91. Linearization and stability

Note: these problems repeat some of the problems in 90. Linearization and Newton's method. But problems 91.4 and 91.5 are not exactly the same as 90.4 and 90.5 !
91.1. Compute the Jacobi matrix $f^{\prime}(x)$ (also denoted $D f(x)$). Compute the linearization of f at \bar{x}.

$$
\text { (a) } \quad f(x)=\left[\begin{array}{l}
\sin \left(x_{1}\right)+\cos \left(x_{2}\right) \\
\cos \left(x_{1}\right)+\sin \left(x_{2}\right)
\end{array}\right], \quad \bar{x}=0 ; \quad \text { (b) } \quad f(x)=\left[\begin{array}{c}
1 \\
1+x_{1} \\
1+x_{1} e^{x_{2}}
\end{array}\right], \quad \bar{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text {. }
$$

91.2. Compute the gradient vector $\nabla f(x)$ (also denoted $f^{\prime}(x)=D f(x)$). Compute the linearization of f at \bar{x}.
(a) $\quad f(x)=e^{-x_{1}} \sin \left(x_{2}\right), \quad \bar{x}=0 ;$
(b) $\quad f(x)=\|x\|^{2}, \quad x \in \mathbf{R}^{3}, \quad \bar{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
91.3. Compute the tangent vector $f^{\prime}(t)$. Compute the linearization of f at \bar{t}. Illustrate with a figure.

$$
\text { (a) } \quad f(t)=\left[\begin{array}{c}
\cos (t) \\
\sin (t)
\end{array}\right], \quad \bar{t}=\pi / 2 ; \quad \text { (b) } \quad f(t)=\left[\begin{array}{c}
t \\
1+t^{2}
\end{array}\right], \quad \bar{t}=0
$$

91.4. (a) Write the system

$$
\begin{aligned}
u_{1}^{\prime}(t) & =u_{2}(t)\left(1-u_{1}(t)^{2}\right) \\
u_{2}^{\prime}(t) & =2-u_{1}(t) u_{2}(t)
\end{aligned}
$$

in the form $u^{\prime}=f(u)$. Find the stationary points, i.e., solve the equation $f(u)=0$ by hand calculation.
(b) Compute the Jacobi matrix $D F(u)$. Linearize the system at each stationary point \bar{u}, i.e., write down the linearized system $v^{\prime}=D f(\bar{u}) v$. Solve this system analytically. Is \bar{u} stable?
(c) Solve both the nonlinear system $u^{\prime}=f(u)$ and the linearized systems $v^{\prime}=D f(\bar{u}) v$ in Matlab with your program my_ode. Plot the solutions $u(t)$ and $\bar{u}+v(t)$ in the same figure. Remember that we should have $u(t) \approx \bar{u}+v(t)$ as long as the perturbation $v(t)$ is small.
91.5. (a) Write the system

$$
\begin{aligned}
u_{1}^{\prime}(t) & =u_{1}(t)\left(1-u_{2}(t)\right), \\
u_{2}^{\prime}(t) & =u_{2}(t)\left(1-u_{1}(t)\right),
\end{aligned}
$$

in the form $u^{\prime}=f(u)$. Find the stationary points, i.e., solve the equation $f(u)=0$ by hand calculation.
(b) Compute the Jacobi matrix $D F(u)$. Linearize the system at each stationary point \bar{u}, i.e., write down the linearized system $v^{\prime}=D f(\bar{u}) v$. Solve this system analytically. Is \bar{u} stable?
(c) Solve both the nonlinear system $u^{\prime}=f(u)$ and the linearized systems $v^{\prime}=D f(\bar{u}) v$ in Matlab with your program my_ode. Plot the solutions $u(t)$ and $\bar{u}+v(t)$ in the same figure. Remember that we should have $u(t) \approx \bar{u}+v(t)$ as long as the perturbation $v(t)$ is small.

Answers and solutions

91.1.

(a)

$$
f^{\prime}(x)=\left[\begin{array}{cc}
\cos \left(x_{1}\right) & -\sin \left(x_{2}\right) \\
-\sin \left(x_{1}\right) & \cos \left(x_{2}\right)
\end{array}\right], \quad g(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

(b)

$$
f^{\prime}(x)=\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
e^{x_{2}} & x_{1} e^{x_{2}}
\end{array}\right], \quad g(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=\left[\begin{array}{c}
1 \\
2 \\
1+e
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
e & e
\end{array}\right]\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1
\end{array}\right] .
$$

