Differential Equations and Scientific Computing, part A
ROBIN BOUNDARY CONDITIONS

1. MODELING

As an example, we consider the following mathematical model of a stationary reaction-diffusion
process involving a single substance,

—(au) +cu =

(1) a(xmin)ul(xmin)

—a(Tmax)t' (Tmax) =

fa Tmin < T < Tmax;

’Y(xmin)(u(xmin) — gD (xmin)) + gN (xmin)a
'Y(mmax)(u(mmax) — 9D (mmax)) + 9N (mmax)a

where u(x), denoting the concentration of the substance, is the unknown function that we wish to
compute. The following functions are data to the problem:

diffusion coefficient (a(z) > 0)
rate coefficient (e(z) > 0)
source

permeability at the end-points

ambient concentration
externally induced flux through the boundary

First, we consider the case gn (Zmin) = gN(Zmax) = 0, for which Robin boundary conditions are
a mathematical model of the physical fact that the outward flux is proportional to the concentration
difference between the domain boundary and its surroundings. We have the following special cases:

Homogeneous Neumann boundary condition: This boundary condition physically cor-
responds to the case of an impermeable boundary, i.e., one for which v = 0, implying zero
flux through the boundary: «' = 0.

Dirichlet boundary condition: This boundary condition physically corresponds to the
case of a very high permeability, i.e., v — 400, implying that the concentration at the
boundary adapts to the ambient concentration: u = gp.

We can also imagine a case where we externally control the flux through the boundary. This
case can be modelled by choosing v = 0 and gy # 0:

Inhomogeneous Neumann boundary condition: This boundary condition prescribes the
flux through the boundary:
a(Tmin ) (Tmin) = gN (Tmin), —A(Tmax)t' (Tmax) = gN (Tmax)-

2. VARIATIONAL FORMULATION

To derive the variational formulation of (1), we multiply the differential equation by v(z) and
integrate over [Zmin, Tmax)s

—/ max(au')'vd;c + / maxcuvda} = / mavadx.

ZTmin Zmin min
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We now integrate by parts,

Tmax Tmax Tmax
[—(au')o],— —I—/ au'v' dz +/ cuwvdr = / fvdsz.

Zmin Zmin Zmin

Use the boundary conditions in (1),

@(Zmin)U (Tmin) =  Y(Tmin) (W(@min) — 9D (Tmin)) + 9N (Zmin),
—0(Zmax)U (Tmax) = Y(Tmax)(U(Tmax) — 9D (Tmax)) + gN (Tmax),
to obtain,
Y(Zmax)¥(Tmax )V(Tmax) + Y(Tmin)®(Tmin)0(Tmin) + / au'v' dr + / cuvdr =

(Y (@max) 90 (Fmasx) — IV (Tmax))0(@max) + (7 (@min) gD (@min) — IN (Tmin) )0 (Tmin) + / " fods.

Tmin

We now state the following variational formulation of (1):

Find u(z) € H'([Tmin, Tmax]) = {v(:c) D Lo o(z)?de < oo, [i 0 (2)? de < oo}, such
that

ZTmax

Y(Tmax) W Zmax)V(Tmax) + Y(@min)U(Tmin)0(Tmin) + / au'v' dz + / cuvdr =

ZTmin ZTmin

) (Y(@max)gD(Tmax) = gN (Fmax))0(Zmax) + (7(Zmin) gD (Tmin) = GN (Fmin))0(Zmin) +

/ o fvdz, Vv € H'([Zmin, Tmax))-

ZTmin

3. THE FINITE ELEMENT METHOD (FEM)

3.1. Discretization. Introducing the vector space, V},, of continuous, piecewise linear functions
on a partition, Zmin = 1 < T2 < ... < TN-1 < TN = Tmax; Of [Tmin, Tmax|, We now state the
cG(1) method® as the following discrete counterpart of (2):

Find U(z) € V4, such that

Y(en)U(zn)v(zn) + v(@)U(z1)v(z) + /wN aU'v' dz + /M cUvde =
3) (v(@n)gp(@n) — gn(zn))v(zn) + (V(@1)gp(z1) — gn(@1))v(21) +

/ fvdz, Vv eV,

ln c¢G(1), the letter ¢ stands for continuous and the number 1 stands for linear, expressing the fact that this
finite element method is based on continuous, piecewise linear approximation. The letter G stands for Galerkin.
Boris Grigorievich Galerkin (1871 - 1945) was a Russian mathematician who made pioneering contributions to the
field of numerical solution of differential equations. The Galerkin method is the method of rewriting the differential
equation in variational form, and discretize this. A Finite Element Method (FEM), is a Galerkin method that
utilises piecewise polynomials as approximating functions.
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3.2. Ansatz. We now seek a solution, U(z), to (3), expressed in the basis of hat functions
{cpi}éil C Vi, defined by ¢; € Vi, @i(z;) = 65, 4,5 = 1,...,N. (Here, d;; denotes the Kro-
1, ifi=j,

necker delta function, which is defined by the property d;; = { 0, ifi#] ) In other words, we

make the Ansatz
N

(4) Uz) =) &p;(a),
7j=1

and seek to determine the coefficient vector,

e

2 U(z2

§= : = : )
EN U(zn)

of nodal values of U(z), in such a way that (3) is satisfied.

3.3. Construction of discrete system of linear equations. We substitute (4) into (3),

N TN TN
v(zn)énv(zy) + y(z1)&v(T1) + Z & {/ agiv' dr + / cgojvda:} =

j=1 T1 T1

(5) (v(@n)gp(zn) — gn(zn))v(@n) + (v(21)gp(z1) — gn(21))v(21) +
/M fvdx, YveV,.

Since {go,-}éil C V}, is a basis of V},, (5) is equivalent to,

N

Yzw)enpilan) + vE)apile) + 3 sj{ / aglpide + / " cospn dw} -

j=1 1 z1

TN

(6) (v(@N)gp(zn) — gn(zn))pi(zn) + (v(z1)gp(T1) — 9N (71)) i (1) +
/$Nfcp,-d:v, i=1,...,N,

which is a quadratic system of N linear equations and N unknowns. Introducing the notation

TN
_ o
Qij —/ ap;p; dz,
T

1

TN
mcijz/ cpjpidr,

1

TN
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.. 1, ifi=1, _ 1, ifi=N,
and taking into account that ¢;(z1) = { 0, il and @;(zy) = { 0, ifi#N, we can
write the system of equations (6), as:
( (’7(1'1)+a11 +mc11)£1 + ... + (G1N+mc1N)§N = b +’Y($1)9D(1’1) _QN(ZL'1)
(ag1 + mear)és + ... + (@an + Mean)én = b
<
(ani1 +Meni11)ls + ... + (anan+menan)én = baa
L (a1 +men1)és + ... 4+ (ann Fmenny +7(2x))én - = by +v(2n)9p(TN) — gn(2N)

In matriz form, this reads,

Q11
where A =
ani
Me11
M, =
MenNt
[ v(z1)
0
R =
0
L 0

(A+ M. +R){=b+rv,

1N
is the stiffness matriz,
NN
MecanN
is the mass matrix,

MenN

0 0

0 0

contains the boundary contributions to the system matrix,
0 0
0 7v(zv)




ROBIN BOUNDARY CONDITIONS

by
b= | : | is the load vector, and

by

[ y(z1)gp(z1) — gn (1)

0
rv = : contains the boundary contributions to the right hand side.

0

L v(@n)gp(2N) — gn(aw) |



