TMA196 ALA-B, lecture 1

1 Linearization. Jacobi matrix

1.1 Function of one variable, f : R — R

(AMBS 23) A function f : R — R of one variable is differentiable at Z if there are constants m(Zz),
K(z) such that

f(@) = f(z) + m(z)(x — %) + Ey(2,2), (1)
where the remainder Ey satisfies |Ef(x,Z)| < K¢(Z)(z — £)? when z is close to Z. The constant
m(Z) is called the derivative of f at Z and we write

m(@) = /(@) = DI®) = (@)

It is convenient to use the abbreviation h = x — &, so that = z + h and (1) becomes
f@) = f(@+h) = f(2) + [ (@)h + Ep(z, ), (2)

where |E¢(z,Z)| < K¢(Z)h? when z is close to Z. Note that the first term on the right side, f(z),
is constant with respect to x. The second term,

f@h = f(@)(x - 1), (3)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at Z,
folz) = f(@) + ['(@)(x - 2). (4)

The straight line y = fz(z) is the tangent to the curve y = f(z) at Z.

Example 1. Let f(z) = 2?. Then f'(z) = 2z and the linearization at z = 3 is

falz) =9+ 6(z — 3).

1.2 Function of two variables, f: R? — R

(AMBS 24.10 ) Let f(x1,22) be a function of two variables, i.e., f : R? — R. We write x = (21, 72)
and f(z) = f(x1,z2). The function f is differentiable at T = (Z1, Z2), if there are constants mq (Z),
mo(Z), K;(Z) such that

f(x) = f(@+h) = f(Z) + m1(Z)h1 + ma(Z)he + Ef(x,Z), h=2x-1, (5)

where the remainder E; satisfies |E¢(z,Z)| < K¢(Z)|h|? and |h| = \/h? + h3 denotes the length
of the increment h = (hy, he) = (1 — T1,22 — T2).
If we take h = (hy,0), then we get

f(@1,T2) = f(Z1 4+ h1,T2) = f(Z) + ma(T)h1 + Ef (2, T),

with |E¢(x,Z)| < K¢(Z)h?. This means that m;(Z) is the derivative of the one-variable function

f(xl) = f(x1,Z2), obtained from f by keeping xo = To fixed. By taking h = (0, hy) we see in a
similar way that mz(Z) is the derivative of the one-variable function, which is obtained from f by
keeping z1 = Ty fixed. The constants m(Z), ma(Z) are called the partial derivatives of f at &
and we denote them by

mi(7) = fi, (7) = (), ma(z) = fi,(@) = (7). (6)



Now (5) may be written
fl@) = f(@+h) = f@)+ fr,(@)h1 + f, (@) + Ef(2,2), h=x-7. (7)

It is convenient to write this formula by means of matrix notation. Let

a= [al,ag] , b= [Z;] .

We say that a is a row matrix of type 1 x 2 (one by two) and that b is a column matrix of type
2 x 1 (two by one). Their product is defined by

b
ab = [al,aQ] |:b;:| = a1b; + asbs.

The result is a matrix of type 1 X 1 (a real number), according to the rule 1 x 2 times 2 x 1 makes
1x1.
Going back to (7) we define
/(= = ! (= ! (= hl
f'@) =Df@ = [fi,@ fi,@], k=] |

The matrix f/(Z) = Df(Z) is called the derivative (or Jacobi matrix) of f at Z. Then (7) may be
written

@)= fa 1) = @+ (2,0 2@ 2]+ Erteo “
h

=f(@) + f((@)h+ Ef(2,7),

Note that the first term on the right side, f(Z), is constant with respect to . The second
term,

f(@h=f(@)(z - 2), (9)
is a linear function of the increment h = x — z. These terms are called the linearization of f at z,
fa(z) = f(@) + f(2)(2 - 7). (10)

The plane z5 = f3 (z1,x2) is the tangent to the surface x3 = f(x1,z2) at Z.
Example 2. Let f(z) = 2%x3. Then

of of of of

. x) = 8—@(:3%%3) = 22125, 8—@(&6) = O2s (m%xf’) = badas,

so that f'(z) = [2z123 5afx3] and the linearization at = (3,1) is

fol@)=9+1[6 45] [2 :ﬂ :

