Answers to the Problems in AMBS: Third Quarter

January 30, 2003

Chapter 54

54.1 The tangent plane to the surface $x_{3}=f\left(x_{1}, x_{2}\right)$ at the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is given by the linearized equation $x_{3}=f\left(\bar{x}_{1}, \bar{x}_{2}\right)+f^{\prime}\left(\bar{x}_{1}, \bar{x}_{2}\right)\left[\begin{array}{l}x_{1}-\bar{x}_{1} \\ x_{2}-\bar{x}_{2}\end{array}\right]$, where $f^{\prime}\left(x_{1}, x_{2}\right)=\nabla f\left(x_{1}, x_{2}\right)$ is the gradient vector. We choose the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)=(1,1)$.
(a) $x_{3}=2+\left[\begin{array}{ll}2 & 2\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1\end{array}\right]$, i.e., $x_{3}=2 x_{1}+2 x_{2}$.
(b) $x_{3}=0+\left[\begin{array}{ll}2 & -2\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1\end{array}\right]$, i.e., $x_{3}=2 x_{1}-2 x_{2}$.
(c) $x_{3}=2+\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1\end{array}\right]$, i.e., $x_{3}=x_{1}+2 x_{2}-1$.
(d) $x_{3}=1+\left[\begin{array}{ll}4 & 4\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1\end{array}\right]$, i.e., $x_{3}=4 x_{1}+4 x_{2}-7$.
54.2 (a) $f(x)=\|x\|^{2} x, f(x)-f(y)=\|x\|^{2} x-\|y\|^{2} y=\left(\|x\|^{2}-\|y\|^{2}\right) x+$ $\|y\|^{2}(x-y)=((x+y) \cdot(x-y)) x+\|y\|^{2}(x-y),\|f(x)-f(y)\| \leq$ $|(x+y) \cdot(x-y)|\|x\|+\|y\|^{2}\|x-y\| \leq\|x+y\|\|x-y\|\|x\|+\|y\|^{2}\|x-y\|=$ $\left((\|x+y\|)\|x\|+\|y\|^{2}\right)\|x-y\| \leq\left((\|x\|+\|y\|)\|x\|+\|y\|^{2}\right)\|x-y\| \leq$ $3\|x-y\|$, i.e., $L_{f} \leq 3$. If, instead, we argue as in Example 55.10, then we get $\left|\frac{\partial f_{i}(x)}{\partial x_{j}}\right| \leq 5$, so that $L_{f} \leq \sqrt{3} \sqrt{3} 5=15$, which a worse estimate of L_{f}.
(b) $\nabla f(x)=\cos \left(\|x\|^{2}\right)\left[\begin{array}{lll}2 x_{1} & 2 x_{2} & 2 x_{3}\end{array}\right]=2 \cos \left(\|x\|^{2}\right) x$. The mean value theorem gives

$$
\begin{aligned}
|f(x)-f(y)| & =|\nabla f(\hat{x}) \cdot(x-y)|=2 \cos \left(\|\hat{x}\|^{2}\right)|\hat{x} \cdot(x-y)| \\
& \leq 2 \cos \left(\|\hat{x}\|^{2}\right)\|\hat{x}\|\|x-y\| \leq 2\|x-y\|, \quad L_{f}=2 .
\end{aligned}
$$

(c) Using (b) we get

$$
\begin{aligned}
\|f(x)-f(y)\| & =\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(\sin \left(\|x\|^{2}-\sin \left(\|y\|^{2}\right)\right)^{2}\right.} \\
& \leq \sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+4\|x-y\|^{2}} \leq \sqrt{5}\|x-y\|
\end{aligned}
$$

(d) Not Lipschitz continuous.
(e)-(f) are too difficult and should be removed.
54.3 is too difficult and should be removed.
54.4 The linearization is $\tilde{f}(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})$.
(a) $\tilde{f}(x)=14+\left[\begin{array}{lll}2 & 4 & 6\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-2 \\ x_{3}-3\end{array}\right]=14+2\left(x_{1}-1\right)+4\left(x_{2}-2\right)+2\left(x_{3}-3\right)$.
(b) $\tilde{f}(x)=\sin (14)+\cos (14)\left[\begin{array}{lll}2 & 4 & 6\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-2 \\ x_{3}-3\end{array}\right]$
(c) $\tilde{f}(x)=\left[\begin{array}{c}14 \\ \sin (2)\end{array}\right]+\left[\begin{array}{ccc}2 & 4 & 6 \\ 0 & \cos (2) & 0\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-2 \\ x_{3}-3\end{array}\right]$
(d) $\tilde{f}(x)=\left[\begin{array}{c}14 \\ \sin (2) \\ 2 \cos (3)\end{array}\right]+\left[\begin{array}{ccc}2 & 4 & 6 \\ 0 & \cos (2) & 0 \\ 2 \cos (3) & \cos (3) & -2 \sin (3)\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-2 \\ x_{3}-3\end{array}\right]$
$54.5 \quad$ (a) $9 x_{2}\left(2 x_{1}^{3}-x_{1}^{2} x_{2}+x_{2}^{3}\right)$
(b) 0
54.6 $P(x)=f(\bar{x})+f^{\prime}(\bar{x})(x-\bar{x})+\frac{1}{2}(x-\bar{x})^{t} f^{\prime \prime}(\bar{x})(x-\bar{x})$.
(a)

$$
\begin{aligned}
P(x) & =1+\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
-\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =1+\frac{1}{2}\left(x_{1}+x_{2}+x_{3}\right)-\frac{1}{8}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(x) & =0+\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =-x_{1} x_{3}
\end{aligned}
$$

