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Abstract

Recent breakthroughs in imaging of skin tissue reveal new details on the distribution of nerve
fibers in the epidermis. This thesis deals with analysis and modelling of such patterns. Our par-
ticular interest lies in comparing between epidermal nerve fiber patterns coming from healthy
subjects and patterns coming from subject suffering from diabetes. Development of diagnostic
statistical tools for determining early stages of diabetic neuropathy may allow diagnosis early in
the progress of the disease when neuropathy is most likely to respond to treatment. In this thesis
we suggest some spatial analysis techniques to detect differences in ENF patterns coming from
subjects in different states of neuropathy. Furthermore, we introduce a set of models based on
bivariate point processes serving as a starting point in modelling nerve fiber patterns. Fiber-like
patterns are constructed by connecting the points of the processes, according to predetermined
rules, via a line segment. We also derive integral formulas for the correlation between the vol-
umes of the typical Poisson-Voronoi cell and the typical Stienen sphere in arbitrary dimensions.

Key words: Diabetic neuropathy, Epidermal nerve fibers, K-function, Poisson process, Pair-
correlation function, Random set generated Cox process, Spatial point/fiber process, Stienen
model, Voronoi tessellation
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My advisors Aila Särkkä, Tommy Norberg and Mats Kvarnström for encouragement,
ideas, advise and a lot of patience. Without your help, this thesis would not be.

Lance Waller for great ideas and interesting discussions. Also the whole Waller family
for their hospitality and warmth.

Everyone at the departement, and to mention a few among the ”seniors” that have had
an extra impact on me during my years at mathematical sciences: Patrik Albin, Rossitza
Dodunekova, Olle Häggström, Jacques de Mare, Torgny Lindvall, Holger Rootzén,
Mats Rudemo and Kerstin Wiklander. Furthermore, Marianne Rossander-Bäckström
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Chapter 1

Introduction

Stochastic geometry and spatial statistics are important tools to model and analyse ran-
dom geometric structures. They are used in a variety of fields such as forestry, astron-
omy, epidemiology, medicine, material science, economy and telecommunication, to
name a few. In this thesis we are interested in modeling and analysing epidermal nerve
fiber (ENF) patterns. ENFs are sensory fibers in the most outer layer of the skin (epi-
dermis) and sense touch, heat, pain etc. An introduction to stochastic geometry can be
found in [21] and for a more specific look at spatial statistics and point processes we
suggest [2] and [3].

Epidermal nerve fibers grow from what is known as a dorsal root ganglion cell, a cell
which relays sensory information to the central nervous system, to the basement mem-
brane of the dermis and then grows from a trunk up into the epidermis and branch out.
Although ENFs had long been assumed to exist, partly by theoretical assumptions and
some empirical observations, no conclusive evidence of their existence was available
until the late 1980:s [22, 7]. The development of both staining and imaging led to the
possibility to establish the existence of ENFs via confocal microscopy. Once methods
for visualizing and identifying ENFs were established, research quickly moved toward
quantification of such fibers, especially to assess their potential diagnostic value. In
particular, Kennedy et al. [8] report diminished numbers of ENFs per surface area in
subjects suffering from diabetic neuropathy, described more in detail below, as well as
reduced summed length of ENFs per volume, that is, reduced “coverage” of the epider-
mis by ENFs. For a more in-depth introduction to ENFs the reader is referred to the
introduction in the first paper of the thesis, Paper I. In Figure 1.1 a side view of nerve
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fibers is displayed.

Figure 1.1: Nerve fibers in the epidermis.

The interest in ENFs lies not just in an overall picture but more specific, as described
above, in their potential diagnostic value in connection to diabetic neuropathy. Diabetic
neuropathy is a family of nerve disorders which a person with diabetes potentially can
suffer from. As many as 65 percent of all diabetic patients suffer from neuropathies.
There are four classes of neuropathies, peripheral, autonomic, proximal and focal. We
are focused on peripheral diabetic neuropathy, which affects and displays symptoms in
peripheral parts of the body, i.e. toes, feet, legs, hands, and arms. The symptoms in-
clude numbness, tingling, sharp pains, extreme sensitivity to touch and loss of balance
and coordination, to name a few. There are no methods for early diagnose of this dis-
ease, and symptoms often appear at the point when treatment is ineffective. If changes
in ENF patterns appear early in the disease state then the idea is to use point pattern
analysis as a diagnostic tool.

In Paper I, we perform an exploratory analysis of the pattern of nerve trunks, which
is the point at which the fiber enters the epidermis. Here we are using second-order
quantitative methods from point process theory. We are trying to detect systematic dif-
ferences in patterns coming from subjects with different degrees of diabetic neuropathy.
There are four different classes in which the subjects are divided into. These are named
normal, mild, moderate and severe, where normal means non-diabetic. The classifica-
tion is done according to medical and physical testing.

In Paper II we present a class of marked Poisson process models, motivated by ENF.
These are based on a bivariate point process (Φb, Φe) where the base process Φb is a
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Poisson process and the ending process Φe is a random set generated Cox process (RS-
GCP), a point process model introduced by Penttinen and Niemi [17]. In an ENF setting
the random closed set in the RSGCP represents an underlying heterogeneity affecting
the ending process. The fiber pattern is obtained by connecting each point of the ending
process to its nearest neighbor in the base process. This type of construction, when also
Φe is a homogenous Poisson process, was introduced by Foss and Zuyev [6] as a model
for telecommunication networks. In the third paper, Paper III, we explore two further
point process models for modelling ENF patterns. The first is based on two indepen-
dent Poisson processes. Each point in Φe is connected via a line segment to a randomly
chosen point of Φb. In the second model Φb can be a general point process and serves
as parent process in a Neyman-Scott type of cluster process, where the points in Φe are
the offsprings. We scatter the offspring around the parent points and connect them to
their respective parent point via a line segment. In both Paper II and Paper III, we look
at quantities such as number of branches per base, branch lengths (individual and total)
and angle distribution (the angle between an x-axis going trough the base point and
the line segment connecting the ending point). In the RSGCP and the first approach of
Paper III full distributional results are hard to obtain and most results concern the first
two moments. In the second approach of Paper III we define these distributions of main
characteristics ourselves. In Figure 1.2 a birds-eye view of ENF patterns is displayed.
The models introduced in Paper II could be used as starting points when modelling the

Figure 1.2: Sample from a non-diabetic patient.

nerve fiber patterns. These models were however developed without having data and
are of a more speculative and hypothetical nature. After obtaining data, the models in
Paper II were modified according to what we observed. This process resulted in Pa-
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per III. During the data mining process we discovered that the constraint that ending
only connects to the nearest base was not valid. Still, most endings were connecting to
their respective nearest neighbor in the base process but some did connect to the sec-
ond nearest or the third nearest and so on. That was the reason why we introduced a
modified version of the model in Paper II. We further confined to the case when Φe is
a homogenous Poisson process. Still, the models are very simple and we only look at a
few limited features of the underlying structures. Most likely more realistic models are
also more complex leading to simulation based approaches. Furthermore, the models
we discuss are in 2 dimensions but the ”true” data is in 3D. Since the fibers first shoot
up and then start to spread out in a narrow band, a 2D-model is appropriate but it would
be worth investigating whether 3D models would give some additional advantage. Also
some dynamic time-space modelling should be of interest. There are some very inter-
esting aspects of nerve fiber growth in connection with skin wounds.

The last paper, Paper IV, is of a more theoretical character and deals with the corre-
lation between the volumes of the typical Poisson-Voronoi cell and the typical Stienen
sphere in arbitrary dimensions. On the real line an analytical expression is obtained,
and for d ≥ 2 an integral formula is given. Using this formula it is possible to obtain
numerical estimates of the correlation in arbitrary dimensions.

The outline of the thesis is as follows. In Chapter 2 we give some basics of stochastic
geometry and spatial statistics. This section serves as a brief guide to the background
material needed to better understand the appended papers. Further, in Chapter 3 we give
summaries of Paper I-IV.
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Chapter 2

Stochastic Geometry

In this introduction we will try to give the background on stochastic geometry and spa-
tial statistics needed to read the four papers. First we give a general definition of point
processes in Rd and recall some point process models which are then further discussed
in the articles. In Paper IV we regard a d-dimensional Poisson process, while in Papers
I-III only planar point process theory is needed. Further, estimation techniques (in 2D)
of some commonly used statistics is discussed in Section 2.1.3. In Paper I we regard the
ENFs as realizations of fibre processes and therefore we give some basic definitions in
Section 2.2. The Voronoi tessellations and Stienen model are discussed in Section 2.3.
If the end points of the ENFs are connected to the nearest base point, they are connected
to the base that is in the same Voronoi cell, based on the tessellation generated by the
base points. Furthermore, the Stienen model is studied further in Paper I and Paper IV.

Most of the material in this section is based on Stoyan, Kendall and Mecke [21] and
Diggle [2] which are warmly recommended as starting points in this subject. Other
recommended books are Illian et al [3], Møller and Waagepetersen [14] and Barndorff-
Nielsen et al (eds.) [20].
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2.1 Point Processes

2.1.1 Definitions

A point process, denoted by Φ, models a random set of points in some metric space. We
will restrict our attention toRd. Formally, Φ is a measurable mapping from a probability
space (Ω,F ,P) into a measurable space [S,S], where S is the family of all locally finite
and simple set of points, ϕ, inRd. A set being simple means that no two points are equal
and it being locally finite means that each bounded subset of Rd contains only a finite
number of points. The σ-algebra S is the smallest σ-algebra making all the mappings
ϕ 7→ ϕ(B) measurable, for Borel sets B, where ϕ(B) is the number of points of ϕ that
lie in B. A point process can be regarded as either a random set of points or a random
measure, counting the number of points in a region. We will use the notation Φ in both
cases. These two different ways of viewing a point process lead to two different types
of events. In the first case one looks at events of the type {Φ ∩ B = ∅}, the event that
there are no points of Φ in B, while in the second {Φ(B) = n}, the event that there are
n points of Φ in the set B. A point process Φ induces a distribution P , defined by

P (Y ) = P{ω ∈ Ω : Φ(ω) ∈ Y }, for Y ∈ S.

The point process is said to be stationary, i.e. translation-invariant, if

P (S) = P{Φ ∈ S} = P{Φx ∈ S} = P (S−x),

and isotropic, i.e. rotation-invariant, if

P{Φ ∈ S} = P{rΦ ∈ S},

for S ∈ S . Here Φx = {y ∈ R2 : y − x ∈ Φ} and rΦ = {y ∈ R2 : r−1y ∈ Φ}
for a rotation r about the origin. If Φ is both stationary and isotropic, Φ is said to be
motion-invariant.

The intensity measure is defined as Λ(B) = E[Φ(B)], for a Borel-set B. If Φ is
stationary, then Λ(B) = λνd(B), where λ is a non-negative constant and νd is the
d-dimensional Lebesgue measure. The constant λ can be interpreted as the mean num-
ber of points per unit volume, and is called the intensity. The following theorem is
fundamental in the theory of point processes.

6



Theorem 1. (Campbell Theorem) Let Φ be a point process with intensity measure Λ.
Then for any measurable function f : Rd → R+, we have that

E

[∑

x∈Φ

f(x)

]
=

∫
f(x)Λ(dx) = λ

∫
f(x)dx,

where the last equality holds only if the point process is stationary with intensity λ.

Two important distribution functions are the spherical contact distribution function (alt.
the empty space distribution function) defined as

H(r) = 1− P{Φ(b(o, r)) = 0}, for r ≥ 0,

where o denotes the origin and b(o, r) denotes a ball centered at the origin with radius
r, and the nearest neighbor distance distribution function defined by

D(r) = 1− P{Φ(b(o, r)) = 1| o ∈ Φ}.

The interpretation of H is that it is the distribution function of the distance from a ”ran-
dom” point in Rd to the nearest point of Φ. The function D(r) can be interpreted as
the distribution function of the distance from a typical point of the process to its nearest
neighbor.

For a point process, there are analogous concepts of moments as for random variables,
but in this setting we regard moment measures. In the following, let f : Rd → R+ be
an arbitrary measurable function. The nth order moment measure of Φ is the measure
µ(n), defined on Bnd by

E


 ∑

x1,...,xn∈Φ

f(x1, ...,xn)


 =

∫

Rnd

f(x1, ...,xn)µ(n)(d(x1, ...,xn)),

where B denotes the Borel σ-algebra. This implies that

µ(n)(B1 × ...×Bn) = E [Φ(B1)...Φ(Bn)] ,

i.e. the expected number of n-tuples where the first point is in B1, the second in B2,...,
and the nth in Bn. The nth order factorial moment measure of Φ is the measure α(n),
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defined on Bnd by

E




∑

x1,...,xn∈Φ
xi 6=xj , i,j=1,...,n

f(x1, ...,xn)


 =

∫

Rnd

f(x1, ...,xn)α(n)(d(x1, ...,xn)),

i.e. only ”real” n-tuples (without multiple points) are counted. If α(n) is locally fi-
nite and absolutely continuous w.r.t. the nd-dimensional Lebesgue measure, then there
exists a density %(n)(x1, ...,xn), called the nthorder product density, s.t.

E




∑

x1,...,xn∈Φ
xi 6=xj

f(x1, ...,xn)


 =

∫

Rnd

f(x1, ...,xn)%(n)(x1, ...,xn)dx1...dxn.

The nth order product density has the following interpretation: if Z1, ..., Zn are pairwise
disjoint spheres with centers x1, ...,xn and infinitesimal volumes dV1, ..., dVn, then
%(n)(x1, ...,xn)dV1, ..., dVn is the probability that there is a point of Φ in each of the
spheres Z1, ..., Zn. If Φ is motion-invariant, then %(2) only depends on the distance
between x1 and x2, i.e.

%(2)(x1,x2) = %(2)(r),

where r = |x1 − x2|. We can define two other functions characterizing the second
order properties of a point process via the second order product density. These are the
K function

K(r) =
d bd

λ2

∫ r

0

td−1%(2)(t)dt, (2.1.1)

where bd denotes the volume of the d-dimensional unit ball, and the pair-
correlation function

g(r) =
%(2)(r)

λ2
=

1
d bd

dK(r)
dr

. (2.1.2)

The K-function is proportional to the expected number of further points of the process
within distance r of a randomly chosen process point, and g is essentially the derivative
of K. Often a variance-stabilized version of the K-function is used, see Besag and
Diggle [1], namely

L(r) =
(

K(r)
bd

) 1
d

.
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The K-function can be defined using the reduced Palm distribution (at the point x),

P !
x(Y ) = P{Φ \{x} ∈ Y |x ∈ Φ}. (2.1.3)

Then
λK(r) = E!

o[Φ(b(o, r))],

where E!
o denotes expectation w.r.t. the reduced palm distribution (at the origin). The

Palm distribution is defined as

Px(Y ) = P{Φ ∈ Y |x ∈ Φ}. (2.1.4)

One has to keep in mind that the events that we condition on have probability zero so
these distributions have to be carefully defined. For a more rigorous definition of the
Palm distributions see e.g. Stoyan, Kendall and Mecke [21].

2.1.2 Point Process Models

In this section we give a short introduction the point process models used in this thesis.

Poisson Process

A point process Φ with intensity measure Λ is called a Poisson process if

1. The number of points, Φ(B), in a bounded Borel set B has Poisson distribution
with mean Λ(B).

2. If A and B are disjoint Borel sets, then Φ(A) and Φ(B) are independent.

In this general setting Φ is not stationary. Often Λ is assumed to have a density with
respect to the Lebesgue measure, i.e. Λ(B) =

∫
B

λ(x)dx, for Borel sets B. The den-
sity λ(·) is called the intensity function. Further, if λ(x) = λ, then Φ is stationary. It
follows from conditions 1 and 2 above that conditioned on the number of points in a
set S, the positions of the points are independent and uniformly distributed in S. The
Poisson process setting is often referred to as complete spatial randomness (CSR) and
serves as a baseline model.
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It can be shown that for a Poisson process the reduced Palm distribution coincides with
the distribution of the process P . It can further be shown that the Poisson process is
characterized by this, see e.g. Jagers [4]. This implies that

λK(r) = E!
o[Φ(b(o, r))] =

∫
ϕ(b(o, r))P !

o(dϕ) =
∫

ϕ(b(o, r))P (dϕ)

= E[Φ(b(o, r))] = λvd(b(o, r)) = λbdr
d,

i.e. K(r) = bdr
d. Furthermore, we obtain that g(r) = 1, %(2)(r) = λ2 and L(r) = r

for a Poisson process.

Cox Processes

A further generalization of the Poisson process leads to Cox processes (or Doubly
Stochastic Poisson Processes). Here Λ is a random measure and Φ is a Poisson process
conditionally on Λ. One basic example of a Cox process would be to let the intensity
measure (or driving random measure) be Λ = Iνd, for a non-negative random variable
I . A more interesting example of a Cox process is the log Gaussian Cox process [12],
where log Λ is a Gaussian random field. If the random field is stationary then the first
and second-order characteristics of the Cox process are funtions of the mean and co-
variance function of the random field.

Neyman-Scott process
A well known Cox process is the Neyman-Scott process which is constructed as fol-
lows. First, parent points are scattered according to a stationary Poisson process, and
then, a random number of daughter points are scattered independently and identically
distributed around each parent point. The parent points are then removed, so one only
observes the daughter points. The resulting process is stationary if the daughter process
is stationary and if the distribution that governs the scattering of daughter points in ad-
dition is isotropic then the process is motion-invariant. It can be shown that the intensity
of the process is λ = λpc, where λp is the intensity of the parent process and c is the
mean number of daughter points per parent. The Neyman-Scott process is an example
of a shot noise Cox process [13].

Random set generated Cox process
If we define the driving random measure as Λ(x) = λ11Θ(x) + λ21Θc(x), where Θ
is a random closed set, see e.g. [21] the resulting process is known as a random set
generated Cox process (RSGCP). Conditionally on Θ the process is a Poisson process
of two different intensities, one inside Θ and another outside of Θ. This type of model
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was introduced by Penttinen and Niemi [17], motivated by an application in forestry.
The random set Θ is thought of as to represent an underlying heterogeneity. If Θ is
stationary and isotropic then so is the Cox process, and the intensity and second-order
characteristics are functions of the volume fraction, p and covariance, C(r) of the ran-
dom set. These quantities are defined as p = P (o ∈ Θ) and C(r) = P (o ∈ Θ, r ∈ Θ),
r = |r|, respectively.

Hard-Core Processes

Poisson processes can also be used as starting processes when so-called hard-core pro-
cesses are constructed. In this type of process any point cannot lie closer than a distance
h > 0 to the other points of the process. Two examples of hard-core processes are the
Matérn I and II hard-core processes [9]. In Matérn I only the points having the nearest
neighbor farther away than h are retained. Matérn II is a hard-core process produced by
a dependent thinning of a Poisson process Φ. Each point is given a mark independently
from the U(0, 1)-distribution. A point x ∈ Φ is retained if there are no points in b(x, h)
having a longer mark than the point x has. A generalization of Matérns processes can
be found in Månsson and Rudemo [15].

2.1.3 Estimation

When analysing point patterns, Φ observed in a bounded window W ⊆ R2, the analysis
often starts by estimating some first and second-order characteristics. In this section we
discuss estimation of intensity and the second-order characteristics K and %(2). There
are numerous other estimation techniques than the ones presented here, see e.g. [21].
The intensity, λ, can be estimated by

λ̂ =
Φ(W )
|W | ,

where |W | denotes the area of W . To estimate the K-function, we will use the estimator
introduced by Ripley [18] namely

K̂(r) =
|W |

Φ(W )2
∑

x,y∈Φ∩W

k(x, y)1{0<|x−y|≤r}, (2.1.5)
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where the weights k(x, y) are defined as 2π
αxy

. Here αxy denotes the sum of all angles
of the arcs lying in W of a circle with centre x and radius |x − y|. If αxy = 2π, the
circle lies completely in W and point gets weight 1. The points for which the circle
lies partly outside W have weights that are greater than 1. The product density and the
pair-correlation function can be estimated using the edge corrected density estimator by
Fiksel (see [5])

%̂(2)(r) =
1

2πr

∑

x,y∈Φ∩W

c(|x− y| − r)
|Wx ∩Wy| , (2.1.6)

where c(·) is a kernel and Wx = {z ∈ R2 : z−x ∈ W}. Fiksel suggests the Epanech-

ninov kernel c(x) = 3
4

(
1− x2

)
1{|x|<1} and bandwidth 0.1

√
5
λ .