1.3 Two functions of two variables, f : R? — R?

Let fi(x1,22), f2(z1,22) be two functions of two variables. We write = (21, 22) and f(z) =
(fi(zy,22), fo(x1, 22)), i.e., f: R? — R2 The function f is differentiable at z = (z1, Z2), if there
are constants m11(Z), m12(Z), ma1(Z), ma2(Z), and Ky(Z) such that

fi(z) = f1(Z+h) = f1(Z) +m1i(T)hy +ma2(T)he + By, (2, T),

Jol@) = Fol® + 1) = Fo(®) + ma (Bl + man(@)ha + By, (2, 7), (D)



where h = x — Z and the remainders Ey, satisfy |Ey, (z,2)| < K;(Z)|h|* and |h| = \/h3 + h3
denotes the length of the increment h = (hy, ho) = (1 —Z1, 22— Z2). From the previous subsection
we recognize that the constants m;;(Z) are the partial derivatives of the functions f; at Z and we
denote them by

ma(®) = ()= 9@, m@) = f1.,(7) = 2L (@),

Mo(®) = T (0) = S2@), @) = Fs3) = L2 0).

It is convenient to use matrix notation. Let
_ b
= 1hy| -

A= |1 (12
az azz]’

We say that A is a matrix of type 2 X 2 (two by two) and that b is a column matrix of type 2 x 1

(two by one). Their product is defined by

Ap — {au au] {bl] _ {a11b1 +a12b2]
azy  a2| |b2 a21b1 + agebs |’

The result is a matrix of type 2 x 1 (column matrix), according to the rule 2 x 2 times 2 x 1 makes
1x1.
Going back to (11) we define

Dy
or or
f@ =] r@=pr@= |t =[] (12)
Oz 2 2
8%1 8x2

The matrix f/(Z) = Df(Z) is called the derivative (or Jacobi matrix) of f at Z. Then (11) may
be written

ofr .. Of1,_
A@] [AGE+R] [A@] |06 ® 85, @| [M]  [Ei@2)
ﬁﬂx) (ﬁ(jﬂ—h) (ﬁ(f) aﬁz() afé( ) h2 Eﬁxx,f)
8x1 8x2

or in more compact form
f(@)=f(@+h)=f(z)+ f(@)h+Ef(2x,z), h=z-=. (14)

Note that the first term on the right side, f(Z), is constant with respect to . The second
term,

f@h=f(z)(z—2), (15)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at Z,
folw) = f(@) + ['(@)(x - 7). (16)
25
Example 3. Let f(z) = { ;32]. Then
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1.4 Several functions of several variables, f: R* — R™

It is now easy to generalize to any number of functions in any number of variables. Let f; be m
functions of n variables z;, i.e., f: R® — R™. As in (12) we define

T hy T — T
T = , h=|11]= ,
| Tn hy, Ty — Tp
of1,_ ofr
@) a—xl(x 6—%(56)
fla) = : , f'(z)=Df(z) = : :
(@1, ) %(f) ‘;J;T: @)

The m x n matrix f/(Z) = D f(Z) is called the derivative (or Jacobi matrix) of f at Z. In a similar
way to (14) we get

f@)=f(@+h)=f(z)+ f(@)h+Ef(x,z), h=z-=. (17)

The linearization of f at Z is

falz) = f(2) + f'(2)(2 — 2). (18)

1.5 Newton’s method for f(z) =0

Consider a system of n equations with n unknowns:

fl(xla"'vxn) :07

fn(.Tl, . ,xn) =0.

If we define
1 f 1 0
z= ||, f=]:], 0=[:],
then f: R™ — R"™, and we can write our system of equations in the compact form
f(x) =o0. (19)

Suppose that we have found an approximate solution Z. We want to find a better approximation
2 = T + h. Instead of solving (19) directly, which is usually impossible, we solve the linearized
equation at T:

fo(@ +h) = f(2) + f(@)h = 0. (20)

Rearranging the terms we get
fl@h=—f(). (21)

Remember that the Jacobi matrix is of type n x n and the increment is of type n x 1. Therefore
we have to solve a linear system of n equations in n variables to get the increment h. Then we set
r=2Z+h.

