TMV035 ALA-B

90. Linearization. Jacobi matrix. Newton’s method.

0.1 Function of one variable, f : R — R

(AMBS 23) A function f : R — R of one variable is differentiable at Z if there are constants m(Zz),
K ;(z) such that

f(@) = f(z) + m(z)(x — 7) + Ef(2,7), (1)

where the remainder Ey satisfies |Ef(z, )| < K¢(Z)(x — z)? when z is close to Z. The constant
m(Z) is called the derivative of f at & and we write

m(@) = /@) = Dj(#) = L ()

It is convenient to use the abbreviation h = z — , so that « = Z + h and (1) becomes
f(z) = f(@+h)= f(Z)+ f(@)h+ Ef(z,z), (2)

where |E¢(x,Z)| < K¢(Z)h? when z is close to Z. Note that the first term on the right side, f(7),
is constant with respect to x. The second term,

f'@h=f(z)(z-2), (3)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at z,
fo(x) = f(@) + ['(@) (@ - 7). (4)

The straight line y = f3 (z) is the tangent to the curve y = f(x) at z.

Example 1. Let f(x) = 22. Then f/(x) = 2z and the linearization at z = 3 is

f3(x) =9+ 6(x — 3).

0.2 Function of two variables, f : R> - R

(AMBS 24.10 ) Let f(x1,22) be a function of two variables, i.e., f : R? — R. We write x = (1, 22)
and f(x) = f(x1,22). The function f is differentiable at z = (Z1, Z2), if there are constants m (),
mo(Z), K;(Z) such that

where the remainder E; satisfies |E¢(z,Z)| < K¢(Z)|h|? and |h| = \/h? + h3 denotes the length
of the increment h = (hq, ha) = (1 — T1, 22 — Ta).
If we take h = (hy,0), then we get

f(x1,Z2) = f(Z1 + b1, T2) = f(T) +m1(T)h1 + Ef(z,7),

with |E¢(x,Z)| < K¢(Z)h?. This means that m;(Z) is the derivative of the one-variable function

f(xl) = f(x1,Z2), obtained from f by keeping xo = Zs fixed. By taking h = (0, ha) we see in a
similar way that mo(Z) is the derivative of the one-variable function, which is obtained from f by
keeping 1 = Z; fixed. The constants my(Z), ma(Z) are called the partial derivatives of f at Z
and we denote them by

m(z) = f;,(2) = 57=(2), ma(2) = f,(7) = 57— (2). (6)



Now (5) may be written
f@)=f@+h) = f(@)+ fr,(@h1 + [r, (@) + Ef(2,2), h=z-1. (7)

It is convenient to write this formula by means of matrix notation. Let

a= [al,ag}, b= {zj .

We say that a is a row matrix of type 1 x 2 (one by two) and that b is a column matrix of type
2 x 1 (two by one). Their product is defined by

b
ab = [al, ag] [b;] = a1by + asbs.

The result is a matrix of type 1 x 1 (a real number), according to the rule: 1 x 2 times 2 x 1 makes
1x1.
Going back to (7) we define

F@ =i = 1@ @] 6=y

The matrix f'(z) = Df(z) is called the derivative (or Jacobi matrix) of f at . Then (7) may be
written

(8)

Note that the first term on the right side, f(Z), is constant with respect to . The second
term,

f'@h=f(z)(z-2), (9)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at Z,
folz) = f(@) + ['(@) (@ - 2). (10)

The plane x5 = f}, (z1,22) is the tangent to the surface x3 = f(x1,z2) at .
Example 2. Let f(z) = 22x5. Then

