Ideals of operators on the Banach space of continuous functions on the first uncountable ordinal

Niels Jakob Laustsen

Lancaster University, UK

Banach Algebras and Applications, Gothenburg

3rd August 2013

Joint work with
Tomasz Kania (Lancaster) and Piotr Koszmider (IMPAN, Warsaw)
For a compact Hausdorff space K, consider the Banach space

$$C(K) = \{ f : K \to \mathbb{C} : f \text{ is continuous} \}.$$

Fact. $C(K)$ separable \iff K metrizable.

Classification. Let K be a compact metric space. Then:

(i) K has $n \in \mathbb{N}$ elements \iff $C(K) \cong \ell^n$;

(ii) (Milutin) K is uncountable \iff $C(K) \cong C[0,1]$;

(iii) (Bessaga and Pełczyński) K is countably infinite \iff

$$C(K) \cong C[0,\omega^\alpha] \text{ for a unique countable ordinal } \alpha.$$

Here, for an ordinal σ,

$$[0,\sigma] = \{ \alpha \text{ ordinal} : \alpha \leq \sigma \}$$

is equipped with the order topology, which is determined by the basis

$$[0,\beta), \quad (\alpha, \beta), \quad (\alpha, \sigma] \quad (0 \leq \alpha < \beta \leq \sigma).$$
Let ω_1 be the first uncountable ordinal, so that $C[0, \omega_1]$ is the “next” $C(K)$-space after the separable ones $C[0, \omega^{\omega^a}]$ for countable α.

Fact. Suppose that $f : [0, \omega_1] \rightarrow \mathbb{C}$ is continuous at ω_1. Then f is eventually constant.

Proof. For each $\varepsilon > 0$, there exists $\alpha < \omega_1$ such that $|f(\beta) - f(\omega_1)| < \varepsilon$ for each $\beta \in [\alpha, \omega_1]$.

For $n \in \mathbb{N}$, choose α_n corresponding to $\varepsilon = \frac{1}{n}$, and let

$$\alpha = \sup\{\alpha_n : n \in \mathbb{N}\} < \omega_1.$$

Then, for each $\beta \in [\alpha, \omega_1]$,

$$|f(\beta) - f(\omega_1)| < \frac{1}{n} \quad (n \in \mathbb{N}),$$

so $f(\beta) = f(\omega_1)$. \qed
Introducing our main character: the Loy–Willis ideal

Theorem (B. E. Johnson 1967). Let X be a Banach space with $X \cong X \oplus X$. Then each derivation from the Banach algebra $\mathcal{B}(X)$ of (bounded) operators on X into a Banach $\mathcal{B}(X)$-bimodule is automatically continuous.

Question: what happens when $X \not\cong X \oplus X$?

Theorem (Semadeni 1960). $C[0, \omega_1] \not\cong C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Loy and Willis 1989). Each derivation from the Banach algebra $\mathcal{B}(C[0, \omega_1])$ into a Banach $\mathcal{B}(C[0, \omega_1])$-bimodule is automatically continuous.

Starting point: $\mathcal{B}(C[0, \omega_1])$ contains a maximal ideal \mathcal{M} of codimension one.

Key step: \mathcal{M} has a bounded right approximate identity.

We call \mathcal{M} the Loy–Willis ideal.

It is defined using a representation of operators on $C[0, \omega_1]$ as scalar-valued $[0, \omega_1] \times [0, \omega_1]$-matrices; an operator belongs to \mathcal{M} if and only if the final column of its matrix is continuous.
Uniqueness of the Loy–Willis ideal

Theorem (Kania and L 2012). An operator \(T \) on \(C[0, \omega_1] \) belongs to the Loy–Willis ideal if and only if the identity operator on \(C[0, \omega_1] \) does not factor through \(T \):

\[
\mathcal{M} = \{ T \in \mathcal{B}(C[0, \omega_1]) : \forall R, S \in \mathcal{B}(C[0, \omega_1]) : I \neq STR \}.
\]

Corollary. The Loy–Willis ideal is the unique maximal ideal of \(\mathcal{B}(C[0, \omega_1]) \).

