TMA225 Differential Equations and Scientific
Computing, part A

Solutions to Problems Week 2

September 9, 2002



Week 2:

Problem 1. Let [ = (0,1) and f( y=a?forz€l.
(a) Compute (analytically) [, f(z) dz.

(b) Compute an approximation of J; f( ; f(z) dz by using the trapezoidal rule on the single
interval (0,1).
(¢c) Compute an approximation of [, f( ; f(z) dz by using the mid-point rule on the single in-

terval (0,1).

(d) Compute the errors in (b) and (c¢). Compare with theory.

(e) Divide I into two subintervals of equal length. Compute an approximation of [, f(x) dx
by using the trapezoidal rule on each subinterval

(f) Compute an approximation of [, f( ; f(x) dx by using the mid-point rule on each subinter-
val.

(g) Compute the errors in (e) and (f), and compare with the errors in (b) and (c) respec-
tively. By what factor has the error decreased?

Solution:
1
1
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2
dr ~ = _
/Oa::v 5 5

(b)

© 1
0+1 1
24~ (—m)2 = =
/Ox = ( 5 ) 1

(d) The error for the trapezoidal rule is |3 — 3| = & and the error for the mid-point rule
is |— — 2| = . Both agree with the bounds for the error on a single interval of length h:
’112 maxye [0,1] |f"(y)| = ¢ and hs - maxyep | f(y)| = 35 in Quadrature (1D).

Remark. The reason that we have equality between the error and the error bound in this
case is that f”(y) = 2 is constant.

(e)

(f)

9 2 16
3

(g) The trapezoidal rule gives |3 — 2| = 5, which means that the error decreases by a
factor 4 When the mesh size decreases by a factor 2. This agrees with the global error
bound 22 maxyeol] |h2(y)f"(y)| in Quadrature (1D). For the mid-point rule we get the
error |— - —| = .5 which shows a similar behaviour. O



Problem 2. Let I = (0,1) and f( y=zxtforzel.
(a) Compute (analytically) [, f(z) dz.

(b) Compute an approximation of f ; f(z) dz by using Simpson’s rule on the single interval
(0,1).

(c ) Compute the error in (b). Compare with theory.

(d) Divide I into two subintervals of equal length. Compute an approximation of f fx)de
by using Sitmpson’s rule on each subinterval.

(e) Compute the error in (d), and compare with the error in (b). By what factor has the
error decreased?

Solution:

(a)

/If(x)dx:/01x4dx:é

/f(x)da:z (0) +4f(%+ )+f()=0+4(%)4+1:i
g 6 24

(b)

(c) Brrory = |3 — 2| = | &5 — 25| = 135 From the theory we know that the error using
Sitmpson’s rule on a single interval of length A must be less than or equal to
h? 24 1
(4) — -
2880 o W = 3550 = 120

Remark. The reason that we have equality between the error and the error bound in this
case is that f(*)(y) = 24 is constant.

(d)
/f da:—/ f(z da:—i—/ f(z)dz

LSO+ +16G) 1 fQ+AFCE + ) 1
6 2 6 2
_0HAG) + ) A+ T
12 12 384
(e) Errory = |t — IL| = [32577| = _L_ If we compare this error to the one computed

above in exercise (c):
Errory ﬁ 1920

Errory ﬁ 120

we see that the error has decreased by a factor 16 When the mesh size has decreased by a
factor 2! This agrees with the global error bound 2% maxycjo1) [h*(y) f™* (). O

= 16,

Problem 3. Let I = (0,1) and f(z) = 22 for z € I.
(a) Let Vj, be the space of linear functions on I and calculate the L?-projection Py f € V,

of f.



Remark. In this case h(y) = 1 and V}, = P(0,1).

(b) Divide I into two subintervals of equal length and let V}, be the corresponding space of
continuous piecewise linear functions. Calculate the L?-projection B, f €V}, of f.

