90. Linearization. Jacobi matrix. Newton's method.

0.1 Function of one variable, $f: \mathbf{R} \rightarrow \mathbf{R}$

(AMBS 23) A function $f: \mathbf{R} \rightarrow \mathbf{R}$ of one variable is differentiable at \bar{x} if there are constants $m(\bar{x})$, $K_{f}(\bar{x})$ such that

$$
\begin{equation*}
f(x)=f(\bar{x})+m(\bar{x})(x-\bar{x})+E_{f}(x, \bar{x}) \tag{1}
\end{equation*}
$$

where the remainder E_{f} satisfies $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x})(x-\bar{x})^{2}$ when x is close to \bar{x}. The constant $m(\bar{x})$ is called the derivative of f at \bar{x} and we write

$$
m(\bar{x})=f^{\prime}(\bar{x})=D f(\bar{x})=\frac{d f}{d x}(\bar{x})
$$

It is convenient to use the abbreviation $h=x-\bar{x}$, so that $x=\bar{x}+h$ and (1) becomes

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}) \tag{2}
\end{equation*}
$$

where $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x}) h^{2}$ when x is close to \bar{x}. Note that the first term on the right side, $f(\bar{x})$, is constant with respect to x. The second term,

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=f^{\prime}(\bar{x})(x-\bar{x}) \tag{3}
\end{equation*}
$$

is a linear function of the increment $h=x-\bar{x}$. These terms are called the linearization of f at \bar{x},

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) \tag{4}
\end{equation*}
$$

The straight line $y=\tilde{f}_{\bar{x}}(x)$ is the tangent to the curve $y=f(x)$ at \bar{x}.
Example 1. Let $f(x)=x^{2}$. Then $f^{\prime}(x)=2 x$ and the linearization at $\bar{x}=3$ is

$$
\tilde{f}_{3}(x)=9+6(x-3)
$$

0.2 Function of two variables, $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$

(AMBS 24.10) Let $f\left(x_{1}, x_{2}\right)$ be a function of two variables, i.e., $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$. We write $x=\left(x_{1}, x_{2}\right)$ and $f(x)=f\left(x_{1}, x_{2}\right)$. The function f is differentiable at $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$, if there are constants $m_{1}(\bar{x})$, $m_{2}(\bar{x}), K_{f}(\bar{x})$ such that

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+m_{1}(\bar{x}) h_{1}+m_{2}(\bar{x}) h_{2}+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{5}
\end{equation*}
$$

where the remainder E_{f} satisfies $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x})|h|^{2}$ and $|h|=\sqrt{h_{1}^{2}+h_{2}^{2}}$ denotes the length of the increment $h=\left(h_{1}, h_{2}\right)=\left(x_{1}-\bar{x}_{1}, x_{2}-\bar{x}_{2}\right)$.

If we take $h=\left(h_{1}, 0\right)$, then we get

$$
f\left(x_{1}, \bar{x}_{2}\right)=f\left(\bar{x}_{1}+h_{1}, \bar{x}_{2}\right)=f(\bar{x})+m_{1}(\bar{x}) h_{1}+E_{f}(x, \bar{x})
$$

with $\left|E_{f}(x, \bar{x})\right| \leq K_{f}(\bar{x}) h_{1}^{2}$. This means that $m_{1}(\bar{x})$ is the derivative of the one-variable function $\hat{f}\left(x_{1}\right)=f\left(x_{1}, \bar{x}_{2}\right)$, obtained from f by keeping $x_{2}=\bar{x}_{2}$ fixed. By taking $h=\left(0, h_{2}\right)$ we see in a similar way that $m_{2}(\bar{x})$ is the derivative of the one-variable function, which is obtained from f by keeping $x_{1}=\bar{x}_{1}$ fixed. The constants $m_{1}(\bar{x}), m_{2}(\bar{x})$ are called the partial derivatives of f at \bar{x} and we denote them by

$$
\begin{equation*}
m_{1}(\bar{x})=f_{x_{1}}^{\prime}(\bar{x})=\frac{\partial f}{\partial x_{1}}(\bar{x}), \quad m_{2}(\bar{x})=f_{x_{2}}^{\prime}(\bar{x})=\frac{\partial f}{\partial x_{2}}(\bar{x}) \tag{6}
\end{equation*}
$$

Now (5) may be written

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f_{x_{1}}^{\prime}(\bar{x}) h_{1}+f_{x_{1}}^{\prime}(\bar{x}) h_{1}+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{7}
\end{equation*}
$$

It is convenient to write this formula by means of matrix notation. Let

$$
a=\left[a_{1}, a_{2}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

We say that a is a row matrix of type 1×2 (one by two) and that b is a column matrix of type 2×1 (two by one). Their product is defined by

$$
a b=\left[a_{1}, a_{2}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}
$$

The result is a matrix of type 1×1 (a real number), according to the rule: 1×2 times 2×1 makes 1×1.

