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Chapter 54

54.1 The tangent plane to the surface x3 = f(x1, x2) at the point (x̄1, x̄2) is

given by the linearized equation x3 = f(x̄1, x̄2) + f ′(x̄1, x̄2)

[

x1 − x̄1

x2 − x̄2

]

,

where f ′(x1, x2) = ∇f(x1, x2) is the gradient vector. We choose the point
(x̄1, x̄2) = (1, 1).

(a) x3 = 2 +
[

2 2
]

[

x1 − 1
x2 − 1

]

, i.e., x3 = 2x1 + 2x2.

(b) x3 = 0 +
[

2 −2
]

[

x1 − 1
x2 − 1

]

, i.e., x3 = 2x1 − 2x2.

(c) x3 = 2 +
[

1 2
]

[

x1 − 1
x2 − 1

]

, i.e., x3 = x1 + 2x2 − 1.

(d) x3 = 1 +
[

4 4
]

[

x1 − 1
x2 − 1

]

, i.e., x3 = 4x1 + 4x2 − 7.

54.2 (a) f(x) = ‖x‖2x, f(x) − f(y) = ‖x‖2x − ‖y‖2y = (‖x‖2 − ‖y‖2)x +
‖y‖2(x − y) =

(

(x + y) · (x − y)
)

x + ‖y‖2(x − y), ‖f(x) − f(y)‖ ≤
∣

∣(x+y)·(x−y)
∣

∣‖x‖+‖y‖2‖x−y‖ ≤ ‖x+y‖‖x−y‖‖x‖+‖y‖2‖x−y‖ =
((

‖x+ y‖
)

‖x‖+ ‖y‖2
)

‖x− y‖ ≤
((

‖x‖ + ‖y‖
)

‖x‖+ ‖y‖2
)

‖x− y‖ ≤
3‖x − y‖, i.e., Lf ≤ 3. If, instead, we argue as in Example 55.10,

then we get
∣

∣

∣

∂fi(x)

∂xj

∣

∣

∣
≤ 5, so that Lf ≤

√
3
√

3 5 = 15, which a worse

estimate of Lf .

(b) ∇f(x) = cos(‖x‖2)
[

2x1 2x2 2x3

]

= 2 cos(‖x‖2)x. The mean
value theorem gives

|f(x) − f(y)| = |∇f(x̂) · (x − y)| = 2 cos(‖x̂‖2)|x̂ · (x− y)|
≤ 2 cos(‖x̂‖2)‖x̂‖‖x− y‖ ≤ 2‖x− y‖, Lf = 2.
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(c) Using (b) we get

‖f(x) − f(y)‖ =
√

(x1 − y1)2 + (x2 − y2)2 + (sin(‖x‖2 − sin(‖y‖2))2

≤
√

(x1 − y1)2 + (x2 − y2)2 + 4‖x− y‖2 ≤
√

5‖x− y‖.

(d) Not Lipschitz continuous.

(e)–(f) are too difficult and should be removed.

54.3 is too difficult and should be removed.

54.4 The linearization is f̃(x) = f(x̄) + f ′(x̄)(x− x̄).

(a) f̃(x) = 14+
[

2 4 6
]





x1 − 1
x2 − 2
x3 − 3



 = 14+2(x1−1)+4(x2−2)+2(x3−3).

(b) f̃(x) = sin(14) + cos(14)
[

2 4 6
]





x1 − 1
x2 − 2
x3 − 3





(c) f̃(x) =

[

14
sin(2)

]

+

[

2 4 6
0 cos(2) 0

]





x1 − 1
x2 − 2
x3 − 3





(d) f̃(x) =





14
sin(2)

2 cos(3)



 +





2 4 6
0 cos(2) 0

2 cos(3) cos(3) −2 sin(3)









x1 − 1
x2 − 2
x3 − 3





54.5 (a) 9x2(2x
3
1 − x2

1x2 + x3
2)

(b) 0

54.6 P (x) = f(x̄) + f ′(x̄)(x− x̄) + 1
2 (x− x̄)tf ′′(x̄)(x − x̄).

(a)

