PDE Project Course 2. Implementation of the Finite Element Method

Karin Kraft
kakr@math.chalmers.se
Department of Mathematical Sciences

Lecture Plan

- From Last Friday
- Matrix Notation
- Assembling the Matrices
- Mapping from a Reference Element
- Solving Nonlinear Problems
- Time-stepping

Warning: ξ is used with two different meanings!

From Last Friday

Model problem/B.C:

Equation:

$$
\begin{array}{cll}
-\nabla \cdot(\epsilon(x) \nabla u) & =f \quad \text { on } \Omega \\
u & =g \quad \text { on } \Gamma_{1} \\
(\epsilon(x) \nabla u) \cdot n & =p \quad \text { on } \Gamma_{2}
\end{array}
$$

Variational Formulation

Variational formulation from Greens formula: Find

$$
v \in V=\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{1}\right\}
$$

such that

$$
a(u, v)=L(v) \quad \forall v \in V
$$

Variational Formulation, continued

where

$$
a(u, v)=\int_{\Omega} \epsilon(x) \nabla u \cdot \nabla v d x
$$

and

$$
L(v)=\int_{\Omega} f v d x+\int_{\Gamma_{2}} p v d s
$$

FEM

- Put $p=0$ for simplicity.
- Introduce the finite-dimensional spaces $V_{h}=\hat{V}_{h}=\operatorname{span}\left\{\varphi_{j}\right\}_{j=1}^{N}$.
- The approximate solution is given by $U(x)=\sum_{j=1}^{N} \xi_{j} \varphi_{j}(x)$.
- Linear system:

$$
A_{h}=\int_{\Omega} \nabla \varphi_{j} \cdot \nabla \hat{\varphi}_{i} d x, \quad b=\int_{\Omega} f \hat{\varphi}_{i} d x
$$

Matrix Notation

The stifiness matrix S

The stiffness matrix S is given by

$$
S_{i j}=\int_{\Omega} \epsilon(x) \nabla \varphi_{j}(x) \cdot \nabla \hat{\varphi}_{i}(x) d x .
$$

In one dimension, with $\Omega=(a, b)$, we have

$$
S_{i j}=\int_{a}^{b} \epsilon(x) \varphi_{j}^{\prime}(x) \hat{\varphi}_{i}^{\prime}(x) d x
$$

The load vector b

The load vector b is given by

$$
b_{i}=\int_{\Omega} f(x) \hat{\varphi}_{i}(x) d x
$$

Example: Poisson's equation

For Poisson's equation, $-\nabla \cdot(\epsilon(x) \nabla u(x))=f(x)$ in Ω, with homogenous Neumann B.C we obtain the system

$$
S \xi=b,
$$

where S is the stiffness matrix, b is the load vector and ξ is the vector containing the degrees of freedom for the finite element solution U given by

$$
U(x)=\sum_{j=1}^{N} \xi_{j} \varphi_{j}(x)
$$

The mass matrix M

The mass matrix M is given by

$$
M_{i j}=\int_{\Omega} \varphi_{j}(x) \hat{\varphi}_{i}(x) d x
$$

The convection matrix B

The convection matrix B is given by

$$
B_{i j}=\int_{\Omega} \beta(x) \cdot \nabla \varphi_{j}(x) \hat{\varphi}_{i}(x) d x
$$

In one dimension, with $\Omega=(a, b)$, we have

$$
B_{i j}=\int_{a}^{b} \beta(x) \varphi_{j}^{\prime}(x) \hat{\varphi}_{i}(x) d x
$$

Example: convection-diffusion

Using matrix notation, the convection-diffusion equation

$$
\dot{u}(x, t)+\beta(x) \cdot \nabla u(x, t)-\nabla \cdot(\epsilon(x) \nabla u(x))=f(x),
$$

can be written in the form

$$
M \dot{\xi}(t)+B \xi(t)+S \xi(t)=b
$$

This is an ODE for the degrees of freedom $\xi(t)$.

