T
— FDM E=5.0 =2.0
— — £=0.2, Brown, dt=5x10"3
— £=0.2, Brown, dt=10""
€=0.2, Brown, dt=1.0
0.8 R
0.75 ]
0.7 R
0.65 ‘
0.6 0.7 1.4
Central Moments mk, k=124710
4
351 R
3l ]
251 _ S
ol ]
150 R
1 /\
— ODE E=5.0 p=2.0
0.5 21 — ~ £=0.2, Brown, dt=5x103 [|
— £=0.2, Brown, dt=10"
‘ ‘ ‘ ‘ ‘ ‘ €=0.2, Brown, dt=1.0
0 3
0 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8 2

Fig. 5 The evolution between jumps is computed using a simple forward Euler method. The results here
show that the time step is not critical
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- — —¢e=05
£=0.01 |
€=0.5, Diff.

3 3.5

Fig. 6 Simulation of the Boltzmann equation: the distribution of the first velocity component vy, i.e. an
approximation of [pa f (v, 1) dvy dvg atr =0.06

system:

k—1
l’l"lk = Ekmk,1 - Ekmlmk — Akmk + E Bkjmk,jmj,
=1

rLe
A= | (1—=cosfo —sin*0)b(6)de,

—7T

g
By = (’;)/ cos*/ 0 sin’ 0b(6) do,

T

1
m(0) = S (1 + (=Db). (26)

In the numerical calculations we have used b(0) = |6|~'~¢ for different values of 8 =
o+ 1 €]1, 3[, and different values of the force parameter E € [2, 5]. We have also varied n,
the number of particles, and the time step used in solving the SDE, (21).

The first series of results, presented in Figs. 1, 2 (an enlargement), and Fig. 3 (for a
stronger singularity) shows how the results depend on the level of truncation, and compares
this with the result from using a much truncated model but with a Brownian correction. The
parameters used were E = 3.0, 8 = 2.0, n = 2000, and € = 0.2, 0.02,0.002. The time dt
used in the Euler method for approximating the SDE was here taken to be 0.0001 x dty,
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— Exact
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Fig.7 Evolution of the moment Mg ¢ o with truncation at € = 0.5, with and without the diffusion correction.
The moments for the Boltzmann equation are given as a reference. The enlargement shows that although the
reference curve and the curve with the diffusion correction almost coincide, they are not identical

where dfty corresponds to a displacement of order € from the Brownian motion. This is ex-
cessively small, and we will see below that it is far from necessary to get an accurate result.
The calculation was then repeated 200 times to reduce noise. We see that € = 0.2 together
with a Brownian approximation compares very well with a simulation using € = 0.002 with
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Fig. 8 Evolution of the moment My o with truncation at € = 0.5, with and without the diffusion correction.
The moments for the Boltzmann equation are given as a reference

no approximation. The estimates in [32] give a convergence rate of €3~# without the Brown-
ian correction, and a rate of €*~# with the Brownian term added. Hence it is not surprising
to see that, when the singularity in the crossection b(#) is stronger, the influence of the
truncation and of the Brownian approximation is much more important.

Figure 4 shows results for different values of n, the number of particles used in the
simulation. There are at least two reasons for using a large value of n, when simulating
kinetic equations: first, the Boltzmann equation itself assumes a limit of infinitely many
particles, and secondly, a large value of n reduces the noise when computing moments or
other functions. In this series we have taken n x number of simulated trajectories >~ const,
and very large in order to obtain a noiseless result. The calculations show that in fact it is
not necessary to use a very large number of particles to find a good agreement, n = 50 is
quite enough, both to get a reasonable agreement of the distribution functions and of the
evolution of moments. However, with a small number of particles, it is necessary to repeat
the calculations many times to avoid excessive noise in the result.

The last example for the Kac model, Fig. 5, shows some simulations that illustrate the
influence of the time-step in the Euler method for solving the SDE (21). The reference time
step is so large that the mean step is of the order €, and the figure shows that both for
computing the distribution function and the evolution of moments, it is not necessary to
decrease the step size much below the reference value to get a good result.