One of the initial steps of analyzing spatial point pattern data is to test whether they
can be regarded as a realization of a Poisson process or not. As seen above, for a Pois-
son process K(r) = πr2 and %(2)(r) = λ2. If K̂(r) or ˆ%(2)(r) deviate too much from
what they should be under CSR then one should reject the hypothesis that the observed
pattern is generated by a Poisson process. Further, K̂(r) > πr2 indicates clustering and
K̂(r) < πr2 indicates regularity.

2.2 Fiber Processes in the Plane

2.2.1 Definitions

A fiber process in the plane models a random collection of curves in R2. A fiber is a
sufficiently smooth simple curve, of finite length, in the plane. That is, the set {γ(t) :
t ∈ [0, 1]} is called a fiber if γ ⊂ R2, is the image of a curve γ(t) = (γ1(t), γ2(t)), s.t:

1. γ : [0, 1] → R2 ∈ C1,

2. |γ′(t)|2 = γ′1(t)
2 + γ′2(t)

2 > 0, ∀ t

3. γ is one-to-one, i.e. the fiber does not intersect itself.
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Further, γ also denotes a length measure, defined as

γ(B) =
∫ 1

0

1B(γ(t))
√

γ′1(t)2 + γ′2(t)2dt, B ∈ B2.

That is, γ(B) is the length of the part of the fiber γ lying in B. A fiber system, ψ, is
a closed subset of R2 which can be represented as a union of at most countably many
fibers γi. Furthermore, any compact set is intersected by at most a finite number of
fibers and distinct fibers can only have end-points in common. The length measure,
corresponding to ψ is defined in terms of the measures γi by

ψ(B) =
∑

γi∈ψ

γi(B).

The definitions above prevent fiber systems from having locally dense accumulations
of self-intersection points. The locally finite and smoothness conditions ensure that the
measure ψ is locally finite.

The family of all planar fiber systems is denoted by F and the corresponding σ-algebra
by F , where F is generated by sets of the form

{ψ ∈ F : ψ(B) < x},

for B ∈ B2 and x ∈ R. A (planar) fiber process, Ψ, is a random variable with values in
[F,F ]. The distribution of the fiber process is the measure P generated by Ψ, on [F,F ].
There are analogous definitions of stationarity and isotropy as in the point process case.

Moment Measures

The intensity measure, ΛΨ, of Ψ is defined by

ΛΨ(B) = E[Ψ(B)], B ∈ B2,

and is the expected total fiber length in the set B. If Ψ is stationary, we have that

E[Ψx(B)] = E[Ψ(Bx)],

and
ΛΨ = λLν2,
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where λL ∈ [0,∞] is the mean fiber length per unit area.

The second moment measure, µ
(2)
Ψ , of Ψ is given by

µ
(2)
Ψ (B1 ×B2) = E[Ψ(B1)Ψ(B2)], B1, B2 ∈ B2.

For a stationary fiber process, it can be expressed by

µ
(2)
Ψ (B1 ×B2) = λ2

L

∫

R2

∫

R2
1B1(x)1B2(x + h)dxKf (dh),

for B1, B2 ∈ B2, where Kf is the reduced second moment measure of Ψ. In the case of
stationarity and isotropy it is enough to consider the reduced second moment function
Kf , also referred to as the fiber K-function, defined as

Kf (r) = Kf (b(o, r)), for r ≥ 0, (2.2.1)

where b(o, r) denotes a circle with center o and radius r. That is, λLKf (r) is the
expected fiber length within distance r of a randomly chosen fiber point.

2.2.2 Estimation

The following edge corrected estimator of λLKf is used, see Stoyan, Kendall and
Mecke [21]:

κ(r) =
1

#{Ψ ∩ T}
∑

x∈Ψ∩T

k(x, r)Ψ(S(x, r,W )). (2.2.2)

Here T is a test system. In our case T consists of parallel lines, e.g. the pixels in a
digital image. Furthermore,

k(x, r) =
2π

αx,r
,

where αx,r is the sum of all the angles of the arcs in W of a circle with center x and
radius r, the same as in the case of Ripley’s estimator of the K-function. In Figure 2.1
αx,r = 2π − (β + λ). Further, S(x, r,W ) denotes the regions of a circle, centered at
x with radius r, with the whole arc lying in W . S(x, r,W ) is the marked area of the
circle in Figure 2.1. This estimator is unbiased (no results of the variance are known).

14



W r

S(x,r,W)

x β

λ
α=2π−(β+λ)

Figure 2.1: Graphical explanation of S(x, r,W ) and αx,r.

The intensity, λL can be estimated by:

λ̂L =
Ψ(W )
|W | . (2.2.3)

The estimator of Kf (r) then becomes:

K̂f (r) =
κ(r)

λ̂L

.

2.3 Poisson-Voronoi Tessellations and the Stienen model

Let Φ be a homogenous Poisson process in Rd with intensity λ ∈ (0,∞). Now, let

V = {Vx : x ∈ Φ },

for
Vx = {y ∈ Rd : ||y − x|| ≤ ||y − z||, z ∈ Φ}.

Then, V is known as a Poisson-Voronoi tessellation. The points in Φ are called gener-
ators (or nuclei) of V . The Poisson-Voronoi tessellation was introduced by Meijering
[10]. For a more in-depth view on Poisson-Voronoi Tessellations, Møller [11] and Ok-
abe et al. [16] are good starting points.

Around each point x ∈ Φ, let us now place a sphere with diameter being equal to
the distance to the nearest neighbor of x. Another way of looking at this is to attach the
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following mark to each point of Φ,

Rx = min
y∈Φ :y 6=x

{||x− y||/2}.

Then, the random closed set

S =
⋃

x∈Φb

b(x, Rx), (2.3.1)

is called the Stienen model and was introduced by Stienen [19] motivated by an applica-
tion in material science. A plot of both the tessellation and the Stienen model generated
from the same realization of a Poisson process can be seen in Figure 2.2.
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−0.25

−0.2

−0.15
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−0.05
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0.15

0.2

0.25

Figure 2.2: Realization of a Poisson-Voronoi tessellation and the Stienen model.
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Chapter 3

Summary of Papers

3.1 Paper I: Second-Order Spatial Analysis of Epider-
mal Nerve Fibers

This paper deals with exploratory analysis of the ENF data. The tools used are second
order characteristics of both planar point and fiber processes and the main goal is to
detect differences between spatial patterns coming from diabetic and non-diabetic sub-
jects. We use both the L-function and the pair-correlation function to compare the nerve
trunk patterns (without the fibers) from the non-diseased and the three diabetic groups.
Furthermore, we incorporate the whole fibre structure into the analysis. To be able to
compare the fiber patterns, we first need to apply some image analysis tools in order
to ”clean” the data. Then, the fiber K-function is used. Since some of the fibres die
due to diabetes, the patterns coming from diabetic subjects, have less nerve points than
the non-diabetic pattern. Since second-order characteristics are invariant under random
thinning these are used to test if the ”diabetic patterns” are random thinnings of normal
patterns. Monte Carlo methods are used in order to test whether the spatial patterns of
diseased and non-diseased patients differ.

Since we have only a very limited amount of data, we can not draw any general con-
clusion from this analysis. However, we introduce some ideas that can be used and will
serve as an initial step towards larger studies.
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3.2 Paper II: A marked Poisson process induced by a
random set generated Cox process

In this paper we suggest a set of point process models which can work as starting points
in modelling epidermal nerve fiber patterns. First, some simplifications of the complex
patterns are made, for example replacing the irregular paths of the fibers by straight
lines. This can be justified by the fact that only the nerve endings transmit heat, pain
etc. and therefore, the distances between endings and the corresponding trunks are
most important. The main idea is that ENFs will more or less try to uniformly cover the
body. This means that two nerve trunks lying close to each other are not likely to grow
branches into each other, they will rather extend branches into open spaces. This basic
feature is captured by the following model. We regard a marked point process model
based on a bivariate point processes consisting of two stationary point processes made
up of bases and endings, respectively. The idea is to have a branch system produced
by connecting all points in the ending process to their respective closest neighbor of the
base. This will make branches ”grow” into open spaces and furthermore, branches will
not cross. The base process, Φb, is a homogenous poisson process and the ending pro-
cess is a random set generated Cox process (RSGCP) [17]. The two main features this
model captures are that endings are more probable to be in regions further away from
the closest neighboring base points and Θ represents some underlying heterogeneity. In
the ENF application this would be in the epidermis.

The characteristics we are mainly interested in are number of branches per base, branch
lengths (individual and total per base) and angles between the segment joining bases and
their associated endings and the x-axis. We obtain integral expressions for mean, vari-
ance and covariance of an additive functional for both a general Θ independent of Φb

and also in the case when Θ is the Stienen model generated by Φb. This construction in-
duces a hierarchical dependence between Φe and Φb and allows for different intensities
in different regions of the Voronoi cells, based on the distances between the generators
of the tessellation.

3.3 Paper III: Development and evaluation of spatial
point process models of epidermal nerve fibers

We define two stochastic models describing the growth of branching systems, moti-
vated by the growth and development of epidermal nerve fibers (ENFs) in human skin.
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The models derive from two point processes, (Φb, Φe), describing the base and ending
points of the fibers. Each point of Φe (the end point process) is connected to a unique
point in Φb (the base point process). In the first model, both Φe and Φb are Poisson pro-
cesses, yielding general baseline results. In the second model, we model the branching
structure more directly by defining Φb as a general point process and Φe as a cluster
process conditioned on the realization of Φb as its parent points. In both cases, we de-
rive distributional properties for observable quantities of direct interest to neurologists
such as the number, direction, and length of fibers for any particular base, conditional
on the number and location of the other bases. We illustrate both models by fitting them
to data from skin biopsy images of ENFs and provide inference regarding physiological
properties of ENF growth.

3.4 Paper IV: On the Correlation Between the Volumes
of the Typical Poisson-Voronoi Cell and the Typical
Stienen Sphere

In this paper we regard a tessellation V generated by a homogenous Poisson process
Φ in Rd, and further the random set of spheres with centers being the points in Φ and
having radius half the distance to the closest other point in Φ. We denote the typical
cell and the typical sphere by Vo and So, respectively, and the interest lies in the cor-
relation between νd(Vo) and νd(So), where νd is the d-dimensional Lebesgue measure.
Intuitively it feels as though this correlation should be strictly positive, and even close
to one. Still, one must keep in mind that small spheres are often associated with large
cells. That is, if two generators are close the corresponding cells need not to be small,
see Figure 2.2. On the real line corr(ν1(Vo), ν1(So)) = 1√

2
, and for d ≥ 2 we present an

integral formula for corr(νd(Vo), νd(So)), from which it is possible to obtain numerical
estimates for arbitrary dimensions. Furthermore, we obtain an upper bound on the cor-
relation implying that limd→∞ corr(νd(Vo), νd(So)) = 0 and the numerical estimates
suggests that the sequence decreases monotonically.
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Second-order spatial analysis of epidermal nerve
fibers

Lance A. Waller, Aila Särkkä, Viktor Olsbo,
Ioanna G. Panoutsopoulou, William R. Kennedy,

Gwen Wendelschafer-Crabb

Abstract

Recent breakthroughs in imaging of skin tissue reveal new details on the distri-
bution of nerve fibers in the epidermis. Preliminary neurologic studies indicate
qualitative differences in the spatial patterns of nerve fibers based on pathophysi-
ologic conditions in the subjects. Of particular interest is the progress of diabetic
neuropathy. It appears the spatial distribution of nerve fibers becomes more “clus-
tered” as neuropathy advances. We consider two approaches to establish statistical
inference relating to this observation. First, we view the set of locations where the
nerves enter the epidermis from the dermis as a realization of a spatial point pro-
cess. Secondly, we treat the set of fibers as a realization of a planar fiber process. In
both cases we use estimated second-order properties of the observed data patterns
to describe the degree and scale of clustering observed in the microscope images
of blister biopsies. We illustrate the methods using confocal microscopy blister im-
ages taken from the thigh of one normal (disease-free) individual, and two images
each taken from the thighs of subjects with mild, moderate, and severe diabetes
and report measurable differences in the spatial patterns of nerve entry points/fibers
associated with disease status.

KEYWORDS: Spatial point/fiber processes, pair-correlation function, K function,
neurology, diabetic neuropathy

1 INTRODUCTION
Epidermal nerve fibers (ENFs) are thin, unmyelinated sensory nerve fibers that origi-
nate as single nerve fibers in dorsal root ganglia cells, travel through the dermis, extend
into the epidermis, and terminate, with or without branching, at all levels of the epi-
dermis from just above the dermal-epidermal interface “basement membrane” to near
the surface of the skin[1]. While ENFs have been periodically observed for over 130
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years, difficulties in staining and imaging led some to doubt their existence into the
late 1980’s. Expanding staining techniques proposed by Wang et al. [2], Kennedy and
Wendelschafer-Crabb[1] conclusively established the existence of ENFs via confocal
microscope studies. As an example, Figure 1 illustrates an image from a punch skin
biopsy where the green filaments in the upper layer (epidermis) are ENFs as viewed
from the side when the biopsy is sectioned perpendicular to the surface of the skin.

Figure 1: A side view of nerve fibers and blood vessels in skin. Epidermal nerve fibers
(ENFs - stained bright green with PGP 9.5 pan neuronal marker localization) arise
from bundled fibers of dermal nerves (DN) that usually follow blood vessels and cap-
illaries (Cap - colored magenta by combination of Ulex europaeus agglutinin I and
type IV collagen staining) through the dermis to the superficial dermis where they form
a horizontal plexus parallel to the dermal epidermal junction (DEJ - colored red by
staining with type IV collagen). Individual ENFs penetrate the DEJ and extend into the
epidermis (Ep - colored blue by reaction to Ulex europaeus agglutinin I). Nerve counts
and distribution are determined based on the intersection of the nerve fibers with the
DEJ. ENFs often arise from the top of dermal papilla (DP). This image is a composite
made with a confocal microscope by combining 20 images collected at 2 µm increments
through a thick triple-stained section. Colors only visible in the online version.

Once methods for visualizing and identifying ENFs were established research quickly
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moved toward quantification of such fibers, especially to assess their potential diagnos-
tic value. In particular, Kennedy et al. [3] report diminished numbers of ENFs per
surface area in diabetic subjects, as well as reduced summed length of all ENFs per vol-
ume, that is, reduced “coverage” of the epidermis by ENFs. It is generally agreed that
ENFs are counted where they penetrate the basement membrane to enter the epidermis
[4]. Similarly, a diminished summed length of all ENFs can mean disappearing nerves
or shortening of ENFs, although the former seems more likely and recent observations
seem to suggest some lengthening of remaining ENFs during early nerve loss. That is,
even though the summed total length of ENFs declines, individual ENFs may lengthen
as the body tries to compensate for nerve loss.

Skin biopsy is a minimally invasive technique that allows quantitative assessment of
the number and distribution of ENFs. “Punch” biopsies involve the removal of a 2-3
mm core of the epidermis and dermis, often from the hand, foot, calf, or thigh to detect
the presence of peripheral neuropathy. Biopsies are cut into parallel sections and then
immunostained with protein gene product (PGP) 9.5 to show nerves and with type IV
collagen to stain the basement membranes at the dermal-epidermal junction and around
blood vessels. Immunostained sections are imaged with a confocal microscope. This
allows a view of nerve bundles rising from the dermis, then giving off single ENFs that
extend through the basement membrane into the epidermis. Quantitative techniques
are primarily limited to assessments of fiber linear density and length along a sampled
section of the epidermis [5].

In contrast to the punch biopsy, Kennedy et al. [6] propose a less invasive tech-
nique for exploring ENFs based on a suction-induced blister (also 2-3 mm in diameter).
During formation of the blister, ENFs are severed from their origin at the basement
membrane level and remain in the epidermal blister roof. Then, instead of placing ver-
tical slices on microscope slides, the epidermal blister roof is removed and flattened
directly on a slide and immunostained, thus obtaining a “birds-eye view” of the ENF
distribution[6] that is perpendicular to the view of the skin section. Suction blisters are
more time-consuming to obtain than punch biopsies (requiring approximately 20-60
minutes) but the approach avoids the necessity of cutting, staining, and imaging multi-
ple tissue sections. Recent results indicate that ENF densities (number of ENFs per unit
area) observed from blister biopsies do not appear to systematically differ from punch
biopsies, and normative density ranges for punch biopsy data ([4],[5]) appear to apply
equally well to blister biopsy data[7].

Figure 2 illustrates a confocal image from a vertically sectioned suction blister. The
ENFs are clearly visible in the epidermal blister roof (inset C). Blister fluid fills the
space between the epidermis and the dermis. The separation plane is just above the
basement membrane visible just below the fluid compartment. The near-by proximal
stumps of some epidermal nerves are visible.

The dermal-epidemal junction undulates and dermal papilla (labeled DP in Fig-
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ure 1) project into the epidermal space. Capillary loops and several dermal nerves
reside within each papilla. It is worth noting that the basement membrane is closer to
the surface (i.e. the epidermis is thinner) above the dermal papilla. The dermal papilla
reflect variable thickness in the epidermal layer and this feature can appear as a cloudy
background in blister images. ENFs often enter the dermis near dermal papilla resulting
in possible spatial clustering of entry points for ENFs through the basement membrane,
even in normal (non-diabetic) subjects, a feature that will impact our methodologic de-
velopment below.

Figure 2: Image of epidermal nerve fibers in blister roof. Rectangles in image A are
enlarged in images B and C. The scale bar represents 200µm. (Image used with per-
mission of the Kennedy Laboratory.)

Our particular interest involves the spatial distribution of ENFs in the epidermis.
Kennedy et al. [6] report that nerve fiber loss due to neuropathy does not seem to result
in random removal of ENFs, rather the remaining nerves seem arranged in ”clusters”
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and exhibit some spatial pattern, perhaps secondary to collateral branching by the sur-
viving nerve fibers. We seek to quantify this observation through statistical analysis
of the spatial scale of clustering observed in blister images, and compare the scales
observed for normal and neuropathic subjects, respectively. Such estimates may pro-
vide diagnostic statistical tools for determining early stages of neuropathy, based on
a minimally invasive technique thereby allowing diagnosis early in the disease when
neuropathy is most likely to respond to treatment.

Kennedy et al. [6] (p. 366) mention that ENFs from the symptomatic thigh of a
subject with a lateral femoral cutaneous nerve disorder had a greater propensity to group
in clusters than ENFs from the asymptomatic thigh, with intervening spaces sparsely
innervated relative to ENFs of the normal thigh. A similar pattern was observed in
diabetic subjects. Figure 3 illustrates the spatial distribution of ENFs from a portion
of the blister roof taken from the thigh of a normal subject in the top image and from
a subject with moderate diabetic neuropathy in the bottom image. The sample from
the normal thigh appears to show a more regular pattern (with some clustering about
dermal papilla) than that from the diabetic subject’s thigh. It is important to note that
most images (diabetic and non-diabetic) show evidence of some sort of clustering, the
qualitative difference appears to be the spatial scale at which clustering occurs. Hence,
our primary question of interest is: can we quantify differences in the spatial pattern
of ENFs in nondiabetic subjects from the patterns in diabetic subjects, and identify
the spatial scale where ENF patterns for diabetics are more clustered than those for
nondiabetics?

We review basic definitions and second order properties of spatial point and fiber
processes in Section 2, then apply these ideas to the ENF data in Section 3. The anal-
yses allow quantification of the observations regarding changing patterns of clustering
reported in Kennedy et al. [6] and offer new insight into the distances (spatial scales)
at which measurable differences occur. Section 4 summarizes and discusses our results
and offers directions for future analysis.