General bilinear form $a(\cdot, \cdot)$

In general the matrix A_{h}, representing a bilinear form

$$
a(u, v)=(A(u), v)
$$

is given by

$$
\left(A_{h}\right)_{i j}=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)
$$

Assembling the matrices

Computing $\left(A_{h}\right)_{i j}$

Note that

$$
\begin{aligned}
\left(A_{h}\right)_{i j} & =a\left(\varphi_{j}, \hat{\varphi}_{i}\right)=\int_{\Omega} A\left(\varphi_{j}\right) \hat{\varphi}_{i} d x \\
& =\sum_{K \in \mathcal{T}} \int_{K} A\left(\varphi_{j}\right) \hat{\varphi}_{i} d x=\sum_{K \in \mathcal{T}} a\left(\varphi_{j}, \hat{\varphi}_{i}\right)_{K} .
\end{aligned}
$$

Iterate over all elements K and for each element K compute the contributions to all $\left(A_{h}\right)_{i j}$, for which φ_{j} and $\hat{\varphi}_{i}$ are supported within K.

Assembling A_{h}

for all elements $K \in \mathcal{T}$
for all test functions $\hat{\varphi}_{i}$ on K

for all trial functions φ_{j} on K

1. Compute $I=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)_{K}$
2. Add I to $\left(A_{h}\right)_{i j}$
end
end
end

Assembling A_{h} in Puffin

Assembling b

for all elements $K \in \mathcal{T}$
for all test functions $\hat{\varphi}_{i}$ on K

1. Compute $I=\left(f, \hat{\varphi}_{i}\right)_{K}$
2. Add I to b_{i}
end
end

Assembling b in Puffin

Mapping from a reference element

Mapping

- One set of basis functions on a reference element
- Map the integral from the simple to the real element
- The most common mapping is the iso-parametric mapping

$$
x(\xi)=\sum_{i=1}^{n} \varphi_{i}(\xi) x_{i}
$$

The mapping $F: K_{0} \rightarrow K$

Some basic calculus

Let $v=v(x)$ be a function defined on a domain Ω and let

$$
F: \Omega_{0} \rightarrow \Omega
$$

be a (differentiable) mapping from a domain Ω_{0} to Ω. We then have $x=F(\xi)$ and

$$
\begin{aligned}
\int_{\Omega} v(x) d x & =\int_{\Omega_{0}} v(F(\xi))\left|\operatorname{det} \partial F_{i} / \partial \xi_{j}\right| d \xi \\
& =\int_{\Omega_{0}} v(F(\xi))|\operatorname{det} \partial x / \partial \xi| d \xi
\end{aligned}
$$

Affine mapping

When the mapping is affine, the determinant is constant:

$$
\begin{aligned}
& \int_{K} \varphi_{j}(x) \hat{\varphi}_{i}(x) d x \\
= & \int_{K_{0}} \varphi_{j}(F(\xi)) \hat{\varphi}_{i}(F(\xi))|\operatorname{det} \partial x / \partial \xi| d \xi \\
= & |\operatorname{det} \partial x / \partial \xi| \int_{K_{0}} \varphi_{j}^{0}(\xi) \hat{\varphi}_{i}^{0}(\xi) d \xi
\end{aligned}
$$

Transformation of derivatives

To compute derivatives of the basis functions, we use the transformation (chain rule)

$$
\nabla_{\xi}=\left(\frac{\partial x}{\partial \xi}\right)^{\top} \nabla_{x}
$$

or

$$
\nabla_{x}=\left(\frac{\partial x}{\partial \xi}\right)^{-\top} \nabla_{\xi}
$$

The stifiness matrix

For the computation of the stiffness matrix, this means that we have

$$
\begin{aligned}
& \int_{K} \epsilon(x) \nabla \varphi_{j}(x) \cdot \nabla \hat{\varphi}_{i}(x) d x \\
= & \int_{K_{0}} \epsilon_{0}(\xi)\left[(\partial x / \partial \xi)^{-\top} \nabla_{\left.\xi \varphi_{j}^{0}(\xi)\right] \cdot\left[(\partial x / \partial \xi)^{-\top} \nabla_{\xi} \varphi_{i}^{0}(\xi)\right] \cdots} \quad \cdots|\operatorname{det}(\partial x / \partial \xi)| d \xi .\right.
\end{aligned}
$$

Note that we have used the short notation
$\nabla=\nabla_{x}$.