(c) too difficult
(d)

$$
\begin{aligned}
P(x) & =1+\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}
\end{aligned}
$$

(e) too difficult
54.7 The problem should be formulated: Linearize f o s, where $f(x)=x_{1} x_{2} x_{3}$, at $t=1$, with \ldots
We have $g(t)=f(s(t)), g^{\prime}(t)=f^{\prime}(s(t)) s^{\prime}(t)$. The linearization is $\tilde{g}(t)=$ $g(1)+g^{\prime}(1)(t-1)=f(s(1))+f^{\prime}(s(1)) s^{\prime}(1)(t-1)$.
(a) $\tilde{g}(t)=1+\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right](t-1)=1+6(t-1)=6 t-5$.
(b) $\tilde{g}(t)=\cos (1) \sin (1)+\left[\begin{array}{lll}\sin (1) & \cos (1) & \cos (1) \sin (1)\end{array}\right]\left[\begin{array}{c}-\sin (1) \\ \cos (1) \\ 1\end{array}\right](t-$ $1)=\cos (1) \sin (1)+\left(-\sin ^{2}(1)+\cos ^{2}(1)+\cos (1) \sin (1)\right)(t-1)$.
(c) $\tilde{g}(t)=1+\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right](t-1)=1$.
54.8 On the one hand: $f(x)=\int_{0}^{\infty} e^{-x y} d y, f^{(n)}(x)=\int_{0}^{\infty}(-y)^{n} e^{-x y} d y$. On the other hand: $f(x)=\int_{0}^{\infty} e^{-x y} d y=\left[\frac{e^{-x y}}{-x}\right]_{y=0}^{\infty}=x^{-1}, f^{(n)}(x)=$ $(-1)^{n} n!x^{-(n+1)}$. We conclude that $\int_{0}^{\infty} y^{n} e^{-x y} d y=n!x^{-(n+1)}$.
54.9 This should be done by means of a computer program. But we can compute one step by hand as follows. The method of steepest descent with $x^{(0)}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ gives

$$
\begin{aligned}
x^{(1)} & =x^{(0)}-\alpha \nabla u\left(x^{(0)}\right)=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]-\alpha\left[\begin{array}{lll}
2 & 2 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
1-2 \alpha & 1-2 \alpha & 1-4 \alpha
\end{array}\right] .
\end{aligned}
$$

We minimize the function $f(\alpha)=u\left(x^{(1)}\right)=(1-2 \alpha)^{2}+(1-2 \alpha)^{2}+2(1-4 \alpha)^{2}$ by solving the equation $f^{\prime}(\alpha)=0$ and find $\alpha=0.3$, so that $x^{(1)}=$ $\left[\begin{array}{lll}0.4 & 0.4 & -0.2\end{array}\right]$. This is closer to the minimum, which is located at the origin.
54.10 -
54.11 Should be removed.
54.12 Evaluate f on the lines $x_{2}=0, x_{1}=0$, and $x_{1}=x_{2}$. This gives $f\left(x_{1}, 0\right)=$ $1, f\left(0, x_{2}\right)=-1, f\left(x_{1}, x_{1}\right)=0$. So f is not well-defined at the origin. Moreover,

$$
\nabla f(x)=\frac{4 x_{1} x_{2}}{\|x\|^{4}}\left[\begin{array}{ll}
x_{2} & -x_{1}
\end{array}\right]
$$

Hence, on the line $x_{1}=x_{2}$ we have $\nabla f\left(x_{1}, x_{1}\right)=x_{1}^{-1}\left[\begin{array}{ll}1 & -1\end{array}\right]$, which is arbitrarily large near the origin. Therefore, f is not Lipschitz continuous near the origin.