Proof. Suppose that \(T \notin \mathcal{M} \). Then \(I = STR \) for some \(R, S \in \mathcal{B}(C[0, \omega_1]) \), so \(I \) belongs to the ideal generated by \(T \). \(\square \)

Remark. Many Banach spaces \(X \) share with \(C[0, \omega_1] \) the property that

\[
\mathcal{M}_X := \{ T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR \}
\]

is the unique maximal ideal of \(\mathcal{B}(X) \).

Examples: \(X = \ell_p \) and \(L_p[0, 1] \) for \(1 \leq p \leq \infty \); \(c_0 \); \(C[0, 1] \); \(\ell_\infty / c_0 \); \(C[0, \omega^\omega] \); the Lorentz sequence spaces; and many more!
A generalization

Theorem (Kania, Koszmider and L). Let \(T \in \mathcal{B}(C_0[0, \omega_1]) \). Then TFAE:

(a) \(T \in \mathcal{M} \);
(b) \(T \) is a Semadeni operator, in the sense that \(T^{**} \) maps the subspace

\[\left\{ \Lambda \in C_0[0, \omega_1]^{**} : \langle \lambda_n, \Lambda \rangle \to 0 \text{ as } n \to \infty \right\} \]

into the canonical copy of \(C_0[0, \omega_1] \) in its bidual;
(c) there is a closed, unbounded subset \(D \) of \([0, \omega_1)\) such that

\[(Tf)(\alpha) = 0 \quad (f \in C_0[0, \omega_1], \alpha \in D); \]

(d) \(T \) factors through the Banach space \(C_0(L_0) \), where \(L_0 = \bigcup_{\sigma < \omega_1} [0, \sigma] \);
(e) the range of \(T \) is contained in a Hilbert-generated subspace of \(C_0[0, \omega_1] \); that is, there exist a Hilbert space \(H \) and an operator \(U : H \to C_0[0, \omega_1] \) such that \(T(C_0[0, \omega_1]) \subseteq \overline{U(H)} \);
(f) the range of \(T \) is contained in a weakly compactly generated subspace of \(C_0[0, \omega_1] \); that is, there exist a reflexive Banach space \(X \) and an operator \(V : X \to C_0[0, \omega_1] \) such that \(T(C_0[0, \omega_1]) \subseteq \overline{V(X)} \);
(g) \(T \) does not fix a copy of \(C_0[0, \omega_1] \);
(h) the identity operator on \(C_0[0, \omega_1] \) does not factor through \(T \).
Recall: \mathcal{M} has a bounded right approximate identity (Loy and Willis 1989).

Question: does \mathcal{M} also have a bounded left approximate identity?

Answer: yes!

Theorem (Kania, Koszmider and L). \mathcal{M} contains a net (Q_j) of projections with $\|Q_j\| \leq 2$ such that

$$\forall T \in \mathcal{M} \exists j_0 \forall j \geq j_0 : Q_j T = T.$$

Corollary (using Dixon 1973). \mathcal{M} has a bounded two-sided approximate identity.
Other consequences: traces and K-theory

Since \mathcal{M} has codimension one, we have a character φ on $\mathcal{B}(C_0[0, \omega_1])$:

$$
\mathcal{B}(C_0[0, \omega_1]) \xrightarrow{- - - - - - - - - - - -} \mathbb{C}
$$

$\mathcal{B}(C_0[0, \omega_1]) / \mathcal{M} \xrightarrow{\sim} \mathbb{C}$

Theorem (Kania, Koszmider and L). Let $\tau : \mathcal{B}(C_0[0, \omega_1]) \to \mathbb{C}$ be linear. Then:
τ is a trace, in the sense that $\tau(ST) = \tau(TS)$ for all $S, T \in \mathcal{B}(C_0[0, \omega_1])$, if and only if $\tau = \tau(I)\varphi$.

With any ring \mathcal{A}, one can associate an abelian group $K_0(\mathcal{A})$, which reflects the structure of the idempotent matrices over \mathcal{A}. Since $C_0[0, \omega_1]^m$ does not embed in $C_0[0, \omega_1]^n$ for $m < n$, the element $[I]_0 \in K_0(\mathcal{B}(C_0[0, \omega_1]))$ corresponding to the identity operator has infinite order. Now:

Theorem (Kania, Koszmider and L). $K_0(\mathcal{B}(C_0[0, \omega_1])) = \mathbb{Z}[I]_0$.

