
TMV035 ALA–B

90. Linearization. Jacobi matrix. Newton’s method.

0.1 Function of one variable, f : R → R

(AMBS 23) A function f : R → R of one variable is differentiable at x̄ if there are constants m(x̄),
Kf (x̄) such that

f(x) = f(x̄) + m(x̄)(x − x̄) + Ef (x, x̄), (1)

where the remainder Ef satisfies |Ef (x, x̄)| ≤ Kf(x̄)(x − x̄)2 when x is close to x̄. The constant
m(x̄) is called the derivative of f at x̄ and we write

m(x̄) = f ′(x̄) = Df(x̄) =
df

dx
(x̄).

It is convenient to use the abbreviation h = x − x̄, so that x = x̄ + h and (1) becomes

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), (2)

where |Ef (x, x̄)| ≤ Kf (x̄)h2 when x is close to x̄. Note that the first term on the right side, f(x̄),
is constant with respect to x. The second term,

f ′(x̄)h = f ′(x̄)(x − x̄), (3)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (4)

The straight line y = f̃x̄(x) is the tangent to the curve y = f(x) at x̄.

Example 1. Let f(x) = x2. Then f ′(x) = 2x and the linearization at x̄ = 3 is

f̃3(x) = 9 + 6(x − 3).

0.2 Function of two variables, f : R2 → R

(AMBS 24.10 ) Let f(x1, x2) be a function of two variables, i.e., f : R2 → R. We write x = (x1, x2)
and f(x) = f(x1, x2). The function f is differentiable at x̄ = (x̄1, x̄2), if there are constants m1(x̄),
m2(x̄), Kf(x̄) such that

f(x) = f(x̄ + h) = f(x̄) + m1(x̄)h1 + m2(x̄)h2 + Ef (x, x̄), h = x − x̄, (5)

where the remainder Ef satisfies |Ef (x, x̄)| ≤ Kf(x̄)|h|2 and |h| =
√

h2
1 + h2

2 denotes the length
of the increment h = (h1, h2) = (x1 − x̄1, x2 − x̄2).

If we take h = (h1, 0), then we get

f(x1, x̄2) = f(x̄1 + h1, x̄2) = f(x̄) + m1(x̄)h1 + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf(x̄)h2
1. This means that m1(x̄) is the derivative of the one-variable function

f̂(x1) = f(x1, x̄2), obtained from f by keeping x2 = x̄2 fixed. By taking h = (0, h2) we see in a
similar way that m2(x̄) is the derivative of the one-variable function, which is obtained from f by
keeping x1 = x̄1 fixed. The constants m1(x̄), m2(x̄) are called the partial derivatives of f at x̄
and we denote them by

m1(x̄) = f ′
x1

(x̄) =
∂f

∂x1
(x̄), m2(x̄) = f ′

x2
(x̄) =

∂f

∂x2
(x̄). (6)
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Now (5) may be written

f(x) = f(x̄ + h) = f(x̄) + f ′
x1

(x̄)h1 + f ′
x1

(x̄)h1 + Ef (x, x̄), h = x − x̄. (7)

It is convenient to write this formula by means of matrix notation. Let

a =
[
a1, a2

]
, b =

[
b1

b2

]
.

We say that a is a row matrix of type 1 × 2 (one by two) and that b is a column matrix of type
2 × 1 (two by one). Their product is defined by

ab =
[
a1, a2

] [
b1

b2

]
= a1b1 + a2b2.

The result is a matrix of type 1×1 (a real number), according to the rule: 1×2 times 2×1 makes
1 × 1.

Going back to (7) we define

f ′(x̄) = Df(x̄) =
[
f ′

x1
(x̄) f ′

x2
(x̄)

]
, h =

[
h1

h2

]
.

The matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. Then (7) may be
written

f(x) = f(x̄ + h) = f(x̄) +
[
f ′

x1
(x̄) f ′

x1
(x̄)

] [
h1

h2

]
+ Ef (x, x̄)

= f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x − x̄.