Chapter 55

55.1 -
55.2 (a) $x=\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right], 0 \leq t<2 \pi$.
(b) the same as (a)
(c) empty (no curve)
(d) $x=\left[\begin{array}{c}\sqrt{3} \cos (t) \\ \sqrt{\frac{3}{2}} \sin (t)\end{array}\right], 0 \leq t<2 \pi$.
55.3 Using Theorem 56.3 we check that $\partial u(1,1,1) / \partial x_{3}=9 \neq 0$. Hence, the surface can be expressed as $x_{3}=g\left(x_{1}, x_{2}\right)$.
55.4 (a) $\nabla f(x)=\left[n x_{1}^{n-1}\left(x_{2}^{n}+x_{3}^{n}\right) \quad n x_{1}^{n} x_{2}^{n-1} \quad n x_{1}^{n} x_{3}^{n-1}\right]$
(b) $\nabla f(x)=\frac{\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]}{\|x\|}=\frac{x^{t}}{\|x\|}$
(c) $\nabla f(x)=\left[\begin{array}{lll}2 x_{1} & 2 x_{2} & 2 x_{3}\end{array}\right]=2 x^{t}$
(d) $\nabla f(x)=-\frac{x^{t}}{\|x\|^{3}}$
(e) $\nabla f(x)=e^{x_{1} x_{2} x_{3}}\left[\begin{array}{lll}x_{2} x_{3} & x_{1} x_{3} & x_{1} x_{2}\end{array}\right]$
55.5 The equation of the tangent plane is $\nabla f(\bar{x})(x-\bar{x})=0$.
(a) $n\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1 \\ x_{3}-1\end{array}\right]=0$, i.e., $2 x_{1}+x_{2}+x_{3}=4$.
(b,c,d) The same curve, namely, $\|x\|=\sqrt{3} .\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1 \\ x_{3}-1\end{array}\right]=0$, i.e., $x_{1}+x_{2}+x_{3}=3$.
(e) $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1}-1 \\ x_{2}-1 \\ x_{3}-1\end{array}\right]=0$, i.e., $x_{1}+x_{2}+x_{3}=3$.
55.6 (a) $3 x_{1}+\frac{3}{2} x_{2}-x_{3}=3$
(b) $2 x_{1}+4 x_{2}+6 x_{3}=28$
(c) $2 \pi x_{1}-x_{2}=2 \pi-2$
$55.7 x_{1}+3 \sqrt{3} x_{2}=10, n=\left[\begin{array}{ll}1 & 3 \sqrt{3}\end{array}\right]$.
55.8 Assume that f is differentiable in Q. There are three cases:
(a) There is a point $\hat{x} \in Q$ such that $f(\hat{x})>0$. Since $f(x)=0$ on the boundary we conclude that f attains its maximum at an interior point $\bar{x} \in Q$. At this point we have $\nabla f(\bar{x})=0$.
(b) There is a point $\hat{x} \in Q$ such that $f(\hat{x})<0$. Since $f(x)=0$ on the boundary we conclude that f attains its minimum at an interior point $\bar{x} \in Q$. At this point we have $\nabla f(\bar{x})=0$.
(c) If $f(x)=0$ for every $x \in Q$, then $\nabla f(x)=0$ for every $x \in Q$.

Chapter 61

61.1 (a) $\nabla \cdot F=-1$ (b) $\nabla \times F=\left(\sin (1) e^{2},-\cos (1)-2 \sin (1) e^{2}, \cos ^{2}(1)-\right.$ $\left.\sin ^{2}(1)+4\right)(\mathrm{c}) \nabla(\nabla \cdot F)=(0,-3,0)$
$61.2(\nabla \times \nabla)=0$ and thus $(\nabla \times \nabla) u=0)$ or $(\nabla \times \nabla) u=\nabla \times(\nabla u)=0$, for any sufficiently smooth scalar function u. But $\nabla \times \nabla \times u=\nabla \times(\nabla \times u)$ is not zero. Recall that the cross product is not associative.
$61.4 \nabla(r F(r))=\left(x_{1}, x_{2}\right) r^{-1} F^{\prime}(r)$.
$61.5 \nabla \cdot(\omega \times x)=(\nabla \times \omega) \cdot x-\omega \cdot(\nabla \times x)=0$. By the Divergence Theorem $0=\int_{\Omega} \nabla \cdot v=\int_{\Gamma} n \cdot v$. Thus the mass of the fluid inside any subdomain Ω is constant.
61.6 Note that for a rigid transformation we have $\nabla_{\tilde{x}}=T \nabla_{x}$ with T an orthogonal matrix. Then $\Delta_{\tilde{x}}=\nabla_{\tilde{x}} \cdot \nabla_{\tilde{x}}=T \nabla_{x} \cdot T \nabla_{x}=\nabla_{x} \cdot T{ }^{t} T \nabla_{x}=$ $\nabla_{x} \cdot \nabla_{x}=\Delta_{x}$.
$61.8 \operatorname{rot} u=\left(u_{x_{2}},-u_{x_{1}}\right)$ and $\operatorname{rot}\left(u_{x_{2}},-u_{x_{1}}\right)=u_{x_{2} x_{2}}+u_{x_{1} x_{1}}$.
61.9 This follows by directly computing the Laplacian.
61.10 This follows by directly computing the Laplacian.

Chapter 63

63.1 (a) $2 \sinh 1$
(b) $4 \pi \sqrt{2}$
(c) 8
(d) $\frac{8}{27}(10 \sqrt{10}-1)$
(e) Note! Incomplete statement of problem. " $0 \leq t<2 \pi$ " should be added.
6
63.2 (a) $2 \pi \sqrt{2}$
(b) $2 \pi^{2} \sqrt{2}$
(c) $-\frac{\pi \sqrt{2}}{2}$
63.3 (a) $\frac{1}{2}$
(b) 1
(c) $\frac{\sqrt{2}}{6}$
63.4 (a) 0
(b) 0 (why?)
63.5 (a) 0 (clockwise and counter-clockwise)
(b) 2π (counter-clockwise), -2π (clockwise)

63.61

63.7 (a) 2
(b) $\frac{7}{3}$
(c) $3-\frac{4}{\pi}$
(d) $3-\frac{2}{n+1}$

63.81

$63.9\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x-\left(0, \frac{1}{2}\right)\right|=\frac{1}{2}\right\}$ See the plot below.
$63.10 \kappa=\frac{1}{R}$
63.11 -
63.12 (a) $\kappa\left(x_{1}\right)=\frac{2}{\left(1+4 x_{1}^{2}\right)^{\frac{3}{2}}}$
(b) $\kappa\left(x_{1}\right)=\frac{6 x_{1}}{\left(1+9 x_{1}^{4}\right)^{\frac{3}{2}}}$ There is a change of signs in the curvature at the inflection point $x=\left(x_{1}, x_{2}\right)=(0,0)$. See the plot below.
63.13 Note! Misprint in statement of problem. The third sentence should read "Derive the equilibrium equation $y^{\prime}(x)=\frac{1}{c} s(x)=\frac{1}{c} \int_{0}^{x} \sqrt{1+\left(y^{\prime}(\xi)\right)^{2}} d \xi$, with c a constant.".
We study the part of the hanging chain between 0 and x (see the plot below). Letting ρ denote the density (mass per unit length) of the chain, the gravitational force on this part of the chain is $\rho g s(x)$. Now letting ψ be the angle the tangent at $(x, y(x))$ makes with the horizontal axis,