P (x) = 1 +
[

1
2

1
2

1
2

]





x1

x2

x3



 +
1

2

[

x1 x2 x3

]





− 1
4 − 1

4 − 1
4

− 1
4 − 1

4 − 1
4

− 1
4 − 1

4 − 1
4









x1

x2

x3





= 1 +
1

2
(x1 + x2 + x3) −

1

8
(x2

1 + x2
2 + x2

3 + 2x1x2 + 2x1x3 + 2x2x3)

(b)

P (x) = 0 +
[

0 0 0
]





x1

x2

x3



 +
1

2

[

x1 x2 x3

]





0 0 0
0 0 −1
0 −1 0









x1

x2

x3





= −x1x3

(c) too difficult
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(d)

P (x) = 1 +
[

0 0 0
]





x1

x2

x3



 +
1

2

[

x1 x2 x3

]





−2 0 0
0 −2 0
0 0 −2









x1

x2

x3





= 1 − x2
1 − x2

2 − x2
3

(e) too difficult

54.7 The problem should be formulated: Linearize f o s, where f(x) = x1x2x3,
at t = 1, with ...

We have g(t) = f(s(t)), g′(t) = f ′(s(t))s′(t). The linearization is g̃(t) =
g(1) + g′(1)(t− 1) = f(s(1)) + f ′(s(1))s′(1)(t− 1).

(a) g̃(t) = 1 +
[

1 1 1
]





1
2
3



 (t− 1) = 1 + 6(t− 1) = 6t− 5.

(b) g̃(t) = cos(1) sin(1) +
[

sin(1) cos(1) cos(1) sin(1)
]





− sin(1)
cos(1)

1



 (t −

1) = cos(1) sin(1) + (− sin2(1) + cos2(1) + cos(1) sin(1))(t− 1).

(c) g̃(t) = 1 +
[

1 1 1
]





1
0
−1



 (t− 1) = 1.

54.8 On the one hand: f(x) =
∫ ∞
0
e−xy dy, f (n)(x) =

∫ ∞
0

(−y)ne−xy dy. On

the other hand: f(x) =
∫ ∞
0 e−xy dy =

[

e−xy

−x

]∞
y=0

= x−1, f (n)(x) =

(−1)nn!x−(n+1). We conclude that
∫ ∞
0
yne−xy dy = n!x−(n+1).

54.9 This should be done by means of a computer program. But we can com-
pute one step by hand as follows. The method of steepest descent with
x(0) =

[

1 1 1
]

gives

x(1) = x(0) − α∇u(x(0)) =
[

1 1 1
]

− α
[

2 2 4
]

=
[

1 − 2α 1 − 2α 1 − 4α
]

.

We minimize the function f(α) = u(x(1)) = (1−2α)2+(1−2α)2+2(1−4α)2

by solving the equation f ′(α) = 0 and find α = 0.3, so that x(1) =
[

0.4 0.4 −0.2
]

. This is closer to the minimum, which is located at the
origin.

54.10 —

54.11 Should be removed.
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54.12 Evaluate f on the lines x2 = 0, x1 = 0, and x1 = x2. This gives f(x1, 0) =
1, f(0, x2) = −1, f(x1, x1) = 0. So f is not well-defined at the origin.
Moreover,

∇f(x) =
4x1x2

‖x‖4

[

x2 −x1

]

.

Hence, on the line x1 = x2 we have ∇f(x1, x1) = x−1
1

[

1 −1
]

, which is
arbitrarily large near the origin. Therefore, f is not Lipschitz continuous
near the origin.

Chapter 55

55.1 —

55.2 (a) x =

[

cos(t)
sin(t)

]

, 0 ≤ t < 2π.

(b) the same as (a)

(c) empty (no curve)

(d) x =

[√
3 cos(t)

√

3
2 sin(t)

]

, 0 ≤ t < 2π.