2Ly = 2 (103) = 2maat, 2L = 2L (ute8) = sutet

8331 * 81‘1 8—372

so that f'(z) = [2z123 5a}x3] and the linearization at z = (3,1) is

folw) =9+ 6 45] [i;:ﬂ

0.3 Two functions of two variables, f: R? — R?

Let fi(z1,22), fa(z1,22) be two functions of two variables. We write = (21, z2) and f(z) =
(fi(z1,22), fa(w1,12)), i.e., f: R? — R2 The function f is differentiable at 7 = (71, #2), if there
are constants m11(Z), m12(&), mo1(Z), mo2(Z), and Ky (Z) such that

fi(z) = fi(@ + h) = f1(@) + m11(Z)h1 + m12(Z)he + By, (z, T),

fo(z) = fo(@ + h) = f2(Z) + m21(Z)h1 + maa(Z)he + By, (z, T), ()



where h = z — Z and the remainders Ey, satisfy |Ey, (z,2)| < K;(z)|h|* and |h| = \/h3 + h}
denotes the length of the increment h = (hy, he) = (21 —Z1, 22 —T2). From the previous subsection
we recognize that the constants m;;(Z) are the partial derivatives of the functions f; at Z and we
denote them by

0 0
mis(#) = (0 = 2@, mala) = £, = 2@,

0 0
m21(‘i) = fQ/,xl (j:) = a—ﬁ(‘i)a mQQ(i‘) = fé,xg(i‘) = a—ﬁ(i‘)

It is convenient to use matrix notation. Let
A | @m2f bl
a1 ag2 ba
We say that A is a matrix of type 2 x 2 (two by two) and that b is a column matrix of type 2 x 1
(two by one). Their product is defined by

Ap— |M1 a2 bi| _ |a11b1 + aizbs
az1  azz2| |b2 a21b1 + ageba |

The result is a matrix of type 2 x 1 (column matrix), according to the rule: 2 x 2 times 2 x 1
makes 2 x 1.
Going back to (11) we define

D b
=[], r@=prw= " e
h O 3y O2z) "
8x1 . 8x2 .
The matrix f/(Z) = Df(z) is called the derivative (or Jacobi matrix) of f at Z. Then (11) may
be written
ofr . 0f1,_
[ﬁm] [ﬁ(m + h>] [fl(m] 9" oy ™ [/u By, (m]
= = + + . (13)
fa(x) fa(Z + h) fa(2) Of2 oy Of2 ha Ep,(z,7)

Dis (2) Dg (2)
or in more compact form
f@)=f(@+h)=f(@)+ f(@h+Ef(x,z), h=z-=. (14)

Note that the first term on the right side, f(Z), is constant with respect to z. The second
term,

f(@h=f(@)(x-17), (15)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at Z,
fo(x) = f(@) + ['(@) (@ — 7). (16)

z3x}
Example 3. Let f(z) = { ;32]. Then
2

Dy b
0 0
@ =pfw = | e s

() ()

8x1 8x2

and the linearization at Z = (3,1) is

R R ]



0.4 Several functions of several variables, f : R* — R™

It is now easy to generalize to any number of functions in any number of variables. Let f; be m
functions of n variables z;, i.e., f : R® — R™. As in (12) we define

T hy T — T
T = , h= = ,
| Tn hn Ty — Tn
of1,_ of1
i, ) 8—a:1(x 8—%@)
flx) = : , (@) =Df(z)= : :
Lfm (@1, 2n) %(z) gﬁ:(:z)

The m x n matrix f'(Z) = D f(z) is called the derivative (or Jacobi matrix) of f at Z. In a similar
way to (14) we get

f@)=f(@+h)=f(@)+ f(@h+Ef(x,z), h=z-=. (17)

The linearization of f at T is

fa(x) = f(2) + f'(2)(x — 7). (18)

0.5 Newton’s method for f(z) =0

Consider a system of n equations with n unknowns:

fl(xla"'vxn) = 0;

If we define
T bil 0
= f=]t], 0=t
T, fn 0
then f: R™ — R"™, and we can write our system of equations in the compact form
f(z)=0. (19)

Suppose that we have found an approximate solution Z. We want to find a better approximation
2 = T + h. Instead of solving (19) directly, which is usually impossible, we solve the linearized
equation at T:

fo(@+h) = f(2)+ f'(@)h =0. (20)

Rearranging the terms we get
fl@h=—-f(). (21)

Remember that the Jacobi matrix is of type n x n and the increment is of type n x 1. Therefore
we have to solve a linear system of n equations in n variables to get the increment h. Then we set
r=2Z+h.