Figure 1: A plot of the circle of curvature $\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x-\left(0, \frac{1}{2}\right)\right|=\frac{1}{2}\right\}$ of $x_{2}=x_{1}^{2}$ at $x_{1}=0$. (Problem 60.9)
since the chain force is always directed along the tangent horizontal force equilibrium requires that $T(0)=T(x) \cos \psi$ and vertical force equilibrium that $\rho g s(x)=T(x) \sin \psi$. Dividing these two equilibrium equations gives $\tan \psi=y^{\prime}(x)=\frac{\rho g}{T(0)} s(x)=\frac{1}{c} s(x)$, where $c=\frac{T(0)}{\rho g}$ can be thought of as a length of the chain acted upon by gravity with a force equal to the tension $T(0)$ at the lowest point of the chain.
Since the arc length between 0 and x is $s(x)=\int_{0}^{x} \sqrt{1+\left(y^{\prime}(\xi)\right)^{2}} d \xi$, with $y^{\prime}(x)=\sinh \left(\frac{x}{c}\right)$ the identity $\cosh ^{2}\left(\frac{\xi}{c}\right)-\sinh ^{2}\left(\frac{\xi}{c}\right)=1$ shows that $\frac{1}{c} s(x)=$ $\frac{1}{c} \int_{0}^{x} \cosh \left(\frac{\xi}{c}\right) d \xi=\sinh \left(\frac{x}{c}\right)=y^{\prime}(x)$, and thus, from integration, $y(x)=$ $c \cosh \left(\frac{x}{c}\right)$ is a solution.
63.14 Note! Misprint in statement of problem. The point $(1,1,1)$ does not lie on the given surface. Further, there seem to be many possible such curves.
If we consider the point $(1,-1,-1)$, possible directions are $\alpha(1,0,0)+$ $\beta(0,1,3)$, where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ are arbitrary.
63.158 (For a motivation of the formula $d s^{2}=\rho^{2} d \theta^{2}+d \rho^{2}$, see the plot below. The expression for the arc length then follows from the fact that $d \rho=$ $\left.\rho^{\prime}(\theta) d \theta\right)$.
$63.16 L \sqrt{1+(2 \pi R N)^{2}}$ (where L is the length of the cylinder, R is the radius of the cylinder, and N is the number of revolutions of the string per unit length (in the axial direction) of the cylinder.)

Figure 2: A plot of the function $x_{2}=x_{1}^{3}$. The curvature $\kappa\left(x_{1}\right)=\frac{6 x_{1}}{\left(1+9 x_{1}^{4}\right)^{\frac{3}{2}}}$ changes sign at the inflection point $x=\left(x_{1}, x_{2}\right)=(0,0)$. It is negative for $x_{1}<0$ and positive for $x_{1}>0$. (Problem 60.12 (b))

Chapter 64

64.1 (a) 1
(b) $\frac{1}{6}$
(c) $2 \ln 2$ (Use integration by parts.)
(d) $1-\frac{1}{2!2}+\frac{1}{3!3}-\frac{1}{4!4}+\ldots=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!k}$ (Use the Maclaurin expansion, i.e. Taylor for $\bar{x}=0$.)
64.2 (a) $\frac{1}{4}$
(b) $\frac{1}{4}\left(e^{2}+1\right)$
(c) $\frac{e}{2}-1$
64.3 (a) $\int_{0}^{1 / 2} \int_{1 / 2}^{1-x_{2}} f\left(x_{1} x_{2}\right) d x_{1} d x_{2}$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-x_{2}^{2}}} f\left(x_{1} x_{2}\right) d x_{1} d x_{2}$
(c) $\int_{-1}^{0} \int_{0}^{x_{1}+1} f\left(x_{1} x_{2}\right) d x_{2} d x_{1}$
(d) $\int_{0}^{1} \int_{1-x_{2}}^{1} f\left(x_{1} x_{2}\right) d x_{1} d x_{2}+\int_{1}^{2} \int_{1}^{x_{2}-1} f\left(x_{1} x_{2}\right) d x_{1} d x_{2}$
64.4 (a) $\frac{11}{60}$
(b) $\frac{2}{15}$

Figure 3: A plot of the hanging chain described by the function $y(x)=c \cosh \left(\frac{x}{c}\right)$ (with $c=\frac{1}{2}$). Force equilibrium for the part of the chain between 0 and x requires that $T(0)=T(x) \cos \psi$ (horizontal equilibrium) and $\rho g s(x)=T(x) \sin \psi$ (vertical equilibrium). (Problem 60.13)
(c) $\frac{7}{2}$
(d) 1
64.5 (a) $e-1$
(b) $\left(1-e^{-2}\right)\left(2-5 e^{-1}\right)$
(c) $\frac{3}{4}$
(d) $\frac{\pi}{4}$ (Use integration by parts to obtain: $\int \sqrt{a-x^{2}} d x=\frac{1}{2} x \sqrt{a-x^{2}}-$ $\left.\frac{\sqrt{a}}{2} \arccos \left(\frac{x}{\sqrt{a}}\right)\right)$
64.6 The volume of the metal removed is $\frac{4 \pi}{3}\left(a^{3}-\left(a^{2}-b^{2}\right)^{3 / 2}\right)$. (Use polar coordinates.)
$64.7 \frac{2 \pi}{5} a_{1} a_{2}$ (Use elliptic coordinates.)
$64.8 e^{2}-1$
$64.9 \frac{9 \pi}{4}$
64.10 The area within the cardoid is $\frac{3 \pi}{2}$. (Use polar coordinates.)
64.11 (a) $\frac{e^{2}-3}{2}$
(b) $e^{2}(2 e-1)$