Remark. Work of Edelstein and Mityagin (1970) implies that

$$K_1(\mathcal{B}(C_0[0, \omega_1])) = \{0\}.$$
The second-largest proper ideal of $\mathcal{B}(C_0[0, \omega_1])$

Theorem (Kania and L). Let $T \in \mathcal{B}(C_0[0, \omega_1])$. Then TFAE:

(a) T fixes a copy of $C_0(L_0)$, where $L_0 = \bigsqcup_{\sigma < \omega_1} [0, \sigma]$;
(b) the identity operator on $C_0(L_0)$ factors through T;
(c) the Szlenk index of T is uncountable.

Corollary. The set

$$\mathcal{I}_{C_0(L_0)}(C_0[0, \omega_1]) = \{ T \in \mathcal{B}(C_0[0, \omega_1]) : T \text{ does not fix a copy of } C_0(L_0) \}$$

$$= \{ T \in \mathcal{B}(C_0[0, \omega_1]) : \text{the identity operator on } C_0(L_0) \text{ does not factor through } T \}$$

$$= \{ T \in \mathcal{B}(C_0[0, \omega_1]) : \text{the Szlenk index of } T \text{ is countable} \}$$

is the second-largest proper closed ideal of $\mathcal{B}(C_0[0, \omega_1])$; that is, for each proper ideal \mathcal{I} of $\mathcal{B}(C_0[0, \omega_1])$, either $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} \subseteq \mathcal{I}_{C_0(L_0)}(C_0[0, \omega_1])$.
Partial structure of the lattice of closed ideals of $\mathcal{B} = \mathcal{B}(C_0[0, \omega_1])$

$\mathcal{B} \supseteq \mathcal{M} = \mathcal{G}C_0(L_0) \supseteq \mathcal{I}_0(L_0)$

$K_\alpha = [0, \omega^{\omega_\alpha}], \alpha < \omega_1$

$\mathcal{G}C(K_{\alpha+1}) \supseteq \mathcal{G}C(K_\alpha) \supseteq \mathcal{G}C(K_1) \supseteq \mathcal{G}C_0(\omega_1)$

$\{0\} \subseteq \mathcal{K} \subseteq \mathcal{G}C_0$
Conventions

(i) We suppress \(C_0[0, \omega_1] \) everywhere, thus writing \(\mathcal{K} \) instead of \(\mathcal{K}(C_0[0, \omega_1]) \) for the ideal of compact operators on \(C_0[0, \omega_1] \), etc.;

(ii) \(\mathcal{I} \hookrightarrow \mathcal{J} \) means that the ideal \(\mathcal{I} \) is properly contained in the ideal \(\mathcal{J} \);

(iii) a double-headed arrow indicates that there are no closed ideals between \(\mathcal{I} \) and \(\mathcal{J} \);

(iv) \(\mathcal{G}_{C(K)} \) denotes the set of operators that factor through \(C(K) \), and \(\overline{\mathcal{G}}_{C(K)} \) its closure;

(v) \(\mathcal{X} \) denotes the set of operators with separable range.
A view behind the scenes: the topological dichotomy

Theorem (Kania, Koszmider and L). Let K be a weakly* compact subset of $C_0[0,\omega_1]^*$. Then:

- either K is homeomorphic to a weakly compact subset of a Hilbert space (K is uniformly Eberlein compact);
- or K contains a homeomorphic copy of $[0,\omega_1]$ of the form

$$\{\rho + s\delta_\alpha : \alpha \in D\} \cup \{\rho\},$$

where $\rho \in C_0[0,\omega_1]^*$, $s \in \mathbb{C} \setminus \{0\}$, δ_α is the point evaluation at α, and D is a closed and unbounded subset of $[0,\omega_1)$.

Note: $[0,\omega_1]$ is not uniformly Eberlein compact.
Some references (in chronological order)

- T. Kania, P. Koszmider and N. J. Laustsen, K-theory for the Banach algebra of bounded operators on the Banach space $C[0, \omega_1]$; arXiv:1303.2606.