PDE Project Course

1. Theory of finite element methods

Johan Jansson

johanjan@math.chalmers.se

Department of Computational Mathematics

Goal of the lecture

 Refresh or give knowledge and notation of theoretical aspects of finite element methods which are relevant for carrying out the projects.

Lecture plan

- Introduction to FEM
- FEM for Poisson's equation
- Adaptivity for Poisson's equation

Introduction to FEM

A method for solving PDEs

The finite element method (FEM), also known as Galerkin's method, is a general method for solving PDEs (or ODEs) of the form

$$A(u(x)) = f(x), x \in \Omega$$

where A is a differential operator, f is a given force term, u is the solution and Ω is the domain.

Solving PDEs

 Analytic solutions can be obtained only for simple geometries in special cases:

$$-\Delta u = 0$$

 Using the computer, we can obtain solutions to general problems with complex geometries:

$$\dot{u} + u \cdot \nabla u - \nu \Delta u + \nabla p = f$$

$$\nabla \cdot u = 0$$

The finite element method

Find an approximate solution U of the form

$$U(x) = \sum_{j=1}^{N} \xi_j \varphi_j(x).$$

Here U is linear linear combination of (a finite number of) basis functions with local support:

$$\{\varphi_j\}_{j=1}^N$$
.

Basis functions

- Typically piecewise linear nodal basis functions. Other bases also possible.
- We define a mesh $T_h = \{K\}$ "triangulating" the domain Ω into elements K (intervals, triangles, tetrahedrons, ...), where the vertices of the elements form nodes N. h is a function defined by $h(x) = h_K$, where h_K is the diameter of the ball circumscribing K.

Basis functions

Nodal basis function defined by:

$$\phi_j(N_i) = \begin{cases} 1 & , i = j, \\ 0 & , i \neq j \end{cases}$$

Linear between nodes.

Basis functions 1D

- Local basis functions on the *reference* element (an interval): $K_r = [0, 1]$
- Local basis functions:

$$\phi_0(x) = 1 - x$$

$$\phi_1(x) = x$$

• The global basis function $\phi_j(x)$ on any element K can be computed via a *mapping* $F:\Omega_0\to\Omega$. $\phi_j(x)$ on Ω is the union of $\phi_j(x)$ on all K.

Basis functions 2D

- Local basis functions on the *reference* element (a triangle): $K_r = \{(0,0),(1,0),(0,1)\}$
- Local basis functions:

$$\phi_0(x) = 1 - x - y$$

$$\phi_1(x) = x$$

$$\phi_2(x) = y$$

Some notation from functional analysis

Scalar product for functions v, w:

$$(v,w) = \int_{\Omega} v(x)w(x) \ dx$$

• $L_2(\Omega)$ -norm of a function v:

$$||v||_{L_2(\Omega)} = \left(\int_{\Omega} v^2 dx\right)^{1/2} = \sqrt{(v,v)}$$

Some notation from functional analysis

Cauchy's inequality:

$$|(v, w)| \le ||v|| ||w||$$

• v and w are orthogonal iff (v, w) = 0

Galerkin's method

It is often advisable to rewrite the differential equation A(u) = f from operator form to variational form:

$$a(u,v) = (f,v) \quad \forall v \in V,$$

where $a(\cdot, \cdot) = (A(\cdot), \cdot)$ is a *bilinear form*, and V is a suitable function space.

Concretely:

$$\int_{\Omega} A(u)v \ dx = \int_{\Omega} fv \ dx \quad \forall v \in V$$

Galerkin's method

The finite element method is based on Galerkin's method:

- Let V_h denote a finite dimensional *trial space*.
- Let \hat{V}_h denote a finite dimensional *test space*.
- Find $U \in V_h$ such that the residual R(U) = A(U) f is orthogonal to \hat{V}_h :

$$(R(U), v) = 0 \quad \forall v \in \hat{V}_h \Leftrightarrow a(U, v) - (f, v) = 0 \quad \forall v \in \hat{V}_h$$

Galerkin's method

Starting from the variational formulation with

$$V_h = \hat{V}_h = \operatorname{span}\{\varphi_j\}_{j=1}^N$$
 we have

$$a(U,v) - (f,v) = 0, \quad \forall v \in V_h,$$

$$a(\sum_{j=1}^N \xi_j \varphi_j, v) = (f,v), \quad \forall v \in V_h,$$

$$\sum_{j=1}^N \xi_j a(\varphi_j, \varphi_i) = (f,\varphi_i), \quad i = 1, \dots, N,$$

or

$$A_h \xi = b,$$

where
$$A_h = a(\varphi_i, \varphi_i)$$
, $b = (f, \varphi_i)$.

FEM for Poisson's equation

Poisson in three different forms

Equation:

$$-\Delta u = f$$

Variational formulation:

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in V$$

Linear system:

$$A_h = \int_{\Omega} \nabla \varphi_j \cdot \nabla \hat{\varphi}_i \, dx, \quad b = \int_{\Omega} f \hat{\varphi}_i \, dx$$

Details

Green's formula:

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Gamma} \partial_n uv \, ds - \int_{\Omega} \Delta uv \, dx$$

Start from equation:

$$-\Delta u = f \Rightarrow$$

$$-\int_{\Omega} \Delta uv \, dx = \int_{\Omega} fv \, dx \Rightarrow$$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Gamma} \partial_n uv \, ds = \int_{\Omega} fv \, dx \Rightarrow$$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} fv \, dx$$

Details

Continue

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx
\Rightarrow \text{ insert Ansatz}
\sum_{j=1}^{N} \xi_{j} \int_{\Omega} \nabla \varphi_{j} \cdot \nabla \varphi_{i} \, dx = \int_{\Omega} f \varphi_{i} \, dx \Rightarrow
A_{h} \xi = b$$

Adaptivity for Poisson

How large is the error?

We expect the error e = U - u to decrease if we increase the dimension N of V_h and \hat{V}_h . This can be done in different ways:

- h-adaptivity: decrease the mesh size h
- p-adaptivity: increase the polynomial order p
- hp-adaptivity: a combination of the h and p methods

We will only consider h-adaptivity.

An a posteriori error estimate

Let $||\cdot||_E$ denote the *energy-norm* given by $||v||_E = ||\nabla v||$. Then the (piecewise linear) finite element solution U = U(x) satisfies the error estimate

$$||e||_E = ||U - u||_E \le C||h(R_1(U) + R_2(U))||,$$

where
$$R_1(U) = |f + \Delta U| = |f|$$
 and

$$R_2(U) = \frac{1}{2} \max_{S \subset \partial K} h_K^{-1} |[\partial_S U]|.$$

Adaptive error control

Find V_h , given by a *triangulation* \mathcal{T}_h , such that

$$||e||_E \leq \text{TOL},$$

where TOL is a given tolerance for the error.

This is satisfied if

$$C||h(R_1(U) + R_2(U))|| \le TOL.$$

An adaptive algorithm

- 1. Choose an initial triangulation \mathcal{T}_h^0 .
- 2. Compute the solution U on the current triangulation.
- 3. Compute the residuals R_1 , R_2 , and the error estimate.
- 4. If the error estimate is below the tolerance we stop. Otherwise, we refine the elements where $R_1 + R_2$ is large and start again at 2.