Figure 4: A plot of the relation between small changes $\Delta \rho$ and $\triangle \theta$ in ρ and θ, and the corresponding change in position $\triangle s$. From the figure and old Pythagoras we get $(\triangle s)^{2} \approx \rho^{2}(\triangle \theta)^{2}+(\triangle \rho)^{2}$, which in the infinitesimal limit turns into $d s^{2}=\rho^{2} d \theta^{2}+d \rho^{2}$. (Problem 60.15)
(c) $\frac{1}{2}(1,1)$
64.12 (a) $2\left(1-\frac{2}{e}\right)$
(b) $\frac{1}{15}(25 \sqrt{5}-4 \sqrt{2}-31)$
(c) $2 \ln 2-\frac{5}{2}$ (Division of polynomials.)
64.13 (a) $\frac{4 \pi}{3}$ (Complete the squares and take $x_{1}=r \cos (\theta)+1$ and $x_{2}=$ $r \sin (\theta)+1$.)
(b) $\frac{1}{9^{4} 2}$ (Complete the squares and take $x_{1}=r \cos (\theta)+\frac{1}{3}$ and $x_{2}=$ $\sqrt{3} r \sin (\theta)$.
(c) $-\pi$

Chapter 65

$65.2 \frac{40 \pi}{3}(26 \sqrt{26}-125)$
65.6 (a) $\sqrt{6}$ (Since $x=s(y)=M y$ is a linear transformation, the area scale from the parameter domain to the surface S is constant, equal to $\left|\frac{\partial s}{\partial y_{1}} \times \frac{\partial s}{\partial y_{2}}\right|=|(1,0,1) \times(0,1,2)|=\sqrt{6}$, where $\frac{\partial s}{\partial y_{1}}=(1,0,1)$ and $\frac{\partial s}{\partial y_{2}}=(0,1,2)$ are the columns of M. Therefore, the area of S is $\sqrt{6}$
times the area of Q, and since $Q=\left\{y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: 0 \leq y_{1} \leq\right.$ $\left.1,0 \leq y_{2} \leq 1\right\}$ is the unit square in \mathbb{R}^{2} with area $(1-0)(1-0)=1$, the area of S is equal to $\sqrt{6}$. But we can equivalently view S as the parallelogram spanned by the two vectors $v=(1-0) \frac{\partial s}{\partial y_{1}}=(1,0,1)$ and $w=(1-0) \frac{\partial s}{\partial y_{2}}=(0,1,2)$ with area equal to $|v \times w|$, which obviously yields the same result. See the plot below.)

Figure 5: A plot of the surface S, a parallelogram spanned by the vectors $(1,0,1)$ and $(0,1,2)$. (Problem 62.6)
(b) $\frac{3 \sqrt{6}}{2}$
65.10 Note! Parameter domain is not specified.
$\frac{4}{\sqrt{3}}\left(\right.$ for $\left.0 \leq y_{1} \leq 1,0 \leq y_{2} \leq \pi\right)$
65.11 Note! n denotes the outward unit normal to S. $\frac{1}{2}$
$65.154 \pi^{2} a b$

Chapter 66

66.1 Hint: Use the fact that $E=\frac{1}{2} m(r, \theta, \phi) v^{2}=\frac{1}{2} m(r, \theta, \phi)(\omega r)^{2}$
66.2
66.3 (1) 1
(2) $\frac{\left(e^{2}-1\right)^{2}}{4}$
(3) 4π
66.4 (a) $\frac{1}{24}$
(b) $\frac{10 \pi}{24}$
66.5 (1) $2 \pi \log (2)+\pi^{2}$ Hint: Use polar coordinates for x_{1} and x_{2}
(2) $\frac{m}{2}$
(3) $\frac{7 m}{12}$
66.6 (1) $\frac{8 \pi}{e}$
(2) 2
(3) $\frac{n}{2}$
66.7 (1) 0
(2) π
(3) $\frac{4 \pi}{5}$

66.8

$66.9 \pi^{n / 2}$ Hint: Use the fact that

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\|x\|^{2}} d x_{1} d x_{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x_{1}^{2}+x_{2}^{2}\right)} d x_{1} d x_{2}= \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x_{1}^{2}} \cdot e^{-x_{2}^{2}} d x_{1} d x_{2}=\int_{-\infty}^{\infty} e^{-x_{1}^{2}} d x_{1} \cdot \int_{-\infty}^{\infty} e^{-x_{2}^{2}} d x_{2}
\end{gathered}
$$

$66.10 \frac{7 m}{6}$
66.11 Hint: Use the fact that $\left\{(x, y): x \in E_{y}, 0<y<\infty\right\}=\{(x, y):|f(x)|>$ $y, 0<y<\infty\}=\left\{(x, y): 0<y<|f(x)|, x \in R^{n}\right\}$

