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Lecture plan

• Introduction to FEM

• FEM for Poisson’s equation
• Adaptivity for Poisson’s equation

• FEM for u̇ = f

• Adaptivity for u̇ = f
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Introduction to FEM
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A method for solving PDEs

The finite element method (FEM), also known as
Galerkin’s method, is a general method for
solving PDEs (or ODEs) of the form

A(u) = f,

where A is a differential operator, f is a given
force term and u is the solution.
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Solving PDEs
• Analytic solutions can be obtained only for

simple geometries in special cases:

PSfrag replacements −∆u = 0

• Using the computer, we can obtain solutions
to general problems with complex geometries:

u̇+ u · ∇u − ν∆u+∇p = f

∇ · u = 0
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The finite element method

Find an approximate solution U of the form

U(x) =
N
∑

j=1

ξjϕj.

Here U is linear linear combination of (a finite
number of) basis functions with local support:

{ϕj}
N
j=1.
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Some notation from functional analysis

• Scalar product for functions v, w:

(v, w) =

∫

Ω

v(x)w(x) dx

• L2(Ω)-norm of a function v:

‖v‖L2(Ω) =

(
∫

Ω

v2 dx

)1/2

=
√

(v, v)
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Some notation from functional analysis

• Cauchy’s inequality:

|(v, w)| ≤ ‖v‖ ‖w‖

• v and w are orthogonal iff (v, w) = 0

PSfrag replacements

v

w
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Galerkin’s method

The finite element method is based on Galerkin’s
method:

• Let Vh denote a finite dimensional trial space.

• Let V̂h denote a finite dimensional test space.
• Find U ∈ Vh such that the residual
R(U) = A(U)− f is orthogonal to V̂h:

(R(U), v) = 0 ∀v ∈ V̂h.
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Galerkin’s method

For A linear with Vh = V̂h = span{ϕj}
N
j=1 we have

(R(U), v) = 0, ∀v ∈ V̂h,

(A(U)− f, v) = 0, ∀v ∈ V̂h,

(A(
∑N

j=1 ξjϕj), v) = (f, v), ∀v ∈ V̂h,
∑N

j=1 ξj(A(ϕj), ϕ̂i) = (f, ϕ̂i), i = 1, . . . , N,

or
Ahξ = b,

where Ah = (A(ϕj), ϕ̂i), b = (f, ϕ̂i).
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Galerkin’s method

It is often advisable to rewrite the differential
equation A(u) = f from operator form to
variational form:

a(u, v) = (f, v) ∀v ∈ V,

where a(·, ·) = (A(·), ·) is a bilinear form, and V is
a suitable function space.
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Galerkin’s method

Starting from the variational formulation, we have

a(U, v) = (f, v) = 0, ∀v ∈ V̂h,

a(
∑N

j=1 ξjϕj, v) = (f, v), ∀v ∈ V̂h,
∑N

j=1 ξja(ϕj, ϕ̂i) = (f, ϕ̂i), i = 1, . . . , N,

or
Ahξ = b,

where Ah = a(ϕj, ϕ̂i), b = (f, ϕ̂i).
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FEM for Poisson’s equation
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Poisson in three different forms

• Equation:
−∆u = f

• Variational formulation:
∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V

• Linear system:

Ah =

∫

Ω

∇ϕj · ∇ϕ̂i dx, b =

∫

Ω

fv dx
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Details

Let’s do this on
the black board...
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Adaptivity for Poisson
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How large is the error?

We expect the error e = U − u to decrease if we
increase the dimension N of Vh and V̂h. This can
be done in different ways:

• h-adaptivity: decrease the mesh size h

• p-adaptivity: increase the polynomial order p

• hp-adaptivity: a combination of the h and p
methods

We will only consider h-adaptivity.
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An a posteriori error estimate

Let ‖ · ‖E denote the energy-norm given by
‖v‖E = ‖∇v‖. Then the (piecewise linear) finite
element solution U = U(x) satisfies the error
estimate

‖e‖E = ‖U − u‖E ≤ C‖h(R1(U) +R2(U))‖,

where R1(U) = |f +∆U | = |f | and

R2(U) =
1

2
max
S⊂∂K

h−1K |[∂SU ]|.
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Adaptive error control

Find Vh, given by a triangulation Th, such that

‖e‖E ≤ TOL,

where TOL is a given tolerance for the error.

This is satisfied if

C‖h(R1(U) +R2(U))‖ ≤ TOL.
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An adaptive algorithm

1. Choose an initial triangulation T 0h .

2. Compute the solution U on the current
triangulation.

3. Compute the residuals R1, R2, and the error
estimate.

4. If the error estimate is below the tolerance we
stop. Otherwise, we refine the elements
where R1 +R2 is large and start again at 2.
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FEM for u̇ = f
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u̇ = f in three different forms

• Equation:
u̇(t) = f(u(t), t)

• Variational formulation:
∫ tn

tn−1

(u̇, v) dt =

∫ tn

tn−1

(f, v) dt ∀v ∈ V

• Step method:

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t), t) dt
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Details

Let’s do this on
the black board...
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Adaptivity for u̇ = f
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An a posteriori error estimate

We expect the error to decrease if we decrease
the time step k. The (piecewise linear) finite
element solution U = U(t) satisfies the
a posteriori error estimate

‖e(T )‖ = S(T )max
[0,T ]

{k(t)‖R(U, t)‖} ,

where S(T ) is a stability factor and
R(U, t) = U̇(t)− f(U(t), t) is the residual.
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An adaptive algorithm

1. Make a preliminary estimate of S(T ).

2. Compute the solution U with time steps
based on the error estimate.

3. Compute the dual solution ϕ.
(See Chapter 9 in CDE.)

4. Compute an error estimate.

5. If the error estimate is below the tolerance we
stop. Otherwise start again at 2.
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