91.2.
(a)

$$
\begin{aligned}
& \nabla f(x)=\left[-e^{-x_{1}} \sin \left(x_{2}\right), \quad e^{-x_{1}} \cos \left(x_{2}\right)\right] \\
& g(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=0+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \nabla f(x)=\left[\begin{array}{lll}
2 x_{1} & 2 x_{3} & 2 x_{3}
\end{array}\right], \\
& g(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})=3+\left[\begin{array}{lll}
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1 \\
x_{3}-1
\end{array}\right]=-3+2 x_{1}+2 x_{2}+2 x_{3} .
\end{aligned}
$$

91.3.
(a)

$$
\begin{aligned}
& f^{\prime}(t)=\left[\begin{array}{c}
-\sin (t) \\
\cos (t)
\end{array}\right] \\
& g(t)=f(\bar{t})+f^{\prime}(\bar{t})(t-\bar{t})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right](t-\pi / 2)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f^{\prime}(t)=\left[\begin{array}{c}
1 \\
2 t
\end{array}\right] \\
& g(t)=f(\bar{t})+f^{\prime}(\bar{t})(t-\bar{t})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] t=\left[\begin{array}{l}
t \\
1
\end{array}\right] .
\end{aligned}
$$

91.4. (a) The stationary points are given by the equation $f(u)=0$, i.e.,

$$
f(u)=\left[\begin{array}{c}
u_{2}\left(1-u_{1}^{2}\right) \\
2-u_{1} u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We find two solutions $\bar{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\bar{u}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.
(b) The Jacobian is

$$
D f(u)=\left[\begin{array}{cc}
-2 u_{1} u_{2} & 1-u_{1}^{2} \\
-u_{2} & -u_{1}
\end{array}\right]
$$

Let $u(t) \approx \bar{u}+v(t)$. Linearization $f(\bar{u}+v) \approx f(\bar{u})+D f(\bar{u}) v=D f(\bar{u}) v$ at \bar{u} gives the following equation for the perturbation $v(t)$

$$
v^{\prime}=(u-\bar{u})^{\prime}=u^{\prime}=f(u)=f(\bar{u}+v)=D f(\bar{u}) v
$$

Linearization at $\bar{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ leads to the linearized system

$$
\left[\begin{array}{c}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & 0 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right]
$$

Its solution is

$$
\begin{aligned}
v(t) & =c_{1} e^{\lambda_{1} t} g_{1}+c_{2} e^{\lambda_{1} t} g_{2} \\
& =c_{1} e^{-4 t}\left[\begin{array}{l}
3 \\
2
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

$\bar{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is stable.
Linearization at $\bar{u}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ gives

$$
\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right]
$$

Its solution is

$$
\begin{aligned}
v(t) & =c_{1} e^{\lambda_{1} t} g_{1}+c_{2} e^{\lambda_{1} t} g_{2} \\
& =c_{1} e^{-4 t}\left[\begin{array}{c}
5 \\
-2
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

The stationary point $\bar{u}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ is unstable.
91.5. (a) The stationary points are given by the equation $f(u)=0$, i.e.,

$$
f(u)=\left[\begin{array}{l}
u_{1}\left(1-u_{2}\right) \\
u_{2}\left(1-u_{1}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We find two solutions $\bar{u}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\bar{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) The Jacobian is

$$
D f(u)=\left[\begin{array}{cc}
1-u_{2} & -u_{1} \\
-u_{2} & 1-u_{1}
\end{array}\right]
$$

Let $u(t) \approx \bar{u}+v(t)$. Linearization $f(\bar{u}+v) \approx f(\bar{u})+D f(\bar{u}) v=D f(\bar{u}) v$ at \bar{u} leads to the linearized equation for the perturbation $v(t)$:

$$
v^{\prime}=(u-\bar{u})^{\prime}=u^{\prime}=f(u)=f(\bar{u}+v)=D f(\bar{u}) v
$$

Linearization at $\bar{u}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ gives

$$
\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right]
$$

Its solution is

$$
\begin{aligned}
v(t) & =c_{1} e^{\lambda_{1} t} g_{1}+c_{2} e^{\lambda_{1} t} g_{2} \\
& =c_{1} e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=e^{t}\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
\end{aligned}
$$

The stationary point $\bar{u}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is unstable.
Linearization at $\bar{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ gives

$$
\left[\begin{array}{c}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1}(t) \\
v_{2}(t)
\end{array}\right] .
$$

Its solution is

$$
\begin{aligned}
v(t) & =c_{1} e^{\lambda_{1} t} g_{1}+c_{2} e^{\lambda_{1} t} g_{2} \\
& =c_{1} e^{t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{aligned}
$$

The stationary point $\bar{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is unstable.
2003-01-09 /stig

