94 Taylor's formula

Suppose that f has Lipschitz continuous derivative of order $n+1$ on the interval $[a, b]$ and let $\bar{x} \in(a, b)$. Then f satisfies Taylor's formula of order n at \bar{x} :

$$
\begin{aligned}
f(x)= & f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})+f^{\prime \prime}(\bar{x}) \frac{(x-\bar{x})^{2}}{2}+f^{\prime \prime \prime}(\bar{x}) \frac{(x-\bar{x})^{3}}{3!} \\
& +\cdots+f^{(n)}(\bar{x}) \frac{(x-\bar{x})^{n}}{n!}+R_{n}(x, \bar{x}) \\
= & \sum_{k=0}^{n} f^{(k)}(\bar{x}) \frac{(x-\bar{x})^{k}}{k!}+R_{n}(x, \bar{x}), \quad \text { for all } x \in[a, b],
\end{aligned}
$$

where the remainder R_{n} is given by

$$
\begin{aligned}
R_{n}(x, \bar{x}) & =\int_{\bar{x}}^{x} \frac{(x-y)^{n}}{n!} f^{(n+1)}(y) d y \\
& =f^{(n+1)}(\hat{x}) \frac{(x-\bar{x})^{n+1}}{(n+1)!}
\end{aligned}
$$

and \hat{x} is an unknown number between x and \bar{x}. See AMBS Ch 28.15 and Problem 28.11.
The polynomial

$$
P_{n}(x)=\sum_{k=0}^{n} f^{(k)}(\bar{x}) \frac{(x-\bar{x})^{k}}{k!}
$$

is called the Taylor polynomial of f of degree n at \bar{x}. Remember that n factorial (" n fakultet") means

$$
n!=1 \cdot 2 \cdot 3 \cdots n, \quad 0!=1
$$

The main importance of the formula is that the remainder is smaller than the terms in the polynomial, when x is close to \bar{x}. For example, if we know that

$$
\left|f^{(n+1)}(x)\right| \leq M, \quad \text { for all } x \in[a, b],
$$

then

$$
\left|R_{n}(x, \bar{x})\right|=\left|f^{(n+1)}(\hat{x})\right| \frac{|x-\bar{x}|^{n+1}}{(n+1)!} \leq M \frac{|x-\bar{x}|^{n+1}}{(n+1)!}
$$

Problems

94.1. Write down Taylor's formula of order n at $\bar{x}=0$ for the following functions:
(a) $\log (1+x)$
(b) $\exp (x)$
(c) $\sin (x)$
(d) $\cos (x)$
94.2. Use Taylor's formula of order 2 (or 3 or 4) to compute approximations of the following. Estimate the error.
(a) $\log (1.1)$
(b) $\exp (-0.1)$
(c) $\sin (0.1)$
(d) $\cos (0.1)$

Answers and solutions

94.1.
(a)

$$
\begin{array}{ll}
f(x)=\log (1+x) & f(0)=0 \\
f^{\prime}(x)=\frac{1}{1+x} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=\frac{-1}{(1+x)^{2}} & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\frac{(-1)(-2)}{(1+x)^{3}}=\frac{(-1)^{2} 2!}{(1+x)^{3}} & f^{\prime \prime \prime}(0)=2=(-1)^{2} 2! \\
f^{\prime \prime \prime \prime}(x)=\frac{(-1)(-2)(-3)}{(1+x)^{4}}=\frac{(-1)^{3} 3!}{(1+x)^{4}} & f^{\prime \prime \prime \prime}(0)=-6=(-1)^{3} 3! \\
\vdots & \vdots \\
f^{(k)}(x)=\frac{(-1)^{k-1}(k-1)!}{(1+x)^{k}} & f^{(k)}(0)=(-1)^{k-1}(k-1)!
\end{array}
$$

$$
\begin{aligned}
\log (1+x) & =0+x+(-1) \frac{x^{2}}{2!}+(-1)^{2} 2!\frac{x^{3}}{3!}+(-1)^{3} 3!\frac{x^{4}}{4!}+\cdots+(-1)^{n-1}(n-1)!\frac{x^{n}}{n!}+R_{n}(x, 0) \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+R_{n}(x, 0) \\
& =\sum_{k=0}^{n}(-1)^{k-1} \frac{x^{k}}{k}+R_{n}(x, 0) \\
R_{n}(x, 0) & =\frac{(-1)^{n} n!}{(1+\hat{x})^{n+1}} \frac{x^{n+1}}{(n+1)!}=\frac{(-1)^{n}}{(1+\hat{x})^{n+1}} \frac{x^{n+1}}{n+1}, \quad \text { where } \hat{x} \text { is between } x \text { and } 0 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\exp (x) & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}+R_{n}(x, 0) \\
R_{n}(x, 0) & =e^{\hat{x}} \frac{x^{n+1}}{(n+1)!}, \quad \text { where } \hat{x} \text { is between } x \text { and } 0
\end{aligned}
$$