(8)

Note that the first term on the right side, f(x̄), is constant with respect to x. The second
term,

f ′(x̄)h = f ′(x̄)(x − x̄), (9)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (10)

The plane x3 = f̃x̄(x1, x2) is the tangent to the surface x3 = f(x1, x2) at x̄.

Example 2. Let f(x) = x2
1x

5
2. Then

∂f

∂x1
(x) =

∂f

∂x1

(
x2

1x
5
2

)
= 2x1x

5
2,

∂f

∂x2
(x) =

∂f

∂x2

(
x2

1x
5
2

)
= 5x2

1x
4
2,

so that f ′(x) =
[
2x1x

5
2 5x2

1x
4
2

]
and the linearization at x̄ = (3, 1) is

f̃x̄(x) = 9 +
[
6 45

] [
x1 − 3
x2 − 1

]
.

0.3 Two functions of two variables, f : R2 → R2

Let f1(x1, x2), f2(x1, x2) be two functions of two variables. We write x = (x1, x2) and f(x) =
(f1(x1, x2), f2(x1, x2)), i.e., f : R2 → R2. The function f is differentiable at x̄ = (x̄1, x̄2), if there
are constants m11(x̄), m12(x̄), m21(x̄), m22(x̄), and Kf(x̄) such that

f1(x) = f1(x̄ + h) = f1(x̄) + m11(x̄)h1 + m12(x̄)h2 + Ef1 (x, x̄),
f2(x) = f2(x̄ + h) = f2(x̄) + m21(x̄)h1 + m22(x̄)h2 + Ef2 (x, x̄),

(11)
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where h = x − x̄ and the remainders Efj satisfy |Efj (x, x̄)| ≤ Kf (x̄)|h|2 and |h| =
√

h2
1 + h2

2

denotes the length of the increment h = (h1, h2) = (x1−x̄1, x2−x̄2). From the previous subsection
we recognize that the constants mij(x̄) are the partial derivatives of the functions fi at x̄ and we
denote them by

m11(x̄) = f ′
1,x1

(x̄) =
∂f1

∂x1
(x̄), m12(x̄) = f ′

1,x2
(x̄) =

∂f1

∂x2
(x̄),

m21(x̄) = f ′
2,x1

(x̄) =
∂f2

∂x1
(x̄), m22(x̄) = f ′

2,x2
(x̄) =

∂f2

∂x2
(x̄).

It is convenient to use matrix notation. Let

A =
[
a11 a12

a21 a22

]
, b =

[
b1

b2

]
.

We say that A is a matrix of type 2× 2 (two by two) and that b is a column matrix of type 2× 1
(two by one). Their product is defined by

Ab =
[
a11 a12

a21 a22

] [
b1

b2

]
=

[
a11b1 + a12b2

a21b1 + a22b2

]
.

The result is a matrix of type 2 × 1 (column matrix), according to the rule: 2 × 2 times 2 × 1
makes 2 × 1.

Going back to (11) we define

f(x) =
[
f1(x)
f2(x)

]
, f ′(x̄) = Df(x̄) =




∂f1

∂x1
(x̄)

∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄)

∂f2

∂x2
(x̄)


 , h =

[
h1

h2

]
. (12)

The matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. Then (11) may
be written


f1(x)

f2(x)


 =


f1(x̄ + h)

f2(x̄ + h)


 =


f1(x̄)

f2(x̄)


 +




∂f1

∂x1
(x̄)

∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄)

∂f2

∂x2
(x̄)





h1

h2


 +


Ef1 (x, x̄)

Ef2 (x, x̄)


 , (13)

or in more compact form

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x − x̄. (14)

Note that the first term on the right side, f(x̄), is constant with respect to x. The second
term,

f ′(x̄)h = f ′(x̄)(x − x̄), (15)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (16)