2 METHODS FOR SPATIAL POINT AND
FIBER PROCESSES

2.1 Point Processes
Spatial point processes describe a family of stochastic process models where events
generated by the model have an associated (random) location in space. Illian et al.[8],
Diggle[9], Cressie[10] (Chapter 8), and Waller and Gotway[11] (Chapter 5) provide
details regarding theory and applications from many diverse fields, e.g. forestry, astron-
omy, and cellular biology. We follow Diggle[9] and make a distinction between points
and events. Points represent any location within the study area where the phenomenon
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Figure 3: Spatial distribution of nerve fibers (white) in a non-diabetic subject (top) and
a subject with moderate diabetes (bottom).

of interest could occur, events represent locations where this phenomenon did occur in
a particular realization of the process. In our application, we define an event as the
observed location of an ENF emergence from the basement membrane.

Our question of interest is whether or not the nerve fibers are significantly more
“clustered” in diabetic subjects than in normal subjects, and, if so, at what spatial scale
do these differences occur? Typically, one models spatial clustering as a departure
from a model of spatial randomness defined by a spatial Poisson process[9]. Three
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primary features define a spatial Poisson process namely: (a) the number of events in
non-overlapping regions are statistically independent, (b) for any region A,

lim
|A|→0

Pr[exactly one event in A]
|A| = λ > 0

where |A| is the area of region A, and (c)

lim
|A|→0

Pr[two or more events in A]
|A| = 0.

Components (b) and (c) imply that the probability of a single event in a very small area
is a constant (λ) independent of the region A, and that the probability of two or more
events occurring in precisely the same location is zero. The quantity λ is the Poisson
parameter, or the “intensity” of the process. If λ is constant across the region the Poisson
process is homogeneous. When conditions (a)–(c) are met, the number of events in a
region A is a Poisson random variable with mean λ|A|, and the events are uniformly
located within A. By “uniformly” we mean that the locations of events are independent
of the location of other events and equally likely in all locations. These properties are
referred to as “complete spatial randomness” (CSR)[9].

Complete spatial randomness often serves as a boundary condition between pro-
cesses that are more “clustered” than CSR, and processes that are more “regular” than
CSR. Unfortunately, observed patterns do not always fall neatly into one of the three
classes: clustered, CSR, regular. For example, consider a regular pattern of clusters
where small clumps of events occur at regularly spaced locations, or clusters of a reg-
ular pattern where some regular pattern of events (e.g., the pattern of five pips on the
side of a die) repeatedly occurs at clustered locations across the study area. In both
examples, clustering exists at one spatial scale, regularity at another. Such examples
appear in Reilly et al. [12] and Waller and Gotway [11] and illustrate the critical role
played by spatial scale in describing observed patterns. This said, little appears in the
statistical literature regarding direct estimates of spatial scale. This is not to say that
existing methods ignore scale, but the issues of point and interval estimation of scale
(which are very relevant to our application) have not been of primary interest in the
analysis of spatial point patterns.

Many statistical tests of CSR appear in the literature (see Table 8.6 in Cressie
[10]), and many are based on the distribution of two nearest neighbor distances: the
distribution of distances from each event to its nearest neighboring event, or the distri-
bution of distances from a randomly selected point to the nearest event. While revealing
overall tendencies toward clustering or regularity, these nearest neighbor methods only
consider the nearest distances, and do not directly tell us about the scale of clustering
observed at a variety of distances in a particular data set. Furthermore, these methods
examine behavior only at the “nearest neighbor” scale and cannot find clustering at one
scale and regularity at another.
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To address spatial scale, we consider Ripley’s K function[13], a second order prop-
erty of an observed point process defined as

K(h) = λ−1E[# of extra events within h of a randomly chosen event] ;h ≥ 0.

Under CSR,

KCSR(h) = πh2 = area of circle radius h around event,

under regularity, K(h) tends to be < πh2, and under clustering, K(h) tends to be
> πh2. Since K(h) is a function of all interevent distances (not just the nearest neighbor
distances), it is possible for a given realization to have, for example, K(h) > πh2, h <
h∗, and K(h) < πh2, h > h∗ for some distance h∗. This would indicate that for
distances below h∗ events tend to be more clustered than expected under CSR, while
for distances above h∗ events tend to be more regularly distributed than under CSR.
Hence, h∗ is associated with the spatial scale of clustering found in the data.

It is worth mentioning that the intensity λ and K functions (first and second order
properties of a spatial point process) do not together uniquely identify a spatial process.
Baddeley and Silverman[14] provide an example of a process containing intermittent
clustering that has intensity and K functions identical to those for CSR, so one needs to
exercise caution in interpretation.

To aid in visualization, Besag[15] suggests a variance-stabilizing transformation of
the K function, L(h) = {K(h)/π}1/2 (the L function). The L function allows a more
readily interpretable diagnostic plot, since we may plot h vs. L(h)−h and compare the
resulting curve to its expected value under CSR of zero for all h.

We estimate the K function using a standard edge-corrected approach[10], namely

K̂(h) =
1

Nλ̂

N∑

i=1

N∑

j=1,i 6=j

w(si, sj)−1I(‖si − sj‖ ≤ h), h > 0

where λ̂ denotes the estimated intensity, si denotes the location of the ith event (i =
1, . . . , N ), and I(·) the indicator function. The edge-correction weights, w(si, sj),
are set equal to the proportion of the circumference of a circle centered at si, passing
through sj that is within the study area. These weights, suggested by Ripley[16], define
the proportion of points at distance ‖si−sj‖ from si at which events could be observed
(i.e., are within the study area). The estimate assumes stationarity (constant intensity
across the study area) and isotropy (rotation invariance), both of which are reasonable
as starting points for our analysis. We use L̂ = {K̂(h)/π}1/2 as an estimate of the L
function.

Diggle, Lange and Beneš[17] apply K functions to assess the distribution of pyra-
midal neurons in the brain, demonstrating the ability of estimated K functions to detect
differences in patterns between control, schizo-affective, and schizophrenic subjects.
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Inference is based primarily on Monte Carlo envelopes and bootstrapped hypothesis
tests. In the analysis below, we use K functions not only to distinguish between di-
agnostic groups, but also to provide estimated ranges of the spatial scale of observed
clustering. That is, while Diggle, Lange, and Beneš[17] seek inference on differences
between K functions, we focus on inference about particular features observed within
each K function.

Note that the K function is a cumulative function of distance as it measures the
expected number of events up to a certain distance. In our application, we are interested
in the clustering/regularity observed at a particular distance rather than the cumulative
evidence for clustering/regularity observed up to that distance. Parallel to the roles of
the cumulative hazard and hazard functions in survival analysis, some data analytic
questions may be better answered by the derivative of the K function, rather than the
K function itself. We consider the use of a scaled form of this derivative, termed the
pair-correlation function g, defined as

g(h) =
1

2πh

dK(h)
dh

. (1)

The pair-correlation function provides a scaled measure of how likely two events are
to occur at distance h of each other. Under CSR, g(h) takes the value one. Values
greater than one indicate clustering and values smaller than one regularity. As with the
K (L) function, the pair-correlation function is a function of distance and may provide
evidence for clustering or regularity at different spatial scales.

Estimation of g(h) generally involves edge-corrected kernel estimators[18] [19].
Stoyan and Stoyan[20] outline the following estimation procedure for g(h) based on
isotropic spatial point processes. The pair-correlation function can be written as g(h) =
λ2ρ(h), where ρ is called the second order product density. To estimate ρ(r) we use the
estimator

ρ̂(r) =
1

πh

N∑

i=1

N∑

j=i+1

k(h− ||xi − xj ||)
ν(Axi ∩Axj )

.

In the formula, ν(A) is the Lebesgue measure of the set A and Ax = {y : y = z +
x, z ∈ A} and k(·) is a kernel function. Following Stoyan and Stoyan[20] we use

the Epanechnikov kernel function with bandwidth ε = δ/
√

λ̂ with δ = 0.1 · √5 as
suggested by Fiksel[21].

2.2 Fiber Processes
Spatial point processes allows us to study the spatial pattern of entry points for epi-
dermal nerves. If the whole fiber pattern is of interest, as in our application, we may
consider a generalization to spatial fiber processes. Briefly, a fiber process in the plane
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models a random collection of curves in R2. The curves (i.e. fibers) are supposed to be
sufficiently smooth and of finite length. Distinct fibers have only end-points in common.

We can define an analogous of Ripley’s K-function for fiber processes, namely

λLKf (h) = E[fiber length, within distance h of a randomly chosen fiber point],

where λL is the mean fiber length per unit area. Unlike the point process case where we
have a natural reference process (i.e., the Poisson process), no such process exists for
fiber processes. However, as we will see below, we can compare the relative amount of
clustering between two fiber patterns by using the fiber K function: the pattern whose
fiber K function lies above the other represents clustered pattern of the two (for a given
distance or set of distances).

Stoyan, Kendall & Mecke[19] suggest the following edge corrected estimator of
λLK (where A denotes the region of observation):

κ(h) =
1

#{Φf ∩ T}
∑

x∈Φf∩T

k(x, h)Φf (S(x, h, A)), (2)

where
k(x, r) =

αx,h

2π
,

and αx,r denotes the sum of all the angles of the arcs in A of a circle with center x and
radius h (i.e., k(x, h) is the proportion of the circumference of a circle, centered at x
with radius h, that lies within A). For example, in Figure ?? αx,h = 2π − (β + λ).
Further, S(x, h, A) denotes the regions of a circle, centered at x with radius h, with the
whole arc lying in A, illustrated by the marked area of the circle in Figure ??. This
estimator is unbiased but variance properties are currently unknown. If we estimate λL

by:

λ̂L =
Φf (A)
|A| , (3)

then the estimator of K(h) becomes:

K̂(h) =
κ(h)

λ̂L

. (4)

3 APPLICATION TO THE NERVE FIBER DATA

3.1 Point Processes
We use the point and fiber process methods outlined above (pair-correlation and K func-
tions) to explore the spatial distribution of the locations where ENFs enter the epidermis
and of the fibers themselves, respectively, (from a set of seven images provided by the
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Kennedy Laboratory, University of Minnesota. The confocal microscope images are
available as digitized images with pixel size 0.8264 microns by 0.8264 microns. The
confocal microscope images were acquired at 2 µm increments of depth throughout the
blister (25-50 µm thick). The course of each ENF through the depth of the epidermis
can be followed from image to image or as an object in a rendered volume.)

We focus on images taken from the thighs of non-diabetic controls and individu-
als in various stages of diabetic neuropathy classified as: mild, moderate, and severe
based on epidermal nerve density. The pair of images in each disease class are from
adjacent blisters on the same subject, providing some (preliminary) assessment of intra-
individual variability in spatial patterns.

The current state of imaging the blister biopsies does not allow automated identifi-
cation of the entry points for ENFs, the identification of these locations in each of seven
images (one normal and two in each diabetes category) is done manually. We present
the seven locational data sets in Figure 4. As the practice of imaging blister biopsies
continues to improve, we expect more automatic identification of entry locations for
future analyses.

Figure 5 illustrates the estimate of the variance-stabilized K function (L̂ function)
analysis of the same images. The dashed black lines correspond to Monte Carlo “en-
velopes” corresponding to the 2.5th and 97.5th percentiles of L̂ at each distance, esti-
mated from 500 independent simulations of CSR within the study area. The L̂ functions
in Figure 5 indicate a fairly consistent “dip” observed at distances near 20 pixels (≈ 16.5
microns). This “dip” reflects regularity at short distances significantly increased over
that expected under CSR (i.e., we observe more equal spacing at 20 pixels than expected
under a CSR pattern). This is rather natural since each nerve has its own territory and
therefore, two nerves (or nerve entry points) should not lie too close to each other.

Each plot in Figure 5 compares the L̂ plot based on the image from the thigh of the
normal subject (same black line in all plots within a column) to a pair of images from
a diabetic subject. The top, middle, and bottom rows involve comparisons with a mild,
a moderate, and a severe diabetic subject, respectively. Many of the plots suggest some
increased clustering in the diabetic subjects over that observed for the normal subject
(L̂ based on the diabetic images lying above that based on the normal image), but all L̂
functions lie mostly within the (vertical) range expected under CSR. However, we stress
that the research question of primary interest involves comparing the diseased patterns
to the normal (non-diseased) pattern, not comparing any of the patterns to CSR.

Toward this goal, we consider a second approach more directly evaluating the ob-
served patterns with respect to the observation of a tendency toward diminished num-
bers of ENFs with disease progression and the primary question of interest: are ENFs
clustered differently in diseased subjects than in non-disease subjects? Specifically, we
wish to compare the observed patterns from the diabetic subjects to that we would ex-
pect to observe if ENF entry points were removed at random from the normal pattern.
In theory, such random “thinning” of the normal pattern will result in the same theoret-
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Figure 4: ENF entry locations from a normal subject (first row), two subjects with mild
diabetes (second row), two subjects with moderate diabetes (third row), two subjects
with severe diabetes (last row).

ical K function (hence L function), but K̂ and L̂ based on the thinned data will involve
some variability based on which ENFs are removed. At each of 500 simulations, we
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Figure 5: Estimated variance-stabilized K̂ function (L̂ function) plots for the ENF data.
The wide black line represents L̂ for the normal (non-diseased) subject, and the two
wide grey lines L̂ for each of the diseased subjects within each disease class. The
dashed lines represent the 2.5th and 97.5th percentiles of L̂ based on 500 replications
of complete spatial randomness.

thin the observed normal pattern at random to obtain the same number of ENF entry
points as observed in the diabetic patterns, and recalculate L̂. We next calculate the
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empirical 2.5th and 97.5th percentiles of L̂ at each distance, and plot these envelopes as
dotted lines in the middle and bottom rows of Figure 6. Note that the envelope based
on the thinned simulations is centered around L̂ based on the non-diseased subject, and
maintains the indication of regularity near 20 pixels. We also note much of the “wiggle”
in the thinned envelope is due to variability in L̂ for the full data (e.g., peaks in L̂ are
mirrored by peaks in the envelopes), and not Monte Carlo variability associated with
the thinning process.

We next conduct a Monte Carlo hypothesis test of deviations from the normal pat-
tern for distances between 30 and 60 pixels (approximately 24.8-49.6 microns) based
on the test statistic

max
30≤h≤60

[Ldis(h)− Lnorm(h)], (5)

where Ldis(h) is the variance-stabilized K function for the image from a diseased sub-
ject and Lnorm(h) is the same for the non-diseased subject[19]. That is, we compare
the maximum observed deviation of the variance-stabilized K functions for images
from diseased and non-diseased subjects at distances between 30 and 60 pixels. We
choose these distances somewhat subjectively for our exploratory purposes based on
the L plots, but we could base the range on the underlying known or suspected phys-
iology for more formal inference. We obtain a distribution under our null hypothesis
of random thinning by replacing Ldis(h) with the variance-stabilized K function for
each of the randomly thinned data sets from our simulation study. The results are not
significant in the moderate cases but clearly so in the severe cases. The bottom plot
in Figure 6 indicates the significant clustering observed in the severe diabetic subjects
in this distance range. Note that we could not compare normal and mild diabetics in a
similar manner since, in the images considered, we actually observe more ENFs in the
image from the mild diabetic subject than for that of the normal subject. The bottom
row of Figure 5 tells the same story: significantly increased clustering observed in the
severe diabetic subject at distances between 30 and 60 pixels.

Figure 7 summarizes the estimated pair-correlation functions for the ENF data. The
plots suggest increased clustering of ENFs among diabetic subjects, particularly appar-
ent for the severe diabetic subjects. We observe exceedences of the pair-correlation
function at lower distances than for L̂ as expected due to the L function’s cumulative
nature. That is, observed differences in the pair-correlation functions occur at the dis-
tance where clustering first occurs, while differences in the L̂ functions do not occur
until the cumulative evidence mounts.

We next repeat the test of significance of the observed differences based on ran-
dom thinnings of the normal pattern by replacing the L̂ in equation (5) by the esti-
mated pair-correlation function in the test statistic, and defining the test for distances
between 10 and 40 pixels. Again, we cannot apply the thinning-based test to compare
patterns between the mild diabetic subject and the non-diseased subject since we ob-
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Figure 6: Estimated variance-stabilized K̂ function (L̂ function) plots for the ENF data.
The wide black line represents L̂ for the normal (non-diseased) subject, and the two
wide grey lines L̂ for each of the diseased subjects within each disease class. The dashed
lines represent the 2.5th and 97.5th percentiles of L̂ based on 500 random thinnings of
the observed ENF pattern from the non-diabetic patient.

serve more ENFs in the mild diabetic subject’s images than in those of the non-diseased
subject. In all cases, (moderate and severe diabetes) the diseased patterns are signifi-
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cantly more clustered than the normal pattern between 10 and 40 pixels (between 8.3
and 33.1 microns).
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Figure 7: Estimated pair correlation functions for the ENF data.

3.2 Fiber Process
We next explore the spatial patterns of the nerve fibers (not only the entry points) by
using the fiber K funtion, Kf . As can be seen in Figure 3, the nerve fiber images contain
noise in the background, and we use Matlab-based image analysis techniques based on
filtering and morphological operations in order to identify the individual fibers[22]. The
result for one image can be seen in Figure 8 below.

The fiber K-function can be estimated from the “skeletonized” image by using the
estimator given in Section 2.2
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3151 (normal), skeletonized image

Figure 8: Sample from a non-diabetic patient and the same image after using image
analysis to identify nerve fibers (see text for details).

It can be seen in Figure 9 that the normal pattern is least clustered, with increasing
clustering as one moves to more severe stages of diabetes. We can study the significance
of this observation in a similar manner as in Section 3.1. The null hypothesis is again
that the diseased patterns are random thinnings of the normal pattern. We again thin the
ENF entry points, now removing all fibers associated with the removed point of entry.
The normal pattern was thinned at random to obtain the same number of entry points as
in the diabetic pattern. Our test is based on 1000 simulations (i.e. random thinnings of
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the normal fiber process), and the test statistic used is

Tmo =
∫ 30

5

[Kmo(h)−Kn(h)]2dh,

Ts =
∫ 30

5

[Ks(h)−Kn(h)]2dh,

where Kn, Kmo and Ks are the fiber K-functions in the normal, moderate and severe
cases, respectively. One minor complication involves the need for a unique assignment
of each fiber to a unique entry point. To accomplish this, we use the Voronoi tessellation
associated with the nerve entry point pattern. The Voronoi cell connected to a particular
entry point consists of all points of the study region A that are closer to this entry point
than any other entry point[23].

The estimated fiber K functions and the point-wise 95% confidence bounds are
displayed in Figure 10. The p-values from the MC-tests are 0.0020 and 0.2458 in the
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moderate cases and less than 0.0001 in both of the severe cases, respectively. As with
our point process above, the difference from the normal pattern is clearly evident in the
severe cases. However, by considering the fibers as well as their points of origin, we
obtain significant clustering for one of the images from the moderate diabetic.
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Figure 10: Estimated fiber K functions for moderate diabetes (left) and severe diabetes
(right), together with 95% confidence bands for thinned normal fiber process.

4 DISCUSSION
Our second order analyses of the seven skin blister images suggest that we can quan-
tify the observed variation in clustering of nerve entry points and nerve fibers due to
disease state. In addition, these results allow some insight into the spatial scale of clus-
tering, informing on the pathophysiology of ENFs. Furthermore, the initial dip in the
L function estimates, see Figure 5, quantifies the size of “territory” per nerve (a feature
qualitatively noted in Kennedy et al.[1] (p. 188)), while the pair-correlation function
offers quantitative insight into the spatial scale at which observed clustering occurs.