Computing integrals on K_{0}

- The integrals on K_{0} can be computed exactly or by quadrature.
- In some cases quadrature is the only option.

Standard form:

$$
\int_{K_{0}} v(\xi) d \xi \approx\left|K_{0}\right| \sum_{i=1}^{n} w_{i} v\left(\xi^{i}\right)
$$

where $\left\{w_{i}\right\}_{i=1}^{n}$ are quadrature weights and $\left\{\xi^{i}\right\}_{i=1}^{n}$ are quadrature points in K_{0}.

Assembling in Puffin

Solving nonlinear problems

Nonlinear problems

If the problem is nonlinear, for example,

$$
-\nabla \cdot(a(u) \nabla u)=f
$$

we rewrite the problem as

$$
-\nabla \cdot\left(a\left(u_{o l d}\right) \nabla u_{\text {new }}\right)=f .
$$

As before, we obtain a linear system $A_{h} \xi=b$, but now

$$
A_{h}=A_{h}\left(u_{o l d}\right)=A_{h}(u)=A_{h}(\xi)
$$

i.e. $A_{h}(\xi) \xi=f$.

Fixed-point iteration

To solve a nonlinear problem $F(\xi)=0$, we rewrite the problem in fixed-point form

$$
\xi=g(\xi)
$$

and apply fixed-point iteration as follows:

$$
\begin{aligned}
& \xi^{0}=\text { a clever guess } \\
& \xi^{1}=g\left(\xi^{0}\right) \\
& \xi^{2}=g\left(\xi^{1}\right) \\
& \ldots
\end{aligned}
$$

Fixed-point iteration

According to the contraction-mapping theorem, fixed-point iteration converges if

$$
L_{g}<1,
$$

where L_{g} is a Lipschitz-constant of g :

$$
\|g(\xi)-g(\eta)\| \leq L_{g}\|\xi-\eta\| .
$$

Basic algorithm

$\xi=\xi^{0}$
$d=2 \cdot \mathrm{tol}$
while $d>$ tol

$$
\begin{aligned}
& \quad \xi_{\text {new }}=g(\xi) \\
& \quad d=\left\|\xi_{\text {new }}-\xi\right\| \\
& \xi=\xi_{\text {new }} \\
& \text { end }
\end{aligned}
$$

Newton's method

Newton's method is a special type of fixed-point iteration for $F(\xi)=0$, where we take

$$
g(\xi)=\xi-(\partial F / \partial \xi)^{-1} F(\xi)
$$

Usually converges faster than basic fixed-point iteration, but requires more work to implement.

Time-stepping

A shortcut

Replace $\dot{\xi}$ by $\left(\xi\left(t_{n}\right)-\xi\left(t_{n-1}\right)\right) / k_{n}$, and replace ξ by

- $\xi\left(t_{n-1}\right)$: forward / explicit Euler
- $\xi\left(t_{n}\right)$: backward / implicit Euler
- $\left(\xi\left(t_{n-1}\right)+\xi\left(t_{n}\right)\right) / 2$: Crank-Nicolson / cG(1)

Example: backward Euler

Discretizing the heat equation $\dot{u}-\Delta u=f$ in space, we have

$$
M \dot{\xi}+S \xi=b
$$

Using the implicit Euler method for time-stepping, we obtain

$$
M\left(\xi\left(t_{n}\right)-\xi\left(t_{n-1}\right)\right) / k_{n}+S \xi\left(t_{n}\right)=b\left(t_{n}\right)
$$

or

$$
\left(M+k_{n} S\right) \xi\left(t_{n}\right)=M \xi\left(t_{n-1}\right)+k_{n} b\left(t_{n}\right)
$$

Basic algorithm

$t_{0}=0$
$n=1$
while $t<T$

$$
\begin{aligned}
& t_{n}=t_{n-1}+k \\
& \xi^{n}=\ldots \\
& n=n+1
\end{aligned}
$$

end