55.3 Using Theorem 56.3 we check that ∂u(1, 1, 1)/∂x3 = 9 6= 0. Hence, the
surface can be expressed as x3 = g(x1, x2).

55.4 (a) ∇f(x) =
[

nxn−1
1 (xn

2 + xn
3 ) nxn

1x
n−1
2 nxn

1x
n−1
3

]

(b) ∇f(x) =

[

x1 x2 x3

]

‖x‖ =
xt

‖x‖
(c) ∇f(x) =

[

2x1 2x2 2x3

]

= 2xt

(d) ∇f(x) = − xt

‖x‖3

(e) ∇f(x) = ex1x2x3

[

x2x3 x1x3 x1x2

]

55.5 The equation of the tangent plane is ∇f(x̄)(x− x̄) = 0.

(a) n
[

2 1 1
]





x1 − 1
x2 − 1
x3 − 1



 = 0, i.e., 2x1 + x2 + x3 = 4.

(b,c,d) The same curve, namely, ‖x‖ =
√

3.
[

1 1 1
]





x1 − 1
x2 − 1
x3 − 1



 = 0, i.e.,

x1 + x2 + x3 = 3.

(e)
[

1 1 1
]





x1 − 1
x2 − 1
x3 − 1



 = 0, i.e., x1 + x2 + x3 = 3.
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55.6 (a) 3x1 + 3
2x2 − x3 = 3

(b) 2x1 + 4x2 + 6x3 = 28

(c) 2πx1 − x2 = 2π − 2

55.7 x1 + 3
√

3x2 = 10, n =
[

1 3
√

3
]

.

55.8 Assume that f is differentiable in Q. There are three cases:

(a) There is a point x̂ ∈ Q such that f(x̂) > 0. Since f(x) = 0 on the
boundary we conclude that f attains its maximum at an interior

point x̄ ∈ Q. At this point we have ∇f(x̄) = 0.

(b) There is a point x̂ ∈ Q such that f(x̂) < 0. Since f(x) = 0 on
the boundary we conclude that f attains its minimum at an interior

point x̄ ∈ Q. At this point we have ∇f(x̄) = 0.

(c) If f(x) = 0 for every x ∈ Q, then ∇f(x) = 0 for every x ∈ Q.

Chapter 61

61.1 (a) ∇ · F = −1 (b) ∇ × F = (sin(1)e2,−cos(1) − 2sin(1)e2, cos2(1) −
sin2(1) + 4) (c) ∇(∇ · F ) = (0,−3, 0)

61.2 (∇×∇) = 0 and thus (∇×∇)u = 0) or (∇×∇)u = ∇× (∇u) = 0, for
any sufficiently smooth scalar function u. But ∇×∇× u = ∇× (∇× u)
is not zero. Recall that the cross product is not associative.

61.4 ∇(rF (r)) = (x1, x2)r
−1F ′(r).

61.5 ∇ · (ω × x) = (∇× ω) · x − ω · (∇× x) = 0. By the Divergence Theorem
0 =

∫

Ω ∇ · v =
∫

Γ n · v. Thus the mass of the fluid inside any subdomain
Ω is constant.

61.6 Note that for a rigid transformation we have ∇x̃ = T∇x with T an or-
thogonal matrix. Then ∆x̃ = ∇x̃ · ∇x̃ = T∇x · T∇x = ∇x · T tT∇x =
∇x · ∇x = ∆x.

61.8 rotu = (ux2
,−ux1

) and rot(ux2
,−ux1

) = ux2x2
+ ux1x1

.

61.9 This follows by directly computing the Laplacian.

61.10 This follows by directly computing the Laplacian.

Chapter 63

63.1 (a) 2 sinh 1

(b) 4π
√

2

(c) 8
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(d) 8
27 (10

√
10− 1)

(e) Note! Incomplete statement of problem. “0 ≤ t < 2π” should be
added.
6

63.2 (a) 2π
√

2

(b) 2π2
√

2

(c) −π
√

2
2

63.3 (a) 1
2

(b) 1

(c)
√

2
6

63.4 (a) 0

(b) 0 (why?)

63.5 (a) 0 (clockwise and counter-clockwise)

(b) 2π (counter-clockwise), −2π (clockwise)

63.6 1

63.7 (a) 2

(b) 7
3

(c) 3 − 4
π

(d) 3 − 2
n+1

63.8 1

63.9 {x = (x1, x2) ∈ R
2 : |x− (0, 1

2 )| = 1
2} See the plot below.