The analyses above are largely exploratory, and represent an attempt to provide sta-
tistical quantification of a heuristically observed change in the spatial pattern of ENFs
due to diabetes progression. The results illustrate promise in the spatial analysis of blis-
ter images, but, to date, most quantitative comparisons of ENFs focuses on changes in
density (the average number of ENFs per unit area, calculated from skin punch biopsy
data) rather than pattern (observed in blister biopsy data). As a result, the examples
above are largely illustrations of the potential of the proposed methods and to set the
stage for ongoing blister data collection containing replications within and across indi-
viduals in each disease stage. The addition of replicate observations will allow the use
of methods from Diggle et al.[17] and Baddeley et al. [24] to provide average K, fiber
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K, and pair correlation function estimates and potential for more thorough analysis.
Intra-individual variation in ENF patterns is an important issue having bearing on

any possible global applicability of the results above. Along these lines, the Kennedy
Laboratory has completed data collection on a large scale study involving collection
of two blisters and two skin-punch biopsies at each of six body sites (foot, calf, thigh,
hand, forearm and upper back) for five diseased and five non-diseased subjects in each
five-year age group from ages 20 to 75 years. These samples will provide a rich source
of data to quantify variation associated with age and gender. In addition, these data
provide a unique opportunity to explore age-related trends in observed patterns with
relatively short follow-up per subject. Incorporating intra-individual variation into the
Monte Carlo approaches above would likely widen simulation envelopes and reduce
significance, but provide more realistic models of the underlying variation.

In addition to intra-individual variation, inter-individual variation within disease
class and age group will provide important information for more accurate modeling
of the ENF process. The large scale study mentioned above will provide valuable in-
sight into this level of variation, and offer opportunities to extend the approaches above
to compare ENF patterns between non-diseased and mild diabetic subjects.

In short, our analyses to date show promising preliminary results quantifying dif-
ferences in the spatial patterns of nerve entry points between diabetic and disease-free
subjects. Patterns become more statistically distinguished with disease progression.
Future analyses will address additional aspects (e.g., intra-individual variation, subjec-
tivity in locational assignment, possible increased branching of ENFs, and changing
ENF lengths) in these interesting neurological data.
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A marked Poisson process induced by a random
set generated Cox process

Viktor Olsbo

Abstract

Motivated by epidermal nerve fiber patterns, we consider a set of marked Poisson
process models in the plane. These models are induced by a bivariate point process,
denoted by (Φb, Φe). The resulting processes are constructed by connecting each
point of Φe to the nearest point of Φb via a line segment. The base process Φb is a
Poisson process, while the ending process is a random set generated Cox process..
Furthermore, we introduce hierarchical constraints on Φe inducing dependence be-
tween the ending and the beginning process. Features of interest are the number of
ending points per base, individual branch length, total branch length per base, angle
between base and ending.

Keywords: Cox process; Epidermal nerve fibers; Mark Distributions; Poisson pro-
cess; Random closed sets; Stienen model; Voronoi tessellation.

1



1 Introduction

Consider two stationary point processes in R2, Φb and Φe, having intensities λb and λe,
respectively. Here, b stands for beginning and e stands for ending. We connect each
point y ∈ Φe to the closest point in x ∈ Φb. That is, each “end” y ∈ Φe, is connected
to a unique “beginning” in Φb. Note that a single beginning may be connected to mul-
tiple (or zero) ends. The case of both Φe and Φb being Poisson processes was explored
by Foss and Zuyev [2], where the authors introduce this type of process as a model for
telecommunication networks. For example the base process can consist of locations of
the base stations and the end process of the locations of the users of the network, e.g.
mobil phones or broad band.

Our motivation for studying this type of model is coming from reinnervation of the
epidermis. Epidermal nerve fibers (ENFs) are thin sensory fibers in the epidermis. The
fibers grow from the basement membrane of the dermis and up into the epidermis via
a trunk and then branch out in the epidermis. The terminal nodes of the fibres transmit
sensations of heat and pain through the ENFs to the central nervous system. Kennedy
et al. [4] first imaged ENFs from skin biopsies. ENFs appear in the epidermis through-
out the body. The number of ENFs per square unit of skin decreases as one moves to
more peripheral sites in the body (i.e., the intensity of ENFs is smaller in the hands and
feet than in the central parts of the body), and several researchers have noted significant
reduction in ENF intensity in patients experiencing diabetic neuropathy (nerve and sen-
sory loss, often severe, in diabetic patients) [5, 6].

Here, one aim is to find models that have enough flexibility to capture the above de-
scribed changes in the observed patterns. In our setting we would like to be able to
have flexibility in both the beginning and the ending process. That is, it is not only the
system of nerve fibre trunks that changes as a neuropathy advances but also the fibre
structure. As always though, there is a balance between model complexity and analyt-
ical tractability. Even in the baseline case of both processes being Poisson processes it
is hard to obtain analytical results regarding distributions for characteristics, also called
marks, of the fibre structure, i.e. for branch length etc. In order to not completely de-
pend on simulation based evaluation of the models we confine to the case when the
base process is a Poisson process. For measurable functions g : R2 → R+ we define
the following additive functional

Σg =
∑

x∈Φe

g(x)1Vo(x), (1.1)

where Vo is the typical cell of the Poisson-Voronoi tessellation generated by Φb. For
specific choices of the function g we obtain characteristics of some of the marks we
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are interested in. We have however not been able to obtain analytical results for the
mark distributions. When it comes to the functional in (1.1) most results concern mean,
variance and covariance. These results can be used in the first step of inference for ob-
served patterns, but also when evaluating estimators. We give integral formulas in the
case when Φe is a general stationary and isotropic point process and provide numerical
results when Φe is a specific type of Cox process, namely a random set generated Cox
process. This type of process was introduced by Penttinen and Niemi [11], motivated
by an application in forestry. Here the driving random measure is based on a random
set model and this model is of interest in connection with the ENF patterns since the
random set model can represent an underlying heterogeneity in the epidermis. We look
in more detail in the case of the random set being the Stienen model generated by Φb.
It should be noted that this procedure will induce dependence between the beginning
and ending processes. Other Cox processes, e.g. when the driving measure is a random
field, could be of interest as well. One example of this is the Log-Gaussian Cox process
introduced by Møller et al. [9]. In this case as well, the random field would represent
some sort of underlying heterogeneity.

To apply the type of process where the jagged and irregular nerve fiber branches are
replaced by line segments is of course a great simplification, but it can be justified by
the fact that it is only the endings of the nerve fibers that transmit heat, pain etc. Some
of the results and proofs thereof in this paper are based on ideas in Foss and Zuyev [2].
In this paper, all results are given in R2, but many of them can be extended into Rd

without much effort.

2 Definition of the process

The specific ending process we consider is a random set generated Cox process (RS-
GCP). Following Penttinen and Niemi [11], we divide the plane into two regions (or
phases) Θ and Θc, respectively, where Θ is a stationary random closed set, see e.g. [16].
Conditionally on Θ, the points in Θ and Θc are distributed according to two indepen-
dent Poisson processes Φ1 and Φ2 having intensities λ1 and λ2, respectively. Then
Φe = Φ1 ∪ Φ2. This is a flexible generalization of a Poisson process and with an ENF
application in mind Θ will represent an underlying heterogeneity in the epidermis. Note
that Φe is stationary, since Θ is stationary. In Figure 1, four different realizations of the
RSGCP, when Θ is the Stienen model generated by Φb (see Section 3), are displayed.
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Figure 1: Realizations of the RSGCP when Θ is the Stienen model gen-
erated by Φb. Top left: λ1 = 700, λ2 = 300. Top right: λ1 = 300,
λ2 = 700. Bottom Left: λ1 = λ2 = 700. Bottom right: λ1 = 50000,
λ2 = 2000, λb = 100 in all cases.

The intensity measure of the ending process is given by

Λe(x) = λ11Θ(x) + λ21Θc(x), (2.1)

and then

λe(x) = E[Λe(x)] = λ1P (x ∈ Θ) + λ2P (x ∈ Θc) = pλ1 + (1− p)λ2, (2.2)

where p is the area fraction of the random closed set and is defined by p = P (o ∈ Θ).
Since the process is stationary the intensity is constant and denoted by λe. Furthermore,
the pair-correlation function of the ending process is given by

ge(r) =
1
λ2

e

[C(r)(λ1 − λ2)2 + 2p(λ1 − λ2)λ2 + λ2
2], (2.3)

where C(r) is the covariance of the random closed set Θ [11]. The function C(r) is
defined by C(r) = P (o ∈ Θ,x ∈ Θ), for |x| = r.
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If we let V denote the Voronoi tessellation based on the points in Φb, and Vx is the
Voronoi cell associated with the point x ∈ Φb, i.e.

Vx = {y ∈ R2 : |y − x| ≤ |y − z| , ∀z ∈ Φb},

we can write

V = {Vx : x ∈ Φb }.

Then, if y ∈ Vx it means that y is connected to x. There is a notion of a typical
cell, which represents a (loosely speaking) randomly chosen cell. If we assume that
o ∈ Φb, then Vo denotes the cell having the origin as nucleus. It is known that, see
e.g. Møller [8], Vo and the typical cell have the same distributional properties and it
therefore in our case suffices to regard Vo.

As mentioned in the introduction, following the ideas in [2], we will regard the fol-
lowing additive functional. In the definition we do not restrict Φe to be a RSGCP, it can
be any motion-invariant point process.

DEFINITION 1. For any measurable function f : R2 → R+, let

Σf =
∑

x∈Φe

f(x)1Vo(x), (2.4)

and further for f(x) = 1 and f(x) = |x|, define

N =
∑

x∈Φe

1Vo(x), (2.5)

L =
∑

x∈Φe

|x|1Vo(x), (2.6)

i.e. the number of endings and the total branch length associated with the typical cell,
respectively.

In the following we will assume that the function f is such that the second moment
of Σf exists and is finite. Now, for any motion-invariant ending process, we can state
the following theorem giving integral formulas for the mean of and covariance between
different functionals of the form given in (2.4). If nothing else is mentioned, the base
process is a Poisson process.
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THEOREM 1. Let Φb be a homogenous Poisson process independent of a motion-
invariant point process, Φe. Then, for measurable functions f, f1, f2 : R2 → R+

the following two assertions hold

E[Σf ] = λe

∫

R2
f(x)e−λbπ|x|2dx, (2.7)

and

Cov (Σf1 ,Σf2) = λe

∫

R2
f1(x)f2(x)e−λbπ|x|2dx

+ λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)e−λbU(x1,x2)ge(|x1 − x2|)dx1dx2

− λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)e−λbπ(|x1|2+|x2|2)dx1dx2, (2.8)

where ge is the pair-correlation function of the ending process and U(x1,x2) is the
area of the union of two disks centered at x1 and x2 and having radii |x1| and |x2|,
respectively.

Proof of (2.7). The result follows by recognizing that

E[Σf ] = E[E[Σf |Φb]] = E[λe

∫

R2
f(x)1Vo(x)dx]

= λe

∫

R2
f(x)P (x ∈ Vo)dx = λe

∫

R2
f(x)e−πλb|x|2dx. (2.9)

The last equality holds since x ∈ Vo is equivalent to Φb ∩ b(x, |x|) = ∅.

Using (2.7), straight forward calculations give

E[N ] =
λe

λb
and E[L] =

λe

2λ
3
2
b

.

It should be noted that these can alternatively be obtained using conditioning. Also, the
expectation of N holds for any stationary point process, Φe,Φb while the expectation
of L relies on Φb being a Poisson process.

In order to prove (2.8) we will use the following lemma.
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LEMMA 1. For a stationary point process Φ in R2 and measurable functions f1, f2 :
R2 → R+, the following assertion holds

Cov

(∑

x∈Φ

f1(x),
∑

x∈Φ

f2(x)

)
= λ

∫

R2
f1(x)f2(x)dx

+
∫

R2

∫

R2
f1(x1)f2(x2)%(2)(x1,x2)dx1dx2,

− λ2

∫

R2

∫

R2
f1(x1)f2(x2)dx1dx2,

(2.10)

where %(2) is the second-order product density of Φ.

Proof. We can write

Cov

(∑

x∈Φ

f1(x),
∑

x∈Φ

f2(x)

)

= E


 ∑

x1,x2∈Φ

f1(x1)f2(x2)


− E

[∑

x∈Φ

f1(x)

]
E

[∑

x∈Φ

f2(x)

]
. (2.11)

Furthermore, we have that

E


 ∑

x1,x2∈Φ

f1(x1)f2(x2)


 = E

[ ∑

x∈Φ

f1(x)f2(x)

]
+ E




∑

x1,x2∈Φ
x1 6=x2

f1(x1)f2(x2)




= λ

∫

Rd

f1(x)f2(x)dx

+
∫

R2

∫

R2
f1(x1)f2(x2)%(2)(x1,x2)dx1dx2,

where the last equality follows from the Campbell theorem, see e.g. [16] and Equation
(14.20) in [17]. The lemma now follows from using the Campbell theorem on the last
term of the right-hand side of (2.11).

Proof of (2.8). We have for random variables X, Y and any σ-algebra Z that

Cov(X, Y ) = Cov(E[X|Z],E[Y |Z]) + E[Cov(X,Y |Z)]. (2.12)

7



By using (2.12) we have

Cov (Σf1 , Σf2) = E
[
Cov

(
Σf1 , Σf2

∣∣∣ Φb

)]
+ Cov (E[Σf1 |Φb],E[Σf2 |Φb]) . (2.13)

Now, from Lemma 1 it follows that

E
[
Cov

(
Σf1 , Σf2

∣∣∣ Φb

)]

= E
[
λe

∫

R2
f1(x)f2(x)1Vo

(x)dx
]

+ E
[∫

R2

∫

R2
f1(x1)f2(x2)1Vo

(x1,x2)%(2)
e (x1,x2)dx1dx2

]

− E
[
λ2

e

∫

R2

∫

R2
f1(x1)f2(x2)1Vo(x1,x2)dx1dx2

]

= λe

∫

R2
f1(x)f2(x)P (x ∈ Vo)dx

+
∫

R2

∫

R2
f1(x1)f2(x2)P (x1,x2 ∈ Vo)%(2)

e (x1,x2)dx1dx2

− λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)P (x1,x2 ∈ Vo)dx1dx2

= λe

∫

R2
f1(x)f2(x)e−πλb|x|2dx

+
∫

R2

∫

R2
f1(x1)f2(x2)e−λbU(x1,x2)%(2)

e (x1,x2)dx1dx2

− λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)e−λbU(x1,x2)dx1dx2, (2.14)

where the last equality holds since x1,x2 ∈ Vo is equivalent to

Φb ∩ (b(x1, |x1|) ∪ b(x2, |x2|)) = ∅.
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Furthermore, using (2.7) we obtain

Cov (E[Σf1 |Φb],E[Σf2 |Φb])

= Cov
(

λe

∫

R2
f1(x1)1Vo

(x1)dx1, λe

∫

R2
f2(x2)1Vo

(x2)dx2

)

= E
[
λ2

e

∫

R2

∫

R2
f1(x1)f2(x2)1Vo

(x1,x2)dx1dx2

]

− E
[
λe

∫

R2
f1(x1)1Vo

(x1)dx1

]
E

[
λe

∫

R2
f2(x2)1Vo

(x2)dx2

]

= λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)P (x1,x2 ∈ Vo)dx1dx2

− λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)P (x1 ∈ Vo)P (x2 ∈ Vo)dx1dx2

= λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)e−λbU(x1,x2)dx1dx2

− λ2
e

∫

R2

∫

R2
f1(x1)f2(x2)e−πλb(|x1|2+|x2|2)dx1dx2 (2.15)

Lastly, we use the relationship %
(2)
e (x1,x2) = λ2

ege(|x1 − x2|).

To obtain results concerning variances and covariances of e.g. N and L in the RSGCP
setting, we would need to use Theorem 1 together with (2.3). The main challenge then
is to evaluate ∫

R2

∫

R2
C(|x1 − x2|) e−λbU(x1,x2)dx1dx2,

for given covariance function C(r). Unfortunately, C(r) is hard to obtain analytically
and is known only for a few models. Even in the cases when it is known it has a compli-
cated form. One possible approach would be to use any of the following approximations
of C(r)

C(r) ≈ p(1− p)e−ar + p2 or C(r) ≈ p(1− p)e−(ar+br2) + p2,

which are valid for suitable choices of a and b [1].

The following result lies a little bit outside the main scope of the paper but is worth
mentioning. In the case when Θ and Φb are independent, it is possible to obtain the
following integral expression for Cov(|Vo ∩Θ|, |Vo ∩Θc|).
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PROPOSITION 1. If Θ and Φb are independent, then

Cov(|Vo ∩Θ|, |Vo ∩Θc|) = p

∫

R2

∫

R2
e−λbU(x1,x2)dx1dx2 − p (1− p)

λ2
b

−
∫

R2

∫

R2
e−λbU(x1,x2)C(|x1 − x2|)dx1dx2. (2.16)

Proof. We have that

Var(|Vo|) = Var(|Vo ∩Θ|) + Var(|Vo ∩Θc|) + 2Cov(|Vo ∩Θ|, |Vo ∩Θc|). (2.17)

By using Robbin’s formula [12, 13] we obtain

Var(|Vo|) =
∫

R2

∫

R2
e−λbU(x1,x2)dx1dx2 − 1

λ2
b

, (2.18)

E[|Vo ∩Θ|] =
∫

R2
P (x ∈ Vo ∩Θ)dx =

∫

R2
P (x ∈ Vo)P (x ∈ Θ)dx

= p

∫

R2
e−πλb|x|2dx =

p

λb
, (2.19)

and

Var(|Vo ∩Θ|) = E[|Vo ∩Θ|2]− E[|Vo ∩Θ|]2

=
∫

R2

∫

R2
P (x1,x2 ∈ Vo ∩Θ)dx1dx2 − p2

λ2
b

=
∫

R2

∫

R2
P (x1,x2 ∈ Vo)P (x1,x2 ∈ Θ)dx1dx2 − p2

λ2
b

=
∫

R2

∫

R2
C(|x1 − x2|) e−λbU(x1,x2)dx1dx2 − p2

λ2
b

. (2.20)

By similar arguments

Var(|Vo ∩Θc|) = (1− 2p)
∫

R2

∫

R2
e−λbU(x1,x2)dx1dx2

+
∫

R2

∫

R2
C(|x1 − x2|) e−λbU(x1,x2)dx1dx2 − (1− p)2

λ2
b

,

(2.21)

where we have used that

P (x1,x2 /∈ Θ) = P (x1 /∈ Θ) + P (x2 /∈ Θ)− P (x1 /∈ Θ ∪ x2 /∈ Θ) . (2.22)

The result follows by combining (2.18)-(2.21).
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A numerical approximation, first given by Gilbert [3] is the following
∫

R2

∫

R2
e−λbU(x1,x2)dx1dx2 ≈ 1.280λ−2

b ,

but as mentioned above, it is difficult to evaluate the second integral.

2.1 Branch length distribution

We will now derive the distribution of the length of a randomly chosen branch, i.e. the
distance from a typical point of Φe to the nearest point of Φb. Here, Φe can be any
motion-invariant point process, independent of Φb. Since Φb and Φe are independent
the distribution of B is then given by the spherical contact distribution of the base
process, denoted by Hb. This holds since, the typical point of Φe is just a random point
in space. More formally, this can be seen using the following suitable definition of the
distribution function of B

P (B ≤ r) =
1

λe|A| E
[ ∑

x∈Φe∩A

1{Φb(b(x,r))>0}

]
, (2.23)

for any set A ⊂ R2 s.t. 0 < |A| < ∞. Here b(x, r) denotes a closed disk in R2 with
center x and radius r. Now, for any given set A we have that

E

[ ∑

x∈Φe∩A

1{Φb(b(x,r))>0}

]
= E

[
E

[ ∑

x∈Φe

1{Φb(b(x,r))>0, x∈A}
∣∣∣ Φb

]]

= λeE
[∫

A

1{Φb(b(x,r))>0}dx
]

= λe

∫

A

P (Φb(b(x, r)) > 0)dx

= λe

∫

A

P (Φb(b(o, r)) > 0)dx

= λe|A|Hb(r). (2.24)

Equation (2.24) then implies that,

P (B ≤ r) = 1− e−λbπr2
, (2.25)

see e.g. [16].
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3 Stienen Model generated by Φb

In this section we present results when Θ is the Stienen model having the points of Φb

as generators in a way which will be described below. This special case is of interest in
connection with the ENF patterns since it induces a hierarchical structure between the
ending process and the base process. This model allows for different intensities close
to the base points than in more periferal parts of respective Voronoi cell. The Stienen
model is defined as follows. For each x ∈ Φb, assign the following mark

Rx = min
y∈Φb :y 6=x

{||x− y||/2}.

