## REACTION KINETICS

In this lecture we present an example from "reaction kinetics". The purpose is to describe how to set up the kinetic equations, to solve them with Matlab, and to draw a conclusion about the reaction from the computation. Perhaps this will be useful in your own chemistry project.

## 1. Oxidation of NO

Inspired by: P. Atkins and L. Jones, Chemical Principles. The Quest for Insight. Freeman, New York, second edition, 2002, pp. 720-721.

We consider the oxidation of NO to $\mathrm{NO}_{2}$. The following rate of formation of $\mathrm{NO}_{2}$ has been observed experimentally:

$$
\begin{equation*}
\frac{d}{d t}\left[\mathrm{NO}_{2}\right]=k\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2} . \quad(\mathrm{mol} /(\mathrm{L} \mathrm{~s})) \tag{1}
\end{equation*}
$$

This corresponds to the formula

$$
\begin{equation*}
2 \mathrm{NO}+\mathrm{O}_{2} \xrightarrow{k} 2 \mathrm{NO}_{2} \tag{2}
\end{equation*}
$$

Here $\left[\mathrm{NO}_{2}\right]$, measured in mol/L, is the concentration of $\mathrm{NO}_{2}$. The rate constant $k$ is measured in $\mathrm{L}^{2} /\left(\operatorname{mol}^{2} \mathrm{~s}\right)$. This is a third order reaction, because the rate is proportional to the product of three concentrations.

In order to explain this empirical formula one has proposed the following two-step reaction mechanism.

Step 1. NO is decomposed into an intermediate product $\mathrm{N}_{2} \mathrm{O}_{2}$ in a fast reaction:

$$
\begin{equation*}
2 \mathrm{NO} \underset{k_{12}}{\stackrel{k_{11}}{\rightleftharpoons}} \mathrm{~N}_{2} \mathrm{O}_{2} \tag{3}
\end{equation*}
$$

Step 2. The intermediate product reacts with $\mathrm{O}_{2}$ in a slow reaction:

$$
\begin{equation*}
\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \underset{k_{22}}{\stackrel{k_{21}}{\rightleftharpoons}} 2 \mathrm{NO}_{2} \tag{4}
\end{equation*}
$$

We now write down the reaction rates for the four reactions (mol/(Ls)):

$$
\begin{array}{ll}
r_{11}=k_{11}[\mathrm{NO}]^{2} & =k_{11} u_{1}^{2}, \\
r_{12}=k_{12}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right] & =k_{12} u_{3}, \\
r_{21}=k_{21}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right] & =k_{21} u_{3} u_{2},  \tag{5}\\
r_{22}=k_{22}\left[\mathrm{NO}_{2}\right]^{2} & =k_{22} u_{4}^{2} .
\end{array}
$$

Here we introduced the variables

$$
\begin{equation*}
u_{1}=[\mathrm{NO}], u_{2}=\left[\mathrm{O}_{2}\right], u_{3}=\left[\mathrm{N}_{2} \mathrm{O}_{2}\right], u_{4}=\left[\mathrm{NO}_{2}\right] . \quad(\mathrm{mol} / \mathrm{L}) \tag{6}
\end{equation*}
$$

What are the units of the rate constants $k_{11}, k_{12}, k_{21}, k_{22}$ ?
Finally, we write down the differential equations for the concentrations:

$$
\begin{align*}
& \dot{u}_{1}=-2 r_{11}+2 r_{12}, \\
& \dot{u}_{2}=-r_{21}+r_{22},  \tag{7}\\
& \dot{u}_{3}=r_{11}-r_{12}-r_{21}+r_{22}, \\
& \dot{u}_{4}=2 r_{21}-2 r_{22} .
\end{align*}
$$

[^0]The numbers $\pm 1, \pm 2$ that occur in front of the rates are called stoichiometric numbers. For example, the stoichiometric numbers of $\mathrm{NO}_{2}$ in reactions 21 and 22 are 2 and -2 , respectively.

The equations are implemented and solved in the Matlab programs no2.m, no2a.m, no2test.m. The file no2test.m is a script file, which starts the computations and plots the solutions.

We use the data $k_{11}=10, k_{12}=10$ (fast reaction), $k_{21}=0.01, k_{22}=0$ (slow reaction), and initial values $u_{10}=0.5, u_{20}=1, u_{30}=0, u_{40}=0$. Download the programs and compute!

In order to test if the proposed two-step mechanism explains the empirical third order rate law (1), which is $\dot{u}_{4}=k u_{2} u_{1}^{2}$, we also compute the quotient

$$
\begin{equation*}
\frac{\dot{u}_{4}}{u_{2} u_{1}^{2}} \tag{8}
\end{equation*}
$$

If (1) holds, then this quotient should be constant $=k$. A calculation in Atkins and Jones shows that $k=2 k_{21} k_{11} / k_{12}$. The quotient (8) is plotted with black dots, and we see that it quickly becomes constant $=2 k_{21} k_{11} / k_{12}$.

This verifies that the two-step mechanism explains the empirical rate law (1).
The calculation in Atkins and Jones is based on the so-called steady-state approximation, which amounts to setting the net rate of formation of the intermediate product $\mathrm{N}_{2} \mathrm{O}_{2}$ to zero, i.e., $\dot{u}_{3}=0$. They also assume that there is no reverse reaction in step 2, i.e., $r_{22}=0$. This gives

$$
\dot{u}_{3}=r_{11}-r_{12}-r_{21}+r_{22}=k_{11} u_{1}^{2}-k_{12} u_{3}-k_{21} u_{3} u_{2}=0
$$

so that we can eliminate $u_{3}$ :

$$
u_{3}=\frac{k_{11} u_{1}^{2}}{k_{12}+k_{21} u_{2}}
$$

Then the rate of formation of $\mathrm{NO}_{2}$ becomes

$$
\dot{u}_{4}=2 r_{21}-2 r_{22}=2 k_{21} u_{3} u_{2}=\frac{2 k_{21} k_{11} u_{1}^{2} u_{2}}{k_{12}+k_{21} u_{2}} \approx \frac{2 k_{21} k_{11}}{k_{12}} u_{1}^{2} u_{2}
$$

where in the last step we assumed that $k_{12}$ is much larger than $k_{21} u_{2}$. With these approximations we thus find $k=2 k_{21} k_{11} / k_{12}$.

You can download the Matlab programs from
http://www.math.chalmers.se/cm/education/courses/0203/ala-b/matlab/facit/


[^0]:    Date: November 17, 2002, Stig Larsson, Computational Mathematics, Chalmers University of Technology.