The simulation is carried out in very much the same way for velocities in R?, the main
difference being the in which the diffusion is added. To compute the matrices R;, we have
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Fig. 9 Evolution of the moment M, ( > with truncation at € = 0.5, with and without the diffusion correction.
The moments for the Boltzmann equation are given as a reference

used routines from the Gnu Scientific Library [16] to evaluate the square root. This is rather
time consuming, and the code spends a major part of the time doing this; still the method
is faster than just using a smaller truncation, also before any attempts have been made to
making the code efficient.

In this case we do not have an alternative method for computing the velocity distribution,
but rather we compare the velocity distribution with a calculation with very small truncation.
Because we are dealing with the case of Maxwellian interactions, there is a closed set of
equations that describe the evolution of moments for the limiting Boltzmann equation also
here.

All calculations were carried out with a constant force field F = (1, 0, 0), and the number
of particles was n = 500. The initial data was 5 (8(1 0,0) + 8(=1,0,0)-

The first graph, Fig. 6 compares the appr0x1mat10ns of

/ f(v)h vy5v15t)dvydvza
R2

with and without the diffusion correction, and a reference solution obtained by carrying out
a simulation with a very small truncation of the crossection.
We also compare the evolution of moments of the form

Jx  Jy
Mj, .. @)= E :kavk}vh
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with the moments (computed as the solution of the closed ODE-system) for solutions to the
limiting Boltzmann equation,

j,t j,V jz
/R3 f(vx,vy,vz,t)voxvo},v()zdvx dvy dv,.

We consider the solutions to the ode’s to be exact. Hence Figs. 7, 8 and 9 show the evolution
of Me.0.0(t), Maoo(t), and M, ,(t), respectively, for a strong truncation of the collision
term & = 0.5, with and without the diffusion correction, and compared with the moments for
the limiting Boltzmann equation.

5 Conclusions

The paper presents a method to compute accurate solutions to non-cutoff Boltzmann equa-
tions in the non-cutoff case, by approximating the small jumps by a diffusion. We have
presented numerical examples showing that it works well, and gives accurate results.

There are several open issues that merit being studied. From a numerical point of view,
of course one would have to find good means of choosing n, the level of truncation, and an
efficient method for solving (21).

Some results that aim at putting the method on a solid theoretical ground will be pre-
sented in [32].

References

1. Asmussen, S., Rosifiski, J.: Approximations of small jumps of Lévy processes with a view towards
simulation. J. Appl. Probab. 38, 482—493 (2001)
2. Babovsky, H.: On a simulation scheme for the Boltzmann equation. Math. Methods Appl. Sci. 8, 223—
233 (1986)
3. Babovsky, H., Illner, R.: A convergence proof for Nanbu’s simulation method for the full Boltzmann
equation. SIAM J. Numer. Anal. 26(1), 45-65 (1989)
4. Bird, G.A.: Molecular Gas Dynamics. Oxford University Press, London (1976)
5. Bagland, V., Wennberg, B., Wondmagegne, Y.: Stationary states for the non-cutoff Kac equation with a
Gaussian thermostat. Nonlinearity 20(3), 583-604 (2007)
6. Bobylev, A.V., Gamba, I.M., Panferov, V.A.: Moment inequalities and high-energy tails for Boltzmann
equations with inelastic interactions. J. Stat. Phys. 116(5, 6), 1651-1682 (2004)
7. Bobylev, A.V., Mossberg, E., Potapenko, L.LF.: A DSMC method for the Landau-Fokker-Planck equation.
In: Proc. 25th International Symposium on Rarefied Gas Dynamics. St. Petersburg, Russia, July (2006)
8. Brilliantov, N.V., Poschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)
9. Desvillettes, L.: About the regularizing properties of the non-cut-off Kac equation. Commun. Math.
Phys. 168(2), 417440 (1995)
10. Desvillettes, L., Graham, C., Méléard, S.: Probabilistic interpretation and numerical approximation of a
Kac equation without cutoff. Stoch. Process. Appl. 84(1), 115-135 (1999)
11. Filbet, F.,, Pareschi, L.: Numerical solution of the Fokker-Planck-Landau equation by spectral methods.
Commun. Math. Sci. 1(1), 206-207 (2003)
12. Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in N log N. SIAM J. Sci. Comput.
28(3), 1029-1053 (2006)
13. Fournier, N., Méléard, S.: Monte-Carlo approximations and fluctuations for 2D Boltzmann equations
without cutoff. Markov Process. Relat. Fields 7, 159-191 (2001)
14. Fournier, N., Méléard, S.: A stochastic particle numerical method for 3D Boltzmann equations without
cutoff. Math. Comput. 71, 583-604 (2002)
15. Goldhirsch, L.: Inelastic kinetic theory: the granular gas. In: Topics in Kinetic Theory, pp. 289-312.
AMS, Providence (2005)
16. GNU scientific library. See http://directory.fsf.org/GNU/gsl.html

