PDE Project Course 1. Theory of finite element methods
 Johan Jansson
 johanjan@math.chalmers.se
 Department of Computational Mathematics

Goal of the lecture

- Refresh or give knowledge and notation of theoretical aspects of finite element methods which are relevant for carrying out the projects.

Lecture plan

- Introduction to FEM
- FEM for Poisson's equation
- Adaptivity for Poisson's equation

Introduction to FEM

A method for solving PDEs

The finite element method (FEM), also known as Galerkin's method, is a general method for solving PDEs (or ODEs) of the form

$$
A(u(x))=f(x), x \in \Omega
$$

where A is a differential operator, f is a given force term, u is the solution and Ω is the domain.

Solving PDEs

- Analytic solutions can be obtained only for simple geometries in special cases:

$$
-\Delta u=0
$$

- Using the computer, we can obtain solutions to general problems with complex geometries:

$$
\begin{aligned}
\dot{u}+u \cdot \nabla u-\nu \Delta u+\nabla p & =f \\
\nabla \cdot u & =0
\end{aligned}
$$

The finite element method

Find an approximate solution U of the form

$$
U(x)=\sum_{j=1}^{N} \xi_{j} \varphi_{j}(x)
$$

Here U is linear linear combination of (a finite number of) basis functions with local support:

$$
\left\{\varphi_{j}\right\}_{j=1}^{N} .
$$

Basis functions

- Typically piecewise linear nodal basis functions. Other bases also possible.
- We define a mesh $T_{h}=\{K\}$ "triangulating" the domain Ω into elements K (intervals, triangles, tetrahedrons, ...), where the vertices of the elements form nodes $N . h$ is a function defined by $h(x)=h_{K}$, where h_{K} is the diameter of the ball circumscribing K.

Basis functions

- Nodal basis function defined by:

$$
\phi_{j}\left(N_{i}\right)= \begin{cases}1 & , i=j \\ 0 & , i \neq j\end{cases}
$$

Linear between nodes.

Basis functions 1D

- Local basis functions on the reference element (an interval): $K_{r}=[0,1]$
- Local basis functions:

$$
\begin{aligned}
\phi_{0}(x) & =1-x \\
\phi_{1}(x) & =x
\end{aligned}
$$

- The global basis function $\phi_{j}(x)$ on any element K can be computed via a mapping $F: \Omega_{0} \rightarrow \Omega . \phi_{j}(x)$ on Ω is the union of $\phi_{j}(x)$ on all K.

Basis functions 2D

- Local basis functions on the reference element (a triangle): $K_{r}=\{(0,0),(1,0),(0,1)\}$
- Local basis functions:

$$
\begin{aligned}
\phi_{0}(x) & =1-x-y \\
\phi_{1}(x) & =x \\
\phi_{2}(x) & =y
\end{aligned}
$$

Some notation from functional analys

- Scalar product for functions v, w :

$$
(v, w)=\int_{\Omega} v(x) w(x) d x
$$

- $L_{2}(\Omega)$-norm of a function v :

$$
\|v\|_{L_{2}(\Omega)}=\left(\int_{\Omega} v^{2} d x\right)^{1 / 2}=\sqrt{(v, v)}
$$

Some notation from functional analysi

- Cauchy's inequality:

$$
|(v, w)| \leq\|v\|\|w\|
$$

- v and w are orthogonal iff $(v, w)=0$

Galerkin's method

It is often advisable to rewrite the differential equation $A(u)=f$ from operator form to variational form:

$$
a(u, v)=(f, v) \quad \forall v \in V
$$

where $a(\cdot, \cdot)=(A(\cdot), \cdot)$ is a bilinear form, and V is a suitable function space.
Concretely:

$$
\int_{\Omega} A(u) v d x=\int_{\Omega} f v d x \quad \forall v \in V
$$

Galerkin's method

The finite element method is based on Galerkin's method:

- Let V_{h} denote a finite dimensional trial space.
- Let \hat{V}_{h} denote a finite dimensional test space.
- Find $U \in V_{h}$ such that the residual $R(U)=A(U)-f$ is orthogonal to \hat{V}_{h} :

$$
\begin{aligned}
&(R(U), v)=0 \quad \forall v \in \hat{V}_{h} \Leftrightarrow \\
& a(U, v)-(f, v)=0
\end{aligned} \Leftrightarrow v \in \hat{V}_{h} .
$$