Then, the random closed set

S =
⋃

x∈Φb

b(x, Rx), (3.1)

is called the Stienen model [15]. For a further introduction to the Stienen model the
reader is referred to [16, 14, 10, 7]. Furthermore, let So denote the typical disk (meaning
the disk that has the origin as centre) and Ro represents the typical mark. It is well
known that the area fraction of the Stienen model is p = 1

4 which implies using (2.2)
and (2.3) that

λe =
λ1 + 3λ2

4
, (3.2)

and

ge(r) =
1
λ2

e

[CS(r)(λ1 − λ2)2 +
1
2
(λ1 − λ2)λ2 + λ2

2], (3.3)

where CS(r) is the covariance function of the Stienen model. In Schlather and Stoyan [14],
the authors investigate the covariance of the Stienen model in general dimensions. They
produce integral expressions for CS(r) and obtain an analytical formula on the line.
Furthermore, they produce numerical estimates for d = 3. Doing the same for d = 2
would make it possible to obtain a numerical estimate of ge(r).

3.1 Mark distributions

In this section we deduce the density of the individual branch length, i.e. the distance
from a randomly chosen point in Φe to its nearest neighbor in Φb. If Θ and Φb are
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independent the density of the length an individual branch, denoted by B, is given by

fB(x) = 2πλbre−πλbr2
, (3.4)

which follows from (2.25). However, if Θ and Φb are dependent, as in the case when
Θ = S, then

fBd
(x ; λb) =

pλ1

pλ1 + (1− p)λ2
fB1(x ; λb) +

(1− p)λ2

pλ1 + (1− p)λ2
fB2(x ; λb), (3.5)

where fBΘ and fBΘc denote the lengths of branches with endings in Θ and Θc, re-
spectively. The weights represent the probability that the branch corresponds to a point
lying in Θ or Θc, respectively. The expression for the weight associated with fBΘ can
be derived by

E
[

Φ1(Vo)
Φ1(Vo) + Φ2(Vo)

]

= E
[
E

[
Φ1(Vo)

Φ1(Vo) + Φ2(Vo)

∣∣∣ Θ, Φb

]]

= E
[
E

[
E

[
Φ1(Vo)

Φ1(Vo) + Φ2(Vo)

∣∣∣ Φ1(Vo) + Φ2(Vo), Θ,Φb

] ∣∣∣ Θ, Φb

]]

= E


E


E

[
Φ1(Vo)

∣∣∣ Φ1(Vo) + Φ2(Vo),Θ, Φb

]

Φ1(Vo) + Φ2(Vo)

∣∣∣∣∣ Θ,Φb







= E
[

λ1|Vo ∩Θ|
λ1|Vo ∩Θ|+ λ2|Vo ∩Θc|

]
. (3.6)

The last equality follows from that for independent Poisson distributed random variables
U, V with intensities λU and λV , respectively, the conditional distribution of U |U +V
is binomial with parameters U + V and λU

λU+λV
. Using Jensen’s inequality gives

E
[

λ1|Vo ∩Θ|
λ1|Vo ∩Θ|+ λ2|Vo ∩Θc|

]
≤ λ1

λ1 − λ2 + λ2E
[

|Vo|
|Vo∩Θ|

]

=
pλ1

pλ1 + (1− p)λ2
, (3.7)

where the last equality follows from that on average p|Vo| = |Vo ∩ Θ|. Analogous
arguments give that

E
[

λ2|Vo ∩Θc|
λ1|Vo ∩Θ|+ λ2|Vo ∩Θc|

]
≤ (1− p)λ2

pλ1 + (1− p)λ2
, (3.8)

13



and since the expected values sum to one, (3.7) and (3.8) imply that

E
[

λ1|Vo ∩Θ|
λ1|Vo ∩Θ|+ λ2|Vo ∩Θc|

]
=

pλ1

pλ1 + (1− p)λ2
. (3.9)

Now, Θ = S , B1 = BS and B2 = BSc and we will derive the form of fBS and fBSc ,
respectively. The distribution function of Ro is given by FRo

(r) = 1− e−λbπ4r2
since

Ro > r is equivalent to Φb∩b(o, 2r) = ∅. Furthermore, conditionally on Ro the density
of the length of an individual branch belonging to an ending not lying in S is given by

fBSc |Ro
(x|λb, Ro = r) =2λbπx e−λbπ(x2−r2)1{x≥r}. (3.10)

This means that

fBSc (x|λb) =
8
3
πλbx e−λbπx2

(
1− e−3πλbx2

)
. (3.11)

Furthermore, the branch length from an ending point inside S has the density

fBS (x|λb) = 8πλbx e−4λbπx2
. (3.12)

A plot of fB , fBS and fBSc can be seen in Figure 2. Further, by (3.5) we have

fBd
(x ; λb) =

λ1

λ1 + 3λ2
fBS (x ; λb) +

3λ2

λ1 + 3λ2
fBSc (x ; λb)

=
8πλb x

λ1 + 3λ2
e−πλbx2

(
λ2 + (λ1 − λ2) e−3πλbx2

)
, (3.13)

which gives E[Bd] = λ1+7λ2
4(λ1+3λ2)

√
λb

. Let NS be the analogue of N defined in (2.5)
when Θ = S , i.e.

NS =
∑

x∈Φ1

1So(x).

We have that

P (|So| > r) = P

(
Ro >

√
r

π

)
,

meaning that |So| ∼ Exp(4λb). It then follows that

fNS (n ; λb, λ1) =
4λb

4λb + λ1

(
λ1

λ1 + 4λb

)n

. (3.14)

Furthermore,

LS
D=

N∑

j=1

B1,j , (3.15)
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Figure 2: Left: Plot of the densities for individual branch lengths, fB

(solid line), fBS (dashed line) and fBSc (dotted line). In all three cases
λb = 1. Right: Plot of fB̃ based on (3.13).

where B1,1, B1,2, ... is an i.i.d. sequence of random variables having the density given
in (3.12). Conditionally on N = n, for n ≥ 1, we have that

fLS |NS=n(x ; λb, n)

=
∫ x

0

...

∫ y2

0

fB1(x− yn−1)fB1(yn−1 − yn−2)...fB1(y2 − y1)fB1(y1)dyn−1...dy1,

(3.16)

and then the unconditional density is given by

fLS (x ; λb, λe) = 1{x=0}
4λb

4λb + λ1

+ 1{x>0}
4λb

4λb + λ1

∞∑
n=1

fL |N=n(x ; λb, n)
(

λ1

λ1 + 4λb

)n

.

(3.17)

A plot of numerical estimates of fL |N=n(x ; 1, n) for n = 1, ..., 5, and fL(x ; 1, 2) are
displayed in Figure 3. The above is not possible to do for neither NSc nor LSc , since
we do not know the distribution of |Vo\So|.
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Figure 3: Left: Plot of numerical estimate of fLS |NS=n(x ; 1, n), n =
1 (solid), n = 2 (dashed), n = 3 (dotted), n = 4 (dashed-dotted), ,
n = 5 (long dashed), using (3.16). Right: Plot of numerical estimate of
fLS (x ; 1, 2) using (3.17).

Means, variances and covariances

In this section we present integral formulas for the first two moments of Σf and also
numerical estimates of these for N and L.

DEFINITION 2. For a measurable function f : R2 → R+ define

Σ1
f =

∑

x∈Φ1

f(x)1So(x), (3.18)

and

Σ2
f =

∑

x∈Φ2

f(x)1Vo∩Sc(x). (3.19)

Elementary we can write Σf = Σ1
f + Σ2

f , which will be used in the following.

PROPOSITION 2. For any measurable function f : R2 → R+ the following assertion
holds

E[Σf ] =
∫

R2
f(x)e−λbπ|x|2

[
λ2 + (λ1 − λ2)e−λb3π|x|2

]
dx. (3.20)

Specifically we have that

E[N ] =
λ1 + 3λ2

4λb
, (3.21)
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and

E[L] =
λ1 + 7λ2

16λ
3
2
b

. (3.22)

Proof. We have that

E
[
Σ1

f

]
= λ1

∫

R2
f(x)P (x ∈ Vo ∩ S)dx = λ1

∫

R2
f(x)P (Ro ≥ |x|)dx

= λ1

∫

R2
f(x)e−4πλb|x|2dx. (3.23)

Furthermore,

E
[
Σ2

f

]
= λ2

∫

R2
f(x)P (x ∈ Vo, Ro < |x|)dx, (3.24)

since x ∈ Sc is equivalent to Ro < |x|. We have that

P (x ∈ Vo, Ro < |x|) = P (Ro < |x| |x ∈ Vo)P (x ∈ Vo), (3.25)

and

P (Ro < |x|) = P (Ro < |x| |x ∈ Vo)P (x ∈ Vo) + P (Ro < |x| |x ∈ Vc
o)P (x ∈ Vc

o),

Now, it is readily seen that P (Ro < |x| |x ∈ Vc
o) = 1, since the radius of the largest

circle contained in the typical cell, centered at the generator, is always less than the
distance to any point outside the typical cell. This means that

P (x ∈ Vo, Ro < |x|) = P (Ro < |x|)− P (x ∈ Vc
o). (3.26)

We have that P (x ∈ Vc
o) = 1− e−λbπ|x|2 , since a point x belongs to the typical cell iff

there are no points of the process Φb in b(x, |x|), meaning that P (x ∈ Vo) = e−λbπ|x|2 .
Inserting these into equation (3.26) and then into Equation (3.24) completes the proof.

Furthermore, concerning second moments we will use that

Cov (Σf1 , Σf2) = Cov
(
Σ1

f1
,Σ1

f2

)
+ Cov

(
Σ2

f1
, Σ2

f2

)

+ Cov
(
Σ1

f1
, Σ2

f2

)
+ Cov

(
Σ1

f2
,Σ2

f1

)
. (3.27)

The covariances on the right-hand side fort this Stienen model construction will be given
in Lemmas 2,3 and 4.
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LEMMA 2. For any measurable functions f1, f2 : R2 → R+, we have that

Cov
(
Σ2

f1
, Σ2

f2

)
= λ2

∫

R2
f1(x)f2(x)e−λbπ|x|2

(
1− e−3λbπ|x|2

)
dx

+λ2
2

∫

R2

∫

R2
f1(x1)f2(x2)e−λbU(x1,x2)dx1dx2.

−λ2
2

∫∫

|x1|≤|x2|
f1(x1)f2(x2)e−λbV (x1,x2)dx1dx2

−λ2
2

∫∫

|x1|≤|x2|
f2(x1)f1(x2)e−λbV (x1,x2)dx1dx2

−λ2
2

∫

R2

∫

R2
f1(x1)f2(x2)e−λbπ(|x1|2+|x2|2)dx1dx2

−λ2
2

∫

R2

∫

R2
f1(x1)f2(x2)e−4λbπ(|x1|2+|x2|2)dx1dx2

+λ2
2

∫

R2

∫

R2
f1(x1)f2(x2)e−λbπ(4|x1|2+|x2|2)dx1dx2

+λ2
2

∫

R2

∫

R2
f1(x1)f2(x2)e−λbπ(|x1|2+4|x2|2)dx1dx2

where U(x1,x2) is defined in Theorem 1 and V (x1,x2) is the area of the union of two
disks centered at o and x2 and having radii 2|x1| and |x2|,respectively.

Proof. The proof follows the same lines as the proof of Theorem 1, and then we need
to find

P (x1,x2 ∈ Vo ∩ Sc) = P (Ro < |x1|, Ro < |x2|, x1,x2 ∈ Vo).

This will be solved for x1,x2 s.t. |x1| ≤ |x2| and for x1,x2 s.t. |x1| > |x2| respec-
tively. For |x1| ≤ |x2|

P (Ro < |x1|, Ro < |x2|, x1,x2 ∈ Vo) = P (Ro < |x1|, x1,x2 ∈ Vo).

Further, it holds that

P (x1,x2 ∈ Vo) =P (Ro < |x1|, x1,x2 ∈ Vo) + P (Ro ≥ |x1|, x1,x2 ∈ Vo).

Now, P (x1,x2 ∈ Vo) = e−λbU(x1,x2) since the points x1, x2 lie in Vo iff there are no
points of Φb in b(x1, |x1|)∪b(x2, |x2|). Furthermore, Ro > |x1|∩x1,x2 ∈ Vo is equiv-
alent to Φb ∩ (b(o, 2|x1|) ∪ b(x2, |x2|)) = ∅, which means that P (Ro ≥ |x1|, x1,x2 ∈
Vo) = e−λbV (x1,x2). This completes the proof.
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REMARK 1. The function V (x1,x2) is given by

V (x1,x2) = 4|x1|2
[
π − arccos

( |x1|
|x2|

)]
+ 2|x1|

√
|x2|2 − |x1|2

+|x2|2
[
π − arccos

( |x2|2 − 2|x1|2
|x2|2

)]
,

which can be obtained by using Equation (K.1) in [17].

In order to obtain numerical values for the integrals above we need to estimate

I(f1, f2, λb) =
∫

R2

∫

R2
f1(x1)f2(x2)e−λbU(x1,x2)dx1dx2,

and

J (f1, f2, λb) =
∫∫

|x1|≤|x2|
f1(x1)f2(x2)e−λbV (x1,x2)dx1dx2,

for fi(xi) = 1 and fi(xi) = |xi|, i = 1, 2. These are displayed in Table 1.

f1, f2 I(f1, f2, λb) J (f1, f2, λb)
f1(x1) = f2(x2) = 1 1.280λ−2

b 0.281λ−2
b

f1(x1) = 1, f2(x2) = |x2| 0.698λ
− 3

2
b 0.168λ

− 3
2

b

f1(x1) = |x1|, f2(x2) = 1 0.698λ
− 3

2
b 0.073λ

− 3
2

b

fi(xi) = fi(xi) = |xi|, i = 1, 2 0.397λ−3
b 0.047λ−3

b

Table 1: Numerical estimates of I(f1, f2, λb) and J (f1, f2, λb).

The integral I(f1, f2, λb) is approximated by the technique suggested in [2]. The values
for J (f1, f2, λb) are obtained in an analogous way. We will briefly display the method
for fi(xi) = fi(xi) = |xi|, i = 1, 2. Let r1 = |x1|, r2 = |x2| and further denote the
interior angles of the triangle ox1x2 by α1 and α2 respectively (see Figure 4 below).
We then have that r1

r2
= sin α2

sin α1
and by using Remark 1 it follows that

V (x,y) = S3(r1, r2, θ) = 4r2
1

[
π − cos−1

(
sin α2

sin α1

)]

+ r2
2

[
π − cos−1

(
1− 2

sin2 α2

sin2 α1

)]
+ 2r1r2

√
1− sin2 α2

sin2 α1

. (3.28)
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Using Equation 3.28, we have that
∫∫

|x1|≤|x2|
|x1||x2|e−λbV (x1,x2,2)dx1dx2

= 2π

∫ ∞

0

∫ r2

0

∫ π

0

r2
1r

2
2e−λbS3(r1,r2,θ)dθdr1dr2 = 2πI3.

Now, regard the following change of variables (r1, r2, θ) 7→ (D sin u,D sin v, π − u−
v), giving the Jacobian J = D sin(u + v). A graphical explanation of this change of
variables is displayed in Figure 4. It follows that α1 = π−β1 = v and α2 = π−β2 = u.

x
1

x
2

α

α 1
D

u
v  2

Figure 4: Graphical explanation of the change of variables used.

This means that

V (x1,x2) = D2K(u, v) (3.29)

where

K(u, v) = 4 sin2 u

[
π − cos−1

(
sin u

sin v

)]
+ sin2 v

[
π − cos−1

(
1− 2

sin2 u

sin2 v

)]

+ 2 sin u sin v

√
1− sin2 u

sin2 v
.

20



Lastly,

I3 =
∫ π

2

0

∫ π−u

u

∫ ∞

0

D5 sin2 u sin2 v sin (u + v)e−λbD2K(u,v)dDdvdu

=
1
λ3

b

∫ π

0

∫ π−u

u

sin2 u sin2 v sin (u + v)
K(u, v)3

dvdu ≈ 0.0075
λ3

b

. (3.30)

Using Table 1 it is possible to obtain the following numerical estimates for NSc and
LSc

Var(NSc) ≈ 3λ2

4λb
+ 0.156

λ2
2

λ2
b

,

Var(LSc) ≈ 15λ2

16πλ2
b

+ 0.112
λ2

2

λ3
b

,

Cov(NSc , LSc) ≈ 7λ2

16λ
3
2
b

+ 0.129
λ2

2

λ
5
2
b

.

LEMMA 3.

Cov
(
Σ1

f1
,Σ2

f2

)
= λ1λ2

∫∫

|x1|≤|x2|
f1(x1)f2(x2)e−λbV (x1,x2)dx1dx2

− λ1λ2

∫∫

|x1|≤|x2|
f1(x1)f2(x2)e−4πλb|x2|2dx1dx2

− λ1λ2

∫

R2

∫

R2
f1(x1)f2(x2)e−πλb(4|x1|2+|x2|2)dx1dx2

+ λ1λ2

∫

R2

∫

R2
f1(x1)f2(x2)e−4πλb(|x1|2+|x2|2)dx1dx2 (3.31)

and

Cov
(
Σ1

f2
,Σ2

f1

)
= λ1λ2

∫∫

|x1|≤|x2|
f2(x1)f1(x2)e−λbV (x1,x2)dx1dx2

− λ1λ2

∫∫

|x1|≤|x2|
f2(x1)f1(x2)e−4πλb|x2|2dx1dx2

− λ1λ2

∫

R2

∫

R2
f2(x1)f1(x2)e−πλb(4|x1|2+|x2|2)dx1dx2

+ λ1λ2

∫

R2

∫

R2
f2(x1)f1(x2)e−4πλb(|x1|2+|x2|2)dx1dx2 (3.32)
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Proof. We will prove (3.31). The proof of (3.32) follows similar arguments. For |x1| >
|x2| we have that P (x1 ∈ Vo ∩S,x2 ∈ Vo ∩Sc) = 0. Concerning |x1| ≤ |x2|, we first
identify that

P (x1 ∈ Vo ∩ S,x2 ∈ Vo ∩ Sc) = P (Ro ≥ |x1|, Ro < |x2|,x2 ∈ Vo),

and further

P (Ro ≥ |x1|,x2 ∈ Vo) = P (Ro ≥ |x1|, Ro ≥ |x2|)
+ P (Ro ≥ |x1|, Ro < |x2|,x2 ∈ Vo)

= P (Ro ≥ |x2|) + P (Ro ≥ |x1|, Ro < |x2|,x2 ∈ Vo),

which implies that

P (Ro ≥ |x1|, Ro < |x2|,x2 ∈ Vo) = P (Ro ≥ |x1|,x2 ∈ Vo)− P (Ro ≥ |x2|)
= e−λbV (x1,x2) − e−4πλb|x2|2 .

Using Lemma 3 together with Table 1 we obtain the following numerical estimates for
the covariances between NS , NSc , LS and LSc , respectively.

Cov(NS , NSc) ≈ 0.031
λ1λ2

λ2
b

, (3.33)

Cov(LS , LSc) ≈ 0.013
λ1λ2

λ3
b

, (3.34)

Cov(NS , LSc) ≈ 0.035
λ1λ2

λ
5
2
b

, (3.35)

Cov(LS , NSc) ≈ 0.0105
λ1λ2

λ
5
2
b

. (3.36)

LEMMA 4.