Going back to (7) we define

$$
f^{\prime}(\bar{x})=D f(\bar{x})=\left[\begin{array}{ll}
f_{x_{1}}^{\prime}(\bar{x}) & f_{x_{2}}^{\prime}(\bar{x})
\end{array}\right], \quad h=\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right] .
$$

The matrix $f^{\prime}(\bar{x})=D f(\bar{x})$ is called the derivative (or Jacobi matrix) of f at \bar{x}. Then (7) may be written

$$
\begin{align*}
f(x)=f(\bar{x}+h) & =f(\bar{x})+\left[\begin{array}{ll}
f_{x_{1}}^{\prime}(\bar{x}) & f_{x_{1}}^{\prime}(\bar{x})
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]+E_{f}(x, \bar{x}) \tag{8}\\
& =f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}), \quad h=x-\bar{x}
\end{align*}
$$

Note that the first term on the right side, $f(\bar{x})$, is constant with respect to x. The second term,

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=f^{\prime}(\bar{x})(x-\bar{x}), \tag{9}
\end{equation*}
$$

is a linear function of the increment $h=x-\bar{x}$. These terms are called the linearization of f at \bar{x},

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) \tag{10}
\end{equation*}
$$

The plane $x_{3}=\tilde{f}_{\bar{x}}\left(x_{1}, x_{2}\right)$ is the tangent to the surface $x_{3}=f\left(x_{1}, x_{2}\right)$ at \bar{x}.
Example 2. Let $f(x)=x_{1}^{2} x_{2}^{5}$. Then

$$
\frac{\partial f}{\partial x_{1}}(x)=\frac{\partial f}{\partial x_{1}}\left(x_{1}^{2} x_{2}^{5}\right)=2 x_{1} x_{2}^{5}, \quad \frac{\partial f}{\partial x_{2}}(x)=\frac{\partial f}{\partial x_{2}}\left(x_{1}^{2} x_{2}^{5}\right)=5 x_{1}^{2} x_{2}^{4}
$$

so that $f^{\prime}(x)=\left[\begin{array}{ll}2 x_{1} x_{2}^{5} & 5 x_{1}^{2} x_{2}^{4}\end{array}\right]$ and the linearization at $\bar{x}=(3,1)$ is

$$
\tilde{f}_{\bar{x}}(x)=9+\left[\begin{array}{ll}
6 & 45
\end{array}\right]\left[\begin{array}{l}
x_{1}-3 \\
x_{2}-1
\end{array}\right]
$$

0.3 Two functions of two variables, $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$

Let $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)$ be two functions of two variables. We write $x=\left(x_{1}, x_{2}\right)$ and $f(x)=$ $\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$, i.e., $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. The function f is differentiable at $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$, if there are constants $m_{11}(\bar{x}), m_{12}(\bar{x}), m_{21}(\bar{x}), m_{22}(\bar{x})$, and $K_{f}(\bar{x})$ such that

$$
\begin{align*}
& f_{1}(x)=f_{1}(\bar{x}+h)=f_{1}(\bar{x})+m_{11}(\bar{x}) h_{1}+m_{12}(\bar{x}) h_{2}+E_{f_{1}}(x, \bar{x}) \tag{11}\\
& f_{2}(x)=f_{2}(\bar{x}+h)=f_{2}(\bar{x})+m_{21}(\bar{x}) h_{1}+m_{22}(\bar{x}) h_{2}+E_{f_{2}}(x, \bar{x})
\end{align*}
$$

where $h=x-\bar{x}$ and the remainders $E_{f_{j}}$ satisfy $\left|E_{f_{j}}(x, \bar{x})\right| \leq K_{f}(\bar{x})|h|^{2}$ and $|h|=\sqrt{h_{1}^{2}+h_{2}^{2}}$ denotes the length of the increment $h=\left(h_{1}, h_{2}\right)=\left(x_{1}-\bar{x}_{1}, x_{2}-\bar{x}_{2}\right)$. From the previous subsection we recognize that the constants $m_{i j}(\bar{x})$ are the partial derivatives of the functions f_{i} at \bar{x} and we denote them by

