
TMV040 Tillämpad matematik K, 2002–03

STUDIO 1. THE TANK REACTOR: MASS BALANCE.

In a sequence of studio exercises we will study a simple example from chemical reaction engi-
neering. The purpose of these exercises is to demonstrate by detailed instructions how to set up
a mathematical model and how to study the model by mathematical analysis and Matlab compu-
tation. Note how we start by studying simplified situations and how we calculate exact solutions
by hand when it is possible and how we experiment by computing many solutions with Matlab
until we understand what is going on.

We begin by recalling how to solve differential equations of first order. Then we introduce the
ideal tank reactor.

Important: write a readable report of your work in each studio session. You will need this at
the end of the course when you prepare for the written exam; several exam questions will be based
directly on the studio work which is only documented in your own notes and the instructions.

Some exercises are called homework in order to save time in the studio classroom.

1. Linear differential equations of first order

Recall that d
dt exp(t) = exp(t) and exp(0) = 1. This means that the exponential function

u(t) = exp(t) satisfies the initial-value problem

u′(t) = u(t), t > 0; u(0) = 1.(1)

Let a and u0 be real numbers and consider the initial-value problem

u′(t) = au(t), t > 0; u(0) = u0.(2)

The solution is u(t) = u0 exp(at). Check this!
Exercise 1. Solve (2) with Matlab: Write the following function file funk1.m, which defines the
right-hand side of the differential equation.
function y=funk1(t,u)
global a
y=a*u;

Then write the following script file data.m, which gives default values to the variables that are
used.
global a
a=1; T=1; u0=1;

Finally write the following script file solve1.m, which solves (2) and plots the solution.
[t,u]=ode45(’funk1’, [0 T], u0);
plot(t,u);

Note how the value of a enters into the function via the command global a, which must be written
both in the function file funk1.m and in the script file data.m. (Read about “global variables” in
helpdesk.) Start the computation by typing the following on the Matlab command line:
>> data
>> solve1
>> a=-1
>> T=2
>> hold on
>> solve1

Compute and observe the solutions for various values of a, positive, negative, and zero. If you
type > > hold on then Matlab will plot several curves in the same figure. �
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Now let b be another real number and consider the initial-value problem

u′(t) = au(t) + b, t > 0; u(0) = u0.(3)

Remember that the solution is given by u(t) = uh(t) + up(t), where uh(t) = A exp(at) is a
solution of the homogeneous equation u′ − au = 0 and up(t) = B is a particular solution of the
inhomogeneous equation u′ − au = b.

Homework 1. Determine the constants A and B and show that the solution is

u(t) = u0 exp(at) +
b

a
(exp(at) − 1) (if a 6= 0).(4)

What is the solution when a = 0? For which values of a does the solution approach an equilibrium
u(t) → ū as t → ∞? Determine ū. �
Exercise 2. Solve (3) with Matlab: Define b in the file data.m and change the global command
to global a b in both places. Observe what the solutions look like for a positive, negative, and
zero. For which values of a does the solution approach an equilibrium u(t) → ū as t → ∞? �

Now we consider the situation when a = a(t), b = b(t) are not constant:

u′(t) = a(t)u(t) + b(t), t > 0; u(0) = u0.(5)

We use the method of integrating factor. Write the equation as u′(t)−a(t)u(t) = b(t) and multiply
it by the integrating factor e−A(t), where A(t) =

∫ t

0 a(r) dr, so that A′(t) = a(t) and A(0)=0. We
get

d

dt

(
e−A(t)u(t)

)
= e−A(t)u′(t) − a(t)e−A(t)u(t) = e−A(t)b(t).

We integrate from 0 to T :

[
e−A(t)u(t)

]T

0
=

∫ T

0

e−A(t)b(t) dt

and hence

e−A(T )u(T )− e−A(0)u(0) =
∫ T

0

e−A(t)b(t) dt.

Using A(0) = 0, u(0) = u0, multiplying by eA(T ), and replacing t by s, T by t, we finally get

u(t) = u0e
A(t) +

∫ t

0

eA(t)−A(s)b(s) ds, where A(t) =
∫ t

0

a(r) dr.(6)

Homework 2. Use constant functions a(t) = a, b(t) = b in (6) and compute the integrals to
obtain (4). �
Exercise 3. Add small time-dependent perturbations to a and b, for example,

u′(t) = (a + 0.1 sin(7t))u(t) + (b + 0.1 sin(8t)).

Note that this equation is of the form (5) with variable coefficients. Solve the equation with
Matlab with the same values of a, b as in Exercise 2. What is the effect of the perturbations? �

2. The tank reactor

In a sequence of studio sessions we will study the ideal mixed tank reactor, see Figure 1. The
goal is to design the reactor so that it will operate in a stable way at (cf − c)/cf = 0.5 (“50 %
omsättningsgrad”).
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Figure 1. The tank reactor.