Cov
(
Σ1

f1
, Σ1

f2

)
= λ1

∫

R2
f1(x)f2(x)e−λbπ 4|x|2dx

+ λ2
1

∫

R2

∫

R2
f1(x1)f2(x2)e−λbπ 4 max (|x1|2,|x2|2)dx1dx2,

− λ2
1

∫

R2

∫

R2
f1(x1)f2(x2)e−λbπ 4(|x1|2+|x2|2)dx1dx2 (3.37)
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which implies that

Var(NS) =
λ1

4λb
+

λ2
1

16λ2
b

,

Var(LS) =
λ1

16πλ2
b

+
256− 24π

6144π

λ2
1

λ3
b

,

Cov(NS , LS) =
λ1

16λ
3
2
b

+
3λ2

1

128λ
5
2
b

.

The proof of Lemma 4 follows the same type of ideas as we used in the proof of
Lemma 2, and using that

P (x1,x2 ∈ Vo ∩ S) = P (x1,x2 ∈ S) = e−λbπ 4 max (|x1|2,|x2|2).

Combining Lemmas 2,3 and 4 and using the numerical approximations we obtain the
following approximations of the variance and covariance of N and L.

Var(N) ≈ λe

λb
+

1
λ2

b

(
1
16

λ2
1 + 0.156λ2

2 + 0.062λ1λ2

)
, (3.38)

Var(L) ≈ λ1 + 15λ2

16πλb
+

1
λ3

b

(
256− 24π

6144π
λ2

1 + 0.112λ2
2 + 0.026λ1λ2

)
, (3.39)

Cov(N, L) ≈ λ1 + 7λ2

λ
3
2
b

+
1

λ
5
2
b

(
3

128
λ2

1 + 0.129λ2
2 + 0.0455λ1λ2

)
. (3.40)

REMARK 2. By setting λ1 = λ2 in (3.38), (3.39) and (3.40) we obtain the same results
as in [2].

REMARK 3. In this setting it is possible to obtain a numerical value for Cov(|Vo ∩
S|, |Vo ∩ Sc|), namely

Cov(|Vo ∩ S|, |Vo ∩ Sc|) = Cov(|Vo|, |So|)− 1
16
≈ 0.0310

λ2
b

, (3.41)

where the first equality follows from the fact that |Vo∩Sc| = |Vo|−|So| and Var(|So|) =
1
16 . The numerical approximation of Cov(|Vo|, |So|) can be obtained using the results
in [10].

3.2 Conditional Angle distribution

If we let Γ denote the angle between the x-axis and the branch connecting the typical
base to a randomly chosen ending. The conditional distribution of Γ, given a realiza-
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tion of bases (Γ|Φb = ϕ) is one feature of interest in our ENF application: Given the
locations of the bases, where would the process place branches? For o ∈ Φb, Γo de-
pends on the position of the nearest neighbors, y1, ...,yn, of o. This distribution will
”favor” directions in which there is relatively more open area. Conditionally (on the
base process) the position of a randomly chosen ending, X , connected to the origin has
a uniform distribution over either So or Ṽo, depending on whether the point lies in S or
Sc, respectively. Here Ṽo = Vo\So. The above means that X has the following density

fX(x|Φb) =
λ1

λ1|So|+ λ2|Ṽo|
1So

(x) +
λ2

λ1|So|+ λ2|Ṽo|
1Ṽo

(x), x ∈ Vo. (3.42)

This is a weighting of the two uniform distributions over So and Ṽo. The weights are
given by the probability that the point we pick is lying in respective region of the typical
cell, and are derived analogously to the unconditional case in (3.6).

Now, if we express X in polar coordinates, i.e. X = (R, Γ), we get the following
density

fR,Γ(r, γ|Φb) =
λ1 r

λ1|So|+ λ2|Ṽo|
1r≤Ro(r) +

λ2 r

λ1|So|+ λ2|Ṽo|
1Ro≤r≤rm(γ)(r),

(3.43)

where rm(γ) is the distance from the origin to the perimeter of Vo at an angle γ w.r.t.
the x-axis. The density for Γ is then given by

fΓ(γ|Φb) =
∫ rm(γ)

0

fR,Γ(r, γ|Φb)dr

=
(λ1 − λ2)|So|+ λ2π rm(γ)2

2π(λ1|So|+ λ2|Ṽo|)
, 0 ≤ γ ≤ 2π. (3.44)

The part of the density arising from endings lying in So is uniform and then there is the
more complex part coming from the points lying in Ṽo, resulting in an irregulars, jagged
shape. This can be seen in Figure 5.

4 Discussion

We have suggested a class of spatial point process models motivated by modelling ENF
patterns. These models should be viewed as a first attempt to model ENF patterns. To
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Figure 5: Left: Realization of Vo. Right: Conditional Angle Distribution of
branches connected to the origin in the realization on the left, for λ1 = 7
and λ2 = 5, |So| = 0.0027 and |Ṽo| = 0.0117.

capture more of the complexity of such patterns will most likely render in simulation
based techniques. We have considered quantities such as number of branches per base,
branch lengths and angles of the segments joining bases and their associated endings.
Furthermore, we have considered the first and second moments of additive functionals
which give the number of branches per base and total branch length per base as special
cases. In the case of Θ = S , we have been able to obtain expressions for the density of
the branch length as well as the conditional angle distribution (conditionally on the base
process). We have also given integral formulas for the covariance between the area of
the part of a random set which lies inside the typical Poisson-Voronoi cell and the area
of the complement to the same random set which lies inside the typical Poisson-Voronoi
cell.
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process models of epidermal nerve fibers
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Abstract

We define two stochastic models describing the growth of branching systems, mo-
tivated by the growth and development of epidermal nerve fibers (ENFs) in human
skin. The models derive from two point process, (Φb, Φe), describing the base and
ending points of the fibers. Each point of Φe (the end point process) is connected
to a unique point in Φb (the base point process). In the first model, both Φe and Φb

are Poisson processes, yielding general baseline results. In the second model, we
model the branching structure more directly by defining Φb as a general point pro-
cess and Φe as a cluster process conditioned on the realization of Φb as its parent
points. In both cases, we derive distributional properties for observable quantities
of direct interest to neurologists such as the number, direction, and length of fibers
for any particular base, conditional on the number and location of the other bases.
We illustrate both models by fitting them to data arising from skin biopsy images
of ENFs and provide inference regarding physiological properties of ENF growth.

Keywords: Angle Distribution; Branch length; Campbell Theorem; Epidermal nerve
fibers; Poisson Process;
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1 Introduction

In this paper, we consider a set of two-stage point process models describing the fol-
lowing scenario: fibers represent branches and grow from “base” points to “ending”
points under a process that encourages placement of “ending” points in current gaps
in coverage. As a conceptual example, consider branch growth in trees, where new
branches tend to grow into open spaces between trees offering increased access to sun-
light between existing trees and branches. The conditional nature of the problem is of
particular interest, namely, we wish to describe the number, length, and direction of
branches growing from a particular base, given the location of all other bases in the data
set.

A more specific example motivating the current study involves the spatial growth and
replacement patterns of epidermal nerve fibers (ENFs) in skin samples. ENFs are thin
sinuous fibers branching from root ganglion cells in the dermis and terminating at all
levels of the epidermis. The basic structure of ENFs is a tree-like structure with a
“trunk” entering the epidermis from the dermis and “branches” spreading in different
directions ending in terminal nodes that transmit sensations of heat and pain through the
ENFs to the central nervous system. Kennedy et al. (1996) first imaged ENFs from skin
biopsies via confocal microscopy, revealing intriguing spatial patterns. ENFs appear in
the epidermis throughout the body, however, the number of ENFs per square unit of skin
decreases as one moves to more peripheral sites in the body (i.e., the intensity of ENFs is
smaller in the hands and feet than in the trunk), and several researchers have noted sig-
nificant reduction in ENF intensity in patients experiencing diabetic neuropathy (nerve
and sensory loss, often severe, in diabetic patients). In subsequent work, Kennedy et al.
(1993 & 1996) noted that not only does the intensity decline, but the spatial distribution
of ENFs also appears to change with disease progression. Leong (2005) quantified such
a change in pattern by showing increased clustering (as measured by the pair correlation
function) in the distribution of ENF trunks in skin samples from patients suffering small
fiber sensory neuropathy (SFSN), i.e., loss of feeling preceding quantifiable reduction
in the number of ENFs.

In this paper, rather than studying the differences between patients with and without
neuropathy, we suggest stochastic point/fiber process models describing the observed
ENF pattern in order to more precisely understand and describe the spatial structure of
the ENF system as observed in skin blister biopsies. Such models provide insight into
observable quantities in the images and can later be used as the basis for more extensive
models, e.g., space-time models for the growth of the nerve fibers.

We suggest two types of models. First, we suggest a model where both the nerve trunks
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(base points) and the end points of the fibers are realizations of two independent Poisson
processes. Each of the ending points are connected to one of the base points accord-
ing to a probabilistic assignment mechanism. We term this a two stage Poisson (TSP)
model. In the second, more mechanistic model, we allow a general point process for the
base locations then define a cluster process for the end point locations conditioned on
the realization of the base process as its parent process. This is similar to the definition
of a Neyman-Scott process. However, in our model, all end points are assigned a base
as their unique parent, and we refer to this model as a non-orphan cluster (NOC) model.
In both cases above, each ending point is connected to its base point via a line segment,
i.e., fibers are approximated by line segments.

The Two Stage Poisson model has some similarities with a model proposed by Foss
& Zuyev (1996) for telecommunication networks. In this setting, the base process rep-
resents locations of local relay stations and the end process represent the users of the
network, e.g., the locations of mobile phones or broad band users. Foss & Zuyev (1996)
provide a basis for our TSP results, and we extend their results to more general end-to-
base assignment. All results below are given in R2 (with proofs in the appendix), but
can be extended into Rd without much effort.

2 Data

The ENF data arise from a “suction induced” skin biopsy. Using this method, some por-
tion of the epidermis is removed from the dermis, mounted on a slide, and stained for
imaging. Next, the ENFs in each slide are traced manually using confocal microscopy
and stored as traces via Neurolucida software (MicroBrightField, Inc. Williston, WT).
The original data are in R3 and come in sample “boxes” of sizes 330 × 430 × z µm,
where z varies between 20 − 50µm, and samples are taken from the thigh, foot, calf,
back and forearm of study subjects, see Wendelschafer-Crabb et al. (2005). In this
paper, we focus on thigh data from four subjects distinguished by labels 171, 224, 230
and 256. Because of non-isotropy in the z-direction and by the shape of the sample
“box” (which is much smaller in the z direction) we use the R2 projection of the re-
sulting patterns, focusing on the spatial pattern of ENF coverage across the skin, rather
than their depth within the skin. The observed patterns are displayed in Figure 1. Our
goal is to define a stochastic process which generates patterns similar to those observed
in the data (with the proper parameter values). Quantities of particular interest, i.e.,
summaries of the process whose distribution we wish to mirror their empirical coun-
terparts within the data, are the total number of fibers, the total length of fibers and the
directional distribution of fibers within an image.
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Figure 1: Observed patterns, where the fibers are replaced by line segments connecting
the end points and the base points. Top left: 171, Top right: 224, Bottom left: 230,
Bottom right: 256.

3 Two Stage Poisson model

3.1 Definition and Basic Properties

Here we assume Φb and Φe to be two independent homogenous Poisson processes hav-
ing intensities λb and λe, respectively. We connect each end point y ∈ Φe to one of the
base points x ∈ Φb according to the following scheme:

y ∼





xy
o , with prob. f(0 ; θ),

xy
1 , with prob. f(1 ; θ),

xy
2 , with prob. f(2 ; θ),

...

where xy
o is the point of Φb that is nearest to y, xy

1 is the second nearest, xy
2 is the third

nearest etc. Note that a single base may be connected to multiple (or zero) ends. The
connection probability, f(m ; θ), m ∈ N, may depend on a parameter vector θ ∈ Rk.

We consider Φe as a marked point process, where the mark m of the point y ∈ Φe

4



denotes how many further points of Φb lie closer to y than the point x ∈ Φb, to which
y is connected. This means that, if y ∈ Φe is connected to the mth nearest point of
Φb, then the mark of y is m − 1. The marks are assumed to be independent of both
processes. Concerning the number of line segments, N , and total length, L, we could
also consider the following more general characteristic

DEFINITION 1. For any measurable function g : R2 → R+, let

Σg =
∑

x∈Φe

g(x)1{x∈O}, (1)

where O denotes the set of all points of Φe which are connected to the origin.

Then N and L are special cases of Σg, namely N =
∑

x∈Φe
1{x∈O} and

L =
∑

x∈Φe
|x|1{x∈O}, respectively.

Foss & Zuyev (1996) regarded a similar type of additive functional as in Equation (1),
but using the form Σ̃g =

∑
x∈Φe

g(x)1{x∈Vo} where Vo denotes the typical cell of the
Poisson-Voronoi Tessellation generated by Φb. Their model is a special case of the one
defined above, i.e. when all the mass of the mark distribution is concentrated at 0. This
means that each point in Φe is connected to the nearest point of Φb, and we will refer
to this as the hard boundary setting. In Foss & Zuyev (1996), the authors give results
regarding Σ̃g, such as expectation, variance, and covariance. Large deviation results
are also given for the counterparts of N and L. It is worth noting that there is a pos-
sibility in the general Two stage Poisson (TSP) model that branches will cross. This is
not the case in the hard boundary setting. It is possible to obtain results similar to Foss
and Zuyev (1996) for the first moments for Σg in the TSP model, but analytical results
regarding distribution will be very difficult to derive. Instead, we provide simulation
based estimates of the densities of N and L, respectively. The estimated densities are
diplayed in Figure 3 and 5, respectively.

3.2 Moments

The following proposition gives the expectation of N and L, respectively. The expec-
tation of N is the same as in the hard boundary model of Foss & Zuyev (1996), which
means that, on average, we “lose” the same amount of endings to the other bases as we
“gain” from them.
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PROPOSITION 1. For N and L defined above, the following two assertions hold.

E(N) =
λe

λb

and

E(L) =
λe

λ
3
2
b π

1
2

∞∑
m=0

f(m ; θ)
Γ(m + 3

2 )
Γ(m + 1)

.

It is worth noting that the expectation of N does not depend on the mark distribution,
but the expectation of L does. It is also possible to obtain formulas for the variances
and covariances of N and L. A corresponding result for a general function g is given in
Theorem 2 in the Appendix.

PROPOSITION 2. For N and L defined above, the following holds.

var(N) =
λe

λb

(
1− λe

λb

)

+
2πλ2

e

λ2
b

∞∑
m1=0

∞∑
m2=0

min (m1,m2)∑
n=0

Kf (n,m1,m2, 0, 0 ; θ) (2)

var(L) =
λe

λ2
bπ

∞∑
m=0

(m + 1) f(m ; θ)

+
λ2

e

λ3
b

[
2π

∞∑
m1=0

∞∑
m2=0

min (m1,m2)∑
n=0

Kf (n,m1,m2, 1, 1 ; θ)

− 1
π

( ∞∑
m=0

Γ
(
m + 3

2

)

Γ (m + 1)
f(m ; θ)

)2 ]
(3)

cov(N, L) =
λe

λ
3
2
b

√
π

(
1− λe

λb

) ∞∑
m=0

Γ
(
m + 3

2

)

Γ (m + 1)
f(m ; θ)

+
2πλ2

e

λ
7
2
b

∞∑
m1=0

∞∑
m2=0

min (m1,m2)∑
n=0

Kf (n,m1,m2, 0, 1 ; θ), (4)
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where

Kf (n,m1,m2, p, q ; θ) =
f(m1 ; θ)f(m2 ; θ)Γ(2 + m1 + m2 − n + p+q

2 )
(m1 − n)!(m2 − n)!n!

× (5)

∫ π

0

∫ π−u

0

sin1+p u sin1+q v sin(u + v)×

(A(u, v)− π sin2 v)m1−n(π(sin2 u + sin2 v)−A(u, v))n×
(A(u, v)− π sin2 u)m2−nA(u, v)n−2−m1−m2− p+q

2 dvdu,

for
A(u, v) = sin u sin v sin(u + v) + (π − v) sin2 u + (π − u) sin2 v.

For given n,m1,m2, p, q, it is possible to numerically estimate the double integral
in (5). Using this, for a given f and θ we can get a numerical estimates of Kf and via
this get numerical estimates of the series in (2)- (4). Furthermore, using Proposition 2
in the hard boundary setting we have the following results, agreeing with the corre-
sponding result in Foss & Zuyev (1996). In the hard boundary setting, i.e. f(0 ; θ) = 1,
the following holds

var(N) =
λe

λb
+

λ2
e

λ2
b

[
2π

∫ π

0

∫ π−u

0

sin u sin v sin(u + v)
A(u, v)2

dvdu− 1

]

≈ λe

λb
+ 0.280

λ2
e

λ2
b

(6)

var(L) =
λe

π λ2
b

+
λ2

e

λ3
b

[
4π

∫ π

0

∫ π−u

0

sin2 u sin2 v sin(u + v)
A(u, v)3

dvdu− 1
4

]

≈ λe

π λ2
b

+ 0.147
λ2

e

λ3
b

, (7)

cov(N,L) =
λe

2λ
3
2
b

+
λ2

e

λ
5
2
b

[
3π

3
2

2

∫ π

0

∫ π−u

0

sinu sin2 v sin(u + v)
A(u, v)

3
2

dvdu− 1
2

]

≈ λe

2λ
3
2
b

+ 0.190
λ2

e

λ
5
2
b

. (8)

Equations (6), (7) and (8) follow by setting m1 = m2 = 0 (and hence also n = 0) in
Proposition 2. The approximations are obtained, via numerical integration, using the
NIntegrate routine in Mathematica.
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Figure 2: Empirical (black) and model based (grey) distributions for the marks. Top
left: 171, Top right: 224, Bottom left: 230, Bottom right: 256.

3.3 Branch Length Distributions

Following Stoyan and Stoyan (1994) concerning the nearest-neighbor distribution func-
tion, the distribution of the distance from a typical point of Φe to its nth nearest neighbor
in Φb (m = n − 1, where m = 0 means the closest), denoted by, Dm, is given by
P (Dm ≥ r) = e−λbπr2 ∑m

i=0
(λbπr2)i

i! , which implies that

fDm(r ; λb) =
2(λbπ)m+1

Γ(m + 1)
r2m+1 e−λbπr2

. (9)

Concerning the mark distribution, initial diagnostics suggests that one parameter models
(e.g. Poisson) are not flexible enough for our ENF application. We therefore suggest a
density of the following kind

f(m ; α, β) = Gα(e−β)−1 (m + 1)−αe−β(m+1), m ∈ N, α ∈ R, β > 0. (10)

Here, Gη(ξ) is the polylogarithm function, also called Jonquire’s function, and it is
defined by Gη(ξ) =

∑∞
j=1

ξj

jη . A fit of the mark distribution to our ENF data can be
seen in Figure 2. This two-parameter distribution fits the data very well. The down-
side of using this type of distribution is that there will most likely be no closed form
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expression for the branch length distribution. Still, the basic hierarchical structure of
the process model allows us to obtain numerical estimates in the following manner.
Using (9) and (10), the density of the branch length distribution can be written as

fB(r; λb, α, β) =
2

Gα(e−β) r
e−λbπr2

∞∑
m=1

(λbπr2)m

Γ(m)
m−α e−βm, (11)

which we can numerically estimate given estimates of r, λb, α, β. Note that we do not
need to use (11) to estimate λb, α and β, since these can be estimated directly from the
observed base process and the marks, respectively.

A plot of the branch length distribution based on parameter values estimated from our
four data sets can be seen in Figure 4 together with a kernel density estimate based on
the observed branch lengths in the same data. We note some discrepancy between our
estimated parametric formulation and the nonparametric density estimate, in particular,
the parametric model tends to produce branches that are longer, in general, than what
we observe in the data. In order to address this situation, we next consider an alterna-
tive family of models based more directly on the underlying physiological structure of
ENFs.