Chapter 67

67.1 (64.4) Gauss' theorem applied to $v w$ yields

$$
\int_{\Omega} \frac{\partial v w}{\partial x_{i}} d x=\int_{\Gamma} v w n_{i} d s
$$

On the other hand the product rule for differentiation yields

$$
\int_{\Omega} \frac{\partial v w}{\partial x_{i}} d x=\int_{\Omega} \frac{\partial v}{\partial x_{i}} w d x+\int_{\Omega} v \frac{\partial w}{\partial x_{i}} d x
$$

The result follows by equating the right hand sides.
(64.5) Follows immediately by the definition.
(64.6) Componentwise it reads, using (64.4),

$$
\int_{\Omega} \frac{\partial v}{\partial x_{i}} \frac{\partial w}{\partial x_{i}} d x=\int_{\Gamma} v \frac{\partial w}{\partial x_{i}} n_{i} d s-\int_{\Omega} v \frac{\partial^{2} w}{\partial x_{i}^{2}} d x
$$

(64.8) Follows by interchanging the roles of v and w in the right hand side of (64.6) and equating the two right hand sides.
67.3 (a) $\int_{\Gamma} u \cdot n d s=0$ by Gauss' theorem.
(b) Nothing.
67.4
67.5 For the mapping $\bar{x}_{i}=x_{i}+a_{i} x_{i}, i=1,2$, the Jacobian J becomes $1+a_{1}+$ $a_{2}+a_{1} a_{2}$. For area preserving maps $J=1$. For small deformations the term $a_{1} a_{2}$ can be neglected from which we conclude that $\operatorname{div} u=a_{1}+a_{2}$ is almost zero.
67.6 (a) Here the divergence theorem applies and since $\operatorname{div} u=0$ we conclude that $\int_{\Gamma} u \cdot n d s=0$.
(b) $\int_{\Gamma} u \cdot n d s=2 \pi$. Here the divergence theorem does not apply since $\operatorname{div} u$ is not defined in the origin. Instead compute the curve integral by using polar coordinates.
67.7Γ and $\bar{\Gamma}$ with outward normals n and $-\bar{n}$, respectively, close a domain Ω in the plane to which the divergence theorem applies. We get

$$
0=\int_{\Omega} \operatorname{div} u d x=\int_{\Gamma} u \cdot n d s+\int_{\bar{\Gamma}} u \cdot(-\bar{n}) d s .
$$

Consequently

$$
\int_{\Gamma} u \cdot n d s=\int_{\bar{\Gamma}} u \cdot \bar{n} d s .
$$

67.8 (a) 0 . Hint: Close the curve by adding the line segments from $(0,0)$ to $(1,0)$ and from $(0,0$ to $(0,1)$, respectively.
(b) $\log 5$. Hint: Close the curve by adding the line segment from $(1,0)$ to $(1,2)$.
$67.9 \nabla \times u=0$, thus there exists a potential φ such that $u=\nabla \varphi$. An integration gives $\varphi(x)=x_{1} \exp \left(x_{1} x_{2}\right)+C$, where C is an arbitrary constant.
67.10 Note! Misprint in statement of problem. Reads: $v=-\frac{1}{2 \pi} \log (x-\bar{x})$ Should read: $v=-\frac{1}{2 \pi} \log (\|x-\bar{x}\|)$
Let $\Omega_{\epsilon}=\{\|x\|<R:\|x-\bar{x}\|>\epsilon\}$ On Ω_{ϵ} we have $\Delta v=0$, c.f. exercise 58.9. Further, since w and $\nabla w \cdot n$ vanish for $\|x\|>R$, for some R large enough, (64.16) reduces to

$$
\int_{\Omega_{\epsilon}} v f d x=-\int_{\partial \Omega_{\epsilon}} v \nabla w \cdot n d s+\int_{\partial \Omega_{\epsilon}} w \nabla v \cdot n d s .
$$

In fact, since $\|x-\bar{x}\|=\epsilon$ and $n=-\frac{x-\bar{x}}{\|x-\bar{x}\|}$ on $\partial \Omega_{\epsilon}$, we get

$$
\int_{\Omega_{\epsilon}} v f d x=\frac{1}{2 \pi} \int_{\partial \Omega_{\epsilon}}(\log \epsilon) \nabla w \cdot n d s+\frac{1}{2 \pi \epsilon} \int_{\partial \Omega_{\epsilon}} w d s .
$$

Using polar coordinates in the curve integrals, a passage to the limit, letting $\epsilon \rightarrow 0$ in the integrals, gives

$$
\begin{gathered}
\int_{\Omega_{\epsilon}} v f d x \rightarrow \int_{\Omega} v f d x \\
\frac{1}{2 \pi} \int_{\partial \Omega_{\epsilon}}(\log \epsilon) \nabla w \cdot n d s \rightarrow 0
\end{gathered}
$$

and

$$
\frac{1}{2 \pi \epsilon} \int_{\partial \Omega_{\epsilon}} w d s \rightarrow w(\bar{x})
$$

Hence,

$$
w(\bar{x})=\int_{\Omega} v f d x
$$

67.11 Analogous arguments as in 64.10. Let $\tilde{\Omega}_{\epsilon}=\left\{x \in \Omega_{\epsilon}: x_{2}>0\right\}$. (64.16) takes the form
$\int_{\tilde{\Omega}_{\epsilon}} v f d x=-\frac{1}{2 \pi} \int_{\partial \tilde{\Omega}_{\epsilon}} \log \epsilon \nabla w \cdot n d s+\frac{1}{2 \pi \epsilon^{2}} \int_{\partial \tilde{\Omega}_{\epsilon}} w \cdot n d s+\int_{\left\{x_{2}=0\right\}} w g \cdot n d s$.
By noting that

$$
\frac{1}{2 \pi \epsilon^{2}} \int_{\partial \Omega_{\epsilon}} w \cdot n d s \rightarrow \frac{1}{2} w(\bar{x})
$$

since the curve integral only takes half a round for points $\bar{x}=\left(\bar{x}_{1}, 0\right)$ the result now follows.
67.12 Follows immediately from (64.16).