@ Springer



312 J Stat Phys (2008) 130: 295-312

17. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathemat-
ical Statistics and Probability, 1954—-1955, vol. III, pp. 171-197. University of California Press, Berkeley
(1956)

18. Kiessling, M., Lancellotti, C.: On the Master-Equation approach to kinetic theory: linear and nonlinear
Fokker-Planck equations. Transp. Theory Stat. Phys. 33, 379-401 (2004)

19. LAPACK: Linear Algebra PACKage. Available at http://www.netlib.org/lapack/

20. Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat. Softw. 5(8),
1-7 (2000)

21. McKean, H.P.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Ration.
Mech. Anal. 21, 343-367 (1966)

22. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Com-
put. 75(256), 1833-1852 (2006)

23. Nanbu, K.: Direct simulation scheme derived from the Boltzmann equation. J. Phys. Soc. Jpn. 49, 2042—
2049 (1980)

24. (ksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

25. Pareschi, L., Russo, G.: Time relaxed Monet Carlo methods for the Boltzmann equation. SIAM J. Sci.
Comput. 23, 1253-1273 (2001)

26. Pareschi, L., Trazzi, S.: Numerical solution of the Boltzmann equation by time relaxed Monte Carlo
(TRMC) methods. Int. J. Numer. Methods Fluids 48, 947-983 (2005)

27. Pareschi, L., Wennberg, B.: A recursive Monte Carlo method for the Boltzmann equation in the
Maxwellian case. Monte Carlo Methods Appl. 7, 349-357 (2001)

28. Pulvirenti, M., Wagner, W., Zavelani Rossi, M.B.: Convergence of particle schemes for the Boltzmann
equation. Eur. J. Mech. B Fluids 13(3), 339-351 (1994)

29. Rjasanow, S., Wagner, W.: Stochastic Numerics for the Boltzmann Equation. Springer Series in Compu-
tational Mathematics, vol. 37. Springer, Berlin (2005)

30. Rosinski, J., Cohen, S.: Gaussian approximation of multivariate Lévy processes with applications to
simulation of tempered and operator stable processes. Preprint

31. Stroock, D.: On the growth of stochastic integrals. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 18, 340—
344 (1971)

32. Sundén, M., Wennberg, B.: The Kac master equation with unbounded collision rate. In preparation

33. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D.
(eds.) Handbook of Mathematical Fluid Mechanics. North-Holland, Amsterdam (2002)

34. Wennberg, B., Wondmagegne, Y.: The Kac equation with a thermostatted force field. J. Stat. Phys.
124(2-4), 859-880 (2006)

35. Wennberg, B., Wondmagegne, Y.: Stationary states for the Kac equation with a Gaussian thermostat.
Nonlinearity 17, 633-648 (2004)

36. Wondmagegne, Y.: Kinetic equations with a Gaussian thermostat. Doctoral thesis, Department of Math-
ematical Sciences, Chalmers University of Technology and Goéteborg University, Goteborg (2005)

@ Springer