63.10 κ = 1
R

63.11 −

63.12 (a) κ(x1) = 2

(1+4x2
1
)
3
2

(b) κ(x1) = 6x1

(1+9x4
1
)
3
2

There is a change of signs in the curvature at the

inflection point x = (x1, x2) = (0, 0). See the plot below.

63.13 Note! Misprint in statement of problem. The third sentence should read
“Derive the equilibrium equation y′(x) = 1

cs(x) = 1
c

∫ x

0

√

1 + (y′(ξ))2 dξ,
with c a constant.”.
We study the part of the hanging chain between 0 and x (see the plot
below). Letting ρ denote the density (mass per unit length) of the chain,
the gravitational force on this part of the chain is ρgs(x). Now letting
ψ be the angle the tangent at (x, y(x)) makes with the horizontal axis,
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

x1

x
2

x2 = x2
1

x2
1 + (x2 − 1

2 )2 = 1
4

•

•

Figure 1: A plot of the circle of curvature {x = (x1, x2) ∈ R
2 : |x− (0, 1

2 )| = 1
2}

of x2 = x2
1 at x1 = 0. (Problem 60.9)

since the chain force is always directed along the tangent horizontal force
equilibrium requires that T (0) = T (x) cosψ and vertical force equilibrium
that ρgs(x) = T (x) sinψ. Dividing these two equilibrium equations gives

tanψ = y′(x) = ρg
T (0)s(x) = 1

cs(x), where c = T (0)
ρg can be thought of as a

length of the chain acted upon by gravity with a force equal to the tension
T (0) at the lowest point of the chain.

Since the arc length between 0 and x is s(x) =
∫ x

0

√

1 + (y′(ξ))2 dξ, with

y′(x) = sinh(x
c ) the identity cosh2( ξ

c ) − sinh2( ξ
c ) = 1 shows that 1

cs(x) =
1
c

∫ x

0
cosh( ξ

c ) dξ = sinh(x
c ) = y′(x), and thus, from integration, y(x) =

c cosh(x
c ) is a solution.

63.14 Note! Misprint in statement of problem. The point (1, 1, 1) does not lie on
the given surface. Further, there seem to be many possible such curves.
If we consider the point (1,−1,−1), possible directions are α(1, 0, 0) +
β(0, 1, 3), where α ∈ R and β ∈ R are arbitrary.

63.15 8 (For a motivation of the formula ds2 = ρ2dθ2 + dρ2, see the plot below.
The expression for the arc length then follows from the fact that dρ =
ρ′(θ)dθ).

63.16 L
√

1 + (2πRN)2 (where L is the length of the cylinder, R is the radius
of the cylinder, and N is the number of revolutions of the string per unit
length (in the axial direction) of the cylinder.)
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−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x1

x
2

x2 = x3
1

κ < 0

κ > 0

•

Figure 2: A plot of the function x2 = x3
1. The curvature κ(x1) = 6x1

(1+9x4
1
)
3
2

changes sign at the inflection point x = (x1, x2) = (0, 0). It is negative for
x1 < 0 and positive for x1 > 0. (Problem 60.12 (b))

Chapter 64

64.1 (a) 1

(b) 1
6

(c) 2 ln 2 (Use integration by parts.)

(d) 1− 1
2!2 + 1

3!3 − 1
4!4 + ... =

∑∞
k=1

(−1)k+1

k!k (Use the Maclaurin expansion,
i.e. Taylor for x̄ = 0.)