We will use the following data:

V = 1.2 m3 volume of the tank

cp = 4.19 kJ/(kg K) heat capacity of the fluid

ρ = 1000 kg/m3 density of the fluid

qref = 3.0 · 10−4 m3/s reference flux

cf = 5 kmol/m3 concentration at inflow of the interesting substance

Tf = 70◦C temperature at inflow

δH = −83.7 kJ/mol heat of reaction

AK = 1.0 m2 area of the cooler

κ = 0.58 kJ/(m2 s K) heat transfer coefficient of the cooler

We introduce the following variables:

c [mol/m3] concentration in the reactor of the interesting substance
T [K] temperature in the reactor

q [m3/s] flux through the reactor
TK , TKf [K] temperatures in the cooler and at the cooler inflow

qK [m3/s] flux through the cooler

VK [m3] volume of the cooler

The reaction is exothermal and of first order with rate of reaction kc [mol/(m3s)]. The rate
coefficient depends on the temperature according to the Arrhenius law:

k = k0 exp(−E/(RT )) [s−1](7)

where R [8.31 J/(mol K)] is the gas constant, E [J/mol] is the activation energy and k0 [s−1]
is the rate constant of the reaction. The following rates have been measured:

T [K] 343 353 363 373 383 393 403
k [s−1] 2.8 · 10−5 5.6 · 10−5 11.2 · 10−5 22.4 · 10−5 44.8 · 10−5 89.6 · 10−5 179.2 · 10−5
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(Based on “Kemisk reaktionsteknik. Övningsuppgifter”, Kemisk reaktionsteknik, CTH 1993,
uppgift 7.1.)

2.1. Mass balance. When we build a mathematical model for the tank reactor it is important
not to consider all aspects at once. We therefore begin by making a big simplification: we assume
that the rate coefficient k is constant, for example, k =?? corresponding to T =?? (choose a value
from the table). Recall that k depends strongly on T , see (7), so this is not very realistic, but it
will be a good starting point for our investigation.

The mass balance equation is

V
dc

dt
= q(cf − c) − ckV. [mol/s]

This equation says that the rate of change of the total amount of the interesting substance is
equal to the influx minus the outflux minus the reaction rate. In order to make the equation
dimensionless we divide by qrefcf [mol/s]. We get

V

qref

d

dt

( c

cf

)
=

q

qref

(
1 − c

cf

)
− c

cf
k

V

qref
.(8)

We introduce τ = V/qref [s] (“uppeh̊allstid”) and the dimensionless variables

s = t/τ (dimensionless time),

X = c/cf (dimensionless concentration),

U = q/qref (dimensionless flux).

Then, by the chain rule,
dX

ds
=

dX

dt

dt

ds
= τ

dX

dt
=

V

qref

d

dt

( c

cf

)
,

and (8) becomes
dX

ds
= U(1 − X) − Xkτ,

that is,
dX

ds
= −(kτ + U)X + U ; X(0) = X0.(9)

Note that this is of the form (5) with a = −(kτ + U) and b = U .
Exercise 4. Change your Matlab programs from part 1 so that they solve (9). Let first U be
equal to a constant value Ū . Does the solution X(s) approach an equilibrium X̄ as s → ∞? Hint:
Begin the file data.m by
global ktau Ubar
V=1.2; qref=3.0e-4;
k=?? ;
tau=V/qref; ktau=k*tau;
Ubar=1; % equilibrium value of U

Change also the function file funk1.m to a file tank.m beginning with
function y=tank(s,X)
global ktau Ubar
U=Ubar;
y=?? % enter the expression for the right-hand side �

Exercise 5. Recall that we want the reactor to operate at (cf − c)/cf = 0.5, i.e., at X̄ = 0.5.
Determine Ū so that this is achieved. Hint: the equation for X̄ , Ū is obtained by setting dX

ds = 0
in (9), i.e.,

−(kτ + Ū)X̄ + Ū = 0.(10)

Find a formula for Ū in terms of kτ and X̄. Insert the command Xbar=.5; and the formula for
Ubar in the file data.m. �
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Exercise 6. We now investigate if the operating point X̄ = 0.5 is stable with respect to changes
of the initial value X0. Set U = Ū and solve (9) with Matlab with several initial values X0. Is it
stable? �
Exercise 7. We next investigate if the operating point X̄ = 0.5 is stable with respect to changes of
the flux U . Set X0 = X̄ = 0.5 and solve (9) with Matlab with, for example, U(s) = Ū +0.1 sin(7s).
Is it stable? �
Exercise 8. Finally, compute the required flux q̄ (in dimensional units [m3/s]). �

Next studio session we will include the temperature dependence in k and we will see that the
operating point X̄ = 0.5 is not always stable then.