$$
\begin{array}{ll}
m_{11}(\bar{x})=f_{1, x_{1}}^{\prime}(\bar{x})=\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}), & m_{12}(\bar{x})=f_{1, x_{2}}^{\prime}(\bar{x})=\frac{\partial f_{1}}{\partial x_{2}}(\bar{x}) \\
m_{21}(\bar{x})=f_{2, x_{1}}^{\prime}(\bar{x})=\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}), & m_{22}(\bar{x})=f_{2, x_{2}}^{\prime}(\bar{x})=\frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{array}
$$

It is convenient to use matrix notation. Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

We say that A is a matrix of type 2×2 (two by two) and that b is a column matrix of type 2×1 (two by one). Their product is defined by

$$
A b=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} b_{1}+a_{12} b_{2} \\
a_{21} b_{1}+a_{22} b_{2}
\end{array}\right]
$$

The result is a matrix of type 2×1 (column matrix), according to the rule: 2×2 times 2×1 makes 2×1.

Going back to (11) we define

$$
f(x)=\left[\begin{array}{l}
f_{1}(x) \tag{12}\\
f_{2}(x)
\end{array}\right], \quad f^{\prime}(\bar{x})=D f(\bar{x})=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\bar{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{array}\right], \quad h=\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]
$$

The matrix $f^{\prime}(\bar{x})=D f(\bar{x})$ is called the derivative (or Jacobi matrix) of f at \bar{x}. Then (11) may be written

$$
\left[\begin{array}{l}
f_{1}(x) \tag{13}\\
f_{2}(x)
\end{array}\right]=\left[\begin{array}{l}
f_{1}(\bar{x}+h) \\
f_{2}(\bar{x}+h)
\end{array}\right]=\left[\begin{array}{l}
f_{1}(\bar{x}) \\
f_{2}(\bar{x})
\end{array}\right]+\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\bar{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]+\left[\begin{array}{l}
E_{f_{1}}(x, \bar{x}) \\
E_{f_{2}}(x, \bar{x})
\end{array}\right]
$$

or in more compact form

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{14}
\end{equation*}
$$

Note that the first term on the right side, $f(\bar{x})$, is constant with respect to x. The second term,

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=f^{\prime}(\bar{x})(x-\bar{x}) \tag{15}
\end{equation*}
$$

is a linear function of the increment $h=x-\bar{x}$. These terms are called the linearization of f at \bar{x},

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) \tag{16}
\end{equation*}
$$

Example 3. Let $f(x)=\left[\begin{array}{c}x_{1}^{2} x_{2}^{5} \\ x_{2}^{3}\end{array}\right]$. Then

$$
f^{\prime}(x)=D f(x)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}}(x) \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x)
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1} x_{2}^{5} & 5 x_{1}^{2} x_{2}^{4} \\
0 & 3 x_{2}
\end{array}\right]
$$

and the linearization at $\bar{x}=(3,1)$ is

$$
\tilde{f}_{\bar{x}}(x)=\left[\begin{array}{l}
9 \\
1
\end{array}\right]+\left[\begin{array}{cc}
6 & 45 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}-3 \\
x_{2}-1
\end{array}\right]
$$

0.4 Several functions of several variables, $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$

It is now easy to generalize to any number of functions in any number of variables. Let f_{i} be m functions of n variables x_{j}, i.e., $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. As in (12) we define

$$
\begin{gathered}
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad h=\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-\bar{x}_{1} \\
\vdots \\
x_{n}-\bar{x}_{n}
\end{array}\right], \\
f(x)=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right], \quad f^{\prime}(\bar{x})=D f(\bar{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{x}) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\bar{x}) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{x})
\end{array}\right] .
\end{gathered}
$$

The $m \times n$ matrix $f^{\prime}(\bar{x})=D f(\bar{x})$ is called the derivative (or Jacobi matrix) of f at \bar{x}. In a similar way to (14) we get

$$
\begin{equation*}
f(x)=f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+E_{f}(x, \bar{x}), \quad h=x-\bar{x} \tag{17}
\end{equation*}
$$