64.2 (a) 1
4

(b) 1
4 (e2 + 1)

(c) e
2 − 1

64.3 (a)
∫ 1/2

0

∫ 1−x2

1/2
f(x1x2)dx1dx2

(b)
∫ 1

0

∫

√
1−x2

2

0 f(x1x2)dx1dx2

(c)
∫ 0

−1

∫ x1+1

0 f(x1x2)dx2dx1

(d)
∫ 1

0

∫ 1

1−x2
f(x1x2)dx1dx2 +

∫ 2

1

∫ x2−1

1
f(x1x2)dx1dx2

64.4 (a) 11
60

(b) 2
15
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−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PSfrag replacements

x

y

y(x) = c cosh(x
c )

•
•

T (0)

T (x)T (x) sinψ

T (x) cosψ

ψ

ρgs(x)

s(x)

Figure 3: A plot of the hanging chain described by the function y(x) = c cosh( x
c )

(with c = 1
2 ). Force equilibrium for the part of the chain between 0 and x re-

quires that T (0) = T (x) cosψ (horizontal equilibrium) and ρgs(x) = T (x) sinψ
(vertical equilibrium). (Problem 60.13)

(c) 7
2

(d) 1

64.5 (a) e− 1

(b) (1 − e−2)(2 − 5e−1)

(c) 3
4

(d) π
4 (Use integration by parts to obtain:

∫ √
a− x2dx = 1

2x
√
a− x2−√

a
2 arccos( x√

a
))

64.6 The volume of the metal removed is 4π
3 (a3 − (a2 − b2)3/2). (Use polar

coordinates.)

64.7 2π
5 a1a2 (Use elliptic coordinates.)

64.8 e2 − 1

64.9 9π
4

64.10 The area within the cardoid is 3π
2 . (Use polar coordinates.)

64.11 (a) e2−3
2

(b) e2(2e− 1)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

x1

x
2

θ

4θ

ρ

ρ4 θ
4s

4ρ

Figure 4: A plot of the relation between small changes4ρ and 4θ in ρ and θ, and
the corresponding change in position 4s. From the figure and old Pythagoras
we get (4s)2 ≈ ρ2(4θ)2 + (4ρ)2, which in the infinitesimal limit turns into
ds2 = ρ2dθ2 + dρ2. (Problem 60.15)

(c) 1
2 (1, 1)

64.12 (a) 2(1 − 2
e )

(b) 1
15 (25

√
5 − 4

√
2 − 31)

(c) 2ln2− 5
2 (Division of polynomials.)

64.13 (a) 4π
3 (Complete the squares and take x1 = r cos(θ) + 1 and x2 =
r sin(θ) + 1.)

(b) 1
942 (Complete the squares and take x1 = r cos(θ) + 1

3 and x2 =√
3r sin(θ).)

(c) −π

Chapter 65

65.2 40π
3 (26

√
26− 125)

65.6 (a)
√

6 (Since x = s(y) = My is a linear transformation, the area scale
from the parameter domain to the surface S is constant, equal to
| ∂s
∂y1

× ∂s
∂y2

| = |(1, 0, 1) × (0, 1, 2)| =
√

6, where ∂s
∂y1

= (1, 0, 1) and
∂s
∂y2

= (0, 1, 2) are the columns of M . Therefore, the area of S is
√

6
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times the area of Q, and since Q = {y = (y1, y2) ∈ R
2 : 0 ≤ y1 ≤

1, 0 ≤ y2 ≤ 1} is the unit square in R
2 with area (1 − 0)(1 − 0) = 1,

the area of S is equal to
√

6. But we can equivalently view S as the
parallelogram spanned by the two vectors v = (1 − 0) ∂s

∂y1
= (1, 0, 1)

and w = (1 − 0) ∂s
∂y2

= (0, 1, 2) with area equal to |v × w|, which

obviously yields the same result. See the plot below.)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

PSfrag replacements

x1
x2

x
3

(1, 0, 1)

(0, 1, 2)

Figure 5: A plot of the surface S, a parallelogram spanned by the vectors (1, 0, 1)
and (0, 1, 2). (Problem 62.6)

(b) 3
√

6
2

65.10 Note! Parameter domain is not specified.
4√
3

(for 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ π)