Example 3. Let f(x) =
[
x2

1x
5
2

x3
2

]
. Then

f ′(x) = Df(x) =




∂f1

∂x1
(x)

∂f1

∂x2
(x)

∂f2

∂x1
(x)

∂f2

∂x2
(x)


 =

[
2x1x

5
2 5x2

1x
4
2

0 3x2

]

and the linearization at x̄ = (3, 1) is

f̃x̄(x) =
[
9
1

]
+

[
6 45
0 3

] [
x1 − 3
x2 − 1

]
.
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0.4 Several functions of several variables, f : Rn → Rm

It is now easy to generalize to any number of functions in any number of variables. Let fi be m
functions of n variables xj , i.e., f : Rn → Rm. As in (12) we define

x =




x1

...
xn


 , h =




h1

...
hn


 =




x1 − x̄1

...
xn − x̄n


 ,

f(x) =




f1(x1, . . . , xn)
...

fm(x1, . . . , xn)


 , f ′(x̄) = Df(x̄) =




∂f1

∂x1
(x̄) . . .

∂f1

∂xn
(x̄)

...
...

∂fm

∂x1
(x̄) . . .

∂fm

∂xn
(x̄)


 .

The m×n matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. In a similar
way to (14) we get

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x − x̄. (17)

The linearization of f at x̄ is
f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (18)

0.5 Newton’s method for f(x) = 0

Consider a system of n equations with n unknowns:

f1(x1, . . . , xn) = 0,

...
fn(x1, . . . , xn) = 0.

If we define

x =




x1

...
xn


 , f =




f1

...
fn


 , 0 =



0
...
0


 ,

then f : Rn → Rn, and we can write our system of equations in the compact form

f(x) = 0. (19)

Suppose that we have found an approximate solution x̄. We want to find a better approximation
x = x̄ + h. Instead of solving (19) directly, which is usually impossible, we solve the linearized
equation at x̄:

f̃x̄(x̄ + h) = f(x̄) + f ′(x̄)h = 0. (20)

Rearranging the terms we get
f ′(x̄)h = −f(x̄). (21)

Remember that the Jacobi matrix is of type n × n and the increment is of type n × 1. Therefore
we have to solve a linear system of n equations in n variables to get the increment h. Then we set
x = x̄ + h.

In algorithmic form Newton’s method can be formulated:
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while |h|<tol
evaluate the residual b=-f(x)
evaluate the Jacobian A=f’(x)
solve the linear system Ah=b
update x=x+h

end

You will implement this algorithm in the studio exercises. You will use the Matlab command

h=A\b

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

• Is there a unique solution h for each b?

• How do you compute the solution?

The study of systems of linear equations is an important part of the subject “linear algebra”.

90 Problems

Problem 90.1. Let

a =
[
1 2

]
, b =

[
1
2

]
, A =

[
1 2
3 4

]
.

Compute the products ab, ba, Ab, Aa, aA, bA.

Problem 90.2. Compute the Jacobi matrix f ′(x) (also denoted Df(x)). Compute the lineariza-
tion of f at x̄.

(a) f(x) =
[
sin(x1) + cos(x2)
cos(x1) + sin(x2)

]
, x̄ = 0; (b) f(x) =


 1

1 + x1

1 + x1e
x2


 , x̄ =

[
1
1

]
.

Problem 90.3. Compute the gradient vector ∇f(x) (also denoted f ′(x) = Df(x)). Compute the
linearization of f at x̄.

(a) f(x) = e−x1 sin(x2), x̄ = 0; (b) f(x) = |x|2 = x2
1 + x2

2 + x2
3, x ∈ R3, x̄ =


1
1
1


 .

Problem 90.4. Here f : R → R2. Compute f ′(t). Compute the linearization of f at t̄.

(a) f(t) =
[
cos(t)
sin(t)

]
, t̄ = π/2; (b) f(t) =

[
t

1 + t2

]
, t̄ = 0.