The linearization of f at \bar{x} is

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x}) \tag{18}
\end{equation*}
$$

0.5 Newton's method for $f(x)=0$

Consider a system of n equations with n unknowns:

$$
\begin{aligned}
& f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
& \vdots \\
& f_{n}\left(x_{1}, \ldots, x_{n}\right)=0
\end{aligned}
$$

If we define

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad f=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right], \quad 0=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

then $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, and we can write our system of equations in the compact form

$$
\begin{equation*}
f(x)=0 \tag{19}
\end{equation*}
$$

Suppose that we have found an approximate solution \bar{x}. We want to find a better approximation $x=\bar{x}+h$. Instead of solving (19) directly, which is usually impossible, we solve the linearized equation at \bar{x} :

$$
\begin{equation*}
\tilde{f}_{\bar{x}}(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h=0 . \tag{20}
\end{equation*}
$$

Rearranging the terms we get

$$
\begin{equation*}
f^{\prime}(\bar{x}) h=-f(\bar{x}) \tag{21}
\end{equation*}
$$

Remember that the Jacobi matrix is of type $n \times n$ and the increment is of type $n \times 1$. Therefore we have to solve a linear system of n equations in n variables to get the increment h. Then we set $x=\bar{x}+h$.

In algorithmic form Newton's method can be formulated:

```
while |h|<tol
    evaluate the residual b=-f(x)
    evaluate the Jacobian A=f'(x)
    solve the linear system Ah=b
    update }\quad\textrm{x}=\textrm{x}+\textrm{h
end
```

You will implement this algorithm in the studio exercises. You will use the Matlab command $\mathrm{h}=\mathrm{A} \backslash \mathrm{b}$
to solve the system. But later in this course we will study linear systems of equations of the form $A h=b$ and we will answer important questions such as:

- Is there a unique solution h for each b ?
- How do you compute the solution?

The study of systems of linear equations is an important part of the subject "linear algebra".

90 Problems

Problem 90.1. Let

$$
a=\left[\begin{array}{ll}
1 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

Compute the products $a b, \quad b a, \quad A b, A a, a A, \quad b A$.
Problem 90.2. Compute the Jacobi matrix $f^{\prime}(x)$ (also denoted $D f(x)$). Compute the linearization of f at \bar{x}.

$$
\text { (a) } \quad f(x)=\left[\begin{array}{l}
\sin \left(x_{1}\right)+\cos \left(x_{2}\right) \\
\cos \left(x_{1}\right)+\sin \left(x_{2}\right)
\end{array}\right], \quad \bar{x}=0 ; \quad \text { (b) } \quad f(x)=\left[\begin{array}{c}
1 \\
1+x_{1} \\
1+x_{1} e^{x_{2}}
\end{array}\right], \quad \bar{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Problem 90.3. Compute the gradient vector $\nabla f(x)$ (also denoted $f^{\prime}(x)=D f(x)$). Compute the linearization of f at \bar{x}.
(a) $\quad f(x)=e^{-x_{1}} \sin \left(x_{2}\right), \quad \bar{x}=0 ;$
(b) $\quad f(x)=|x|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad x \in \mathbf{R}^{3}, \quad \bar{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Problem 90.4. Here $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$. Compute $f^{\prime}(t)$. Compute the linearization of f at \bar{t}.

$$
\text { (a) } \quad f(t)=\left[\begin{array}{c}
\cos (t) \\
\sin (t)
\end{array}\right], \quad \bar{t}=\pi / 2 ; \quad \text { (b) } \quad f(t)=\left[\begin{array}{c}
t \\
1+t^{2}
\end{array}\right], \quad \bar{t}=0
$$

Problem 90.5. (a) Write the system

$$
\begin{array}{r}
u_{2}\left(1-u_{1}^{2}\right)=0 \\
2-u_{1} u_{2}=0
\end{array}
$$

in the form $f(u)=0$. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix $D F(u)$.
(c) Perform the first step of Newton's method for the equation $f(u)=0$ with initial vector $u^{(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(d) Solve the equation $f(u)$ with your Matlab program newton.m.

Problem 90.6. (a) Write the system

$$
\begin{aligned}
& u_{1}\left(1-u_{2}\right)=0 \\
& u_{2}\left(1-u_{1}\right)=0
\end{aligned}
$$

in the form $f(u)=0$. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix $D F(u)$.
(c) Perform the first step of Newton's method for the equation $f(u)=0$ with initial vector $u^{(0)}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.
(d) Solve the equation $f(u)$ with your Matlab program newton.m.

