Matematik och Datavetenskap, Chalmers Tekniska Högskola och Göteborgs Universitet

ALA-B, 2001, week 6

Home, w 1, w 2, w 3, w 4, w 5, w 6, w 7. Matlab: analysis, linear algebra, facit.

Goal: Stability of a dynamical system. Matrix eigenvalue problem.

Obligatory work for your individual folder. Selected problems from the "repetition exercises 91-94": 91.5, 92.2c, 92.3c, 92.4, 92.5c, 92.6c, 92.8c, 93.1 (do at least one of the statements in the table in Zumdahl), 93.3a, 93.7a, 93.9a, 93.10a, 94.1d, 94.2d
(This is the last obligatory assignment, to be done in week 6-7.)

Reading:
AMBS Ch (41.20-28), 41.29-42. Lecture notes (to be handed out).
Dynamiskt system 1.1-1.4.

Exercises:
Dynamiskt system. : övning 1, 2, 3, 4, 5, 6, 7, 8.
Repetition exercises:
91. Linearization (postscript).
92. Analytical computation of integrals (postscript).
93. Analytical solution of differential equations (postscript).
94. Taylor's formula (postscript).
Ordinary differential equations - summary (postscript).

Presentation of projects.

Lecture 6.1: Determinant. Inverse matrix. (Lecture notes will be handed out.)

Studio 6.1: The tankreactor 2.

Lecture 6.2:
Projection. The least squares method.
Dynamical system, linearization.

Studio 6.2: Linear algebra in R^n, part 3.

Lecture 6.3: The matrix eigenvalue problem. Stability. (Lecture notes will be handed out.)

Studio 6.3: Linear algebra in R^n, part 4.

/stig



Last modified: Fri Oct 22 17:39:46 MET DST 1999