(c)

$$
\begin{array}{lll}
f(x)=\sin (x) & (k=0, m=1) & f(0)=0 \\
f^{\prime}(x)=\cos (x) & (k=1, m=1) & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin (x) & (k=2, m=2) & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos (x) & (k=3, m=2) & f^{\prime \prime \prime}(0)=-1 \\
f^{\prime \prime \prime \prime}(x)=\sin (x) & (k=4, m=3) & f^{\prime \prime \prime \prime}(0)=0 \\
f^{(5)}(x)=\cos (x) & (k=5, m=3) & f^{(5)}(0)=1 \\
\vdots & \vdots & \vdots \\
f^{(2 m-2)}(x)=(-1)^{m-1} \sin (x) & (k=2 m-2 \text { even }) & f^{(2 m-2)}(0)=0 \\
f^{(2 m-1)}(x)=(-1)^{m-1} \cos (x) & (k=2 m-1 \text { odd }) & f^{(2 m-1)}(0)=(-1)^{m-1}
\end{array}
$$

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+R_{2 n}(x, 0) \\
R_{2 n}(x, 0) & =(-1)^{n} \cos (\hat{x}) \frac{x^{2 n+1}}{(2 n+1)!}, \quad \text { where } \hat{x} \text { is between } x \text { and } 0
\end{aligned}
$$

(d)

$$
\begin{aligned}
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+R_{2 n+1}(x, 0) \\
R_{2 n+1}(x, 0) & =(-1)^{n+1} \cos (\hat{x}) \frac{x^{2 n+2}}{(2 n+2)!}, \quad \text { where } \hat{x} \text { is between } x \text { and } 0
\end{aligned}
$$

94.2.

(a) Taylor of order 2 :

$$
\begin{aligned}
\log (1+x) & =x-\frac{x^{2}}{2}+R_{2}(x, 0) \\
R_{2}(x, 0) & =\frac{1}{(1+\hat{x})^{3}} \frac{x^{3}}{3} \\
\log (1.1) & =\log (1+0.1) \approx 0.1-\frac{(0.1)^{2}}{2}=0.1-0.005=0.095 \\
\left|R_{2}(0.1,0)\right| & =\left|\frac{1}{(1+\hat{x})^{3}} \frac{(0.1)^{3}}{3}\right|=\frac{1}{(1+\hat{x})^{3}} \frac{(0.1)^{3}}{3} \leq \frac{1}{3} \cdot 10^{-3}
\end{aligned}
$$

because $\hat{x} \in[0,0.1]$ implies $1+\hat{x} \geq 1$, so that $\frac{1}{(1+\hat{x})^{3}} \leq 1$. Thus, $\log (1.1) \approx 0.095$ with 3 correct decimals.
(b) Taylor of order 2:

$$
\begin{aligned}
\exp (x) & =1+x+\frac{x^{2}}{2}+R_{2}(x, 0) \\
R_{2}(x, 0) & =e^{\hat{x}} \frac{x^{3}}{3!} \\
\exp (-0.1) & \approx 1+(-0.1)+\frac{(-0.1)^{2}}{2}=0.905 \\
\left|R_{2}(-0.1,0)\right| & =\left|e^{\hat{x}} \frac{(-0.1)^{3}}{3!}\right|=\frac{1}{6} e^{\hat{x}} 10^{-3} \leq \frac{1}{6} \cdot 10^{-3}
\end{aligned}
$$

because $\hat{x} \in[-0.1,0]$ implies $e^{\hat{x}} \leq 1$. Thus, $\exp (-0.1) \approx 0.905$ with 3 correct decimals.
(c) Taylor of order 4:

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{6}+R_{4}(x, 0) \\
R_{4}(x, 0) & =(-1)^{2} \cos (\hat{x}) \frac{x^{5}}{5!} \\
\sin (0.1) & \approx 0.1-\frac{(0.1)^{3}}{6} \approx 0.099833333 \\
\left|R_{4}(0.1,0)\right| & =\left|(-1)^{2} \cos (\hat{x}) \frac{(0.1)^{5}}{5!}\right|=|\cos (\hat{x})| \frac{1}{120} 10^{-5} \leq \frac{1}{120} \cdot 10^{-5}<10^{-7}
\end{aligned}
$$

because $|\cos (\hat{x})| \leq 1$. Thus, $\sin (0.1) \approx 0.099833$ with 6 correct decimals.
(d) \ldots