(c) Hlustrate your results in figures and compare with the nodal interpolant 7, f.
Solution:

(a) The L2-projection P, f € V}, of f is the orthogonal projection of f onto Vj. Therefore
f — Py f must be orthogonal to all v € V},, that is

/(f—th)vda::(], Yv € Vp,

1

but from Problem 6 (Week 2) this is equivalent to

{ [;(f = Puf)podz =0
f[(f—th)SoldCU: 0

since the “hat functions” ¢y =1 — x and ¢; = x are a basis for V},.
Since P, f € V,,, we make the Ansatz

1
bof = Z ¢ p;(T),
=0

and inserting this Ansatz into the orthogonality relation gives

1
=0 JI I

which is a linear system with two equations and two unknowns: ¢y and c;. It is therefore
natural to state the system in matrix form, Mc = b, with the mass matrix M = (m;;),
mij = [;jpidz, ¢ = (co,c1)t and b = (by, by)" where b; = [, fo; dz. Now, we only have
to compute these integrals and solve for c¢. Note that m;; = mj; (the mass matrix is
symmetric).

Mpo = /SDOSDOdl"
I

= /01(1 —z)dz

= 1/3
mio = /eoo%dx
I

= /01(1—x)xd:v
= 1/6
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mn = /@1%01d33
I

1
= / 2% dx
0

= 1/3

by = /f@odﬂ?
I
1

_ /0 (1 — ) da

= 1/12
by = /f%dﬂ?
I

1
72

-,

= 1/4

-xdx

The system of equations we have to solve is then

1/3 1/6] [co] _ [1/12

e sl )= [0
Hence, ¢o = —1/6 and ¢; = 5/6, which gives P, f(z) = copo(x) + c11(x) = —1/6 po(z) +
5/6 p1(z) =—-1/6-(1—2)+5/6-2=—1/6+x.

Remark. We could in principle use any set (pair, in this case) of basis functions, for instance
{1, 2} C V},. This choice would lead to the orthogonality relation

(fu-nn =t
[;(f = Puf) -zdz =0

and the Ansatz
P.f(x)=a-1+b-z=a+ bz,
from which a (= —1/6) and b (= 1) can be computed.

(b) We now divide I into the two subintervals (0,3) and (3,1). As in (a), we choose the
“hat functions” as basis functions:

[ 1-2z, z€(0,3)
(‘00_{0, z € (3,1)
| 2z, z € (0,3)
(‘01_{2—233,336(%,1)
_lo z €(0,3)
W_{Qx—l, ze(3,1)



Using the same technique as in (a), we obtain a 3 x 3 linear system of equations (since the
number of nodes is 3 when the number of intervals is 2). The elements of the mass matrix
are

Mmoo = /SOOSOOdl'
T
1/2
:/ (1—2z)*dx
0
= 1/6
my = /9009016135
I
1/2
:/ (1—22)2zdx
0
= 1/12

Moy = / Yo dx
I
= O

mi = /901901d$
I
1/2 1
= / (2x)2dx+/ (2 —2z)*dx
0 1/2
= 1/3

mig = /902901d$
I

1
= / 2z —1)(2—2z)dzx
1/2
= 1/12
Moy = /@2‘.02d$
I
1
= / (22 — 1)%*dx
1/2
= 1/6

Similarly, we get for the right hand side

by = /f¢0d$
I

1/2

= / 7*(1 —2z) dx
0

= 1/96



b1 = /f@ldl'
I
1/2 1
= / x22xdx+/ 7%(2 — 27) dx
0 1

/2

b2 = fQDQ dl‘

The system we have to solve is

1/6 1/12 0 ] [co 1/96
1/12 1/3 1/12| || = | 7/48
0 1/12 1/6| | 17/96

with the solution ¢y = —1/24,¢; = 5/24 and ¢, = 23/24. Hence,

Puf(z) = copolz) +cr1(x) + 2 pa()
= —1/24¢y(z) +5/24 p1(x) + 23/24 po(x)
[ =1/24-(1-2z) +5/24 - 2z, z € (0,1/2)
- { 5/24- (2 — 2z) +23/24 - (22— 1), = € (1/2,1)
_f -1/244+z/2, 2€(0,1/2)

= { ~13/24 + 32/2, x € (1/2,1)

Remark. Cf. the Remark at the end of Problem 4(a) (Week 1).