65.11 Note! n denotes the outward unit normal to S.
1
2

65.15 4π2ab

Chapter 66

66.1 Hint: Use the fact that E = 1
2m(r, θ, φ)v2 = 1

2m(r, θ, φ)(ωr)2

66.2

66.3 (1) 1

(2) (e2−1)2

4
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(3) 4π

66.4 (a) 1
24

(b) 10π
24

66.5 (1) 2π log(2) + π2 Hint: Use polar coordinates for x1 and x2

(2) m
2

(3) 7m
12

66.6 (1) 8π
e

(2) 2

(3) n
2

66.7 (1) 0

(2) π

(3) 4π
5

66.8

66.9 πn/2 Hint: Use the fact that
∫ ∞

−∞

∫ ∞

−∞
e−||x||2dx1dx2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2

1+x2
2)dx1dx2 =

∫ ∞

−∞

∫ ∞

−∞
e−x2

1 · e−x2
2dx1dx2 =

∫ ∞

−∞
e−x2

1dx1 ·
∫ ∞

−∞
e−x2

2dx2

66.10 7m
6

66.11 Hint: Use the fact that {(x, y) : x ∈ Ey, 0 < y <∞} = {(x, y) : |f(x)| >
y, 0 < y <∞} = {(x, y) : 0 < y < |f(x)|, x ∈ Rn}

Chapter 67

67.1 (64.4) Gauss’ theorem applied to vw yields
∫

Ω

∂vw

∂xi
dx =

∫

Γ

vwnids.

On the other hand the product rule for differentiation yields
∫

Ω

∂vw

∂xi
dx =

∫

Ω

∂v

∂xi
wdx +

∫

Ω

v
∂w

∂xi
dx.

The result follows by equating the right hand sides.
(64.5) Follows immediately by the definition.
(64.6) Componentwise it reads, using (64.4),

∫

Ω

∂v

∂xi

∂w

∂xi
dx =

∫

Γ

v
∂w

∂xi
nids−

∫

Ω

v
∂2w

∂x2
i

dx.
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(64.8) Follows by interchanging the roles of v and w in the right hand side
of (64.6) and equating the two right hand sides.

67.3 (a)
∫

Γ u · nds = 0 by Gauss’ theorem.

(b) Nothing.

67.4

67.5 For the mapping xi = xi +aixi, i = 1, 2, the Jacobian J becomes 1+a1 +
a2 + a1a2. For area preserving maps J = 1. For small deformations the
term a1a2 can be neglected from which we conclude that divu = a1 + a2

is almost zero.

67.6 (a) Here the divergence theorem applies and since div u = 0 we conclude
that

∫

Γ
u · nds = 0.

(b)
∫

Γ
u · nds = 2π. Here the divergence theorem does not apply since

div u is not defined in the origin. Instead compute the curve integral
by using polar coordinates.

67.7 Γ and Γ with outward normals n and −n, respectively, close a domain Ω
in the plane to which the divergence theorem applies. We get

0 =

∫

Ω

div udx =

∫

Γ

u · nds+

∫

Γ

u · (−n)ds.

Consequently
∫

Γ

u · nds =

∫

Γ

u · nds.

67.8 (a) 0. Hint: Close the curve by adding the line segments from (0, 0) to
(1, 0) and from (0, 0 to (0, 1), respectively.

(b) log 5. Hint: Close the curve by adding the line segment from (1, 0)
to (1, 2).

67.9 ∇×u = 0, thus there exists a potential ϕ such that u = ∇ϕ. An integration
gives ϕ(x) = x1 exp(x1x2) + C, where C is an arbitrary constant.

67.10 Note! Misprint in statement of problem. Reads: v = − 1
2π log(x − x)

Should read: v = − 1
2π log(‖x− x‖)

Let Ωε = {‖x‖ < R : ‖x − x‖ > ε} On Ωε we have ∆v = 0, c.f. exercise
58.9. Further, since w and ∇w · n vanish for ‖x‖ > R, for some R large
enough, (64.16) reduces to

∫

Ωε

vfdx = −
∫

∂Ωε

v∇w · nds+

∫

∂Ωε

w∇v · nds.

In fact, since ‖x− x‖ = ε and n = − x−x
‖x−x‖ on ∂Ωε, we get

∫

Ωε

vfdx =
1

2π

∫

∂Ωε

(log ε)∇w · nds+
1

2πε

∫

∂Ωε

wds.

