91. Linearization and stability

Note: these problems repeat some of the problems in **90.** Linearization and Newton's method. But problems 91.4 and 91.5 are not exactly the same as 90.4 and 90.5!

91.1. Compute the Jacobi matrix f'(x) (also denoted Df(x)). Compute the linearization of f at \bar{x} .

(a)
$$f(x) = \begin{bmatrix} \sin(x_1) + \cos(x_2) \\ \cos(x_1) + \sin(x_2) \end{bmatrix}$$
, $\bar{x} = 0$; (b) $f(x) = \begin{bmatrix} 1 \\ 1 + x_1 \\ 1 + x_1 e^{x_2} \end{bmatrix}$, $\bar{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

91.2. Compute the gradient vector $\nabla f(x)$ (also denoted f'(x) = Df(x)). Compute the linearization of f at \bar{x} .

(a)
$$f(x) = e^{-x_1} \sin(x_2), \quad \bar{x} = 0;$$
 (b) $f(x) = ||x||^2, \quad x \in \mathbf{R}^3, \quad \bar{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$

91.3. Compute the tangent vector f'(t). Compute the linearization of f at \bar{t} . Illustrate with a figure.

(a)
$$f(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$$
, $\overline{t} = \pi/2$; (b) $f(t) = \begin{bmatrix} t \\ 1+t^2 \end{bmatrix}$, $\overline{t} = 0$.

91.4. (a) Write the system

$$u_1'(t) = u_2(t) (1 - u_1(t)^2),$$

$$u_2'(t) = 2 - u_1(t) u_2(t)$$

in the form u' = f(u). Find the stationary points, i.e., solve the equation f(u) = 0 by hand calculation.

(b) Compute the Jacobi matrix DF(u). Linearize the system at each stationary point \bar{u} , i.e., write down the linearized system $v' = Df(\bar{u})v$. Solve this system analytically. Is \bar{u} stable?

(c) Solve both the nonlinear system u' = f(u) and the linearized systems $v' = Df(\bar{u})v$ in Matlab with your program my_ode. Plot the solutions u(t) and $\bar{u} + v(t)$ in the same figure. Remember that we should have $u(t) \approx \bar{u} + v(t)$ as long as the perturbation v(t) is small.

91.5. (a) Write the system

$$u_1'(t) = u_1(t) (1 - u_2(t)),$$

$$u_2'(t) = u_2(t) (1 - u_1(t)),$$

in the form u' = f(u). Find the stationary points, i.e., solve the equation f(u) = 0 by hand calculation.

(b) Compute the Jacobi matrix DF(u). Linearize the system at each stationary point \bar{u} , i.e., write down the linearized system $v' = Df(\bar{u})v$. Solve this system analytically. Is \bar{u} stable?

(c) Solve both the nonlinear system u' = f(u) and the linearized systems $v' = Df(\bar{u})v$ in Matlab with your program my_ode. Plot the solutions u(t) and $\bar{u} + v(t)$ in the same figure. Remember that we should have $u(t) \approx \bar{u} + v(t)$ as long as the perturbation v(t) is small.

Answers and solutions

91.1.

(a)

$$f'(x) = \begin{bmatrix} \cos(x_1) & -\sin(x_2) \\ -\sin(x_1) & \cos(x_2) \end{bmatrix}, \qquad g(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

(b)

$$f'(x) = \begin{bmatrix} 0 & 0\\ 1 & 0\\ e^{x_2} & x_1 e^{x_2} \end{bmatrix}, \qquad g(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) = \begin{bmatrix} 1\\ 2\\ 1 + e \end{bmatrix} + \begin{bmatrix} 0 & 0\\ 1 & 0\\ e & e \end{bmatrix} \begin{bmatrix} x_1 - 1\\ x_2 - 1 \end{bmatrix}.$$

91.2.

(a)

$$\nabla f(x) = \begin{bmatrix} -e^{-x_1} \sin(x_2), & e^{-x_1} \cos(x_2) \end{bmatrix},$$

$$g(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) = 0 + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2.$$

(b)

$$\nabla f(x) = \begin{bmatrix} 2x_1 & 2x_3 & 2x_3 \end{bmatrix},$$

$$g(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) = 3 + \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 - 1 \\ x_2 - 1 \\ x_3 - 1 \end{bmatrix} = -3 + 2x_1 + 2x_2 + 2x_3.$$

91.3.