Answers and solutions

90.1. Use Matlab to check your answers.
90.2 .
(a)

$$
f^{\prime}(x)=\left[\begin{array}{cc}
\cos \left(x_{1}\right) & -\sin \left(x_{2}\right) \\
-\sin \left(x_{1}\right) & \cos \left(x_{2}\right)
\end{array}\right], \quad \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

(b)

$$
f^{\prime}(x)=\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
e^{x_{2}} & x_{1} e^{x_{2}}
\end{array}\right], \quad \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=\left[\begin{array}{c}
1 \\
2 \\
1+e
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
e & e
\end{array}\right]\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1
\end{array}\right] .
$$

90.3.

(a)

$$
\begin{aligned}
& \nabla f(x)=\left[-e^{-x_{1}} \sin \left(x_{2}\right), \quad e^{-x_{1}} \cos \left(x_{2}\right)\right] \\
& \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=0+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \nabla f(x)=\left[\begin{array}{lll}
2 x_{1} & 2 x_{3} & 2 x_{3}
\end{array}\right] \\
& \tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=3+\left[\begin{array}{lll}
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1 \\
x_{3}-1
\end{array}\right]=-3+2 x_{1}+2 x_{2}+2 x_{3}
\end{aligned}
$$

90.4.
(a)

$$
\begin{aligned}
& f^{\prime}(t)=\left[\begin{array}{c}
-\sin (t) \\
\cos (t)
\end{array}\right] \\
& \tilde{f}(t)=f(\bar{t})+f^{\prime}(\bar{t})(t-\bar{t})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right](t-\pi / 2)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f^{\prime}(t)=\left[\begin{array}{c}
1 \\
2 t
\end{array}\right], \\
& \tilde{f}(t)=f(\bar{t})+f^{\prime}(\bar{t})(t-\bar{t})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] t=\left[\begin{array}{l}
t \\
1
\end{array}\right] .
\end{aligned}
$$

90.5. (a) The solutions are given by

$$
f(u)=\left[\begin{array}{c}
u_{2}\left(1-u_{1}^{2}\right) \\
2-u_{1} u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We find two solutions $\bar{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\bar{u}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.
(b) The Jacobian is

$$
D f(u)=\left[\begin{array}{cc}
-2 u_{1} u_{2} & 1-u_{1}^{2} \\
-u_{2} & -u_{1}
\end{array}\right] .
$$

(c) The first step of Newton's method:
evaluate

$$
A=D f(1,1)=\left[\begin{array}{cc}
-2 & 0 \\
-1 & -1
\end{array}\right] \quad \text { and } \quad b=-f(1,1)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

solve

$$
A h=b, \quad\left[\begin{array}{cc}
-2 & 0 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
-2 h_{1}=0, \\
-h_{1}-h_{2}=-1,
\end{array} \quad h=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right.
$$

update

$$
u^{(1)}=u^{(0)}+h=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\bar{u}
$$

bingo!
90.6. (a) The solutions are given by

$$
f(u)=\left[\begin{array}{l}
u_{1}\left(1-u_{2}\right) \\
u_{2}\left(1-u_{1}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We find two solutions $\bar{u}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\bar{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) The Jacobian is

$$
D f(u)=\left[\begin{array}{cc}
1-u_{2} & -u_{1} \\
-u_{2} & 1-u_{1}
\end{array}\right] .
$$

(c) The first step of Newton's method: evaluate

$$
A=D f(2,2)=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right] \quad \text { and } \quad b=-f(2,2)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

solve

$$
A h=b, \quad\left[\begin{array}{ll}
-1 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right],
$$

$$
\left\{\begin{array}{l}
-h_{1}-2 h_{2}=2, \\
-2 h_{1}-h_{2}=2,
\end{array} \quad \quad h=\left[\begin{array}{l}
-2 / 3 \\
-2 / 3
\end{array}\right]\right.
$$

update

$$
u^{(1)}=u^{(0)}+h=\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{l}
-2 / 3 \\
-2 / 3
\end{array}\right]=\left[\begin{array}{l}
4 / 3 \\
4 / 3
\end{array}\right]
$$

getting closer to \bar{u} !