Chapter 68

$68.3 j=0,1$ and 2 gives the values $4 \pi, 2 \pi$ and 0 , respectively. Compute the integrand and use polar coordinates. For the case $j=2$ one can also compute the divergence wihich is zero and apply the divergence theorem. Compare with excercise 64.6.

68.4 Dismissed.

68.5 (1) 4π
(2) 0
(3) 4π
(4) 0 .
68.6 A direct computation gives $\operatorname{div} F=(\alpha+2)\|x\|^{\alpha-1}$.
68.7 An application of the divergence theorem gives

$$
I=\iiint_{V} \operatorname{div} \mathbf{F} d x_{1} d x_{2} d x_{3}
$$

To minimize the volume integral corresponds to solving the inequality $\operatorname{div} \mathbf{F} \leq 0$, from which the set V of integration is determined.

$$
\operatorname{div} \mathbf{F}=x_{1}^{2}-2 x_{1}+x_{2}^{2}-4 x_{2}+4 x_{3}^{2}+8 x_{3}+5 \leq 0
$$

A completion of the squares gives:

$$
\frac{\left(x_{1}-1\right)^{2}}{4}+\frac{\left(x_{2}-2\right)^{2}}{4}+\left(x_{3}+1\right)^{2} \leq 1
$$

which is recognized as an ellipsoid centered at $(1,2,-1)$ with half axes 2,2 och 1 , respectively. An introduction of ellipsoidal coordinates

$$
\left\{\begin{array}{l}
x=1+2 r \sin \theta \cos \varphi \\
y=2+2 r \sin \theta \sin \varphi \\
z=-1+r \cos \theta
\end{array}\right.
$$

with the Jacobian $J=4 r^{2} \sin \theta$ finally yields

$$
I=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1}\left(4 r^{2}-4\right) 4 r^{2} \sin \theta d r d \theta d \varphi=-128 \pi / 15
$$

68.8 Close the surface with a lid $\tilde{\Gamma}$ from the bottom, where $\tilde{\Gamma}: x_{1_{\tilde{1}}}^{2}+x_{2}^{2} \leq$ $4, \quad x_{3}=0$. By choosing downward normal $n=(0,0,-1)$ from $\tilde{\Gamma}$ we can apply the Gauss theorem.

$$
\int_{\Gamma} F \cdot n d s=\int_{\Omega} \operatorname{div} F d x-\int_{\tilde{\Gamma}} F \cdot n d s
$$

where Ω is the solid upper half sphere with radius 2 . The surface integral vanishes on $\tilde{\Gamma}$ since $F \cdot n=\left(f_{1}, f_{2}, 0\right) \cdot(0,0,-1)=0$ here. Moreover taking the divergence of F gives $\operatorname{div} F=x_{1}$. A standard use of spherical coordinates gives

$$
\int_{\Gamma} F \cdot n d s=0
$$

by periodicity.
68.9 k . Compare with exercise 65.5 (4) for instance. Each point x_{i} inside the closed surface Γ contributes with the value 1 , since F is normalized with $1 / 4 \pi$.

Chapter 69

69.2 We have $\nabla \cdot(u \times a)=a \cdot \nabla \times u-u \cdot \nabla \times a$, but a is constant $\Rightarrow \nabla \times a=0 \Rightarrow$

$$
\begin{equation*}
\int_{\Omega} \nabla \cdot(u \times a) d x=\int_{\Omega} a \cdot(\nabla \times u) d x=a \cdot \int_{\Omega} \nabla \times u d x \tag{1}
\end{equation*}
$$

Also $(u \times a) \cdot n=(n \times u) \cdot a \Rightarrow$

$$
\begin{equation*}
\int_{\Gamma}(u \times a) \cdot n d s=\int_{\Gamma}(n \times u) \cdot a d s=a \cdot \int_{\Gamma}(n \times u) d s \tag{2}
\end{equation*}
$$

Now (1), (2) and the divergence theorem gives

$$
a \cdot\left(\int_{\Omega} \nabla \times u d x-\int_{\Gamma}(n \times u) d s\right)=0
$$