(a)

$$f'(t) = \begin{bmatrix} -\sin(t) \\ \cos(t) \end{bmatrix},$$

$$g(t) = f(\bar{t}) + f'(\bar{t})(t-\bar{t}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} (t-\pi/2).$$

(b)

$$f'(t) = \begin{bmatrix} 1\\2t \end{bmatrix},$$

$$g(t) = f(\bar{t}) + f'(\bar{t})(t - \bar{t}) = \begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} t = \begin{bmatrix} t\\1 \end{bmatrix}.$$

91.4. (a) The stationary points are given by the equation f(u) = 0, i.e.,

$$f(u) = \begin{bmatrix} u_2(1-u_1^2)\\ 2-u_1u_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$

We find two solutions $\bar{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\bar{u} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

(b) The Jacobian is

$$Df(u) = \begin{bmatrix} -2u_1u_2 & 1-u_1^2 \\ -u_2 & -u_1 \end{bmatrix}.$$

Let $u(t) \approx \bar{u} + v(t)$. Linearization $f(\bar{u} + v) \approx f(\bar{u}) + Df(\bar{u})v = Df(\bar{u})v$ at \bar{u} gives the following equation for the perturbation v(t)

$$v' = (u - \bar{u})' = u' = f(u) = f(\bar{u} + v) = Df(\bar{u})v.$$

Linearization at $\bar{u} = \begin{bmatrix} 1\\2 \end{bmatrix}$ leads to the linearized system $\begin{bmatrix} v_1'(t)\\v_2'(t) \end{bmatrix} = \begin{bmatrix} -4 & 0\\ -2 & -1 \end{bmatrix} \begin{bmatrix} v_1(t)\\v_2(t) \end{bmatrix}.$

Its solution is

$$v(t) = c_1 e^{\lambda_1 t} g_1 + c_2 e^{\lambda_1 t} g_2$$

= $c_1 e^{-4t} \begin{bmatrix} 3\\2 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 0\\1 \end{bmatrix}$

$$\bar{u} = \begin{bmatrix} 1\\2 \end{bmatrix} \text{ is stable.}$$
Linearization at $\bar{u} = \begin{bmatrix} -1\\-2 \end{bmatrix}$ gives
$$\begin{bmatrix} v_1'(t)\\v_2'(t) \end{bmatrix} = \begin{bmatrix} -4 & 0\\2 & 1 \end{bmatrix} \begin{bmatrix} v_1(t)\\v_2(t) \end{bmatrix}$$

Its solution is

$$v(t) = c_1 e^{\lambda_1 t} g_1 + c_2 e^{\lambda_1 t} g_2$$

= $c_1 e^{-4t} \begin{bmatrix} 5\\-2 \end{bmatrix} + c_2 e^t \begin{bmatrix} 0\\1 \end{bmatrix}$.

.

The stationary point $\bar{u} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ is *unstable*. **91.5.** (a) The stationary points are given by the equation f(u) = 0, i.e.,

$$f(u) = \begin{bmatrix} u_1(1-u_2)\\ u_2(1-u_1) \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$

We find two solutions $\bar{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\bar{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. (b) The Jacobian is

$$Df(u) = \begin{bmatrix} 1 - u_2 & -u_1 \\ -u_2 & 1 - u_1 \end{bmatrix}.$$

Let $u(t) \approx \bar{u} + v(t)$. Linearization $f(\bar{u} + v) \approx f(\bar{u}) + Df(\bar{u})v = Df(\bar{u})v$ at \bar{u} leads to the linearized equation for the perturbation v(t):

$$v' = (u - \bar{u})' = u' = f(u) = f(\bar{u} + v) = Df(\bar{u})v.$$

Linearization at $\bar{u} = \begin{bmatrix} 0\\0 \end{bmatrix}$ gives $\begin{bmatrix} v_1'(t)\\v_2'(t) \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} v_1(t)\\v_2(t) \end{bmatrix}.$ Its solution is

$$v(t) = c_1 e^{\lambda_1 t} g_1 + c_2 e^{\lambda_1 t} g_2$$

= $c_1 e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^t \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e^t \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$

The stationary point $\bar{u} = \begin{bmatrix} 0\\0 \end{bmatrix}$ is *unstable*. Linearization at $\bar{u} = \begin{bmatrix} 1\\1 \end{bmatrix}$ gives $\begin{bmatrix} v_1'(t)\\v_2'(t) \end{bmatrix} = \begin{bmatrix} 0 & -1\\-1 & 0 \end{bmatrix} \begin{bmatrix} v_1(t)\\v_2(t) \end{bmatrix}.$

Its solution is

$$v(t) = c_1 e^{\lambda_1 t} g_1 + c_2 e^{\lambda_1 t} g_2$$
$$= c_1 e^t \begin{bmatrix} -1\\1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1\\1 \end{bmatrix}.$$

The stationary point $\bar{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is *unstable*.

2003-01-09 /stig