4 Non-Orphan Cluster model

In contrast to the basic TSP structure (and giving up some of the general Poisson pro-
cess based results), we now consider a two-stage point process model of ENF structure
with explicit models for the connections between base and ending points. We allow the
base process to be a general point process, and around each base a cluster of endings
is scattered and connected to the base. This is a similar construction to a Neyman-
Scott process, but in this case, we maintain information regarding to which parent each
offspring belongs as part of the realization of the process, i.e., each realization of the
process consists of a set of fibers defined by line segments connecting each ending to
its associated base. An advantage of this approach over the TSP model is that we are no
longer restricted to the use of Poisson processes but we do lose some associated conve-
nient analytic shortcuts.

The main challenge now becomes modeling the interaction between the end points,
especially, our desire for the underlying process to have a tendency to grow branches
into empty spaces between base point locations. For the TSP model, this property fol-
lows by the definition of the component Poisson processes. For the Non-orphan cluster
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(NOC) model with fibers generated around each base as described above, we will not
see this behavior unless we model directional preference explicitly. We explore two
possible angle distributions to address this issue.

4.1 Definition and Basic Properties

Using the same notation as in the previous section, the clusters are modeled in the
following way. The number of points per cluster (fiber branches per base) is assumed
to follow a distribution having a density given by

fN (n ; δ, γ) = Gδ(e−γ)−1n−δ e−γn, n = 1, 2, .... (12)

This is a translated version of the mark density of the TSP model, given in (10). In
Figure 3 a fit of fN , together with the empirical and an simulation based estimate of the
density of N in the TSP model is shown. For the TSP model there is a possibility of
zero endings for a base, which is not the case in the NOC model. Furthermore, the TSP
model produces more endings than are present in the data.

The positions of endings follow a bivariate distribution Ξ = (Θ, B), where Θ, B are
independent and represent the angle and distance between the offspring and the par-
ent point. Also the Ξ’s are assumed to be mutually independent. The distances from
ending to base are modeled as independent gamma distributed random variables, i.e.
B ∼ Γ(µ, τ). In Figure 4 we plot the density of B for the model with parameters es-
timated from respective pattern, and also a kernel density estimate based on observed
branch lengths. The fit of the Γ-distribution to the data is very good. The assumptions
above mean that

fL(x; µ, τ, δ, γ) =
1

Gδ(e−γ) x
e−τx

∞∑
n=1

(e−γ(τx)µ)n

nδΓ(nµ)
. (13)

For given x and parameters µ, τ, δ, γ it is possible to numerically estimate this den-
sity. In Figure 5 we plot the density fL for each pattern together with a kernel density
estimate based on the data.

4.2 Angle Distributions

In this section we will discuss two different options when it comes to angle distributions.
In both cases the distributions are conditional on the base process. The first approach
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Figure 3: Empirical (black) and model based, NOC (dark grey) TSP (light grey), dis-
tributions for the number of endings per base. The density for the TSP model is an
simulation based estimate. Top left: 171, Top right: 224, Bottom left: 230, Bottom
right: 256.

is based on the angle to the nearest neighbor and the second is through all neighboring
points. We will first use a modified version of the von Mises distribution, often used in
directional statistics (Fisher (1993)), leading to a density of the following kind

fΘ(θ; κ, θ̃) =
1

2πIo(κ)
exp {−κ cos (θ − θ̃)}, θ ∈ (0, 2π),

where θ̃ is the angle between the x-axis and the nearest neighbor of the typical point of
the base process (i.e. the origin) and Ij(κ) is the modified Bessel function of order j.
This means that the distribution of Θ will be centered around θ̃ + π, i.e. more likely to
produce branches in directions away from the nearest other base.

The second approach to define an angle distribution with directional reference for open
space is to consider the conditional angle distribution from a hard-boundary TSP model
where each ending point is connected to the closest base point. Conditional on the
base process, the position of a randomly chosen ending X , connected to the origin,
has a uniform distribution over the typical cell of the Voronoi tessellation generated by
the base process, Vo. This means X has the density fX(x ; Vo) = |Vo|−1, x ∈ Vo,
where | · | denotes area. Representing X in polar coordinates, i.e. X = (Θ, B), gives
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Figure 4: Branch length densities, both model based and a kernel density estimate. TSP
(..), NOC (- -), Kernel estimate (–). Top left: 171, Top right: 224, Bottom left: 230,
Bottom right: 256.

fΘ,B(θ, r ; Vp
o ) = r|Vo|−1, (r, θ) ∈ Vp

o , where Vp
o is Vo represented in polar coordi-

nates, i.e. Vp
o = {(θ, r) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ rm(θ)}. Here, rm(θ) denotes the

distance from the origin to the cell border, in the direction θ w.r.t. the x-axis. It then
follows that fΘ(θ ; Vp

o ) = rm(θ)2

2 |Vo| . An example appears in Figure 6. Since ending points
are uniformly distributed within the Voronoi cell having their parent point as genera-
tor, we see peaks associated with each vertex of the cell as we rotate around the parent
location.

5 Parameter Estimates and Simulation

The intensities λb and λe can be estimated by the total number of base points or ending
points, respectively, divided by the area of the study region. Further, for observations
m1, ...mk, n1, ..., n` and y1, ..., yj of the marks (the number of base points closer than
the attached base points), number of branches and branch lengths, respectively, we have
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Figure 6: Left: Typical cell of the Poisson-Voronoi tessellation generated by Φb; Right:
Conditional Angle Distribution of branches in the typical cell (- -).

the following log-likelihood functions for the parameters α, β, δ, γ, µ and τ ,

`(α, β) = − k log
(
Gα(e−β)

)− kα log (m + 1)− kβ (m + 1),

`(δ, γ) = − ` log Gδ(e−γ)− `δ log n− `γ n,

`(µ, τ) = jµ log τ + j(µ + 1)log y − j log Γ(µ)− jτy.
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Sample α̂ (s.d.) β̂ (s.d.) δ̂ (s.d.)
171 -2.54 (0.05) 2.62 (0.09) -2.44 (0.06)
224 4 · 10−6 (0.04) 1.70 (0.06) 0.34 (0.06)
230 5 · 10−6 (0.04) 1.33 (0.08) -0.14 (0.06)
256 -0.17 (0.05) 1.01 (0.10) -1.39 (0.04)

Sample γ̂ (s.d.) µ̂ (s.d.) τ̂ (s.d.)
171 2.33 (0.10) 3.23 (0.18) 0.16 (0.009)
224 0.77 (0.13) 2.09 (0.12) 0.14 (0.009)
230 0.95(0.12) 1.45 (0.09) 0.09 (0.006)
256 2.27 (0.06) 3.33 (0.15) 0.12 (0.006)

κ̂ (s.d.) λ̂b (s.d.) λ̂e (s.d.)
171 0.05 (0.15) 0.0004 (0.0001) 0.0006 (0.0001)
224 0.03 (0.14) 0.0005 (0.0001) 0.0008 (0.0001)
230 0.39 (0.13) 0.0006 (0.0001) 0.0010 (0.0001)
256 0.04 (0.13) 0.0004 (0.0001) 0.0010 (0.0001)

Table 1: Parameter estimates

We use numerical methods to maximize these. Furthermore, in order to estimate κ using
maximum-likelihood it follows that we need to solve

I1(κ)
Io(κ)

= − 1∑k
j=1 nj

k∑

j=1

nj∑

i=1

cos (θij − θ̃j),

which is done numerically. Here we have observed the angles θij and the nearest neigh-
bor angles θ̃j , i = 1, ..., nj , j = 1, ..., k, and assume that κ is a global parameter.
However, there could be different κ’s for each base. However, with the present data
there are too few endings per base to get good estimates of the individual κ’s.

In Table 5 estimates of the parameters are displayed for respective sample. It should be
noted that limκ→0 fΘ(θ ; κ, θ̃) = (2π)−1, and also limα→0 fM (m ; α, β) = e−βm(1−
e−β). Using the estimated parameters it is possible to simulate realizations from the
fitted process. In Figure 7, simulated patterns are visualized together with that subject’s
observed pattern. The simulations are based on the parameter estimates from sample
171. As one could see in Figure 4, the TSP model produces noticeably longer branches
than there are in the observed pattern.
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Figure 7: Simulated ENF structures based on proposed models. Top left: Data, 171,
Top right: TSP model, Bottom left: NOC model with von Mises angular distribution,
Bottom right: NOC model with conditional angular distribution.

6 Discussion

In the sections above, we propose and compare two classes of two-stage point processes
to describe particular aspects of the spatial distribution of epidermal nerve fibers (ENFs)
observed in microscopy images obtained in studies of peripheral neurology. The fea-
tures of interest involve the number, length, and direction of branches growing from
base points. For the ENF application, the conditional distributions of fiber properties
given the location of base points are of interest in order to quantify changes in pattern
which have been qualitatively observed in previous neurological studies.

The first class is based on independent Poisson processes defining the base and end
points of the fibers, building on previous “territory”-based models from telecommu-
nications. The attraction of the two-stage Poisson (TSP) approach is the wealth of
theoretical properties associated with Poisson process and Voronoi tessellations which
may be used as building blocks to construct the conditional distributions of interest.
Unfortunately, the models as presented here do not provide sufficient flexibility to cap-
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ture some aspects of pattern observed in our data, particularly the observed fiber length
distribution as illustrated in the preceding section. This problem appears to be a direct
aspect of allowing generality in the base-to-end assignment, and reveals an underlying
identifiability complication in the class of TSP models.

The second class of models represents a more mechanistic model of fiber structure
wherein we distribute base points, then generate the associated endpoints for the fibers
originating at each base. These non-orphan cluster (NOC) models avoid ambiguous
base assignment and take advantage of the physiological structure of the system under
study, but result in more involved calculation of the conditional distributions of the fiber
properties of interest than in the TSP models. The increased detail involved in specify-
ing the NOC process appears to be justified by improved fit to the data and improved
inference regarding the quantities of interest.

Using our ENF data, we estimate the parameters defining the distributions of both the
number and direction of branches (both conditional on the number and location of base
points) via maximum likelihood. These distributions in turn define the overall distri-
bution of branch lengths (again, conditional on the base locations). For our data, we
observe that the Poisson-process-based TSP model defined in section 4 tends to over-
predict the number of base locations without branches, and also overestimates branch
length. It is possible that extending the TSP model by allowing more general (i.e., non-
Poisson) point processes for both the base and end locations may alleviate this prob-
lem, however, the need to accurately estimate parameters associated with end-to-base
assignment likely hampers general application of the TSP process in our and similar
applications. In contrast, the NOC process defined in Section 5 accurately captures
the number of fibers per base, the individual branch length distribution for each base,
and the distribution of total branch length observed in our data. While the NOC model
is less general than the TSP formulation, it does appear that the mechanistic structure
leads to much more specific inference for our application.

The next steps in the statistical analysis of spatial patterns in traced ENF microscopy
images include investigation of variations in the estimated process characteristics (dis-
tributions of number, length, and direction of fibers) between observations on the same
subject and between different subjects at various levels of disease progression. Such
analyses will explore the diagnostic capability of quantified spatial pattern to identify
disease state, perhaps offering additional diagnostic tools for early-stage neuropathy.

In addition, confocal images represent cross-sectional snapshots of a dynamic process
of ENF growth and removal. For example, initial within-subject temporal replicates of
ENF data following removal of a section of the epidermis (e.g., through the removal
of a blister) suggest adaptive growth pattern wherein branches extend from existing
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base locations into denervated areas until new base locations can be established again
Wendelschafer-Crabb et al. (2006). Such results suggest extensions allowing the ad-
dition of a temporal component to the NOC process wherein the number, length, and
direction of ENF growth adapts to changes in the distribution of base points.

Finally, there appears to be suggestion of global anisotropy in the direction of branches
in the data, see e.g. the top left in Figure 7. One way to incorporate this into the NOC
model would be to use a more generalized von Mises type of distribution, with density
on the form

fΘ(θ ; θg, θ̃, µ, κ) ∝ exp
{

µ cos (θ − θg)− κ cos (θ − θ̃)
}

, (14)

where θg is a global direction for fibers to tend to. Depending on the values of κ and µ,
it may be possible to extend the model to produce an anisotropic pattern.

In summary, two-stage (or more generally, hierarchical) point process models offer a
rich framework for describing and quantifying observed spatial structure in peripheral
neuropathy.
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8 Appendix

Here we give proofs of the theorems in the main section of the paper, and also state
more general versions of them. The space of marks is denoted by M. Furthermore,
the following two results are key elements to proving the main results. For a marked
homogenous point process Ψ, we have for measurable function h : R2 ×M→ R+

E


 ∑

[x; m]∈Ψ

h(x,m)


 = λ

∫

R2

∫

M
h(x,m)M(dm)dx, (A1)
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and further for measurable function g : R2 × R2 ×M×M→ R+

E




∑

[x1:m1],[x2:m2]∈Ψ
x1 6=x2

g(x1,x2,m1,m2)




=
∫

R2

∫

R2

∫

M×M
g(x1,x2,m1,m2)Mx1,x2(d(m1,m2))%(2)(x1,x2)dx1, dx2,

where Mx1,x2 is the two-point mark distribution for Ψ and %(2) is the second-order
product density for the underlying unmarked point processes associated with Ψ, Stoyan
et al. (1995) and Stoyan (1984). Since Φe is a homogenous Poisson process, it follows
that %(2)(x1,x2) = λ2

e. If we assume independent marking, it follows that
Mx1,x2(d(m1, m2)) = M(dm1)M(dm2). In our case M will always have a density
w.r.t. the counting measure. In the following, we further use that we can write

Σg =
∑

[x; m]∈Φe

g(x)1{Φb(b(x,|x|))=m}

, where b(x, r) = {y ∈ R2 : |y − x| ≤ r}. We will use the notation bx = b(x, |x|).
The distribution of Φb correspond to a reduced Palm distribution at the origin, i.e. we
condition on Φb with a point at the origin and then regard Φb\{o}. Based on these
assumptions we have the following Theorem.

THEOREM 1. For any measurable g : R2 → R+ and mark density f w.r.t. counting
measure,

E(Σg) = λe

∞∑
m=0

f(m ; θ)(λbπ)m

m!

∫

R2
g(x)|x|2me−λbπ|x|2dx.

Proofs of Theorem 1 and Proposition 1. We have that

E(Σg) = E


 ∑

[x; m]∈Φe

g(x)1{Φb(bx)=m}




= E


E


 ∑

(x; m)∈Φe

g(x)1{Φb(bx)=m}
∣∣∣ σ(Φb)







= λeE

(∫

R2

∫

M
g(x)1{Φb(bx)=m}M(dm)dx

)

= λe

∫

R2

∫

M
g(x)pr{Φb(bx) = m}M(dm)dx.
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The result now follows since P (Φb(bx) = m) = (λbπ|x|2)m

m! e−λbπ|x|2 . Furthermore,
Proposition 1 follows by using Theorem 1 above with g(x) = |x|ν , for ν = 0 and
ν = 1.

THEOREM 2. For any measurable functions g1, g2 : R2 → R+, we have that

cov (Σg1 , Σg2)

= λe

∞∑
m=0

f(m ; θ)
(λbπ)m

m!

∫

R2
g1(x)g2(x) e−λbπ|x|2 |x|2mdx

+ λ2
e

∞∑
m1=0

∞∑
m2=0

min(m1,m2)∑
n=0

[
f(m1 ; θ)f(m2 ; θ)

λm1+m2−n
b

(m1 − n)!(m2 − n)!n!
×

∫

R2

∫

R2
g1(x1)g2(x2) e−λbU(x1,x2)(π(|x1|2 + |x2|2)− U(x1,x2))n×

(U(x1,x2)− π|x2|2)m1−n(U(x1,x2)− π|x1|2)m2−ndx1dx2

]

− λ2
e

∞∑
m1=0

∞∑
m2=0

[
f(m1 ; θ)f(m2 ; θ)

(λbπ)m1+m2

m1!m2!
×

∫

R2

∫

R2
g1(x1)g2(x2)|x1|2m1 |x2|2m1e−λbπ(|x1|2+|x2|2)dx1dx2

]
,

where U(x1,x2) is the volume of the union of two spheres centered at x1 and x2 and
having radii |x1| and |x2| respectively.

Proof of Theorem 2. Using (A1) and changing order between expectation and integra-
tion we get

E (E (Σg|σ(Φb))) = λe

∫

R2

∫

M
g(x)P (Φb(bx) = m)M(dm)dx.

Since

E (E (Σg1Σg2 |σ(Φb)))

= E


E




∑

[x1:m1]

∑

[x2:m2]
x2 6=x1

g1(x1)g2(x2)1{Φb(bx1 )=m1, Φb(bx2 )=m2}

∣∣∣∣∣ σ(Φb)







+ E


E


 ∑

[x:m]

g1(x)g2(x)1{Φb(bx)=m}

∣∣∣∣∣ σ(Φb)





 ,
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the result follows by using Equation (A1), changing order between integration and ex-
pectation and noting that

P (Φb(bx1) = m1, Φb(bx2) = m2) =
min(m1,m2)∑

n=0

p(m1,m2, n)

=λm1+m2
b (U(x1,x2)− π|x2|2)m1(U(x1,x2)− π|x1|2)m2e−λbU(x1,x2)×
min(m1,m2)∑

n=0

1
(m1 − n)! (m2 − n)! n!

×
(

(π(|x1|2 + |x2|2)− U(x1,x2))
λb(U(x1,x2)− π|x2|2)(U(x1,x2)− π|x1|2)

)n

.

Above

p(m1, m2, n)
= P (Φb(bx1\bx2) = m1 − n, Φb(bx2\bx1) = m2 − n, Φb(bx1 ∩ bx2) = n) .

Proof of Proposition 2. The main part of the proof is to work out the second term
in Theorem 2, for g1(x) = |x|p and g2(x) = |x|q . The first and the last term is
solved using Theorem 1. Now, let r1 = |x1|, r2 = |x2|, θ = ∠(x1, o,x2) and further
β1, β2 are the external angles of the triangle ox1x2 (see Figure 8). By using the Cosine
Theorem, symmetry arguments and the following change of variables (r1, r2, θ) 7→
(D sinu, D sin v, π − u − v) (the interpretation of D, u, v is presented in Figure 8),
which has the Jacobian D sin(u + v) it follows, for

S(r1, r2, θ) = r1r2 sin θ + r2
1β1 + r2

2β2,

R(r1, r2, θ, m1,m2, n, p, q) = r1+p
1 r1+q

2 (r2
1(π − β1) + r2

2(π − β2)− r1r2 sin θ)n×
(r1r2 sin θ + r2

1β1 + r2
2(β2 − π))m1−n×

(r1r2 sin θ + r2
1(β1 − π) + r2

2β2)m2−n,
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Figure 8: Graphical explanation of the change of variables used in the proof of Propo-
sition 2.

that
∫

R2

∫

R2
|x1|p|x1|q e−λbU(x1,x2)(π(|x1|2 + |x2|2)− U(x1,x2))n×

(U(x1,x2)− π|x2|2)m1−n(U(x1,x2)− π|x1|2)m2−ndx1dx2

=
∫ ∞

0

∫ ∞

0

∫ π

0

R(r1, r2, θ, m1,m2, n, p, q) e−λbS(r1,r2,θ)dθdr1dr2

= 4π

∫ π

0

∫ π−u

0

∫ ∞

0

D3+p+q+2(m1+m2−n) sin1+p u sin1+q v sin(u + v)×

(A(u, v)− π sin2 v)m1−n(A(u, v)− π sin2 u)m2−n×
(π(sin2 u + sin2 v)−A(u, v))ne−λbD2A(u,v)dDdudv,

=
2π Γ(2 + m1 + m2 − n + p+q

2 )

λ
2+m1+m2−n+ p+q

2
b

∫ π

0

∫ π−u

0

sin1+p u sin1+q v sin(u + v)×

(A(u, v)− π sin2 v)m1−n(A(u, v)− π sin2 u)m2−n×
(π(sin2 u + sin2 v)−A(u, v))n A(u, v)n−2−m1−m2− p+q

2 dudv,

which completes the proof.
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ON THE CORRELATION BETWEEN THE VOLUMES OF THE TYPICAL
POISSON-VORONOI CELL AND THE TYPICAL STIENEN SPHERE

VIKTOR OLSBO,∗ Chalmers University of Technology and Göteborg University

Abstract

In this paper we regard a tessellation V generated by a homogenous Poisson
process Φ in Rd, and further the random set of spheres with centers being the
points in Φ and having radius half the distance to the closest other point in Φ.
In Rd we give an integral formula for the correlation between the volume of the
typical cell and the volume of the sphere in the typical cell, and we also show
that this correlation is strictly positive. Further, on the real line we give an
analytical expression for the correlation and in the plane and in space we give
simplified integral formulas. Numerical values for the correlation for d=2,...,7
are also given.