And this holds for all constant vectors $a \Rightarrow$

$$
\int_{\Omega} \nabla \times u d x=\int_{\Gamma}(n \times u) d s
$$

$69.3\left(u_{1}, u_{2}\right)=\left(-v_{2}, v_{1}\right) \Rightarrow \nabla \cdot u=\nabla \times v$ and $u \cdot n=n \times v$.
69.5 14π. Hint: $u=\frac{\left(-x_{2}, x_{1}, x_{3}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right)\|x\|}$ conservative.
69.6 We have $\nabla \times(v a)=v \nabla \times a+(\nabla v) \times a=(\nabla v) \times a$ (a constant \Rightarrow $\nabla \times a=0)$, and $(\nabla v) \times a \cdot n=n \times(\nabla v) \cdot a \Rightarrow \int_{S}(\nabla \times(v a)) \cdot n d s=$ $a \cdot \int_{S} n \times(\nabla v) d s$. Also $\int_{\Gamma}(v a) \cdot d s=a \cdot \int_{\Gamma} v d s$, and Stoke's theorem gives that $a \cdot\left(\int_{S} n \times(\nabla v) d s-\int_{\Gamma} v d s\right)=0$, but this is true for all constant vectors $a \stackrel{S}{\Rightarrow} \int_{S} n \times(\nabla v) d s=\int_{\Gamma} v d s$.
$69.7 \nabla \times\left(x_{2}, 2 x_{3}, 3 x_{1}\right)=-(2,3,1), s\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, \sqrt{1-x_{1}^{2}-x_{2}^{2}}\right) \Rightarrow s_{, 1}^{\prime}=$ $\left(1,0,-x_{1} / \sqrt{1-x_{1}^{2}-x_{2}^{2}}\right), s_{, 2}^{\prime}=\left(0,1,-x_{2} / \sqrt{1-x_{1}^{2}-x_{2}^{2}}\right) \Rightarrow s_{, 1}^{\prime} \times s_{, 2}^{\prime}=$ $\left.\left.\left(x_{1} / \sqrt{1-x_{1}^{2}-x_{2}^{2}}\right), x_{2} / \sqrt{1-x_{1}^{2}-x_{2}^{2}}\right), 1\right) \Rightarrow$

$$
\left|s_{, 1}^{\prime} \times s_{, 2}^{\prime}\right|=\frac{1}{1-x_{1}^{2}-x_{2}^{2}}
$$

$$
n=\frac{s_{, 1}^{\prime} \times s_{, 2}^{\prime}}{\left|s_{, 1}^{\prime} \times s_{, 2}^{\prime}\right|}=\left(\frac{x_{1}}{\left.1-x_{1}^{2}-x_{2}^{2}\right)^{3 / 2}}, \frac{x_{2}}{\left.1-x_{1}^{2}-x_{2}^{2}\right)^{3 / 2}}, \frac{1}{1-x_{1}^{2}-x_{2}^{2}}\right)
$$

$\Rightarrow\left(\nabla \times\left(x_{2}, 2 x_{3}, 3 x_{1}\right)\right) \cdot n=\frac{-2 x_{1}-3 x_{2}-\sqrt{1-x_{1}^{2}-x_{2}^{2}}}{\left(1-x_{1}^{2}-x_{2}^{2}\right)^{3 / 2}}$
69.8 We have $\frac{1}{2} \int_{\Gamma} u \cdot d s=\frac{1}{2} \int_{\Omega}(\nabla \times u) \cdot n d s$ by Stoke's theorem. Further $\nabla \times u=\nabla \times\left(-x_{2}, x_{1}, 0\right)=(0,0,2)$ and $n=(0,0,1) \Rightarrow(\nabla \times u) \cdot n=2 \Rightarrow$ $\frac{1}{2} \int_{\Omega} 2 d s=\int_{\Omega} d s=A(\Omega)$.

Chapter 70

70.1 Using the formula $\nabla \times u=\left(\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}}, \frac{\partial u_{1}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{1}}, \frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}\right)$ we find that
(a) $\nabla \times u=(0-0,0-0,0-0)=(0,0,0)$ so that $u=\nabla \phi$ for some potential ϕ. Integrating $\nabla \phi=\left(x_{1}, x_{2}, x_{3}\right)$, we obtain $\phi(x)=\frac{1}{2}\left(x_{1}^{2}+\right.$ $\left.x_{2}^{2}+x_{3}^{2}\right)+C=\frac{1}{2}\|x\|^{2}+C$, where C is an arbitrary constant.
(b) $\nabla \times u=(1-0,1-0,1-0)=(1,1,1) \neq(0,0,0)$ so that u is not a potential field!
(c) $\nabla \times u=\left(0-0,-1-(-1), 2 x_{2}-2 x_{2}\right)=(0,0,0)$ so that $u=\nabla \phi$ for some ϕ. Integrating we find that $\phi(x)=x_{1} x_{2}^{2}-x_{1} x_{3}+x_{3}^{3}+C$.
70.2 Hint: Verify by direct differentiation (under the integral sign) that $\nabla \times \psi=$ u. At some point, use the fact that $\nabla \cdot u=0$.
70.3 We find for $u(x)=\frac{\left(-x_{2}, x_{1}, 0\right)}{\|x\|^{2}}$ that $\nabla \times u=\left(\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}}, \frac{\partial u_{1}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{1}}, \frac{\partial u_{2}}{\partial x_{1}}-\right.$ $\left.\frac{\partial u_{1}}{\partial x_{2}}\right)=(0,0,0)$ for $\left(x_{1}, x_{2}\right) \neq(0,0)$, while for $s(t)=(r \cos (t), r \sin (t), 0)$ we have $\int_{\Gamma} u \cdot d s=\int_{0}^{2 \pi} \frac{1}{r^{2}}(-r \sin (t), r \cos (t), 0) \cdot(-r \sin (t), r \cos (t), 0) d t=$ $\int_{0}^{2 \pi} d t=2 \pi$, just as in the two dimensional counter example.