13



Using polar coordinates in the curve integrals, a passage to the limit,
letting ε→ 0 in the integrals, gives

∫

Ωε

vfdx→
∫

Ω

vfdx,

1

2π

∫

∂Ωε

(log ε)∇w · nds→ 0

and
1

2πε

∫

∂Ωε

wds→ w(x).

Hence,

w(x) =

∫

Ω

vfdx.

67.11 Analogous arguments as in 64.10. Let Ω̃ε = {x ∈ Ωε : x2 > 0}. (64.16)
takes the form
∫

Ω̃ε

vfdx = − 1

2π

∫

∂Ω̃ε

log ε∇w ·nds+
1

2πε2

∫

∂Ω̃ε

w ·nds+

∫

{x2=0}
wg ·nds.

By noting that
1

2πε2

∫

∂Ωε

w · nds→ 1

2
w(x),

since the curve integral only takes half a round for points x = (x1, 0) the
result now follows.

67.12 Follows immediately from (64.16).

Chapter 68

68.3 j = 0, 1 and 2 gives the values 4π, 2π and 0, respectively. Compute the
integrand and use polar coordinates. For the case j = 2 one can also
compute the divergence wihich is zero and apply the divergence theorem.
Compare with excercise 64.6.

68.4 Dismissed.

68.5 (1) 4π

(2) 0

(3) 4π

(4) 0.

68.6 A direct computation gives divF = (α+ 2)‖x‖α−1.

14



68.7 An application of the divergence theorem gives

I =

∫ ∫ ∫

V

divFdx1dx2dx3.

To minimize the volume integral corresponds to solving the inequality
divF ≤ 0, from which the set V of integration is determined.

divF = x2
1 − 2x1 + x2

2 − 4x2 + 4x2
3 + 8x3 + 5 ≤ 0.

A completion of the squares gives:

(x1 − 1)2

4
+

(x2 − 2)2

4
+ (x3 + 1)2 ≤ 1,

which is recognized as an ellipsoid centered at (1,2,-1) with half axes 2, 2
och 1, respectively. An introduction of ellipsoidal coordinates







x = 1 + 2r sin θ cosϕ,
y = 2 + 2r sin θ sinϕ,
z = −1 + r cos θ,

with the Jacobian J = 4r2 sin θ finally yields

I =

∫ 2π

0

∫ π

0

∫ 1

0

(4r2 − 4)4r2 sin θ drdθdϕ = −128π/15.

68.8 Close the surface with a lid Γ̃ from the bottom, where Γ̃ : x2
1 + x2

2 ≤
4, x3 = 0. By choosing downward normal n = (0, 0,−1) from Γ̃ we can
apply the Gauss theorem.

∫

Γ

F · nds =

∫

Ω

divFdx−
∫

Γ̃

F · nds,

where Ω is the solid upper half sphere with radius 2. The surface integral
vanishes on Γ̃ since F · n = (f1, f2, 0) · (0, 0,−1) = 0 here. Moreover
taking the divergence of F gives divF = x1. A standard use of spherical
coordinates gives

∫

Γ

F · nds = 0,

by periodicity.

68.9 k. Compare with exercise 65.5 (4) for instance. Each point xi inside the
closed surface Γ contributes with the value 1, since F is normalized with
1/4π.
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Chapter 69

69.2 We have ∇·(u×a) = a ·∇×u−u ·∇×a, but a is constant ⇒ ∇×a = 0 ⇒
∫

Ω

∇ · (u× a) dx =

∫

Ω

a · (∇× u) dx = a ·
∫

Ω

∇× u dx. (1)

Also (u× a) · n = (n× u) · a⇒
∫

Γ

(u× a) · n ds =

∫

Γ

(n× u) · a ds = a ·
∫

Γ

(n× u) ds (2)

Now (1), (2) and the divergence theorem gives

a · (
∫

Ω

∇× u dx−
∫

Γ

(n× u) ds) = 0.

And this holds for all constant vectors a ⇒
∫

Ω

∇× u dx =

∫

Γ

(n× u) ds.