Problem 90.5. (a) Write the system

u2

(
1 − u2

1

)
= 0,

2 − u1u2 = 0

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix DF (u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =
[
1
1

]
.

(d) Solve the equation f(u) with your Matlab program newton.m.
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Problem 90.6. (a) Write the system

u1

(
1 − u2

)
= 0,

u2

(
1 − u1

)
= 0,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix DF (u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =
[
2
2

]
.

(d) Solve the equation f(u) with your Matlab program newton.m.

Answers and solutions

90.1. Use Matlab to check your answers.
90.2.

(a)

f ′(x) =
[

cos(x1) − sin(x2)
− sin(x1) cos(x2)

]
, f̃(x) = f(x̄) + f ′(x̄)(x − x̄) =

[
1
1

]
+

[
1 0
0 1

] [
x1

x2

]
.

(b)

f ′(x) =


 0 0

1 0
ex2 x1e

x2


 , f̃(x) = f(x̄) + f ′(x̄)(x − x̄) =


 1

2
1 + e


 +


0 0
1 0
e e


 [

x1 − 1
x2 − 1

]
.

90.3.

(a)

∇f(x) =
[−e−x1 sin(x2), e−x1 cos(x2)

]
,

f̃(x) = f(x̄) + f ′(x̄)(x − x̄) = 0 +
[
0 1

] [
x1

x2

]
= x2.

(b)

∇f(x) =
[
2x1 2x3 2x3

]
,

f̃(x) = f(x̄) + f ′(x̄)(x − x̄) = 3 +
[
2 2 2

] 
x1 − 1
x2 − 1
x3 − 1


 = −3 + 2x1 + 2x2 + 2x3.

90.4.

(a)

f ′(t) =
[− sin(t)

cos(t)

]
,

f̃(t) = f(t̄) + f ′(t̄)(t − t̄) =
[
0
1

]
+

[−1
0

]
(t − π/2).
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(b)

f ′(t) =
[

1
2t

]
,

f̃(t) = f(t̄) + f ′(t̄)(t − t̄) =
[
0
1

]
+

[
1
0

]
t =

[
t
1

]
.

90.5. (a) The solutions are given by

f(u) =
[
u2(1 − u2

1)
2 − u1u2

]
=

[
0
0

]
.

We find two solutions ū =
[
1
2

]
and ū =

[−1
−2

]
.

(b) The Jacobian is

Df(u) =
[−2u1u2 1 − u2

1

−u2 −u1

]
.

(c) The first step of Newton’s method:

evaluate A = Df(1, 1) =
[−2 0
−1 −1

]
and b = −f(1, 1) =

[
0
−1

]

solve Ah = b,

[−2 0
−1 −1

] [
h1

h2

]
=

[
0
−1

]
{

− 2h1 = 0,

− h1 − h2 = −1,
h =

[
0
1

]

update u(1) = u(0) + h =
[
1
1

]
+

[
0
1

]
=

[
1
2

]
= ū

bingo!

90.6. (a) The solutions are given by

f(u) =
[
u1(1 − u2)
u2(1 − u1)

]
=

[
0
0

]
.

We find two solutions ū =
[
0
0

]
and ū =

[
1
1

]
.

(b) The Jacobian is

Df(u) =
[
1 − u2 −u1

−u2 1 − u1

]
.

(c) The first step of Newton’s method:

evaluate A = Df(2, 2) =
[−1 −2
−2 −1

]
and b = −f(2, 2) =

[
2
2

]

solve Ah = b,

[−1 −2
−2 −1

] [
h1

h2

]
=

[
2
2

]
,{

− h1 − 2h2 = 2,

− 2h1 − h2 = 2,
h =

[−2/3
−2/3

]

update u(1) = u(0) + h =
[
2
2

]
+

[−2/3
−2/3

]
=

[
4/3
4/3

]
getting closer to ū!
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