Remark. Also in this case one might try the Ansatz
a+bx, z€(0,1%
Puf(z) = { ( 1 i)
2

using {1, z} as local basis functions on each subinterval. In addition to the orthogonality
requirement (against three global basis functions, for instance {¢;}?_,) we will in this case
need to enforce continuity at the point z = 1/2, and will therefore end up with 4 equations
instead of 3, from which a (= —1/24), b (= 1/2), ¢ (= —13/24), d (= 3/2), can be
computed. This, however, is disadvantageous since we have to solve a linear system of four
equations instead of three.

(c) See Figure 1 and Figure 2. O

Problem 4. Let I = (0,1) and 0 = xy < 21 < -+ < zy = 1 be a partition of I into
subintervals I; = (z;_1, ;) of length h;.
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Figure 1: Problem 3(a) (Week 2). Plots of f(z) = 2%, mf(x) and P, f(x).

(a) Assume h; = 1/N for all j. Calculate the mass matrix M.
(b) Calculate the mass matrix M in the general case.
Solution: The (N 4 1) x (N + 1)-matrix M = (my;);;—, with elements

mij = /1909' @; du, (1)

where {¢;}¥, C V}, are the nodal basis functions (“hat-functions”), is called the mass
matriz.

(a) Look at the interval between say x3 and z4. On this interval there exist two non-zero
basis functions 3 and ¢,. For x € [x3, x4] we have the following analytical expressions:

r—2 r—22
p3(z) =1~ h3, @4(z) = hg-




Figure 2: Problem 3(b) (Week 2). Plots of f(z) = z?, m,f(x) and P, f(x).

This yields for the matrix elements mz4 and mys:

m=mas= [ o) o) e = [ o) ulo) de =

T3

T4 _ .
/ (1 7 x?’) L hm?’ dx = {Make a change of variables: y =z — 23} =
z3

h
h
[ (-5) =g

since the integrand 3(z) @4(z) is non-zero only for x € [x3, x4).
The interval [z3, x4] also contributes to the matrix elements mg3 = fol v3(z) p3(z) dx

and myy = fol ©04(x) () dx:

1

1 e
5 M3 = {By symmetry } = 5 "M = / ©4(2) pa(x) do =
3
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T4 2 h )2
/ (= z5)° dx = {Make a change of variables: y =z — z3} = v dy = ﬁ,
s h? o h? 3
i.e., m33 = mqs = 2h/3, where the factor 2 compensates for the fact that s is non-zero
on the interval [z5, x4] and ¢, is non-zero on the interval [x3, x5]. Thus, ms3 and my, get
only half of their total value from the interval [z3, x4).

Due to symmetry we may generalize to my; = 2h/3, i =1,...,N — 1, mgy = myy =
h/3, mi;v1 = mip1; = h/6, i =0,...,N —1, and m;; = 0, otherwise. The exceptions for
mpo and myy are due to the fact that the basis functions ¢y and ¢y are just “half hats”.

We summarize:

(h/3 h/6 0 0 ... 0 0 0 0]

h/6 2n/3 h/6 O ... 0O 0 0 0

0 h/6 2n/3 h/6 ... 0O 0 0 0
M =

0 0 0 0 h/6 2h/3 h/6 0

0 0 0 0 ... 0 h/6 2n/3 h/6

0 0 0 0 ... 0 0 h/6 h/3

(b) We now look at the case where the interval I = [0, 1] is non-uniformly partitioned.
Consider once more the subinterval [x3, x4]. Simply replacing A by h, throughout in
the computations in (a) gives mss = may3 = hy/6, and that the contribution from this
subinterval to mss and myy is hy/3. Adding the contributions from all subintervals now
immediately generalizes the mass matrix computed in (a): M =

—h1/3 h1/6 0 0 0 0 0 0
h1/6 (hl +h2)/3 h2/6 0 0 0 0 0
0 h2/6 (h2 +h3)/3 h3/6 0 0 0 0
0 0 0 0 hN_2/6 (hN_Q +hN_1)/3 hN_1/6 0
0 0 0 0 0 hN_1/6 (hN_1 +hN)/3 hN/6
L 0 0 0 0 0 0 hN/G hN/3_
O

Problem 5. Recall that (f,g) = [, fgdz and ||f||%2(1) = (f, f) are the L?-scalar product
and norm, respectively. Let I = (0,7), f =sinz, g = cosz for z € I.