In algorithmic form Newton’s method can be formulated:



while |h|<tol

evaluate the residual b=-f (x)

evaluate the Jacobian A=f’ (x)

solve the linear system Ah=b

update x=x+h
end

You will implement this algorithm in the studio exercises. You will use the MATLAB command
h=A\Db

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

e Is there a unique solution h for each b?
e How do you compute the solution?

The study of systems of linear equations is an important part of the subject “linear algebra”.

90 Problems

Problem 90.1. Let
a=[1 2], b=, a=|} 2
’ 20’ 3 4|
Compute the products ab, ba, Ab, Aa, aA, bA.

Problem 90.2. Compute the Jacobi matrix f’(x) (also denoted D f(z)). Compute the lineariza-
tion of f at Z.

@ @)= [l e o) fe)- Lia |, =i

cos(x1) + sin(xz) 1+ zpe*2 !

Problem 90.3. Compute the gradient vector V f(z) (also denoted f’(z) = D f(x)). Compute the
linearization of f at Z.

1
(a) f(z) =e *tsin(xz), Z=0; b) flz)=|zP =2t +2i+23, z€R? 7= |1
1

Problem 90.4. Here f : R — R2. Compute f'(t). Compute the linearization of f at .

cos(t) t

@ o=t im0 = ] o
Problem 90.5. (a) Write the system

U2 (1 — u%) =0,
2 —ujus =0
in the form f(u) = 0. Find the all the solutions by hand calculation.

(b) Compute the Jacobi matrix DF (u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u® = 1.

(d) Solve the equation f(u) with your MATLAB program newton.m.



Problem 90.6. (a) Write the system

U1(1 - UQ) = 0,
UQ(]. — ul) =0,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix DF (u).
(¢) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

w© = 2],

(d) Solve the equation f(u) with your MATLAB program newton.m.

Answers and solutions

90.1. Use MATLAB to check your answers.

90.2.
(a)
i~ | cos(xz1) —sin(z2) Ty s 1 1 0| |z
pa= | ot e e = re-a =+ Y 2]
(b)
0 0 1 0 0] _,
fllx)y=11 0 |, f@=f@+f@@-2)=|2 |+[1 0 Lc; - 1] :
er2 e’ l1+e e e
90.3.
(a)
Vf(z) = [—e ' sin(zs), e cos(z2)],
o) = f@)+ F@)a -0 =0+ [0 1] [72] =
(b)
Vi(x)= [2:51 273 2x3] ,
Ty — 1
fl@)=f@) + f(@)(x-2)=3+[2 2 2] [(EQ - 1] = —3+ 271 + 272 + 273.
Tr3 — 1
90.4.
(a)

el
fo= 10+ rae-o= Y] + 5] ¢ -2



We find two solutions 4 = B] and @ = {
(b) The Jacobian is

Df(u) =

(c) The first step of Newton’s method:

|
[—2u1u2

1—u%}

evaluate A=Df(1,1) = [:i _O
B —2 0][m] _[oO
solve Ah = b, [_1 _J [hJ = [_1]
“ =0 h= [O]
—hy —hy = —1, 1
M= @ 4= [ 119 = [H =
update u = +h_[1}+[1}_[2}_

bingo!

90.6. (a) The solutions are given by

We find two solutions u = [8} and u = [ﬂ .
(b) The Jacobian is

1-— U —Uj
Df(u)|:_u2 1—U1:|
(c) The first step of Newton’s method:
evaluate A=Df(2,2) = {: 2
B -1 =2 [m] _[2
solve Ah =0, {_2 _1] |:h2 = {2]
—hy —2hy =2, h— [—2/3}
—2hy — hy = 2, -2/3

update uM =4O 4 = [

getting closer to u!
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