Keywords: Correlation, Poisson process, Robbins’ formula, Stienen model,
Typical Cell, Voronoi tessellation

2000 Mathematics Subject Classification: Primary 60D05
Secondary 60G55

1. Introduction

Let Φ be a homogenous Poisson process in Rd with intensity λ ∈ (0,∞) and let V denote the
tessellation generated by Φ. This means that for each point x ∈ Φ we let Vx be the cell that has
the point x as nucleus (or generator), i.e.

Vx = {y ∈ Rd : ||y − x|| ≤ ||y − z||, z ∈ Φ},

and then

V = { Vx : x ∈ Φ }.

The tessellation V is known as the Poisson-Voronoi tessellation and was introduced by Meijering
[5]. For a more in-depth view on Poisson-Voronoi Tessellations Møller [6] and Okabe et al. [10] are
good starting points. Calka [1] [2] investigated size and form of Voronoi cells in the plane. Hug,
Reitzner and Schneider [4] investigated the shape of large Voronoi cells.

In order to describe statistical properties of V it is useful to introduce the typical cell. Following [6]
we let Γ denote the set of polytopes in Rd equipped with a ”suitable” σ-field A. For a set A ∈ A
we define the following distribution

Q(A) =
1

λ νd(B)
E

[ ∑

x∈Φ∩B

1(Vx − x ∈ A)

]
,

for an arbitrary Borel set B s.t. 0 < νd(B) < ∞. Here, νd denotes the Lebesgue measure. The
typical Voronoi cell is defined as the random polytope Vt on (Γ,A) having distribution Q. It is
known, see e.g. [6], that Vt has the same distribution as Vo, where Vo denotes the cell having
the origin as nucleus. This means that the distribution P of Φ is given by the Palm distribution
at the origin. To emphasise this we use the notation Φo. On the real line ν1(Vo) ∼ Γ(2, 2λ) and
for R2 Calka [2] gives an expression for both the density of the number of neighbours as well as

∗ Postal address: Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
E-mail: vikol@chalmers.se

1



2 Viktor Olsbo

the conditional distribution function of the area of the typical cell, conditioned on the number of
neighbours. For d ≥ 3, the distribution of the volume of the typical cell is unknown.

Around each point x ∈ Φ we place a sphere with diameter being equal to the distance to the
closest neighbor of x. The random closed set made up of the union of these spheres is known as the
Stienen model and was introduced by Stienen [9] motivated by an application in material science.
Conditioning on Φ having a point at the origin, we call the sphere having the origin as center the
typical Stienen sphere (or the typical sphere) and denote it by So. Distributional properties of the
Stienen model are studied by Schlater and Stoyan [8]. Although the distribution of the volumes
of the typical sphere and the typical cell (at least for d = 2) are known the correlation between
them is not available in the literature. At first it feels obvious that this correlation must be
positive, but looking at the selected realizations in Figure 1.1 below the answer does not become
as obvious. Since, e.g. two neighboring points lying close together often produce small spheres
and large Voronoi cells.
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Figure 1.1: Examples of realizations of Vo and So.

2. Main Results

In this section we state and discuss the main results while the proofs are left to Section 3. In
Proposition 2.1 we give a closed form expression for the correlation between ν1(Vo) and ν1(So), and
further in Theorem 2.1 we give an integral formula for corr(νd(Vo), νd(So)) in arbitrary dimensions,
d ≥ 2.

Proposition 2.1. On the real line it holds that

corr(ν1(Vo), ν1(So)) =
1√
2
. (2.1)

The real line is the only case where we have been able to get an analytical expression for the
corr(νd(Vo), νd(So)). The following theorem gives an integral formula for corr(νd(Vo), νd(So)) in
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arbitrary dimensions d ≥ 2. Lemma 3.1 in Section 3 gives an integral formula that holds for any
d ≥ 1.

Theorem 2.1. For d ≥ 2, the correlation between the volume of Vo and the volume of So is given
by

corr(νd(Vo), νd(So)) =
σ2

d

∫∞
0

∫ 2v

0
ud−1vd−1e−bd−1Wd(u,v)dudv − 2d−1

2d√
(d− 1) bd

bd−1

∫ π

0

∫∞
0

sind−2 α Rd−1

Sd(R,α)2 dRdα− 1
, (2.2)

where

Wd(u, v) = ud

∫ π

arccos u
2v

sind tdt + vd

∫ π

arccos 2v2−u2

2v2

sind tdt. (2.3)

and further

Sd(R, α) = Rd

∫ π

α

sind t dt + (R2 + 1− 2R cos α)
d
2

∫ π

T (R,α)

sindt dt, (2.4)

for

T (R, α) = arccos
(

1−R cos α√
R2 + 1− 2R cos α

)
.

Here, σd and bd denote the surface area and the volume of the d-dimensional unit sphere, respec-
tively.

The function bd−1Wd(u, v) can be interpreted as the volume of the union of two d-dimensional
spheres with radius u and v, respectively and distance v between their centers. Furthermore,
bd−1Sd(R, α) can be interpreted as the volume of two spheres, unit distance between their centers,
where one has radius R and the other has radius

√
R2 + 1− 2R cos α. For any d ≥ 2, the integrals

defining Sd(R, α) and Wd(u, v) can be evaluated in terms of elementary functions. This means that
e.g. in the plane and in space it is straightforward to use (2.2) to get numerical approximations of
the correlation between νd(Vo) and νd(So).

Corollary 2.1. In the plane and in space the following holds

(i)

corr(ν2(Vo), ν2(So)) =
4π2I2 − 3

4√
π
2 I1 − 1

≈ 0.7051,

where

I1 =
∫ π

0

∫ ∞

0

R

S2(R, α)2
dRdα,

for

S2(R, α) =
1
2

{
(1 + R2 − 2R cosα)

(
π − arccos

(
1−R cos α√

1 + R2 − 2R cos α

))

+ R2(π − α) + R sin α
}

and

I2 =
∫ ∞

0

∫ 2v

0

uv e−2W2(u,v)dudv,

for

W2(u, v) =
u2

2

(
π − arccos

u

2v

)
+

v2

2

(
π − arccos

(
1− u2

2v2

))
+

u

4

√
4v2 − u2
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(ii)

corr(ν3(Vo), ν3(So)) =
16π2J2 − 7

8√
8
3J1 − 1

≈ 0.6778,

where

J1 =
∫ π

0

∫ ∞

0

R2 sin α

S3(R,α)2
dRdα,

for

S3(R, α) =
1
6
(4 + 9R2 + 4R3 − 12R cosα + 4(1 + R2 − 2R cosα)

3
2 + 3R2 cos 2α),

and

J2 =
∫ ∞

0

∫ 2v

0

u2v2e−
π(3u4+8u3v+16v4)

12v dudv,

Table 1 displays numerical estimates of corr(νd(Vo), νd(So)) for d = 1, ..., 7. The numerical results
are obtained using the NIntegrate routine in Mathematica. As can be seen in Table 1 the cor-
relation seems to decrease as the dimension increases. Using the bounds in (2.5) it follows that
corr(νd(Vo), νd(So)) → 0, as d →∞.

1 2 3 4 5 6 7
0.707107 0.705143 0.677790 0.649534 0.623393 0.599667 0.578145

Table 1: Approximate values of corr(νd(Vo), νd(So)) for d = 1, ..., 7.

One of the questions stated above was if the corr(νd(Vo), νd(So)) is positive or not. As seen, we
cannot find a closed form for the correlation between νd(Vo) and νd(So) in arbitrary dimensions but
we can give a lower bound which shows that it is strictly positive. A result which is in accordance
with intuition. Furthermore, we give bounds on the covariance between νd(Vo) and νd(So).

Proposition 2.2. For any dimensions, it holds that

(i)

1
22d(1 + 2d)λ2

≤ cov(νd(Vo), νd(So)) ≤ 1
2dλ2

. (2.5)

(ii)

corr(νd(Vo), νd(So)) ≥ 1
2d(1 + 2d)

. (2.6)

A result which lies a little bit outside the main focus of this article is the following proposition
which gives bounds on the second moment of the volume of the typical cell in arbitrary dimensions.

Proposition 2.3.

1
λ2

≤ E[νd(Vo)2] ≤ 2
λ2

. (2.7)

Remark 1 The lower bound in Proposition 2.3 is elementary since E[νd(Vo)] = 1
λ , see (3.3). Note

also that for d = 1 we have that E[ν1(Vo)2] = 3
2λ2 .
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3. Proofs

A result, given by Robbins [7], that will be central in the proofs says that

E[νd(X)n] =
∫

Rd

...

∫

Rd

P (x1, ...,xn ∈ X)dx1...dxn, (3.1)

for any random closed set X.

3.1. Moments of the typical cell

Equation (3.1) implies that

E[νd(Vo)n] =
∫

Rd

...

∫

Rd

P (x1, ...,xn ∈ Vo)dx1...dxn

=
∫

Rd

...

∫

Rd

e−λUd(x1,...,xn)dx1...dxn, (3.2)

where Ud(x1, ...,xn) is the volume of the union of n spheres in Rd with centers x1, ...,xn and radii
||x1||, ..., ||xn||, respectively. The property P (x1, ...,xn ∈ Vo) = e−λU(x1,...,xn) follows from the
fact that the points x1, ...,xn lie inside the typical cell iff

Φ!
o

⋂

 ⋃

i=1,...,n

Bd(xi, ||xi||)

 = ∅,

where Φ!
o denotes Φo\{ o} and Bd(x, r) = {y ∈ Rd : ||x− y|| ≤ r}. It is well known that

E[νd(Vo)] =
1
λ

, (3.3)

which is straightforward to obtain from (3.2). This result was initially given by Gilbert [3].
Unfortunately it is the only moment known in analytical form, except for the special case d = 1,
where all moments are known. On the real line Vo is an interval. The distance from the origin
to the left end point of Vo and the distance from the origin to the right end point of Vo are two
independent Exp(2λ)-distributed random variables. This means that ν1(Vo) ∼ Γ(2, 2λ) which
implies that

E[ν1(Vo)n] =
(n + 1)!
(2λ)n

. (3.4)

3.2. Distribution of the typical sphere

Let Ro denote the radius of a typical sphere in the Stienen model, i.e. the sphere that has the origin
as center. We have that P (Ro > r) = e−λ2dbdrd

, since Ro is greater than r iff Φ!
o ∩Bd(o, 2 r) = ∅.

This means that

P (νd(So) > s) = P (bdR
d
o > s) = P (Ro > (s/bd)

1
d ) = e−λ2ds, (3.5)

i.e. νd(So) ∼Exp(2dλ), hence

E[νd(So)n] =
n!

(2dλ)n
. (3.6)
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3.3. Proofs of Proposition 2.1 and Theorem 2.1

In this section we give the proofs of Theorem 2.1 and Proposition 2.1. To prove these results we
will use the following lemma which gives an integral formula for the correlation between νd(Vo)
and νd(So) for any d.

Lemma 3.1. The correlation between the volume of Vo and the volume of So is given by

corr(νd(Vo), νd(So)) =
1−2d

2d +
∫∫
||x1||≤2||x2|| e

−Vd(x1,x2)dx1dx2√∫
Rd

∫
Rd e−Ud(x1,x2)dx1dx2 − 1

, (3.7)

where Vd(x1,x2) is the volume of the union of two spheres in Rd, centered at the origin and x2,
having radii ||x1|| and ||x2||, respectively.

Proof. Define Ṽo as the part of Vo that lies outside So, i.e. Ṽo = Vo\So. Now, to obtain the
correlation between νd(Vo) and νd(So) we first compute the covariance. We have that

var(νd(Ṽo)) = var(νd(Vo)− νd(So)) = var(νd(Vo)) + var(νd(So))− 2 cov(νd(Vo), νd(So)),

which implies that

cov(νd(Vo), νd(So)) =
1
2
(var(νd(Vo)) + var(νd(So))− var(νd(Ṽo))). (3.8)

Now, from (3.2), (3.3) and (3.6) it follows that

var(νd(Vo)) =
∫

Rd

∫

Rd

e−λUd(x1,x2)dx1dx2 − 1
λ2

, (3.9)

and

var(νd(So)) =
1

(2dλ)2
. (3.10)

It remains to find var(νd(Ṽo)). The expectation is given by

E[νd(Ṽo)] = E[νd(Vo)− νd(So)] =
2d − 1
2dλ

. (3.11)

This is what one would expect since the volume fraction of the Stienen model is equal to 2−d. We
will use (3.1) to find the second moment of νd(Ṽo), and then we need to compute P (x1,x2 ∈ Ṽo).
Now, for ||x1|| ≤ ||x2||

P (x1,x2 ∈ Ṽo) = P (Ro < ||x1||, x1,x2 ∈ Vo),

and

P (x1,x2 ∈ Vo) = P (Ro < ||x1||, x1,x2 ∈ Vo) + P (Ro ≥ ||x1||, x1,x2 ∈ Vo).

Further, x1, x2 lies in Vo and Ro ≥ ||x1|| iff there are no points of Φ!
o in Bd(o, 2||x1||)∪Bd(x2, ||x2||)

and therefore, P (Ro ≥ ||x1||, x1,x2 ∈ Vo) = e−λVd(x1,x2,2), where

Vd(x1,x2, 2) = νd(Bd(o, 2||x1||) ∪Bd(x2, ||x2||)).

Using (3.1), the above means that

E[νd(Ṽo)2] =
∫

Rd

∫

Rd

e−λUd(x1,x2)dx1dx2 − 2
∫∫

||x1||≤||x2||
e−λVd(x1,x2,2)dx1dx2. (3.12)
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By using (3.2), (3.6), (3.11) and (3.12), Equation (3.8) now becomes

cov(νd(Vo), νd(So)) =
1
2

∫

Rd

∫

Rd

e−λUd(x1,x2)dx1dx2 − 1
2λ2

+
1

2(2dλ)2

− 1
2

∫

Rd

∫

Rd

e−λUd(x1,x2)dx1dx2

+
∫∫

||x1||≤||x2||
e−λVd(x1,x2,2)dx1dx2 +

(2d − 1)2

2(2dλ)2

=
1− 2d

(2dλ)2
+

∫∫

||x1||≤||x2||
e−λVd(x1,x2,2)dx1dx2. (3.13)

Finally, (3.2), (3.6) and (3.8) imply that

corr(νd(Vo), νd(So)) =
1−2d

(2dλ)2
+

∫∫
||x1||≤||x2|| e

−λVd(x1,x2,2)dx1dx2

1
2dλ

√∫
Rd

∫
Rd e−λUd(x1,x2)dx1dx2 − 1

λ2

.

The change of variables (xi1, ..., xid) 7→ (yi1λ
− 1

d , ..., yidλ
− 1

d ), i = 1, 2, has the Jacobian λ−1, giving
a factor of λ−2 outside each double integral. We also have that λUd(x1,x2) = Ud(y1,y2) and
λVd(x1,x2, 2) = Vd(y1,y2, 2), respectively. Furthermore, the change of variables (x11, ..., x1d) 7→
(z112−1, ..., z1d2−1) has the Jacobian 2−d and it further holds that Vd(x1,x2, 2) = Vd(z1,x2, 1) =
Vd(z1,x2). The integration limits become ||z1|| ≤ 2||x2||. This completes the proof.

Proofs of Proposition 2.1 and Theorem 2.1
For d = 1, the integrals in (3.7) can be calculated explicitly but we will instead use the fact that
ν1(So) and ν1(Ṽo) are independent, which follows from the basic properties of the Poisson process.
The above directly gives that

corr(ν1(Vo), ν1(So)) =

√
var(ν1(So))
var(ν1(Vo))

=
1√
2
.

The last equality follows from (3.4) and (3.10). For d ≥ 2, consider the following. Let α =
∠(o,x1,x2), r = ||x1 − x2|| and R = ||x1||

||x1−x2|| . Then, by using the results in [3] it follows that
∫

Rd

∫

Rd

e−Ud(x1,x2)dx1dx2

= d(d− 1)bdbd−1

∫ ∞

0

∫ π

0

∫ ∞

0

sind−2 α e−bd−1Sd(R,α)rd

r2d−1Rd−1dRdαdr,

(3.14)

where Sd(R, α) is defined in (2.4). By integrating over r, we get the double integral of the
denominator in (2.2). Furthermore, (2.3) holds since Bd(o, ||x1||) ∪ Bd(x2, ||x2||) = S(||x1||, t1) ∪
S(||x2||, t2), where S(||x1||, t1) and S(||x2||, t2) are two disjoint, truncated d-dimensional spheres
of radius ||x1|| and ||x2||, respectively, truncated at a distance t1 = ||x1||2

2||x2|| and t2 = 2||x2||2−||x1||2
2||x2||

from respective center. Geometric considerations and straightforward calculations give that the
volume of each of these spheres is equal to bd−1 times the corresponding term in (2.3). Changing
into polar coordinates gives the expression in the denominator of (2.2).

3.4. Proofs of Proposition 2.2 and 2.3

We will use (3.7) to get bounds on the covariance. All we need then are bounds on∫∫
||x1||≤2||x2|| e

−Vd(x1,x2)dx1dx2. Since Vd(x1,x2) ≤ bd(||x1||d + ||x2||d), we have
∫∫

||x1||≤2||x2||
e−Vd(x1,x2)dx1dx2 ≥

∫∫

||x1||≤2||x2||
e−bd(||x1||d+||x2||d)dx1dx2

=
1

(1 + 2d)
. (3.15)
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To get an upper bound we first use that
∫∫

||x1||≤2||x2||
e−Vd(x1,x2)dx1dx2 =

∫∫

||x1||≤||x2||
e−Vd(x1,x2)dx1dx2

+
∫∫

||x2||≤||x1||≤2||x2||
e−Vd(x1,x2)dx1dx2,

and further, since Vd(x1,x2) ≥ bd||x2||d
∫∫

||x1||≤||x2||
e−Vd(x1,x2)dx1dx2 ≤ 2π

d
2

Γ(d
2 )

∫

Rd

e−bd||x2||d
∫ ||x2||

0

rd−1drdx2 = 1,

and
∫∫

||x2||≤||x1||≤2||x2||
e−Vd(x1,x2)dx1dx2 ≤ 2π

d
2

Γ(d
2 )

∫

Rd

∫ 2||x2||

||x2||
rd−1e−bdrd

drdx2

=1− 1
2d

.

Using the above together with (3.13) proves (i). Further, by symmetry
∫

Rd

∫

Rd

e−Ud(x1,x2)dx1dx2 = 2
∫∫

||x1||≤||x2||
e−Ud(x1,x2)dx1dx2 ≤ 2, (3.16)

where we have used that Ud(x1,x2) ≥ bd||x2||d. The lower bound in (3.15) and the upper bound
in (3.16) gives (ii) in Proposition 2.1. Last, since

∫
Rd

∫
Rd e−λUd(x1,x2)dx1dx2 = E[νd(Vo)2], (3.16)

together with Remark 1 give Proposition 2.3.

Acknowledgements

This research has been founded by the Swedish Foundation for Strategic Research and the Swedish
Research Council, through Stochastic Centre and GMMC, respectively. The author is very grateful
for useful comments and suggestions from Aila Särkkä, Mats Kvarnström and Tommy Norberg.
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