(a) Calculate (f, g).

(b) Calculate || f||z2(ry and ||g[L2(p)-
Solution:

(a) (f,9) = [, sinzcosxdx = 3[(sinz)?]§ = 0.
(b) Recall the relations

1 —cos2z 9 1+ cos 2z
— ) s = —.

sin’ z = :
2 2

Using these, we get:

™ ™1 — cos?2 1 [ 1 [
| f[lz2r) = / sin” 2 dz = / P = —/ dx——/ cos 2z dx
0 0 2 2 0 2 0
1
= \/g - Z[sin 2z|F = \/g,
and, similarly,

v 7T1 2 1 T 1 T
gl L2y = / cos’ z dz = / Md$= —/ dx—i——/ cos2xd$:\/z

O

Problem 6. Show that (f — P,f,v) =0, Yv €V}, if and only if (f — P,f, ;) =0, i =
0,...,N; where {%}i]\io C V}, is the basis of hat-functions.

Solution:

= Follows immediately since ¢; € V}, for i =0,..., N.

< Assume that (f — P,f, ;) =0 fori=0,...,N. Since v € V,, and {p;}¥, is a basis for
V4, v can be written as v = Zi]\io a; ;. This gives (f — Pof,v) = (f — Pnf, Zfio a; p;) =
SV, i (f — Puf, i) = 0 which proves the statement. O

Problem 7. Let V be a linear subspace of R" with basis {vy,...,v,} with m < n.
Let Px € V be the orthogonal projection of @ € R”™ onto the subspace V. Derive a
linear system of equations that determines Px. Note that your results are analogous to
the L?-projection when the usual scalar product in R" is replaced by the scalar product
in L?(I). Compare this method of computing the projection Pz to the method used for
computing the projection of a three dimensional vector onto a two dimensional subspace.
What happens if the basis {v1,..., vy} is orthogonal?

Solution: Let (u,v) denote the usual scalar product in R". Since Pz is the orthogonal
projection of * € R" onto the subspace V of R", we have

(x — Px,y)=0, forallyeV.
Since {v1,...,v,,} is a basis for V' we may equivalently write (cf. Problem 6 (Week 2))

(x — Px,v;) =0, i=1,..m,

10



which leads to
(Pz,v;) = (x,v;), i=1,...m

But since Px € V and {vy,...,v,,} is a basis for V, Px can be written as a linear com-
bination of elements in the basis, that is, Pz = 37" | a;v;, a; € R. Inserting this above
gives

E ajvj,v;) = (x,v;), i=1,...,m,

or, using the linearity property of the scalar product,
m
Z (vj,v;) = (z,v;), i=1,..,m,

which is a quadratic linear system of equations Ao = b, where a;; = (vj,v;) and b; =
(CB, ’Ui) :

If the basis {vy, ..., vp, } is orthogonal, that is, (v;, v;) = 0if i # j, the matrix A becomes
diagonal and the equations simplify to

O!i(’Uz',’Ui) = (CU,’UZ'), 1= 1, ., m,

which immediately gives

i x,v;)
= 'vj,v]

In the special case n = 3 and m = 2, which means computing the projection of a
three dimensional vector & onto a two dimensional subspace, i.e., onto a plane through the
origin, one usually computes Px = « — En ng n, where n is a normal to the plane.

To compare the two methods, consider the case n = ez, i.e., the plane 3 = 0. Choosing
the standard basis v; = e; and vy, = e, we get Px = © — (z,e3)es = ¢ — 13e3 =
T1€1 + Ies = (x,e1) €1 + (x, es) €.

(Cf. Applied Mathematics: BES, Part 11, Section 21.17 Projection of a point onto a
plane.) O
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