In algorithmic form Newton’s method can be formulated:



while |h|<tol

evaluate the residual b=-f (%)

evaluate the Jacobian A=f’ (%)

solve the linear system Ah=b

update x=x+h
end

You will implement this algorithm in the studio exercises. You will use the MATLAB command
h=A\Db

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

e Is there a unique solution & for each b7
e How do you compute the solution?

The study of systems of linear equations is an important part of the subject “linear algebra”.

90 Problems
Problem 90.1. Let
a=[1 2], b:H, A:[é ﬂ

Compute the products ab, ba, Ab, Aa, aA, DbA.

Problem 90.2. Compute the Jacobi matrix f’(x) (also denoted D f(z)). Compute the lineariza-
tion of f at Z.

@ @)= [t e o) fle)= ia |, =i

cos(z1) + sin(z2) 14 267

Problem 90.3. Compute the gradient vector V f(x) (also denoted f'(z) = Df(z)). Compute the
linearization of f at Z.

1
(a) f(z) =e "tsin(xz), Z=0; b) flx)=|z)*=a? +22+22, zcR?® z=|1
1

Problem 90.4. Here f : R — R2. Compute f’(t). Compute the linearization of f at f.
_|eos®] . _|t P
@ s0= 0] i o) 0=, L) -0

Problem 90.5. (a) Write the system

U (1 — u%) =0,
2 — UgUg = 0
in the form f(u) = 0. Find the all the solutions by hand calculation.

(b) Compute the Jacobi matrix DF(u).
(¢) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

w© = (1.

(d) Solve the equation f(u) with your MATLAB program newton.m.



Problem 90.6. (a) Write the system

Up (1 — U/Q) =

0,
(%) (1 — ul) O,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix DF(u).
(¢) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u® = 2],

(d) Solve the equation f(u) with your MATLAB program newton.m.

Answers and solutions

90.1. Use MATLAB to check your answers.

90.2.
(a)
y cos(xy) —sin(zg) : _ ' _ 1 1 0] |z
Flay= | o) e e =+ r@e-a =]+ o 9 2]
(b)
0 0 1 0 0],
f(z) = [ 1 0 ] , f@)=f@) +f (@) (z—7) = |: 2 ] + |:1 0] LC;_ 1]
er2  re’? 1+e e e
90.3.
(a)
Vf(z) = [-e " sin(zs), e cos(z2)],
) = 5@+ @ -2 =0+ [0 1] [31] =2
(b)
Vf(.]j) = [2%1 2.’E3 21’3] ,
r1—1
fx)=f@) + f'(@)(e—2) =3+ 2 2 2] [x; - 1] = =3+ 2x1 + 222 + 2x3.
Tr3 — 1
90.4.
(a)

Rl
fo =1+ rae-= 1) + |5 ¢ - w2,



90.5. (a) The solutions are given by
_ fuz(I—wy)| _ [0
f(u)_ [2—u1u2 :| o |:0 ’
We find two solutions @ = B] and u = [ }
(b) The Jacobian is

2u1u2 1-— u%
_ul :

(c) The first step of Newton’s method:

evaluate A=Df(1,1) = [:? _OJ and b=-f(1,1)= [ 0 ]

-1
_ -2 0 ||h| |O
solve Ah =0, [_1 _J {hz} = [_J

—2h =0, H
h:
—hy —hy = —1, 1

update D =4O 4= [1} i
bingo!

90.6. (a) The solutions are given by
. _ 0 _ 1
We find two solutions @ = 0 and @ = 1l
(b) The Jacobian is

(c) The first step of Newton’s method:

evaluate A=Df(2,2)= {_

v 2 B0

—hy —2hy =2, b -2/3

72}117}12:2, N _2/3

W) _ 0 4 2| L [ 23] _ |43
update u = +h{2}+{_2/3 = |4/3

getting closer to u!
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