Galerkin's method

Starting from the variational formulation with $V_{h}=\hat{V}_{h}=\operatorname{span}\left\{\varphi_{j}\right\}_{j=1}^{N}$ we have

$$
\begin{aligned}
a(U, v)-(f, v) & =0, & & \forall v \in V_{h} \\
a\left(\sum_{j=1}^{N} \xi_{j} \varphi_{j}, v\right) & =(f, v), & & \forall v \in V_{h} \\
\sum_{j=1}^{N} \xi_{j} a\left(\varphi_{j}, \varphi_{i}\right) & =\left(f, \varphi_{i}\right), & & i=1, \ldots, N
\end{aligned}
$$

or

$$
A_{h} \xi=b
$$

where $A_{h}=a\left(\varphi_{j}, \varphi_{i}\right), b=\left(f, \varphi_{i}\right)$.

FEM for Poisson's equation

Poisson in three different forms

- Equation:

$$
-\Delta u=f
$$

- Variational formulation:

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in V
$$

- Linear system:

$$
A_{h}=\int_{\Omega} \nabla \varphi_{j} \cdot \nabla \hat{\varphi}_{i} d x, \quad b=\int_{\Omega} f \hat{\varphi}_{i} d x
$$

Details

- Green's formula:

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Gamma} \partial_{n} u v d s-\int_{\Omega} \Delta u v d x
$$

- Start from equation:

$$
\begin{aligned}
-\Delta u & =f \Rightarrow \\
-\int_{\Omega} \Delta u v d x & =\int_{\Omega} f v d x \Rightarrow \\
\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\Gamma} \partial_{n} u v d s & =\int_{\Omega} f v d x \Rightarrow \\
\int_{\Omega} \nabla u \cdot \nabla v d x & =\int_{\Omega} f v d x
\end{aligned}
$$

- Continue

$$
\begin{aligned}
\int_{\Omega} \nabla u \cdot \nabla v d x & =\int_{\Omega} f v d x \\
& \Rightarrow \text { insert Ansatz } \\
\sum_{j=1}^{N} \xi_{j} \int_{\Omega} \nabla \varphi_{j} \cdot \nabla \varphi_{i} d x & =\int_{\Omega} f \varphi_{i} d x \Rightarrow \\
A_{h} \xi & =b
\end{aligned}
$$

Adaptivity for Poisson

How large is the error?

We expect the error $e=U-u$ to decrease if we increase the dimension N of V_{h} and \hat{V}_{h}. This can be done in different ways:

- h-adaptivity: decrease the mesh size h
- p-adaptivity: increase the polynomial order p
- $h p$-adaptivity: a combination of the h and p methods

We will only consider h-adaptivity.

An a posteriori error estimate

Let $\|\cdot\|_{E}$ denote the energy-norm given by $\|v\|_{E}=\|\nabla v\|$. Then the (piecewise linear) finite element solution $U=U(x)$ satisfies the error estimate

$$
\|e\|_{E}=\|U-u\|_{E} \leq C\left\|h\left(R_{1}(U)+R_{2}(U)\right)\right\|
$$

where $R_{1}(U)=|f+\Delta U|=|f|$ and

$$
R_{2}(U)=\frac{1}{2} \max _{S \subset \partial K} h_{K}^{-1}\left|\left[\partial_{S} U\right]\right|
$$

Adaptive error control

Find V_{h}, given by a triangulation \mathcal{T}_{h}, such that

$$
\|e\|_{E} \leq \mathrm{TOL}
$$

where TOL is a given tolerance for the error.
This is satisfied if

$$
C\left\|h\left(R_{1}(U)+R_{2}(U)\right)\right\| \leq \mathrm{TOL} .
$$

An adaptive algorithm

1. Choose an initial triangulation \mathcal{T}_{h}^{0}.
2. Compute the solution U on the current triangulation.
3. Compute the residuals R_{1}, R_{2}, and the error estimate.
4. If the error estimate is below the tolerance we stop. Otherwise, we refine the elements where $R_{1}+R_{2}$ is large and start again at 2 .