69.3 (u1, u2) = (−v2, v1) ⇒ ∇ · u = ∇× v and u · n = n× v.

69.5 14π. Hint: u = (−x2,x1,x3)
(x2

1
+x2

2
)‖x‖ conservative.

69.6 We have ∇ × (va) = v∇ × a + (∇v) × a = (∇v) × a (a constant ⇒
∇ × a = 0), and (∇v) × a · n = n × (∇v) · a ⇒

∫

S(∇ × (va)) · n ds =
a ·

∫

S n× (∇v) ds. Also
∫

Γ(va) ·ds = a ·
∫

Γ v ds, and Stoke’s theorem gives
that a · (

∫

S
n × (∇v) ds −

∫

Γ
v ds) = 0, but this is true for all constant

vectors a⇒
∫

S n× (∇v) ds =
∫

Γ v ds.

69.7 ∇× (x2, 2x3, 3x1) = −(2, 3, 1), s(x1, x2) = (x1, x2,
√

1 − x2
1 − x2

2) ⇒ s′,1 =

(1, 0,−x1/
√

1 − x2
1 − x2

2), s
′
,2 = (0, 1,−x2/

√

1 − x2
1 − x2

2) ⇒ s′,1 × s′,2 =

(x1/
√

1 − x2
1 − x2

2), x2/
√

1 − x2
1 − x2

2), 1) ⇒

|s′,1 × s′,2| =
1

1 − x2
1 − x2

2

n =
s′,1 × s′,2
|s′,1 × s′,2|

= (
x1

1 − x2
1 − x2

2)
3/2

,
x2

1 − x2
1 − x2

2)
3/2

,
1

1 − x2
1 − x2

2

)

⇒ (∇× (x2, 2x3, 3x1)) · n =
−2x1−3x2−

√
1−x2

1
−x2

2

(1−x2
1
−x2

2
)3/2

69.8 We have 1
2

∫

Γ u · ds = 1
2

∫

Ω(∇ × u) · n ds by Stoke’s theorem. Further
∇× u = ∇× (−x2, x1, 0) = (0, 0, 2) and n = (0, 0, 1) ⇒ (∇× u) · n = 2 ⇒
1
2

∫

Ω
2 ds =

∫

Ω
ds = A(Ω).
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Chapter 70

70.1 Using the formula ∇×u = ( ∂u3

∂x2
− ∂u2

∂x3
, ∂u1

∂x3
− ∂u3

∂x1
, ∂u2

∂x1
− ∂u1

∂x2
) we find that

(a) ∇ × u = (0 − 0, 0 − 0, 0 − 0) = (0, 0, 0) so that u = ∇φ for some
potential φ. Integrating ∇φ = (x1, x2, x3), we obtain φ(x) = 1

2 (x2
1 +

x2
2 + x2

3) + C = 1
2‖x‖2 + C, where C is an arbitrary constant.

(b) ∇× u = (1 − 0, 1 − 0, 1 − 0) = (1, 1, 1) 6= (0, 0, 0) so that u is not a
potential field!

(c) ∇× u = (0 − 0,−1− (−1), 2x2 − 2x2) = (0, 0, 0) so that u = ∇φ for
some φ. Integrating we find that φ(x) = x1x

2
2 − x1x3 + x3

3 + C.

70.2 Hint: Verify by direct differentiation (under the integral sign) that ∇×ψ =
u. At some point, use the fact that ∇ · u = 0.

70.3 We find for u(x) = (−x2,x1,0)
||x||2 that ∇× u = (∂u3

∂x2
− ∂u2

∂x3
, ∂u1

∂x3
− ∂u3

∂x1
, ∂u2

∂x1
−

∂u1

∂x2
) = (0, 0, 0) for (x1, x2) 6= (0, 0), while for s(t) = (r cos(t), r sin(t), 0)

we have
∫

Γ
u ·ds =

∫ 2π

0
1
r2 (−r sin(t), r cos(t), 0) · (−r sin(t), r cos(t), 0) dt =

∫ 2π

0
dt = 2π, just as in the two dimensional counter example.

17


